
University of Louisville
ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

8-2019

Formally designing and implementing cyber
security mechanisms in industrial control networks.
Mehdi Sabraoui
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd
Part of the Computer and Systems Architecture Commons, Controls and Control Theory

Commons, Information Security Commons, OS and Networks Commons, Other Computer
Engineering Commons, Software Engineering Commons, Systems Architecture Commons, and the
Theory and Algorithms Commons

This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional Repository. It has been
accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of ThinkIR: The University of Louisville's Institutional
Repository. This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact
thinkir@louisville.edu.

Recommended Citation
Sabraoui, Mehdi, "Formally designing and implementing cyber security mechanisms in industrial control networks." (2019). Electronic
Theses and Dissertations. Paper 3271.
https://doi.org/10.18297/etd/3271

https://ir.library.louisville.edu/?utm_source=ir.library.louisville.edu%2Fetd%2F3271&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F3271&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F3271&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=ir.library.louisville.edu%2Fetd%2F3271&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/269?utm_source=ir.library.louisville.edu%2Fetd%2F3271&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/269?utm_source=ir.library.louisville.edu%2Fetd%2F3271&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=ir.library.louisville.edu%2Fetd%2F3271&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=ir.library.louisville.edu%2Fetd%2F3271&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=ir.library.louisville.edu%2Fetd%2F3271&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=ir.library.louisville.edu%2Fetd%2F3271&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ir.library.louisville.edu%2Fetd%2F3271&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=ir.library.louisville.edu%2Fetd%2F3271&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=ir.library.louisville.edu%2Fetd%2F3271&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/3271
mailto:thinkir@louisville.edu


FORMALLY DESIGNING AND IMPLEMENTING CYBER SECURITY 

MECHANISMS IN INDUSTRIAL CONTROL NETWORKS 

BY 

Mehdi Sabraoui 

B.S., University of Louisville, 2013 

M.Eng., University of Louisville, 2014 

A Dissertation 

Submitted to the Faculty of the 

J. B. Speed School of Engineering 

in Partial Fulfillment of the Requirements 

for the Degree of 

Doctor of Philosophy 

in Computer Science and Engineering 

Department of Computer Science and Engineering 

J.B Speed School of Engineering 

University of Louisville 

Louisville, Kentucky 

August 2019 



 

 

 



ii 

 

 
FORMALLY DESIGNING AND IMPLEMENTING CYBER SECURITY 

MECHANISMS IN INDUSTRIAL CONTROL NETWORKS 

 

BY 

 

Mehdi Sabraoui 

B.S., University of Louisville, 2013 

M.Eng., University of Louisville, 2014 

 

A Dissertation Approved on 

 

July 23, 2019 

 

 

By the following Dissertation Committee members 

 

 

 

________________________________________ 

Dr. Adrian P. Lauf, Dissertation Director 

 

 

________________________________________ 

Dr. Jeffrey L. Hieb, Dissertation Co-Director 

 

 

________________________________________ 

Dr. Roman V. Yampolskiy 

 

 

________________________________________ 

Dr. Michael Losavio 

 

 

________________________________________ 

Dr. Adel Elmaghraby 

 



iii 

 

DEDICATION 

 

This dissertation is dedicated to my parents 

Rebecca Sabraoui and Ben Sabraoui 

whose hard work and constant support have granted me this privilege. 

  



iv 

 

ACKNOWLEDGEMENTS 

 

I cannot understate how much the support of my advisors, Dr. Jeff Hieb and Dr. 

Adrian Lauf, have helped me through the academic, professional, and emotional ups and 

downs of this journey. I would also like to extend my deepest gratitude to Dr. Adel 

Elmaghraby for his clever administrative support for me and all the students in the 

department who come to him for help and guidance. I am grateful to the rest of my 

committee members, Dr. Roman Yampolskiy and Dr. Michael Losavio, for their 

invaluable insights and friendly conversations through the tough times. Finally, I want to 

recognize all the friends and family who have been patient and understanding with my 

occasional absences through the past few years.  



v 

 

ABSTRACT 

 

 

FORMALLY DESIGNING AND IMPLEMENTING CYBER SECURITY 

MECHANISMS IN INDUSTRIAL CONTROL NETWORKS 

Mehdi Sabraoui 

July 23, 2019 

 

This dissertation describes progress in the state-of-the-art for developing and 

deploying formally verified cyber-resilient devices in industrial control networks. It 

begins by detailing the unique struggles that are faced in industrial control networks and 

why concepts and technologies developed for securing traditional networks might not be 

appropriate. It uses these unique struggles and examples of contemporary cyber-attacks 

targeting control systems to argue that progress in securing control systems is best met 

with formal verification of systems, their specifications, and their security properties. 

This dissertation then presents a development process and identifies two technologies, 

TLA+ and seL4, that can be leveraged to produce a high-assurance embedded security 

device. 

The method presented in this dissertation takes an informal design of an 

embedded device that might be found in a control system and 1) formalizes the design 

within TLA+, 2) creates and mechanically checks a model built from the formal design, 

and 3) translates the TLA+ design into a component-based architecture of a native seL4 



vi 

application. The later chapters of this dissertation describe an application of the process 

to a security preprocessor embedded device that was designed to add security 

mechanisms to the network communication of an existing control system. The device and 

its security properties are formally specified in TLA+ in chapter 4, mechanically checked 

in chapter 5, and finally its native seL4 architecture is implemented in chapter 6. Finally, 

the conclusions derived from the research are laid out, as well as some possibilities for 

expanding the presented method in the future.
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CHAPTER I 

INTRODUCTION 

Industrial control system (ICS) is a general term describing multiple 

configurations of networked industrial computer systems [1]. ICSs regulate factory floors 

and utilities such as power grids, dams, water-treatment facilities, and many more. Unlike 

typical corporate IT networks, ICS engineers value availability above confidentiality [2]. 

Keeping the data in the system private is not as important as keeping the system running. 

Threats to an ICS reflect this priority: an attacker seeks to disturb and disrupt the 

controlled process. Disrupting these processes could lead to physical consequences 

affecting the surrounding area like the attack on Maroochy Water Services, a water-

treatment plant in Australia. A disgruntled employee manipulated the control systems to 

seize control from plant engineers and dump sewage into surrounding parks and rivers 

[3]. The importance of availability disincentivizes ICS engineers making regular changes 

or updates to the systems for fear of unscheduled downtime. 

A variety of factors have led to the current challenge-riddled state of ICS cyber 

security. One of the primary reasons for lack of security is that ICS networks have 

historically been physically isolated from the greater internet [4][5]. SCADA 

communications protocols were therefore designed to prevent accidental corruption from 

a well-meaning operator rather than a purposeful attack. Incidents like Stuxnet have 

shown that air-gapping a SCADA network is no longer enough protection [6]. Many 
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industry-standard protocols such as MODBUS, EtherNet/IP, Profibus, and others have no 

means for ensuring the validity of messages [7], [8], [5]. This presents an opening for a 

malicious user to pretend to be either an operator controlling a Programmable Logic 

Controller (PLC) directly or an intermediate PLC controlling a device located at a remote 

substation. Once an attacker is inside a network any message the attacker sends is trusted 

and processed by the devices --- to potentially disastrous effects. A layering of multiple 

defensive strategies is required to mitigate this vulnerability and adding security to the 

communication protocols can cover some of the security holes. The need for security in 

protocols is shown in DNP3's efforts to create Secure Authentication (SA) within the 

DNP3 specification. The expanded capability of DNP3 SA currently offers protection 

against many common attacks by adding a challenge-response system for ensuring 

validity of communication across the DNP3 network[9]. DNP3 Secure Authentication is 

limited in its coverage of security concerns: it applies only to infrastructure currently 

using DNP3 and can be troublesome on networks using a variety of networking 

technologies to connect central control facilities to remote substations. 

Formal methods are techniques for adding a high level of assurance to designs 

and implementations[10]–[14]. Human languages are ambiguous by nature and thus are 

not suited to describing software beyond the planning phases. Formal modeling can be 

used not only to create explicit designs, but also to logically prove certain properties of 

the designs. Proofs of security and fail-safety can be very useful in an ICS environment. 

This paper looks to use formal modeling and logic to prove security and assurance 

properties of a protocol designed to encapsulate SCADA traffic. 
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This chapter seeks to provide the reader with enough background information on 

the fields of Industrial Control Systems (ICS), ICS security, and formal methods to 

understand the context behind the research presented in the following chapters. The 

practical aspects of this research require a mix of resources from peer-reviewed academic 

papers, established industry standards, and white papers. 

1.1 Industrial Control Systems 

Industrial control extends it reach across electrical grids, wastewater treatment 

facilities, dams, water distribution systems, agricultural irrigation systems, pipelines for 

oil and natural gas, railroads, manufacturing plants, and air traffic control. The physical 

processes in these systems are controlled using electrical, mechanical, hydraulic, or 

pneumatic components [1]. Historically, such processes were operated by humans using 

analog mechanisms. Advances in digital technology offered new opportunities for control 

systems as integrated circuits and microprocessors started to replace old analog control 

loops and their human operators. As more of the controls became digital, the value of an 

interconnected control system became apparent. New communication mediums and 

protocols were developed to extend the reach of the system to geographically distant 

substations such as a neighborhood water tower located miles away from the city’s 

central distribution facility. 

While advancements in ICS technology sometimes mirror that of a traditional 

corporate network, its requirements and operation do not. ICS networks are seeing more 

use of Ethernet, however, the protocols selected allow for some level of determinism, 

real-time collection, and low overhead [15]. Traditional networks are shallow in their 

functionality with a very limited set of protocols and standards. ICS networks are more 
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varied with separate entities performing separate duties with physical goals in mind [16]. 

Knowledge of a traditional IT network will help in understanding an ICS network, but 

some key terminology explained below helps illustrate the difference. 

Supervisory Control and Data Acquisition (SCADA) systems are used to control 

and monitor physical systems spread over a wide geographical region [15], [17], [18]. 

The first SCADA systems were simple configurations of sensors connected to dials, 

lights analog strip charts organized on a panel. Changes in the physical system would be 

picked up by the sensor and turn a dial or register on the chart in real time. A human 

would read the panel then act to adjust the system as needed. This basic system, while 

admirably fulfilling its purpose of getting the operator information about the system in 

real time, had some key shortcomings: an operator had to be present and monitoring the 

system at all times, each output on the panel was directly connected to a sensor so wiring 

new sensors became unwieldy, everything was local – substations could not be monitored 

from a central location, reconfiguring the system became increasingly difficult as the 

system grew, the type of data that could be collected and displayed was basic, and storage 

of the data was virtually non-existent. 

Modern SCADA systems utilize advancements in communication to operate over 

distances of a few hundred yards to thousands of miles. Modern visual displays and 

microcontrollers/microcomputers allows more flexibility in the data collected and the 

control that can be exerted upon the system. There are three configurations for modern 

SCADA systems: open loop where the controls on the system are defined in advance and 

the state of the system has no bearing on the automated instructions, closed loop where 

the data acquired from the physical system is fed into the control modules and 



5 

instructions are adjusted accordingly, and manual systems in which a human manually 

controls the system based on the data collected. 

Distributed control systems (DCS) are used to control the automation of industrial 

processes at a single location. DCS oversee multiple subsystems that each have separate 

responsibilities at individual points in a process. Through a DCS these subsystems can be 

integrated with feedback and/or feed forward loops to compensate for variability at each 

stage of the process. This allows the process as a whole to self-correct in the event a 

single point misbehaves. DCS are widespread in oil refineries and food, chemical, and 

automotive production plants. These connect with programmable logic controllers 

(PLCs) that governs industrial equipment and processes. PLCs can be used as field 

devices on SCADA and DCS systems as seen in Figure 1 or as primary control devices in 

smaller systems like in Figure 2. 

Figure 1: A PLC field device setup 
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Figure 2: A PLC process network setup 

Understanding the manufacturing needs of the industries that use ICS helps to 

understand the ICS configurations. There are manufacturing industries and distribution 

industries [16]. Manufacturing industries typically involve a single location such as a 

factory and are further split into continuous manufacturing process wherein the process 

from raw materials to finished product runs continuously and batch manufacturing 

process where the process is broken into distinct steps producing a specific amount of the 

product. Examples of continuous manufacturing processes include petroleum and 

distillation in a chemical plant. Food and consumer goods are examples of batch 

manufacturing. The small area of operation allows for greater reliability and performance 

in the networking technology used within the factory. Distribution industries, on the other 

hand, control devices spread over large distances such as oil and water pipelines and 

railway systems and offer less assurance in communication. These systems use leased 

lines, radio frequency, and satellite links [15] to overcome these great distances, each of 
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these with their own security and reliability concerns. Distribution industries are typically 

designed to handle the reliability and timing challenges that come with long distance 

communications. 

1.2 Components of Industrial Control 

The differences between IT networks and control networks can further be detailed 

in the devices and protocols that make up the environment. A Remote Terminal Unit 

(RTU) interface with machinery and sensors in modern ICS networks. RTUs govern 

industrial equipment and processes. They are lower cost and lower capability than a PLC 

and are used in remote stations where less functionality is required and less user 

interaction is desired. RTUs often comes equipped with radio capabilities for wireless 

communications to the central stations. A control server (or master server) hosts the 

control software and sends instructions to the PLCs and RTUs around the network. This 

is usually located at the central control facility and is used to collect and process 

information relayed from field devices. An Intelligent Electronic Device (IED) is a 

“smart” sensor/actuator that may sit between the RTU and the machinery or it may 

replace the RTU entirely and communicate directly with the control server. IEDs have 

functionality to run simple routines to react to changes in the parameters of the system, 

but are usually polled by RTUs or PLCs and given instructions from there. 

ICS operators manipulate the system through a Human Machine Interface (HMI). 

An HMI is software that allows the control engineers to monitor the elements of the 

processes under control. A typical HMI can allow an engineer to set alarms in case 

certain limits are exceeded, modify the processes, take manual control in case of 

emergency, and read reports on runtime information. HMIs can be located in the control 
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center, on engineer workstations or laptops, and more recently on mobile devices. The 

data that is collected or calculated and any triggered events or alarms are usually saved 

and stored for later analysis. This data can be collected in a data historian that can reside 

on the control network or an outside network with security restrictions in place to prevent 

it from communicating in any way with the control network other than receiving 

information. A slave historian can be used to duplicate the historian’s data onto a server 

on the corporate network for the business to access and analyze.  

1.3 ICS Network Devices and Requirements 

ICS networking concepts and requirements evolved from a need to rein in the 

wiring of early control systems. As described earlier, each sensor used to be wired 

directly to the meter displaying its reading to the operator. Each sensor required a 

separate wire for each binary digit it was expected to record [19]. This method of wiring 

was quickly outgrown and the industry requested a solution from its vendors and 

university researchers. The solution was a Fieldbus, a network that connected devices in 

the field such as RTUs and IEDs to the central facilities. Fieldbus is a broad term to 

describe all the communication technologies that solve this wiring problem. Many 

protocols, such as Modbus[20]–[22], Distributed Network Protocol (DNP3)[23][24]–

[26], and Common Industrial Protocol (CIP) family of protocols [27], [28] are used on a 

fieldbus network. These protocols are responsible for handling any device identification 

in place of individual wires for each sensor. The medium for communication is undefined 

for a fieldbus and may include multiple technologies such as Ethernet, serial, satellite 

link, telephone lines, or radio frequency [15]. To this end, a modem is a device that can 

translate a digital signal into analog for easier transmission over any number of long-
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distance mediums. One modem would be connected at a remote substation to translate 

digital signals from the RTU into analog and another would be located at the central 

facility to translate the analog signal back into digital for use. 

This research makes heavy use of Modbus, so it may benefit the reader to have a 

longer explanation of Modbus in particular. Modbus is an open communication protocol 

developed in 1979 by Modicon for use in ICS networks. ICS are difficult to install and 

difficult to upgrade and have longer lifecycles relative to corporate networks. This lead to 

operators preferring open standards and the proliferation of protocols like Modbus [16]. 

As described in the specification guide in [29], the base Modbus is a simple, stateless, 

call-and-response protocol. It contains a simple addressing scheme allowing for up to 247 

devices on a common bus, a field for a function code that tells the target devices which 

procedure to run, and a data field that can contain up to 252 bytes for the target device to 

act on. There are two versions of Modbus: Modbus RTU and Modbus ASCII. Modbus 

RTU transmits raw bytes and uses a specific minimum time between bytes sent over the 

bus to distinguish between frames and a Cyclic Redundancy Check (CRC) to detect errors 

in transmission. Modbus ASCII operates on ASCII-encoded messages, utilizing two 

bytes where Modbus RTU would only require one. Modbus ASCII distinguishes frames 

with a colon. Whenever a device receives a “:” it knows a new message has started, 

regardless of where the previous message left off. To detect transmission errors, Modbus 

ASCII makes use of a Longitudinal Redundancy Check (LRC). The structure of a 

Modbus ACSII message is presented in Table 1. This research uses Modbus ASCII for 

simplicity. 

Table 1: A Modbus ASCII message 
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Start Address 
Function 

Code 
Sub code Data LRC End 

“:” 2 bytes 2 bytes 
2 bytes 

(optional) 

Up to 504 

bytes 
2 bytes “\r\n” 

The growing interconnectedness of ICS networks with corporate networks 

and devices have led to incorporation of corporate network technologies. A router is a 

networking device that allows communication between logically separated networks. 

These are used to allow access to the control network from the corporate network and 

vice-versa. A firewall allows a network engineer to closely regulate the connections that 

are made across networks. A firewall (sometimes multiple [30], [31]) located at strategic 

points such as between the ICS and the corporate network or between the engineers 

terminal and the fieldbus can block unwanted network traffic from reaching the ICS. A 

remote access point is a device that allows control over the ICS remotely. Such devices 

include laptops, tablets, and smartphones that access the control network from anywhere 

through a Virtual Private Network (VPN), which encrypts traffic and “tunnels” through a 

public network. 

Special considerations must be made when designing an ICS network. Each 

system is unique in its requirements and goals, and these factors inform the decisions 

made in selecting technologies and topologies. Depending on the nature of the industry, 

the timing requirements may range from 250 microseconds to 10 milliseconds. A 

response time that is less than the sensor’s sample time is recommended [16]. This can 

necessitate processing power at a remote substation, as performing computations 

remotely might incur too significant of a delay. A distribution industry such as an oil 

pipeline would have SCADA components spread over thousands of miles with different 
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options for communications at different substations. The complexity of control needed 

for the system might allow simple controllers with predefined routines or might require 

high-level decision making from a human operator such as in air traffic control [1]. The 

need for high uptime, 99.999% or 5 minutes and 35 seconds per year of allowable 

downtime per year in some cases [32], and reliability would push for a system with more 

redundancy and alternate forms of communication should one fail. To go along with 

availability, the impact of a failure in the system must be considered. A failure in a 

nuclear reactor could have significant environmental impacts and would require both 

redundant control systems and physical safety mechanisms. Finally, operator safety must 

be considered. A control network in a car must be able to detect a sudden application of 

the brakes to tighten the seatbelt, apply the automatic braking system, and deploy airbags 

if needed. 

1.4 Cyber Security for Industrial Control Systems 

Industrial Control Systems (ICS) regulate processes that, if compromised, can have a 

physical effect on the environment around them. A broken ICS process can cause 

damages to the facilities containing the machinery and/or endanger human life [33]. As 

with the design considerations varying across industry, so too do the means by which an 

attacker can cause harm. Strict timing requirements mean that slowing down response 

time would disrupt the system. This is especially true of close-loop systems, where a 

transmission time exceeds the sample time. This error can propagate and amplify over 

cycles to force the system into an unstable state [34], [35]. Programmable Logic 

Controllers (PLCs), Remote Terminal Units (RTUs) and Intelligent Electronic Devices 

(IEDs) are designed to be programmed and reprogrammed as needed to suit changing 
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requirements in the system. An attacker could reprogram one of these devices to modify 

its behavior or adjust thresholds to effectively disable alarms. An attacker could modify 

or fake information being sent to PLCs and Human-Machine Interfaces (HMIs) to 

disguise unauthorized changes in the system or cause the operator to initiate inappropriate 

actions. As with a corporate or home network, malware-infected workstations can have 

degraded system performance or actively disrupt the system by modifying configurations. 

An attacker can also interfere with the safety mechanisms such as emergency shutdown 

systems, safety shutdown systems, or safety interlock systems [1], [36]. 

The design of ICS networks makes manipulating SCADA components simple. 

ICS networks were originally isolated from corporate networks and the greater networks, 

thus network traffic moving across the lines is inherently trusted. Early systems used 

specialized software and hardware with proprietary protocols. Modern systems are using 

cheap commercial off the shelf (COTS) hardware with open protocols and IT design 

principles that promote connectivity with corporate networks and erode the isolation that 

control networks used to enjoy [1][5]. While this integration of IT technology allows 

corporate network security measures to be utilized, the special considerations discussed 

in the previous section can limit their viability. These special considerations can also 

require new technologies to be developed. 

When considering the CIA triad [37], the priorities for an ICS are different than 

traditional IT as seen in Table 2 [2]. Confidentiality is paramount for most IT systems. 

Trade secrets, banking information, employee personal information, and other sensitive 

data are stored on the IT network. The greatest cost to the organization is in this 

information leaking out, so the highest priority is confidentiality. Availability is last 
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because a traditional IT staff would rather have their system go down than have sensitive 

information compromised. 

Table 2: Priorities of IT and ICS Networks 

Priority IT SCADA/ICS 

1 Confidentiality Availability 

2 Integrity Integrity 

3 Availability Confidentiality 

 

Availability is the highest priority for ICS. Downtime of an ICS network could 

potentially damage expensive equipment as seen in the Stuxnet attack[6], damage the 

surrounding environment as seen in the Maroochy attack [3], deprive the community of 

critical utilities as seen in the Ukraine attacks[38], damage the company's reputation, or 

cause a loss of metering data, damaging the company's profits. Confidentiality is last 

because an ICS operator would rather have an attacker in the system snooping than to 

have any downtime. These factors present the challenge to security professionals. 

Security professionals face an infrastructure that was built before security was a concern, 

equipment that is old enough to be vulnerable to common attacks, and a zero-downtime 

mindset that makes applying updates and security patches difficult. 

1.5 Vulnerabilities 

The National Institute of Standards and Technology (NIST) separates ICS 

vulnerabilities into 6 categories: Policy and Procedural, Configuration and Maintenance, 

Architecture and Design, Physical, Software Development, and Communication and 

Network. Causes of security failures might overlap across categories. Specific systems 

may also have unique vulnerabilities as each ICS is specially designed. Some 
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vulnerabilities can be removed or mitigated, while others must simply be accepted. See 

Special Publications 800-82[1] and 800-53A[39] for detailed analysis. 

Policy and Procedural vulnerabilities are introduced into ICS through lack of 

security policies and a relaxed security posture in the organization. Security policies 

govern staff and stakeholders on proper use of systems to reduce the attack surface of the 

system. As shown above, security of ICS is often not the top priority so such policies can 

be scarce. Mitigations of this class of vulnerability include awareness and training 

programs to educate employees on proper upkeep of a secure environment, as well as 

maintaining a proper written security policy and plans for breaches. Proper authentication 

policies for employees such as smart cards and strictly enforced access policies, as well 

as proper authorization policies following the principle of least privilege as described in 

[37]. 

Misconfigured or default-configured devices make up Configuration and 

Maintenance vulnerabilities. NIST describes this class of vulnerabilities as those that 

would be similar to challenges faced by a corporate IT network; namely up-to-date 

patches of software and proper use of security controls available from vendors such as 

access control policies and firewall rules. The uptime requirements of some ICS networks 

as described in the previous sections can make patching and upgrading difficult, with 

some vendors recommending staying on outdated versions of software to ensure 

functionality or contractually obligating asset owners to involve the vendors in upgrades 

or risk voiding warrantees [32]. Legacy ICS components may be no longer supported, but 

still in production. Malicious software, or malware, is a common method of attack which 

can be mitigated. To go along with access control configurations, deficiencies in logging 
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can prevent detection of abnormal behavior and make forensic analysis of attacks 

impossible. 

Architecture and Design vulnerabilities arise from inadequate planning of ICS 

growth and failure to incorporate security priorities from the beginning of development. 

Legacy systems may have been designed before security technologies were widely 

available or may have expanded and changed without evaluating the effects of new 

capabilities on the organizations security posture. Loosely defined security perimeters 

around ICS networks make proper enforcement of security policies difficult. Intermixing 

of control and non-control network services and can cause control networks to be 

vulnerable to common non-control issues. A control network that depends on services 

such as Domain Name System (DNS) on an IT network might see reduced availability as 

an IT network typically does not conform to the same uptime standards.  

Physical vulnerabilities range from physical access to control equipment to 

natural disasters. Improper access to network or control equipment could lead to theft, 

damage of hardware, unauthorized changes or additions to software and configurations of 

devices on the network, or installation of new unauthorized devices. Most devices, while 

properly access controlled from networked ports, have local ports with no access control 

capabilities to aid in maintenance. Consideration must be taken when securing safety-

critical equipment to not make access to emergency shutdown functions too difficult for 

authorized personnel. Certain natural phenomena such as Electromagnetic Pulses, Radio 

Frequency (RF) interference, and power dips and spikes can cause temporary loss of 

service or permanent damage to devices and networks.   
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Software Development vulnerabilities cover errors in the design and 

implementation of the software running in the environment. Fragile or bug-ridden 

software that has not been developed to high-assurance standards (or was developed 

before such standards existed) leave holes open for malicious or erroneous behavior to 

impact operation [40][41]. Specially designed ICS networks and components make patch 

release cycles difficult for vendors of ICS devices. Specific requirements for systems 

mean unique software patches made available for certain customers, each with their own 

testing cycles, leaving vulnerable components with no mitigations for extended periods of 

time. Software lacking security tools such as separate privileges and access controls also 

fit into this category. 

Communication and network vulnerabilities that are present in traditional IT 

networks are present in ICS networks. Unsecured communication across the network or 

lack of a managed solution for restricting communication (such as proper firewalls) can 

open an ICS network to attack. There are cases specific to ICS networks though; such as 

use of proprietary protocols or encryption and simple embedded device drivers that are 

unable to handle anything but the most expected network traffic [41].  Previous sections 

described ICS networking protocol such as Modbus, but notably absent from the 

discussion of the base protocol was any form of authorization or authentication. These 

protocols are vulnerable to Man in the Middle attacks wherein a malicious actor 

intercepts communications, and to spoofing attacks wherein an attacker masquerades as a 

legitimate network device sending fake traffic. There have been efforts to retroactively 

add security to open protocols [7] and to update standards to include secure operating 
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modes [23], but these still succumb to errors in design leading to more vulnerabilities 

[42]. 

Each of these classes of vulnerabilities have seen significant effort toward 

mitigation from both the private and public sector. Some of the mitigations include new 

technology and software developed to fill a hole in security capabilities, while others 

involve new methods for applying existing technology. There are numerous best-

practices guides [32], [1], [15], [39], [43] and whitepapers addressing each class that will 

be described in the next section. 

1.6 ICS Policies & Best Practices 

The vulnerabilities described in the previous section have mitigating controls via 

both additional technologies and more strict policies. This section describes some of the 

industry standard best practices for software configurations, infrastructure designs, and 

human policy to harden Industrial Control System (ICS) networks against attack. The 

goal of policies is to reduce the effectiveness of attacks against existing vulnerabilities. 

As such they can be considered mitigating controls for cases where a security fix cannot 

be applied or does not exist. These also follow a defense-in-depth philosophy, working in 

tandem to boost the effective mitigation of the system as a whole. These 

recommendations come from National Institute of Standards and Technology (NIST) [1], 

[39], and industry group whitepapers. 

1.6.1 Systems Design 

The engineering of a system is more complex than ensuring each technical 

component is operating as intended. The definition of a system can change depending on 
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context. Ross Anderson describes a variety of definitions in [44] and summarized below 

and applied to ICS. 

1. A component such as a network card or cryptographic hardware.

2. A collection of the above plus an operating system, physical networking

devices, and networking protocols.

3. The above plus applications that run on the nodes of the network such as an

HMI.

4. The above plus operators.

5. The above plus management and corporate users

6. The above plus venders and customers

A system is more than its individual components. How the components interact 

with one another and how a system might allow the human element to compromise its 

integrity must be carefully considered. 

The Physical Topology is the physical location and design of facilities in and 

around components of an ICS. In an ICS just as in traditional IT, if an attacker has 

physical access to a device then that device should be considered compromised. Physical 

security is just as important as electronic security and should be closely monitored. All 

doors should have locks, locks should be controlled with card readers, and physical 

security logs should be monitored just as closely as firewall logs. In highly critical 

systems armed guards may be necessary. Similarly, any computer devices used in the day 

to day operation of the ICS such as engineering laptops or PLC programming tools 

should never leave the area. Just as no unauthorized personnel should be allowed in, no 

operations equipment should be allowed out. 

Physical topology can extend to environmental considerations for protections 

against mistake or malice. In the event a process is disrupted, having physical safeguards 

such as spillways to direct overflowing liquid materials and natural berms to prevent 
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contamination outside of the area of operation. Designing physical systems to fail safe is 

an integral part of safety considerations, and can act as a means to mitigate certain 

security vulnerabilities. 

Logical Topology, or Network Topology, is the design for the system’s behavior 

and how a system’s components interact with one another. This includes considerations 

for how networks are divided, restrictions on network access to certain areas and certain 

devices, and policies governing behavior of humans interacting with the ICS. ICS must 

be logically separated from any other network it is connected to. A demilitarized zone is 

recommended as a buffer between the corporate network and the ICS. This prevents 

traffic from flowing directly between the two networks. To further the separation separate 

sets of authentication credentials should be used for both networks. If a control engineer’s 

credentials on the corporate network are compromised then the impact to the ICS is 

limited, if there is any impact at all. 

The ICS itself must be split into multiple layers. An attacker should have to 

penetrate multiple levels of security before reaching the critical systems. This can be 

accomplished with firewalls on the drop of the ICS, between the control server and 

PLCs/RTUs, and between the historian and the remote substations. Individual 

components of an ICS must also be separated from one another. Traffic between the 

control server and a pump at one end of the plant should have no business touching the 

assembly line at the other end of the plant. Similarly the pump operator should not have 

access to send commands to the assembly line. 

Traffic on an ICS can be more strictly defined than traffic on a traditional IT 

corporate network. With this in mind any extra functionality provided by devices on the 
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ICS that is not being used such as extra radios, open ports, and web interfaces should be 

disabled. Not only does this reduce the attack surface of the ICS, but it also reduces the 

amount of monitoring and logging that needs to be done. The simpler nature of ICS also 

means operator roles can be more rigorously defined. Roles for operators should be 

designed according to the principle of least privilege [45][44]. If a lower level operator’s 

credentials are compromised the breach will only affect the systems that operator is 

authorized to use. 

1.6.2 Configurations 

Components of an ICS network must be configured to suit their roles sufficiently 

within the design of the system. While many devices might not support security-specific 

features such as cryptography or access controls, they can be configured intelligently to 

reduce their attack surface and improve the security of the system as a whole. 

Additionally, for the devices that do support security specific features, special efforts 

should be made to ensure these features are properly enabled, configured, and tested. This 

section describes some of these configuration options and considerations. 

Address Space Layout Randomization (ASLR) seeks to render shell code and 

return-oriented programming exploits difficult by reordering the memory addresses of 

elements of a program each time the program is run. ASLR is a setting that affects 

software in development. The software must have a specific linker flag at compile time to 

enable ASLR. ASLR is supported on Windows operating systems from Vista onward, 

FreeBSD, OpenBSD, Linux, Solaris, and OS X 10.7 onward. ASLR compliments data 

execution prevention (DEP) technologies. Where ASLR randomizes memory locations, 

DEP prevents execution of code from certain parts of memory that are commonly 
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targeted by attackers, such as the heap and the stack. Support for ASLR and DEP is not 

common in embedded devices, with only 22% of devices supporting ASLR and 44% 

supporting DEP [46]. 

Application whitelisting is a method to eliminate the problem of having to track 

the changing malware trends by only allowing applications to run which have been given 

specific permission. Whitelisting software allows an administrator to specify which 

executables she wants enabled on the system. Malware that infects the system would 

never get a chance to execute. A case study from the Amor Group in 2012 reviewed the 

results of applying application whitelisting in the North Sea oil and gas industry [47]. 

Implementing whitelisting on the oil rigs, ships, and other assets revealed the presence of 

previously unidentified malware and helped the team catalog all of the legitimate 

software running on the multitude of computer systems. After whitelisting, no 

reinfections of systems were detected and a stricter management of applications was 

enabled.  

As control systems gradually become less isolated, the edge of the network (or 

subnetworks if the control system is divided) must enforce proper access controls through 

firewalling. If the ICS cannot be air-gapped from the corporate network then strict control 

over all physical connections is essential to protecting the network. Firewall strategy for 

an ICS is similar to firewall strategy for a traditional IT network. When deciding on a 

firewall solution at minimum the firewall should require authentication before any 

configuration changes are made, be able to perform self-testing, and be able to perform 

logging. Firewall rules must be made according to the whitelist philosophy: traffic is 

denied unless it is explicitly allowed. This is vitally important because even the most 
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innocent of traffic can cause problems to an ICS. A simple network enumeration, a 

perfectly harmless operation on a corporate network, can cause system outages. 

Considering how time-sensitive an ICS can be this “harmless” traffic can consume 

enough processing time to effectively render the nodes in the network unavailable. A 

firewalling strategy can be split between two separate methods, ingress and egress. 

Ingress filtering means filtering network traffic coming into the network from the 

outside. Filtering incoming traffic is the first line of defense against malware infiltrating 

the ICS. There is very little traffic that should be entering the ICS. Traffic allowed to 

enter an industrial control system (ICS), if there is to be any allowed, can be clearly 

defined. Consideration can be given to the purpose of incoming traffic, from where the 

traffic originates, the communication protocols necessary, whether these operations can 

be done locally, and the time of day or week this traffic can be expected. These questions 

allow strict rules to be implemented and policies for temporary rules to be enforced.  

Egress filtering involves filtering the network traffic leaving the network and 

originating from the inside. Since no system is unbreakable, it is important to implement 

firewall rules under the assumption that the system has already been compromised. A 

compromised system often makes outbound connections to a control server, either to 

push data or to receive further instructions. To this end it is necessary to filter outbound 

traffic just as much as inbound traffic. If malware finds its way onto the system through 

USB, such as described earlier with Stuxnet, then its damages can be limited by blocking 

its attempts to make connections outside the network. The same consideration should be 

made for egress filtering as ingress, with traffic leaving the network clearly defined 

before allowing traffic to egress. Another important consideration is whether the traffic 
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needs to be part of a session, with packets traveling both in and out of the network to 

complete transactions. Special hardware, such as the unidirectional gateway described 

later, can be used to physically limit data to a single direction should this not be required.  

1.6.3 Patch Management and Disaster Recovery 

Because of the extremely high importance of uptime, change and patch 

management of ICS can be more daunting than traditional IT. Protecting the individual 

components of the ICS, the field devices, the historians, and the operation centers at the 

operating system and firmware level adds to the security of the ICS as a whole. If an 

attacker can compromise a single device by exploiting outdated or misconfigured 

firmware then that attacker is now in control of a trusted node and is now operating at 

that node’s trust level across the network. However, an improperly tested patch can bring 

just as much harm as an outdated patch that has been compromised. 

Proper testing of patches is necessary before the patches reach the production 

system. One of the major challenges in keeping an ICS up to date is the sheer number of 

variables that can be unique to a specific ICS environment. A vendor may not be able to 

tailor patches specifically enough to support a given deployment. It is possible a patch 

may do more harm than good if not tested well enough. A security patch released by a 

vendor must be thoroughly tested on a system as close to production as possible in 

functionality before deployment. This problem is not solely the responsibility of the 

control engineers. Vendors should be held to a higher standard in creating software and 

patches robust enough to handle the vast variability from system to system. 
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Disaster recovery is the ability for a system to return to normal operation after an 

incident, whether accidental or by malice. Adverse conditions and disasters will happen 

and having procedures in place for these events is crucial to protecting the uptime of the 

ICS. This policy solution takes place in the planning stages of the ICS. The ICS must be 

designed in such a way that an unforeseen event can safely take down a part of the 

network with minimal effect on other parts of the system. To accomplish this each 

component of the system should be made redundant. If the first component goes down 

the second should be ready to instantly pick up the workload. An often missed 

component of redundancy is that components should fail in a way that does not result in 

diverted traffic overloading other systems either at the same stage of the process, 

upstream, or downstream. A graceful failure should be tested before the system goes into 

production. Should the entire system go down it is important to have a disaster recovery 

plan in place to get the system producing again. This can mean having a store of product 

in reserve while production is restored, or having multiple plants dispersed across 

multiple geographic regions which would be unlikely to be hit by the same natural 

disaster.  

1.6.4 Hardware Device Solution 

1.6.4.1 Blue Coat ICS Protection Station Scanner 

Blue Coat’s ICS Protection is a software and hardware solution that mitigates the 

risk of using USB storage devices on industrial networks. Stuxnet spread so successfully 

through removable drives and ICS Protection Station Scanner is designed to limit this 

specific attack surface. ICS Protection Station Scanner combines a hardware solution that 

resides outside the ICS and a software solution that runs on all Windows workstations 
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within the ICS. Under Blue Coat’s recommended policies any USB removable storage 

must be verified by its dedicated appliance before it can be used within the ICS[48] 

1.6.4.2 Unidirectional Security Gateway 

Waterfall Security’s Unidirectional Security Gateway [49] addresses the problem 

of securely isolating the control network while also allowing business users on the 

corporate network to perform their job functions. This technology has been used to safely 

replicate the plant historian outside the network for the business to read. Transfer (TX) 

equipment sits inside the control network and queries the plant historian. The TX 

gateway then sends this data through a one-way fiber communication channel to an RX 

gateway sitting on the corporate network. The receive (RX) equipment then builds a 

faithful replica of the plant historian called a corporate historian on the corporate 

network. Corporate users and applications connect to the corporate historian to process 

the operating data. The one-way communication is enforced in the hardware of the 

gateways. The TX gateway only comes equipped with a laser, the RX gateway with only 

a photocell, and data is transferred through fiber. Sending data to the plant through this 

technology is not possible. A proposed network design for a unidirectional gateway is 

shown in Figure 3.  

Another proposed use of this technology is allowing vendor support to 

troubleshoot problems on the control network without any actual remote access. A 

program records the local engineer’s screen and sends that data through the unidirectional 

gateway to the vendor screen. The vendor directs any troubleshooting steps through 

telephone to the local engineer. In this scenario the vendor gets visual, real-time feedback 

from the system while also ensuring any actions are performed by a local plant engineer. 
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Figure 3: Proposed network design for a unidirectional gateway. Taken from [49] 

1.6.4.3 Tofino Xenon Security Appliance 

Tofino developed a security appliance specifically for SCADA environments that 

resembles a plug-and-play firewall. It is designed to operate between a process network 

and the business network. It is capable of filtering messages at layers 2, 3, and 4 of the 

OSI model, as well as performing deep-packet inspection to make filtering decisions 

based on the specifics of the control network protocol (Modbus, DNP3, Profibus, and the 

like) in use. The deep packet inspection of control network protocols is what separates 

the Tofino security appliance from a typical corporate firewall solution [50]. 

1.7 Cyber Attacks 

The instances of the aforementioned vulnerabilities being exploited has been 

increasing recently as more Industrial Control Systems (ICS) have lost their isolation 

from their corporate network counterparts [40][30], [51]. This section describes some 

select attacks with information gathered from technical reports and forensic analyses of 



27 

 

the attacks after the fact. This section describes three attacks: Maroochy water treatment 

facility attacks, the STUXNET attacks, and the Ukrainian power grid attacks.  These 

incidents were chosen to highlight different threat actors, different vulnerabilities 

exploited, and different industries affected.  

The Maroochy attacks in 2000 involved a formal employee of the asset owner 

using stolen equipment to remotely manipulate water treatment facilities.  Vitek Boden, a 

disgruntled former employee of Hunter Watertech in Queensland, Australia, 

compromised sewage equipment to dump 800,000 litres of raw sewage into local parks 

and rivers [3]. Boden used intimate knowledge of the sewage system his former employer 

installed to enact revenge on both Hunter Watertech and Maroochy Shire Council. Boden 

drove from site to site over a 2 month period using stolen radio equipment to interfere 

with signals being sent between the control server and the RTUs in the remote 

substations. Boden would craft communication packets to spoof a station on the SCADA 

network and send out commands as though he were that station. Because there was no 

authentication processes present in the system Boden was able use this method to shut off 

pumps, disable communications between components in the system, and disable the 

alarms that would have alerted the plant operators to any suspicious activity. After an 

investigation, Hunter Watertech determined the problems were caused by a malicious 

attacker rather than faulty equipment. Boden was put under surveillance and eventually 

caught when stolen radio equipment was found in his car during a routine traffic stop [3]. 

This attack exploited poor or non-existent security measures from the Configuration and 

Maintenance class of vulnerabilities described above. Its complexity was relatively low; a 

former employee was able to exploit stolen equipment without needing to develop new 
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software exploits or circumventing many security controls. As demonstrated with 

STUXNET, attacks on ICS networks can get significantly more complex.  

Stuxnet was an elaborate malware targeting a specific configuration of ICS in 

2009 and 2010. It is a definitive example of network isolation not guaranteeing safety 

[52]. Stuxnet gained infamy through its unprecedented level of complexity and because 

of its notable target in nuclear facilities. Roughly 60% of all infected hosts were found in 

Iran, with the remaining hosts spread across Europe, Asia, and the US. The worm was 

designed to reprogram a specific set of Siemens PLCs in such a way that the system 

being controlled would operate outside of its limits and degrade. It would also forge the 

operating data seen on the plant monitors so plant operators would not be able to detect 

any differences in the system. The complexity of the malware is readily apparent in the 

sheer breadth of its functionality. Symantecs Stuxnet Dossier lists the functionality 

described in Table 3, along with the category or categories of vulnerabilities the 

capability targeted. 

Table 3: Stuxnet Capabilities and Targeted Vulnerability 

 Stuxnet Capability  NIST Vulnerability Category 
Self-replicates through removable drives 

exploiting a vulnerability allowing auto-

execution. Microsoft Windows Shortcut 

LNK/PIF Files (Automatic File Execution 

Vulnerability (BID 41732)) 

Configuration and Maintenance 

Spreads in a LAN through a vulnerability 

in the Windows Print Spooler. Microsoft 

Windows Print Spooler Service Remote 

Code Execution Vulnerability (BID 43073) 

Configuration and Maintenance 

Communication and Network  

Configuration 

Spreads through SMB by exploiting the 

Microsoft Windows Server Service RPC 

Handling Remote Code Execution 

Vulnerability (BID31874). 

Configuration and Maintenance 

Copies and executes itself on remote Configuration and Maintenance 
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computers through network shares. Policy and Procedure 

Architecture and Design 

Copies and executes itself on remote 

computers running a WinCC database 

server. 

Policy and Procedure 

Communication and Network  

Configuration 

Architecture and Design 

Copies itself into Step 7 projects in such a 

way that it automatically executes when the 

Step 7 project is loaded. 

Software Development 

Updates itself through a peer-to-peer 

mechanism within a LAN. 

Configuration and Maintenance 

Policy and Procedure 

Architecture and Design 

Attempts to bypass security products. Configuration and Maintenance 

Policy and Procedure 

Exploits a total of four unpatched Microsoft 

vulnerabilities, two of which are previously 

mentioned vulnerabilities for self-

replication and the other two are escalation 

of privilege vulnerabilities that had yet to 

be disclosed. 

 

Software Development 

Contacts a command and control server that 

allows the hacker to download and execute 

code, including updated versions 

Configuration and Maintenance 

Policy and Procedure 

Contains a Windows rootkit that hid its 

binaries. 

Software Development 

Fingerprints a specific industrial control 

system and modifies code on the Siemens 

PLCs to potentially sabotage the system 

Configuration and Maintenance 

Policy and Procedure 

Hides modified code on PLCs, essentially a 

rootkit for PLCs. 

Software Development 

 

This robustness suggest an immense amount of resources and person-hours 

poured into the product and perhaps hints at just how high value the target in Iran was to 

the authors. Symantec estimates a team of 5-10 developers and a team of management 

and QA engineers were required to produce the malware [52]. Not only did it require a 

lot of developers it also required a lot of ground work. Stuxnet used two compromised 

digital certificates and four 0-day vulnerabilities. It required a significant amount of 

reconnaissance on systems that were never connected to the internet. This means physical 
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access to the systems was required to gather information on the infrastructure, then again 

to deploy the worm [6], [52]–[54]. STUXNET targeted state nuclear facilities and was 

not meant to spread outside of its specific target. Its collateral damage was limited and 

damage to civilian systems was limited. This care is not always taken as shown with 

power grid attacks in Ukraine. 

A more recent attack on utility infrastructure occurred on the 23rd of December, 

2015 [38], [55], [56]. This attack, launched in Ukraine, was the first publicly known 

cyber-attack targeting power infrastructure. The attack was able to disrupt power to 

225,000 customers spread over 3 different service territories. The attack started off with a 

spear fishing campaign and an infected Microsoft Excel document loaded with 

BlackEnergy 3 [57], a malware toolkit that allows for connection to a command and 

control server. With BlackEnergy 3 the attackers were able to gain persistence on the 

power companies' business network and find their way through the VPN connecting the 

business and ICS networks. This attack involved at least 6 months of network 

reconnaissance and many steps of non-ICS related activities to reach the intended target. 

Once on the control network the attackers used built-in commands of the entity's RTUs to 

open the breakers in at least 27 substations to cause the outage. The attackers also 

overwrote the firmware of serial-to-Ethernet devices on the network to translate traffic 

from the operator's Human Machine Interface (HMI) to the Remote Terminal Units 

(RTUs) to block plant operators from issuing commands to restore the substations 

remotely. A telephone denial-of-service attack was subsequently launched on the 

companies' call centers to restrict the flow of information to the customers affected. On a 

global scale this attack was relatively small; only affecting 225,000 citizens for roughly 3 
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hours. On a local scale this attack was catastrophic to the power networks and operators 

[38]. 

1.8 Summary 

This chapter provided some insight into the motivations and challenges faced by 

industrial control systems and their operators. While safety has been a primary concern 

for control systems throughout their history, security has only recently become a priority. 

As control systems operators gradually opted out of air-gapping their networks in favor 

of better remote access, security researchers and malicious attackers alike have descended 

upon the field to find and document security holes in control network components new 

and old. A robust operator policy, intelligent network design, and utilization of security 

mechanisms can help mitigate potential threats, but a critical cyber-physical system with 

real-world consequences for failure requires a more formal approach. Chapter 2 

introduces and discusses formal methods in software design and development to 

guarantee a piece of software will behave in a safe and secure manner, along with 

relevant research in the development of formal methods and its application to security 

and control systems. Chapter 3 presents a specific issue within control systems security 

and outlines the central contribution of this dissertation: a method of applying formal 

methods to control system security using TLA+ and seL4. Chapter 4 details the formal 

specification of a bump-in-the-wire security preprocessor, presented as a novel 

contribution to the field of control system security and as a proof on concept for the 

method. Chapter 5 discusses the mechanical model checking results of the specification. 

Chapter 6 lays out the design for the security preprocessor in CAmkES. Finally, chapter 7 

summarizes these contributions and discusses possible avenues for future work.  
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CHAPTER II 

LITERATURE SURVEY 

 

2.1 Introduction 

Developments in formal analysis and security have occurred in tandem since the 

1970s. Interest in the physical and logical security of data grew as mainframes and 

terminals gained widespread use in both the private sector and intelligence communities. 

Initially, government security efforts focused on finding and fixing software 

vulnerabilities through use of “Tiger Teams” [58], [59]. These teams consisted of 

computer experts acting as attackers, finding and exploiting software vulnerabilities then 

reporting their results so the vulnerabilities could be fixed. After many rounds of 

successful attacks, the Tiger Teams and security community at large concluded the cycle 

of finding and fixing security holes was futile – a secure system must be built with an 

intention to be secure from the start. Early steps of security research included finding a 

definition of secure, or more accurately a method of defining security for a given system. 

As can be seen in the research and development efforts in this chapter, formal methods 

help do each of the following things precisely: 

• Describe a system’s boundaries 

• Describe a system’s desired behavior 

• Describe a system’s desired properties 

• Prove a system meets its specification 

• Determine the circumstances under which the system does not meet its 

specification 
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Funding from the National Security Agency (NSA) poured into the security 

community [59], and from there flowed into the formal methods community. The early 

research funded by the U.S. intelligence agencies culminated in the Trusted Computer 

System Evaluation Criteria, also known as “The Orange Book”, first published by the 

Department of Defense in 1983 [60]. This document provided a metric for comparing the 

security posture of different computer systems, a guideline for vendors in the 

development of secure computer systems, and a means for specifying security 

requirements in government contracts. For example, for a system to be “A.1” certified 

according to “The Orange Book”, the security requirements must be formally specified, 

the system must be formally modeled, and a formal proof must exist that the model meets 

its specification. The works described in this chapter are efforts to apply the A.1 

certification criteria to an increasingly complex set of systems in an increasingly diverse 

set of scenarios, as well as efforts to bring a more formal approach to security of cyber 

physical systems.  

2.2 Formal Methods 

Progress of a society can generally be observed by the increase in complexity of 

its mechanisms, both social and technological. As complexity increases, it becomes easier 

to make errors in the design and implementation of systems –the accelerating rate of 

vulnerability reporting seen in [61] can attest to this. Formal methods are means for 

allowing engineers to develop increasingly complex systems while retaining a high 

degree of reliability. When a system is formally described, it can be better understood. 

Leslie Lamport, a pioneer in reasoning on distributed systems and inventor of Latex[62] 
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and Temporal Logic of Actions (TLA)[63], says on pages 1 and 2 in his book Specifying 

Systems [64]:  

Writing is nature’s way of letting you know how sloppy your 

thinking is… Mathematics is nature’s way of letting you know how 

sloppy your writing is… Formal mathematics is nature’s way of letting 

you know how sloppy your mathematics is. 

 

There are a variety of formal method techniques, each seeking to remove logical 

errors from systems. The four key types of formal method techniques discussed in this 

chapter are Model checking [64], Deductive Theorem proving [65], Abstract 

interpretation (also known as static analysis) [66], and Type inference [67]. Model 

checking involves creating a finite state machine that acts as a model of a real-world 

system and relevant propositions; the checker (human or machine) attempts to show that 

propositions hold in every state. Deductive theorem proving starts with a set of axioms 

and deduces properties of the system the axioms describe. Abstract interpretation tries to 

create an abstraction of code to form a less precise, but tractable model that can be 

reasoned upon. Finally, type inference is a completely automated method for deducing 

variable types at compile time and is available in many strongly-typed languages today 

[67]. Each of these techniques has its own strengths and weaknesses as discussed in the 

following sections. 

2.2.1 Model Checking 

Model checking creates a specification, or description of the system using the 

system’s requirements as a starting place. The specification includes defining desired 

properties and structuring each individual piece within the system [68]. Formal 

specification introduces rigor using specification languages with mathematically defined 
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syntax and semantics. Even though it is only the first step in the formal methods process, 

the act of formally specifying a design – describing a design precisely – can be enough to 

discover and remove inconsistencies and flaws in a non-formal design. Case studies using 

formal specifications at Oxford University, IBM, and Lockheed alone have shown 

reduction in production costs and improvement in code quality (fewer errors, earlier 

detection of errors) [11], [13], [14]. A specification can be as abstract or as granular as 

necessary, ranging from describing a perfect oracle that returns perfectly encrypted 

ciphertext to describing individual memory operations. 

Model checking is a method for automating verification of specifications [69], 

[70]. A model checker typically comes with a custom language parser to allow an analyst 

to formally describe a system and requirements. A model checker requires the analyst to 

describe the system as a finite-state specification Φ and the desired property or set of 

properties to prove ϕ. Such a system can be described using temporal logic and drawn out 

in Kripke structures [71]. Kripke structures take the form of M = (S, I, R, 

L)where S is a finite set of states, I is an initial state in S, R is a subset of S × S such that 

∀s ∈ S, ∃s' ∈ S, (s,s') ∈ R where s and s’ are individual states, and L is an interpretation 

function that maps to the alphabet of states [69].  An example of a Kripke structure of a 

microwave is seen in Figure 4, taken from a lecture by Edmond Clarke on [69]. 

The properties to be verified can be described using linear temporal logic 

[72][73]. Equations can take the form of propositions such as  𝐴 ⇒ 𝐵 (A implies B); 

Boolean operations such as AND, OR and NOT; and temporal operators. Temporal 

operators can be described with statements such as Xa for “a is true in the next state,” Fa 

for “a will eventually be true,” Ga for “a is globally true”, and a U b for “a is true until b 



36 

 

is true.” Ga can also be expressed as “a will be true in every state” and is called an 

invariant. This is sometimes called a safety property, as it specifies a dangerous state the 

system should never reach.  The other operators can be used to describe liveness 

properties, or properties that are used to verify a system will eventually reach some set of 

states. 

 

Figure 4: An example Kripke structure. Taken from [69] 

The model checker can then automatically verify the property shown in Equation 

(1), that the specification models the requirements (i.e., the specification meets the 

requirements and desired properties). Model checking as a discipline is most useful when 

it finds counterexamples to requirements. If a model to be checked is not valid, a checker 

can discover difficult to find, easily checked, counter examples that can be fixed. 

However, if a model is valid, there is no easily checked method for the model checker to 

verify that. The most a model checker can say is that it could not find any 
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counterexamples. Once a counterexample is found, an exact trace to the counter-example, 

or bug in the system being specified and checked, is available. This is useful when the 

nature of concurrent systems often produces exceedingly subtle bugs [possible ref to one 

such case].  

𝝓 ⊨ 𝝋 (1) 

This method has classically been used in the design phase of software 

development. Properties of the design can be reasoned on before any investment has been 

made into writing code. This allows for fundamental problems to be captured and fixed 

early and cheaply. This is not to say checking a model is easy. Even simple programs can 

suffer from the State Explosion Problem, wherein the number of states to be checked 

grows exponentially. Figure 5 shows the state space of a first-in-first-out (FIFO) queue 

algorithm containing more than 3800 states and more than 9600 transitions, with a 

maximum length of 3 elements taken from [74]. Such a small FIFO queue might not be 

practical, but it gives an example of the state explosion of even relatively simple 

programs. 

 

Figure 5:A FIFO queue capped at 3 elements 
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The state explosion problem has seen significant research efforts. State explosion 

is present in parallelized systems, verification of which is paramount for adoption of such 

techniques in industry. An n-bit counter will have 2n states, while m interleaved processes 

with n states each will have nm states. Edmund Clarke opines that there have been four 

big breakthroughs in the state explosion problem thus far: Symbolic model checking with 

binary decision diagrams [75], partial order reduction [76]–[78], bounded model 

checking [79], and counter-example guided abstraction refinement (CEGAR) [80].  

Symbolic model checking with ordered binary decision diagrams were introduced 

in the mid-1980s. Representing the states as a Kripke structure invited applications of 

graph theory into reducing the state space. Before this, states and transitions were 

represented explicitly with linked lists in memory as any directional graph might be.  In 

1986, Randal Bryant showed that larger specifications could be checked if their states and 

transitions were intelligently ordered into a binary decision diagram rather than a naïve 

linked list, reducing the states to be checked [75]. The binary decision diagram removes 

states and transitions that are implied in the specification and thus do not need to be 

explicitly written and computed, saving space and processing time. It should be noted 

that binary decision diagrams do not improve worst-case complexity of a model and in 

practice have been unpredictable in their complexity-savings. 

Partial order reduction is a method for reducing the amount of redundant work 

done while processing models of concurrent systems. This method takes advantage of the 

commutative nature of some processes. Often, processing step A then step B will produce 

the same result as processing step B then step A. Using this property of some distributed 

processes, redundant branches of states can be eliminated from the necessary 
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computation to exhaust the search space. Partial order reduction was developed 

independently in the early 90s in [76]–[78]. 

Bounded model checking introduces satisfiability solvers to the model checking 

domain. Clarke et al. found that for certain properties, especially invariants, satisfiability 

solvers can find counter examples must faster than symbolic model checking and often 

without the exponential space requirement of binary decision diagrams [79]. The idea is 

to create a propositional formula from the states and transitions. This formula is Boolean 

– meaning its variables are either true of false and can be manipulated so the formula 

evaluates to either TRUE or FALSE. If the variables can be manipulated such that the 

formula evaluates to TRUE, the formula is said to be satisfiable. In bounded model 

checking, if the formula is satisfiable then a desired state can be reached within a set 

number of transitions. This method is somewhat restricting in that it can only test for 

certain properties. It is also not complete – at this time there is no way to know how long 

the bounded model checker must run before a counter-example is found if one exists. 

Finally, Counter-Example Guided Abstraction Refinement (CEGAR), also known 

as localization reduction, is a means for automatically generating a model from a 

program, then automatically abstracting away unnecessary complexity within a model 

while checking [80].  The checking algorithm generates an over-approximation of the 

program that includes all the behaviors of the program by creating a state for every 

possible assignment of every possible variable. The transition relation is generated 

through the changing of variables in the program. If the specification holds on the 

abstraction, it is shown that it will hold for the concrete model. However, if a counter 

example is found, the algorithm checks if the counter example exists in the concrete 
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program. If the counter example is found in the concrete program then this result is 

returned. If the counter example is not found in the concrete program, then it was 

introduced through the abstraction process. The abstraction is refined until the counter 

example is removed and the process repeats. A discussion of the advancements in 

CEGAR can be found in [80].  

2.2.2 Theorem Proving 

Theorem proving is the derivation of proofs from a formal system of axioms and 

inference rules. A developer expresses the program to be reasoned on and the desired 

properties of the systems as formulas then works to prove the properties from the given 

axioms within the formal system. Such work can involve deriving new definitions from 

the axioms and constructing intermediate lemmas to aid in the proving process. Though 

much of this work can be done by hand, this research focuses on automated and 

interactive (human-guided automation) theorem proving. Much of the work found in 

section 2.3 relies heavy theorem proving, and more discussion can be found in [65]. 

2.2.3 Standards and Certifications 

Verifying systems can be prohibitively expensive. The larger the system the 

greater the expense of formal verification [11][81]. Full verification is not always 

necessary though and, depending on the system and use cases, value can be derived from 

a partial verification. Specific safety or security-critical properties of systems can be 

reasoned and proved at a reasonable cost. There are multiple industry- and field-specific 

standards for partial and full verification. 
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Common Criteria 

The NIST Computer Security Division started the Common Criteria Project to 

develop safety and security standards and certifications for software [82]. The goal of 

these standards was to improve the availability and efficiency of evaluating and verifying 

systems across IT systems. To facilitate this goal Common Criteria describes seven 

Evaluation of Assurance Levels (EAL). Each level builds on top of previous levels. Table 

4 lists each level, a description of the requirements to achieve that level, and example of a 

product that has been certified at that level. More details of the process and requirements, 

as well as more examples of projects at each assurance level, can be found on the 

Common Criteria Portal [83], [84]. 

 

Table 4: EAL descriptions and example products 

Level Description Example 

EAL1 Functionally Tested - The system in question is 

functionally tested for when security is not of great 

concern. EAL1 provides evidence the implementation 

functions according to the documentation. An 

example of this would be a college senior capstone 

project. 

Microsoft Windows 

Vista 

EAL2 Structurally tested - a developer’s cooperation is 

required. This level introduces developer testing, 

configuration management, and penetration testing. 

This level describes typical software development 

assurance requirements in industry today. 

Cisco’s Remote 

Access VPN 

EAL3 Methodically tested and checked - Procedures are 

defined and followed throughout development to 

meaningfully increase testing coverage. This level 

also provides some assurance the system was not 

tampered with during development. 

Huawei AR series 

routers 

EAL4 Methodically designed, tested, and reviewed - 

Maximum achievable level through good commercial 

development practices, highest level likely attainable 

by modifying existing software. This level has a high 

security testing expectation, requiring demonstrating 

Oracle Enterprise 

Linux version 5 

update 1 
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resistance to a medium level attack. Assurance comes 

in the form of a detailed design specification. 

EAL5 Semi-formally designed and tested - This is the first 

level that requires some specialized security 

engineering and is beyond the scope of general good 

development practices. Software that reaches EAL5 

likely was targeting EAL5 from the start of 

development. Extra cost beyond the good 

development practices is usually minimal. This level 

requires semiformal design descriptions and a 

structured, analyzable architecture. 

Samsung S3FT9PE 

16-bit RISC 

Microcontroller for 

Smart Card 

EAL6 Semi-formally verified design and tested - When a 

higher cost for a high level of assurance and security 

is acceptable. A formal model of the most important 

security policies is required and a semiformal design 

specification. The testing requirements grow stricter: 

documentation of developer testing, independent 

recreation of test results, and independent penetration 

testing with a high level of attacker skill. EAL6 

represents a highly structured design, architecture, 

and vulnerability analysis. 

Crypto Library 

V3.1.x 

EAL7 Formally verified design and tested - The highest 

level when security and safety assurance is of the 

highest importance. EAL7 requires full analysis using 

formally verified design and implementation as well 

as comprehensive and independently confirmed 

testing procedures. 

Tenix Interactive 

Link Data Diode 

Device Version 2.1 

 

DO-178B 

DO-178B is a standard for avionics software developed by Radio Technical 

Commission for Aeronautics. It defines five levels of safety criticality that help judge the 

priority that should be given to the assurance of software [85]. Table 5 lists and describes 

each level. 

Table 5: Criticality Levels of DO-178B Standard 

Criticality Level Description 

No effect This software does not affect safety at all. 

Minor This software reduces safety or efficiency of airplane but not 

beyond capabilities of the crew to handle without injury. 
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Major Software with a Major Priority classification could cause 

discomfort and possible injury to occupants. 

Hazardous Software in this category could cause potentially hazardous injury 

to occupants. 

Catastrophic When judging avionics software, this category describes software 

that, should it fail, would prevent flight and cause the deaths of 

pilots, crew, and passengers. 

 

2.2.4 Limits of Formal Methods 

Formal program verification is an undecidable problem. Much like a system 

approaching infallible security, a system approaching complete verification will see its 

cost in time and resources also approach infinity for any non-trivial system. Formal 

methods are not an end-all answer to information security. A system can never be said to 

be completely secure and applying formal methods to verify a design does not change 

this fact. Formal methods allow only for a specific piece of a system to be mathematically 

described and its properties to be reasoned upon subjected to certain assumptions. As 

soon as these assumptions are violated, the equations and proofs cease to be useful. 

Because software is generally useful only when used in conjunction with other software, 

hardware, people, and environments, it becomes difficult to account for all possible 

external factors. A system is only as secure as its weakest link; a fully verified EAL7 

application is only as secure as the kernel on which it runs, which in turn is only as secure 

as the hardware on which it runs, which is only as secure as the environment in which it 

runs, which is only as secure as the people who are running it. Formal methods are useful 

in increasing a system’s security and robustness, but no system can ever be said to be 

100% secure. 

Formal methods have been time consuming and expensive in the past. Figure 6 

and Figure 7 show 2006 U.S. Government Accountability Office estimates on the cost in 
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money and time for climbing the ladder of common criteria levels. The figures show the 

resources required for just the evaluation piece of the certification for government 

projects that pursue the certification. Higher levels of verification may also negatively 

impact performance of an application as concessions might be necessary to model the 

system more efficiently and prove properties [81].  

Figure 6: Range of costs required for 

completing product evaluations at 

various evaluation assurance levels. 

Adapted from GAO report [24] 

Figure 7: Range of sample cost of NIAP evaluations 

to vendors by evaluation assurance level. Adapted 

from GAO report [24] 

2.3 Verification 

Modern cryptography is an intersection between mathematics and computer 

science. Cryptography can be thought of in two parts: cryptographic primitives and 

cryptographic systems. A cryptographic primitive is the smallest piece of a cryptographic 

routine that has security properties (for example, a one-way hash algorithm or an 

encryption algorithm [86]).  Cryptographic systems use primitives as building blocks to 
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achieve security goals like keeping secrets and authenticating users. Primitives are 

difficult to mathematically prove secure, and usually rely on heuristic security arguments 

such as maturity of the algorithm and lack of weaknesses found by the community [87]. 

Cryptographic systems, on the other hand, can be proven secure when the primitives are 

assumed secure [88]. While this survey does not go into advances in cryptography, the 

research summarized in this section describes relevant advances is ensuring the code that 

implements the cryptographic primitives is correct. 

2.3.1 Verification of a Cryptographic Primitive: SHA-256 

Code that implements cryptographic primitives correctly is valuable in raising the 

level of available security, as a single correct implementation of a widely used primitive 

can be used everywhere. Andrew Appel presented his work on formally verifying SHA-

256, the Secure Hash Algorithm with a 256-bit digest [88]. SHA-256 is part of the SHA-

2 family of hash functions published by the NSA in 2001. Appel specifically looked 

OpenSSL’s implementation of SHA-256, noting that because his proof work applies to 

the code and not to the algorithm itself, the many years of open-source scrutiny that 

OpenSSL has endured is still a valuable argument to its resilience against attack. The 

work shows, through a machine checked proof, that OpenSSL’s SHA-256 correctly 

implements the formal specification of SHA-256 provided by the U.S. government in the 

Federal Information Processing Standards (FIPS) 180-4 Secure Hash Standard [89]. 

Appel’s research served as a stress test for the Verifiable C program logic for the 

C language and an example of how the Verified Software Toolchain (VST) can be 

practically utilized. Verifiable C logic has been proven to be sound with respect to the 

semantics of CompCert C, a subset of C digestible by the CompCert compiler [90]. This 
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means code properties that have been proven in Verifiable C hold for the source code. 

CompCert has also been proven correct [90], meaning that properties that have been 

proven for the source code will hold in the compiled code. Thus, it can be shown that the 

compiled code for the SHA-256 algorithm satisfies its specification in Verifiable C. The 

proof process required started by building a functional specification, or a formalization, 

of the FIPS 180-4 standard in a  mechanized proof assistant called Coq [91]. As this is a 

process done by a human, one might ask, “how can we trust that this formalization 

correctly describes the standard?” Appel points out that this trust is unnecessary, as even 

if the translation is incorrect, the properties described by the standard can still be proven 

in the functional specification. This work serves as a building block for future work on 

verifying higher order cryptographic functions, and on verifying entire cryptographic 

libraries. 

2.3.2 Verified correctness and security of OpenSSL HMAC 

Building on the SHA-256 verification work of Appel, Beringer et al. used a 

similar method to extend the verification to include OpenSSL’s Keyed-Hash Message 

Authentication Code (HMAC) algorithm [87]. This research uses the FIPS 198-1 

standard for HMAC [92] and verifies that OpenSSL’s HMAC code correctly implements 

FIPS 198-1 as with the previous work, but goes further than previous work to show that 

the standard correctly holds its intended cryptographic properties. 

HMAC is an authentication algorithm often used in communication protocols. 

When using HMAC, the sender of a message m uses a secret key k that has been pre-

shared with the intended receiver. The sender computes the authentication code 

s=HMAC(m,k), then attaches s to the message. When the message reaches the receiver, it 
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computes the authentication code s’ = HMAC(m,k), then verifies s’=s. Ideally, an 

attacker does not know k and could not compute s. If the receiver determines s’=s, it 

could trust that the message originated from the sender (as opposed to an attacker), and 

has not been tampered with. FIPS has requirements on the strength of the hashing 

function that can be used, but the HMAC specification can be generalized (without 

specifying the cryptographic hash algorithm used) as in Equation ((2.  

𝑠 = 𝐻𝐴𝑆𝐻((𝑜𝑝𝑎𝑑 ⊕ 𝑘)(𝐻𝐴𝑆𝐻(𝑖𝑝𝑎𝑑 ⊕ 𝑘)𝑚) 
(

(2) 

The verification steps built off both Appel’s work and earlier cryptographic proof 

work by Bellare on HMAC security properties [86], [93]. The first steps were to 

formalize specifications within the Coq proof assistant. The specifications are FIPS 198-1 

and FIPS 180-4 for HMAC and SHA-256 respectively, Bellare’s function for the HMAC 

algorithm (with pre-existing proofs), the API for OpenSSL header files for HMAC and 

SHA-256, and finally assumptions made about the security properties of the underlying 

cryptographic hashing algorithm. Next, the formalized specifications for Bellare’s 

HMAC and the FIPS HMAC were shown to be equivalent, demonstrating that the 

security proofs derived from the earlier work apply to the later standard. Further, the 

formalized assumptions (common for pseudorandom functions) allowed new 

cryptographic security proofs to be derived from the standards. Finally, the process of 

translating from formalized specification into verified compiled binary1 is followed as 

described earlier. Beringer’s research advanced the pursuit of a widely available, 

verified-secure, cryptographic library. 

 

 

1 The source, proof, and executable files can be found on Princeton’s VST Github Repository 

(https://github.com/PrincetonUniversity/VST) 

https://github.com/PrincetonUniversity/VST
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2.3.3 HACL∗: A Verified Modern Cryptographic Library 

 A collaboration between Microsoft Research and Inria has been pushing the state-

of-the-art in cryptographic verification. In 2017, this collaboration presented the High 

Assurance Cryptographic Library (HACL*), a suite of formally verified implementations 

of cryptographic primitives and cryptographic systems [94]. HACL* specifically targeted 

the minimalist NaCl cryptographic library and API for verification work, as other 

libraries like OpenSSL are complex and unsuited to verification. NaCL (pronounced 

“salt”) was developed to improving the state of the art on cryptographic library security, 

speed, and usability by simplifying and optimizing a core set of widely-used 

cryptographic functions [95], [96]. TweetNaCl, a particularly minuscule implementation 

of NaCl, fits into 100 tweets and implements ChaCha20 and Salsa20 stream ciphers, the 

SHA-2 family of cryptographic hash functions, Poly1305 and HMAC authentication, 

Curve25519 elliptic curve encryption, and the Ed25519 elliptic curve signature scheme 

[97]. Each of these were verified and combined into a library of about 7000 lines of code 

that supports the NaCl API, and TLS-specific APIs used by OpenSSL, NSS, and miTLS. 

 Research on HACL* stated three goals: memory safety, functional correctness, 

and secret independence. Memory safety means the software never reads or writes at 

invalid memory locations. This can be achieved through strict coding practices such as 

ensuring no operation reads or writes past the last cell of an array and properly 

deallocating memory to leave no dangling pointers. Certain modern languages, such as 

Python and Java, include garbage collection techniques that manage memory for the 

coder and produces memory-safe code. However, this convenience is paid for with a 

performance reduction that can be unacceptable for cryptographic applications. The 
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second goal, functional correctness with respect to the published standards, has been 

explained earlier. Finally, HACL* also strives for secret independence to eliminate 

certain classes of side-channel attacks. Secret independence is a coding technique that 

ensures: 

1. Secrets cannot be used to decide what code executes next 

2. Secrets cannot be used to decide what memory to access 

3. Secrets cannot be used as input to instructions with a variable time 

These methods ensure that a secret cannot affect how much time a particular piece of 

code takes to execute. By disconnecting the execution time from the secret, an attacker 

would not be able to weaken the security by timing inputs and outputs. 

 Microsoft and Inria’s techniques differ from those previously discussed. Work on 

HACL* relies heavily on type-checking, instead of the automated theorem proving of 

previously discussed works, though theorem proving is still used when required. A 

formalized specification is still required and is created from the algorithm standards, but 

using F* language (and its subsets) rather than Coq. Then, an optimized implementation 

is written in Low* (a subset of F* that efficiently compiles to C) and the proof work is 

done to show the implementation and formal specification are equivalent. Finally, the F* 

code is compiled to verified C code with the KreMLin compiler. At the moment, 

KreMLin, the F* type checker, and the theorem proving tool Z3 are unverified and must 

be trusted [94]. 

2.3.4 Breaking and fixing the Needham-Schroeder Public-Key Protocol using FDR 

Data in motion can be particularly tricky to secure correctly. Sending an 

encrypted message from Alice to Bob, when both share the secret key and understand the 

algorithm, might be trivially easy to analyze, but network protocols are rarely so simple. 

What if the message is intended for more than one person? What if the different parties 
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don’t have a pre-shared secret key? What if the parties understand multiple encryption 

algorithms and must select one? How can one party be sure of the other’s identity? How 

can the sender ensure the message that is received has not been tampered with? 

Answering any permutation of these questions can grow a network protocol beyond what 

can be trivially understood, and often lead to mistakes that break the security of the 

protocol without breaking the cryptographic primitives the protocol employs. The next 

two works represent formal verification efforts in networking protocols. 

One of the foundational papers in formal analysis of secure networking protocols 

is Gavin Lowe’s 1996 work on the Needham-Schroeder Public-Key Protocol [98]. 

Needham-Schroeder was used to establish mutual identity between two agents, an 

initiator A and a responder B. Public key cryptography is employed, meaning each agent 

has an associated public key which can be found on a public key server, and an inverse of 

the public key that is kept secret. This protocol also employs a nonce, a unique number 

included in the message to keep track of messages that have already been sent. The nonce 

is used to prevent an old message from being reused by an attacker. The important steps 

of the protocol can be described formally in Equation (3). Na and Nb are nonces generated 

by A and B respectively. {m}PK(B) indicates a message encrypted with B’s public key. 

This message can only be decrypted using B’s private key, thus ensuring only B can read 

the message. 

Message 1.   A → B ∶ A. B. {Na. A}PK(B) 

Message 2.  B → A ∶ B. A. {Na. Nb}PK(A) 

Message 3.  A → B ∶  A. B{Nb}PK(B) 

(3) 
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Lowe modeled the protocol and checked it using Failures Divergences Refinement 

Checker (FDR). The attacker is assumed to have full access to messages traversing the 

network, but no ability to break encryption. All normal activities, such as decrypting 

messages encrypted with the attacker’s public key and sending new messages are 

permitted. The attacker can also replay old messages, with or without knowing the 

encrypted contents of the message. The FDR checker produced a breach of security when 

checking that the responder (B) will only start a session with the initiator A if A took part 

in the protocol run. The model checker found this to not be the case, producing the steps 

seen in Equation (4) to breach the protocol’s security guarantees. These steps show an 

attacker I can use two different runs of the protocol to fool B into thinking it is 

communicating with A while sending messages to I. Lowe goes further to propose a fix 

to this vulnerability with proofs that the proposed fix works. Needham-Schroeder is a 

large component of widely used Kerberos cryptographic system [99]. 

Message α. 1.          A → I           ∶  A. I{Na. A}PK(I) 

Message β. 1.     I(A) → B         ∶  A. B. {Na. A}PK(B) 

Message β. 2.          B → I(A)     ∶  B. A. {Na. Nb}PK(A) 

Message α. 2.           I → A          ∶  I. A. {Na. Nb}PK(A)  

Message α. 3.          A → I           ∶  A. I. {Nb}PK(I) 

Message β. 3.    I(A) → B          ∶  A. B. {Nb}PK(B) 

 

(4) 

2.3.5 Implementing TLS with Verified Cryptographic Security 

 The original communication protocol of the internet, Hypertext Transfer Protocol 

(HTTP), did not include any means for encrypting transmitted data, requiring sensitive 

information such as usernames and passwords and credit card information to be sent in 

plaintext. Secure Hypertext Transfer Protocol (HTTPS) is the current solution for 

securing general internet traffic. HTTPS is built using Transport Layer Security (TLS), 

TLS is itself is a suite of many cryptographic primitives and systems. The wide variety of 
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implementations, supported protocols, and versions of TLS installed on servers leaves the 

state of web security an unmanageable mess. Project Everest is a collaboration between 

Microsoft Research and Inria to transform the formal specification for the newly finalized 

TLS 1.3 standard into a portable library [100]. This project produced many relevant tools 

and supportive libraries to aid in the proofs and translations required to produce verified 

assembly. The scope of the Everest project can be seen in Figure 8. 

 

Figure 8: The verified components of the TLS1.3 suite. Image from https://project-

everest.github.io/ 

 The verified libraries are only half of the contributions of the Everest project. The 

authors note that software is not static; as the years pass and the web landscape evolves, 

changes will need to be made to the TLS 1.3 standard, then added to the Everest portable 

libraries. Changing verified code is not easy, and few organizations are capable of 

modifying verified code without compromising the proofs and properties. The Everest 

team will probably have to continually support the project, but future projects might be 

https://project-everest.github.io/
https://project-everest.github.io/
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undertaken by less-funded organizations with fewer verification experts thanks to the 

supported tools developed alongside. These tools include: 

1. HACL*: Seen in section 2.3.3 

2. Low*: a subset of F* targeting low-level programming that allows finer 

optimizations 

3. KreMLin: a compiler (unverified currently) that extracts Low* to C 

4. Vale: A tool for writing verified and high performance assemble code 

 

2.3.6 The Temporal Logic of Actions, TLA+ 

Early research in formally specifying software focused on sequential actions and 

produced tools that could express and reason on sequences with an acceptable level of 

complexity. These tools and approaches struggled when tasked with modelling 

concurrent systems [63]. Efforts to extend these tools to be applicable to concurrent 

systems, usually by replacing predicate calculus with temporal logic, could not reduce the 

computational complexity to be practical enough for use. Temporal reasoning on an 

entire system can be prohibitively expensive. In 1994, Leslie Lamport presented his work 

on modelling concurrent systems through use of actions [63]. While work focused on a 

single state of a specification, Lamport’s actions comprised assertions about pairs of 

states. Temporal Logic of Actions allows much of the temporal reasoning that was 

consuming computer power and brain power to be replaced with standard, non-temporal, 

reasoning about actions. 

TLA+ is a formal modeling language developed by Leslie Lamport with a focus 

on modeling and reasoning on concurrent systems [64][101]. PlusCal is an “algorithm 

language” used to model algorithms in a much more expressive fashion than a typical 

programming language. Both TLA+ and PlusCal use mathematical notation to expand the 

reach of a model beyond a programming language to allow for more rigorous definitions 
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and descriptions of algorithms and systems[101]. The inclusion of mathematical notation 

also facilitates model checking and proofs on properties of systems and algorithms. 

PlusCal, a more programmer-friendly route into the TLA+ toolchain, can be 

automatically translated into TLA+ and used with the TLC model checker. The TLC 

model checker can be described as a brute-force checker that will explore all states up to 

a certain number of state transitions and alert on any properties that have been violated 

and give a trace of the steps to violate such property. 

2.3.7 Use of Formal Methods at Amazon Web Services  

Amazon has published at least two experience reports on using formal methods in 

the design of their web services platform, specifically with TLA+ [102], [103]. Amazon 

has found multiple benefits while incorporating formal specification into their 

development process. The first and likely most obvious is finding existing bugs in their 

platforms. Table 6 lists some of the results of checking the formalized models of systems 

within Amazon’s ecosystem, with multiple bugs usually found in less than 1000 lines of 

specification code. The second benefit is an increase in understanding of designs for new 

systems, or new features for existing systems. Instead of building a naïve design then 

modifying it to handle what might go wrong, the new design process places more focus 

on “what needs to go right” from the start. This prevents edge cases from presenting new 

and unimagined ways for the systems to fail. A third benefit described in the experience 

report is that engineers could proceed with applying changes, whether increasing 

scalability or increasing existing performance, with greater confidence. Downtime in 

production services is expensive, and the risk of extended downtime must weigh into the 

analysis of whether an upgrade is worth the cost. Making the proposed changes to the 
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formal specification and rechecking that all desired properties hold has given Amazon 

engineers a way to achieve greater confidence in upgrades to production systems. An 

optimization can only be applied if it does not introduce any problematic edge cases; 

formal specification and analysis give added proof that even the most aggressive of 

optimization are safe. Finally, the experience report describes the formal specifications as 

useful in documenting the systems. The specifications act as precise reference for 

engineers to communicate ideas and allow new engineers to learn about the system 

quickly. The documentation is essentially “free”, as it is a byproduct of the formalization 

process. 

Table 6: Benefits of TLA+ in Amazon's Ecosystem. Adapted from [103] 

System Components Line Count Benefit 

S3 

Fault-tolerant low-level 

network algorithm 
804 PlusCal Found 2 bugs 

Background 

redistribution of data 
645 PlusCal 

Found 1 bug, and 

found a bug in the first 

proposed fix 

DynamoDB 
Replication & group 

membership system 
939 TLA+ 

Found 3 bugs, some 

requiring traces of 35 

steps 

EBS Volume management 102 PlusCal Found 3 bugs. 

Internal distributed 

lock manager 

Fault tolerant 

replication and 

reconfiguration 

algorithm 

318 TLA+ Found 1 bug 

2.4 Modeling and Verification of Operating Systems 

 Achieving verified secure control systems is a game of compromises. Formal 

analysis is a difficult process and it can be infeasible to verify every piece of code that 

could run, or even every physical process that could occur. As such, current state-of-the-

art tries to strategically apply a formal approach to only the most critical pieces or makes 

strategic compromises to performance metrics to attain a simpler and more verifiable 
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design. Some designers may only wish to verify certain properties of processes, while 

leaving others to traditional testing methods. An operating system presents a level of 

complexity that must be strategically planned for and verifying operating system 

properties have produced valuable insight into the problem of verifying security at a large 

scale. Presented here are examples of formal methods applied to operating systems. 

2.4.1 The Bell-La Padula model 

 The state of computing in the 1960s and 1970s encouraged time-sharing strategies 

for companies and agencies that had trouble covering the costs of monolithic mainframes 

on their own. For agencies that handled classified data, a separate mainframe was 

required for each of the independent security levels. While time sharing presented a 

major cost-saving opportunity, it also presented a novel risk in handling classified 

processes, as multiple security levels would run on the same hardware and data. A high 

degree of assurance that processing artifacts of each security level was kept separate was 

required. There are many examples of insecure software and systems that were built only 

focusing on function, that patch security holes after-the-fact [61], [104]–[106]. 

 David Bell and Len La Padula, as part of MITRE, were involved in early research 

on defining a “mathematical model of security in computer systems”. The long-term goal 

was to formally specify what security meant in a computing environment, and to build 

computing environments from the ground up to meet such a definition. The Bell-La 

Padula Model [59] established three rudimentary properties that must hold for a mixed-

classification system to be considered secure: simple-security (the user hold an equal or 

greater security clearance than the object he or she is trying to use), discretionary-

security (the user has been granted permission to use the object), and the *-property 
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(sometimes known as the “No-Write-Down” property, where the user is not able to 

transfer information to a security object of a lower specification). Any rules governing 

the changes of the system’s state (accessing objects, creating objects, granting access to 

another user, among others) must be proven to preserve these three properties. A system 

with state-transition rules proven to preserve the three properties thus stayed in a secure 

state, assuming it started in a secure state. 

 Formal models require refinement before they are worth anything more than the 

paper they are written on. Bell and La Padula’s model gradually matured as attempts 

were made to put its rules into practice. Originally, the time required to check all the 

objects a user is currently accessing when a request is made to access a new object was 

punishing. Certain questions were left unanswered in the early versions of Bell-La Padula 

like what level of clearance should be assigned to a task scheduler that must both read 

and write multiple clearance levels simultaneously (thus violating simple-security and 

star-property) when swapping jobs. These engineering problems forced the Bell-La 

Padula model to more and more accurately describe a real-life computer system. More 

rules were added, rules and state-transitions became more nuanced, subjects became 

differentiated. Demands at the time pushed the model to more accurately describe the 

Multics operating system [45] in particular. 

 In his Look Back on the Bell-La Padula Model [59], David Bell notes the benefit 

of the back and forth communication between himself in his modeling role and the 

engineers implementing the design, both in simplifying the general model, and in 

tailoring the model to ease some of the engineering challenges that were encountered. He 

also acknowledges the pace of software development has harmed the security posture or 
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systems, despite advances in security technology. Easing the burden of verified security, 

while also performing “selfless acts of security in the form of crafting and sharing 

reference implementations of widely needed components” as David suggests, would be 

common themes in the research that followed. 

2.4.2 The transfer of information and authority in a protection system 

 Proposed in 1977 by Richard Lipton and Lawrence Snyder [107], take-grant 

consists of subjects, objects, a finite set of access rights, and a finite set of rules for 

distributing the access rights. The safety analysis then determines if, given the set of rules 

and initial distribution of access rights, whether a subject could ever be granted some 

specific right it did not originally possess. Take-grant is decidable - that is, the safety 

analysis can be completed in linear time. This model can be represented as a directed 

graph, with subjects and objects as nodes, and permissions (capabilities) as edges. The 

node from where the edge originates has authority (as defined by the label of the edge) 

over the node to which the edge terminates. Take-grant and its variations/refinements 

have many different rules, but four rules are fundamental (images adapted from [107]): 

Take: If a subject s has take capability t over an object x, the subject can assume any 

capabilities the object possesses. 
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Grant: If a subject s has grant capability g over an object x, s can share any of the 

capabilities it posses with the x. 

 

Create: A subject s can create a new node on the graph x with a subset of capabilities p 

from the set of possible capabilities. 

 

Remove: A subject s with a set of capabilities 𝑝 over an object x can delete a set of 

capabilities 𝑟 ∈ 𝑝. The resulting capabilities s has over x can be described as 𝑝 − 𝑟. If 

𝑝 − 𝑟 is empty, the edge is deleted. 

 

Lipton and Snyder’s work was expanded by Bishop et al in a 1979 paper to include 

analysis of de facto capabilities and de jure capabilities [108]. These cover capabilities 

that can be obtained through some combination of take and grant capabilities of other 

subjects (de facto) and capabilities that can be indirectly exercised through other nodes 

on the graph (de jure). An example of de jure is a graph with 3 nodes S, X, and Y 

wherein S can write to X, X can write to Y, but S cannot write directly to Y. The 
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information S is trying to write can be passed through X, then to Y. In this case, X can be 

called a co-conspirator. 

2.4.3 seL4: formal verification of an OS kernel 

As with Bell-La Padula with Multics, Data61, under The Commonwealth 

Scientific and Industrial Research Organization (CSIRO, formerly NICTA), refined and 

evolved the take-grant security model to prove components running on the same 

hardware could be logically isolated from one another for its secure embedded L4 (seL4) 

microkernel series [10], [109], [110]. The seL4 security model modified the create rule of 

the original take-grant model. After boot, all memory that has not been pre-allocated for 

the kernel is divided into untyped memory (UM) objects. A resource manager outside of 

the kernel has a full rights over each of the UM objects, meaning that all memory is 

accounted for with capabilities. With this in mind, the create rule used in seL4’s model 

requires the subject to have the create capability over some UM object. This operation is 

called retype, as it takes an existing object and transforms it into something useful to the 

subject. Retype is restricted to ensure no overlapping of retyped objects, and no 

previously retyped objects within the memory region being retyped. The seL4 security 

model makes a few other less significant changes. Its remove rule does not modify an 

existing edge in the graph. As capability lists within seL4 are immutable, an edge must be 

deleted then recreated with the desired set of capabilities. Revoke is an operation to 

remove a set’s capabilities at once, though this can be thought of as a sequence of remove 

operations. Finally, the seL4 security model does not include a take rule. A subject can 

give capabilities, but cannot take capabilities. 
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 Refinement of the seL4 security model to the seL4 microkernel involved proving 

that each operation that the microkernel can perform can be mapped to a single or 

sequence of rules in the security model. Thus, each state the microkernel can find itself in 

can be represented in the security model, and shown to hold the any properties 

guaranteed by the model. One such property is isolation. Data61 was able to show that a 

subsystem, a set of connected entities within the graph, is not able to gain a capability 

over an entity inside another subsystem if that capability was not already present. 

Additionally, they were able to show that if that capability was already present, it could 

not be increased. Practically, as the kernel operations have been shown to refine the 

model rules, this means components running on top of the kernel have proven isolation 

properties. Proofs were completed in the proof assistant software Isabelle/HOL [111]. 

Every line of code within seL4 is proven to behave exactly as the specification 

intended, with a focus on performance and security. Some compromises were made, such 

as making no guarantees with regards to timing of execution, aggressively pushing 

functionality out of the kernel and into user space where possible to reduce the codebase, 

and a slight performance drop from non-verified microkernels. Despite these 

compromises, the microkernel provides valuable guarantees with respect to safety, 

security, and reliability. 

 The seL4 microkernel has proofs of stability through use of invariants. Data61 

recognizes four categories of invariants used in the proof work: low-level memory, 

typing, data structure, and algorithmic invariants. Memory invariants include no objects 

at memory address 0 and kernel objects do not overlap. The type invariants ensure every 

kernel object has a well-defined type, and that references point to objects of the correct 
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type. The data type invariants ensure data cannot be corrupted by sloppy construction of 

structures like linked lists. Examples of data type invariants are no loops in pointer 

structures and that lists are always terminated with NULL. The final category is 

invariants more specific to the operation of seL4, such as removing the overhead of a 

runtime check by proving the condition being checked is always true. The seL4 team 

notes that cleverness was needed when working with operations that delete or retype 

objects but have shown that the kernel is not able to perform unsafe operations. 

2.4.4 The HACMS program: using formal methods to eliminate exploitable bugs 

The Defense Advanced Research Projects Agency (DARPA) has been looking at 

ways to practically apply formal methods research to current and legacy projects to 

bolster the resilience of U.S. military systems to cyber-attacks. In the past, researchers 

had to develop their own tools to tackle the specific case of software they were trying to 

verify. Often, the tools would be just as valuable to the community as the verification 

work. However, the steady increase in formal methods infrastructure, that is the rise in 

the level of expertise, the improvement in proof automation techniques, the exponential 

increase in computing power available, and the maturity of tools, has finally brought the 

techniques into the realm of practicality. In the experience report in [112], Fisher et. al. 

describe DARPA’s High Assurance Cyber-Military Systems (HACMS) program and its 

efforts to apply verified components to existing, unverified systems [112]. 

HACMS research began with an open source quadcopter. A red team 

(professional hacking team) tested the security of the quadcopter and demonstrated 

multiple mission-critical vulnerabilities, eventually gaining full control and flying the 

quadcopter. Then, the HACMS team refactored the quadcopter and formalized its design. 
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The new design had proof of several security properties: memory safety, resilience 

against malformed or unauthenticated messages, and that any authenticated and well-

formed message from the control station will eventually reach the motor controller. Once 

implemented, the red team was given six weeks and full access to all the design 

documents of the systems with the goal of wirelessly disrupting the operation of the new 

quadcopter but were unsuccessful. 

The next stage of research involved a Boeing Unmanned Little Bird helicopter 

and additional constraints of not being able to refactor the hardware of the system as they 

had with the quadcopter. The goal was to retrofit the Little Bird with verified components 

to increase its resilience to cyber-attacks with the acknowledgement that not every piece 

of software in legacy systems could be verified. For this system, HACMS employed the 

seL4 microkernel to act as a layer between the hardware, the verified software 

components responsible for communication with the control station, and the unverified 

components responsible for the mission cameras. The isolation guarantees provided by 

seL4 were leveraged to ensure that even though certain components within the helicopter 

might be vulnerable, they could not be used to compromise the components critical to the 

mission. After the retrofit, the red team was given root access to the mission camera 

component and tasked with disrupting operation of the helicopter in general. The red 

team was able to destroy the component they were given, but was not able to pivot from 

that component to control others or cause a cascading failure affecting other components 

[112].  

 



64 

 

2.5 Cyber Security for Control Systems  

 Control systems have a notoriously low-priority view of cyber security. Many 

popular standards for control network design and protocols were developed and 

implemented before cyber threats were prevalent enough to consider. The Maroochy 

attack described in [3] was the first known attack on a control system, and since then the 

landscape has seen more frequent [113], [114] and more sophisticated [57], [115] attacks. 

The nature of control systems requires security mechanisms to be reliable on the order of 

decades, with little tolerance for disruptions in day-to-day operation. Formally verified 

security systems, with precisely understood behavior, then become valuable tools in both 

retrofitting existing system and designing new systems to be resilient to cyber-attack. 

Works in this section apply a formal approach to control systems security. 

2.5.1 Formal Vulnerability Analysis of a Security System for Remote Fieldbus Access 

 In 2011, Cheminod, Pironti, and Sisto presented their formal analysis of 

vulnerabilities in a secure remote fieldbus access system [116]. The system to be 

analyzed is depicted in Figure 9. Communication with the fieldbus is initiated by users in 

the corporate network and is policed by the gateway (GW) according to access control 

lists. A hierarchical symmetric key system is used to achieve confidentiality, integrity, 

and authentication: there is a single domain key from which each gateway derives the 

Gateway User Authentication key (GUA) and the Gateway User Encryption key (GUE). 

From these, each user derives a unique User Authentication key (UA) and a unique User 

Encryption key (UE). Each gateway shares the same GUA and GUE, and each gateway 

and user stores their own key-pairs locally. A user can use the same key-pair to interact 

with any gateway. 
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Figure 9: A sample fieldbus architecture, from [116] 

 The protocol was modeled using ProVerif [117], with a User role and a Gateway 

role performing the necessary actions. The authors noted that previous papers only 

informally described the protocol, so formalizing it required making design choices 

where the original specification was not clear. The security goals of the protocol also 

needed to be formalized within ProVerif and can be informally described as such: 

Privacy: 

Given an attacker that is able to see all traffic on the network and produce new 

messages, the attacker must never know the identity of a sender that is not itself, 

the data in the request, or the response to the request. 

 

Authentication: 

Whenever a gateway receives a message from the user, the user previously and 

intentionally sent that message. 

An attacker is not able to forge a valid message. 

 

Integrity: 

A response is only valid if it is a response to the originating request. 

 Of these properties, the authors found that only the privacy could be proven to 

hold; the remaining were proven to not hold. The results produced by ProVerif showed 

that this protocol is susceptible to replay attacks at multiple steps during the transaction. 

An attacker could fool the gateway into thinking it is communicating with a valid user by 
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replaying a previous request within 150 seconds. An attacker can also replay a request 

back to the user as though it were a response from the gateway as the request and 

response share the same format. 

 Next, the authors formalized the entire system infrastructure to analyze security of 

a particular network configuration using a Prolog-based tool and approach. At this level 

of abstraction, the protocol is assumed to be flawless at first, then flawed as described 

above, to determine if a given networking configuration exposes the vulnerabilities to 

attack. A state-transition system was used, defining an initial state of the network then 

allowing the status of the network to evolve as actions were performed. Analysis of this 

model involved determining if any state could be reached such that the security properties 

were violated. The analysis determined that a flawless protocol left the system in a safe 

state regardless of transitions, but the flawed protocol allowed invalid operations to 

occur. 

2.5.2 Towards Formal Security Analysis of Industrial Control Systems 

 Marco Rocchetto and Nils Tippenhauer have extended the Dolev-Yao model for 

interactive cryptographic protocols to suit the needs of control systems – specifically, a 

water treatment plant [118]. The new model is then used to find potential attack vectors 

of the control systems through formal analysis. The Dolev-Yao models an attacker with 

full access to the network, but who is unable to break the cryptography [119]. Extensions 

by Rocchetto and Tippenhauer and related works add new attacker profiles that are more 

specific to control systems, as well as rules that govern the interactions between the 

software and hardware (like opening a valve), and rules governing physical capabilities 

of the attacker (like physical access to certain ICS components). This work is specific to 
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water treatment plants, so the authors define additional security goals of the model to 

include physical preventions like over/under flow of tanks, increases/decreases in 

pressure, and arbitrary changes of components (opening and closing of a valve). 

 The authors demonstrated the extended model on a water treatment testbed with 

two specific attacker models shown in Table 7. The Insider profile represents an 

employee or contractor with full physical and virtual access to the control system. The 

Cybercriminal represents a typical cyber miscreant from the dark web with little 

knowledge of the system and no physical access. The demonstration revealed attack 

traces that compromised the security goals stated earlier. A practical analysis was later 

performed, with real people attacking the water treatment testbed roleplaying as either 

insiders or cybercriminals. The formal analysis was able to detect 7 of the 8 attacks 

performed in the practical analysis. 

Table 7: Comparison of attacker profiles, from [118] 

 

2.5.3 Anomaly detection in cyber-physical systems: A formal methods approach 

In 2014, Jones, Kong, and Belta presented a method of detecting anomalies in 

cyber-physical systems through an artificial-intelligence-generated formal specification 

[120]. Anomaly detection is a common practice in traditional cyber security spaces, and 

tries to erase the problem of signature detection where the detection system would need 
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to know exactly what an attack looks like in order to detect it. Instead, the anomaly 

detection software knows the expected behavior of the system and can flag activity that 

does not conform to expectation. The authors note that cyber-physical systems are 

designed with the assumption that the design team has perfect knowledge of the system. 

While this may be true in the design and implementation phases, this assumption breaks 

down as the system gets more complex and human actors act like humans. Designs also 

seldom account for human actors behaving maliciously, and such behavior is 

intentionally hard to predict.  

Jones et al. make use of a subset of signal temporal logic (STL) [73] to create 

formulae that describes how a cyber-physical system should behave. Creating such 

formulae to describe system behaviors is a difficult problem, even when correct models 

of the system are available, so building a set of formulae through monitoring normal use 

of the system would be beneficial. Monitoring and analyzing all the variables in a cyber-

physical system creates high dimensional datasets with many records, and such datasets 

are the domain of artificial intelligences. The authors created an unsupervised learning 

algorithm that can produce formulae describing expected activities of the system. While 

the specifics of the algorithm is beyond the scope of this survey, its machine-checkable 

and human-readable outputs are significant. 

2.5.4 Formal modelling and analysis of DNP3 secure authentication 

 The Distributed Network Protocol, Version 3 (DNP3) [23], [24], [26], [121] is a 

widely-used and rigorously specified SCADA networking protocol. DNP3 was originally 

designed to be reliable, but had no mechanisms for security and many attacks have been 

demonstrated or theorized in [106]. DNP3-SA, or Secure Authentication, attempts to add 
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encryption and authentication through inclusion of cryptographic algorithms [9], [42]. 

Specifically, DNP3-SA uses two methods for adding security: non-aggressive challenge-

response to force a client to authenticate itself upon receiving a critical instruction, and 

aggressive mode that allows the client to bypass the challenge-response pattern by 

proving it successfully completed the previous challenge-response. However, the 

specification for DNP3-SA is informal and ambiguous, leading to difficulty in both 

implementing and analyzing the specification for weaknesses.  

Amoah, Camptepe, and Foo presented a formalized specification of DNP3-SA 

and a formal security analysis of the specification [42]. This research used Coloured Petri 

Nets (CPN), a formal modeling language for discrete events [122]. CPN allows building 

a master and slave, then building the protocol instructions and creating a state space of 

possible behaviors through simulation. The authors also formalized the desired security 

property, stated informally as: The slave is able to authenticate the master station if the 

master station is able to produce a valid HMAC tag. The state space can then be 

traversed to find states where the property is violated. 

 As might be expected from this research’s inclusion in the survey, DNP3-SA was 

found to be vulnerable. The security property was violated and the trace produced a 

previously-unknown vulnerability. The specific vulnerability results from the relation 

between non-aggressive mode and aggressive mode. DNP3-SA messages are sent in clear 

text and can be manipulated. An attacker can break the protocol by intercepting the 

challenge message and incrementing the sequence number to force an authentication 

failure. Because the sequence numbers would then increment, the “old” response from 

the master can then be used in aggressive mode to carry out whatever command suits the 
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attacker’s fancy. Amoah et al. also propose a solution and proof the solution removed the 

vulnerability, but at time of writing this solution has not been added to the standard. 

2.5.5 Attack taxonomies for the Modbus protocols 

 Modbus is a relatively simple and widely-used SCADA communication protocol 

developed in the 1970s [22], [123], [124]. It has a call-and-response structure and no 

security considerations whatsoever [21], [125]. Modbus has two variants: Modbus Serial 

where in a master communicates with slaves over a serial line, and Modbus TCP where a 

set of masters can communicate with possibly overlapping sets of slaves. Huitsing et al. 

analyzed both Modbus specifications and developed a taxonomy of attacks for each 

[105], finding 20 attacks for Modbus serial and 28 attacks for Modbus TCP. 

 The authors identified four threat categories for their taxonomies: Interception, 

Interruption, Modification, and Fabrication. The attack vectors for each Modbus variant 

included the master devices, the slave devices, and the communication link connecting 

them, and required materials are simple a network sniffer and some device to introduce 

fabricated messages to the network. A sample of the attacks is listed in Table 8. 

Table 8: Sample of Possible Attacks against Modbus 

Modbus Serial Modbus TCP 

Diagnostic register reset 

Remote restart 

Slave reconnaissance 

Broadcast message spoofing* 

Baseline response delay* 

Direct slave control* 

Modbus network scanning* 

Passive reconnaissance* 

Response delay* 

Man-in-the-middle* 

Broadcast Message Spoofing* 

Baseline Response Delay* 

Direct Slave Control* 

Modbus Network Scanning* 

Passive Reconnaissance* 

Response Delay* 

Man-in-the-Middle* 

Irregular TCP Framing 

TCP FIN Flood 

TCP Pool Exhaustion 

TCP RST Flood 

*Attack affects both protocols. 
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2.6 Summary 

This chapter presents a direction and purpose of formal methods and security 

research efforts generally and specifically for industrial control systems. A lot of research 

effort has been put into verifying the cryptographic primitives and systems to ensure 

secrecy, authentication, and integrity can be strongly preserved as in sections 2.3.1, 2.3.2, 

and 2.3.3. Section 2.4 identifies research into verification of operating systems from 

general, exceedingly abstract models to verified implementations with dozens of verified 

security properties. Industrial control systems-specific formal work can be seen in 2.5, 

with a distinct focus on protocols, vulnerability hunting, and modeling entire systems. 

The original research found in this thesis recognizes previous work at the system level 

and control network protocol level and fills in a gap present at the control network device 

level. Moreover, previous work has a focus on new control systems as they are deployed, 

and limited effect on legacy control systems currently in use. This thesis fills the support 

gap in which legacy systems currently reside. The remainder of this document presents a 

novel workflow for moving from a verified model to implementation in seL4 and 

describes a verified specification of a security preprocessor for adding security properties 

to existing control systems using legacy protocols. 
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CHAPTER III 

HIGH ASSURANCE CYBER-SECURITY DEVICES FOR INDUSTRIAL CONTROL 

SYSTEMS USING TLA+ AND SEL4 

 

3.1 Introduction 

While high assurance of any device that could affect a factory floor or distributed 

control network has always been a goal, the focus has usually been on safety and 

durability rather than security. Additionally, the methods for achieving high assurance are 

typically exhaustive testing at the application level and hardware level of the device, 

leaving out the operating system and any other unnecessary services that may be running 

[126]. Sixnet RTUs for instance run their application on top of Linux, Allen-Bradley’s 

PLC5 runs on top of Microware OS-9, and a few others run on top of VxWorks [127]. 

These devices are reliable but possess no proven security or safety properties. As 

demonstrated with a Sixnet Remote Terminal Unit (RTU) in [128], the operating system 

could potentially violate environmental assumptions made by the designers during 

development and present new vulnerabilities.  

This thesis presents a novel approach for verifying cyber security relevant 

properties for control system devices. Using a microkernel that isolates application 

components, an architecture can be developed that can be treated as a distributed system 

from a security perspective. Different pieces of code with critical responsibilities can be 

isolated from one another,  their interactions with each other can be strictly controlled, 

and proper separation of duties can be established in a similar fashion to the separation 
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kernel described by John Rushby in 1981 [129]. Reasoning about distributed, 

concurrent systems can be accomplished with formally specifying the system and model 

checking the specification. This presents a potential development process for creating 

fully verified designs, if not fully verified implementations. The development stages in 

Figure 10 show how to proceed from an idea for an embedded device with high assurance 

requirements to an implementation ready for deployment on a microkernel capable of 

isolating components. Development begins with informal discussions of requirements 

and desired properties of the device, with a special emphasis on separating critical duties 

into isolated components. These initial concepts are then formalized with a modeling 

language. Often, the process of formalizing the specification and security properties 

uncover design flaws before the verification step takes place.  

The third step is to structure the architecture of the microkernel to match the 

formal model. This definition includes any special hardware interface capabilities that the 

component might need such as network interfaces and storage. The communication 

between components must also be defined. If the formal model was designed with an 

appropriate level of abstraction, the microkernel architecture should be simple to 

implement. The formal specification gives precise documentation for exactly what 

connections and capabilities each component needs.  

The process described in Figure 10 can be applied to any high-assurance 

embedded device. Isolated moving parts allows for small pieces of larger systems to be 

verified independently. Smaller, isolated pieces also facilitate code reuse and abstraction, 

simplifying the design and implementation steps of future projects. With regard to 

industrial control systems, this process can be applied to the development of any 



74 

 

embedded device that typically operate in the network such as the RTUs, PLCs, modems, 

intelligent electronic devices (IEDs), and multiplexers. This process would probably not 

work well for the more complex hosts on a control network such as data historians and 

operator workstations that often run a full commercial operating system like Windows. 

This proposed work is specifically concerning the security of these control systems rather 

than their operation, so the following section describes a security preprocessor embedded 

device intended for use in control systems. 

 

Figure 10: Development steps for verifying embedded control system devices. 

3.2 Industrial Control Systems (ICS) 

An industrial control system (ICS) network can be spread over a large geographic 

distance. While communication between nodes within a single factory floor might be 

easy and reliable, reaching substations and water towers across a metropolitan area is 

more difficult. ICS operators utilize a variety of communication media to reach these 

field sites, with differing levels of inherent privacy and resistance to tampering. The 

topology shown in Figure 11 is typical of a water treatment facility control network. The 

control center is where the engineers and operators will spend most of their time. The 
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control center might contain a server to record and archive all activity on the process 

network called a data historian, the engineer workstations, SCADA servers or 

programmable logic controllers (PLCs), and a multiplexer for communicating outside. 

The water towers are located away from the command center, and might be reached via 

telephone line, leased line, radio towers, cellular networks, or in the worst-case scenario 

the open internet. The field sites usually contain a remote terminal unit (RTU) for 

interacting with the physical processes at the field site and a modem to communicate with 

the command center. ICS network protocols are notoriously lax with respect to security 

mechanisms as seen in the attack taxonomies in [105], [106]. The stretch of network 

infrastructure between the field sites and control center presents an attack vector as long 

stretches are difficult to physically protect. Messages traversing these stretches are 

vulnerable to tampering. An attacker could even introduce new, fraudulent messages to 

the network. Control systems developed before security was a significant concern would 

have little recourse against this sort of attack. 

 

Figure 11: A typical ICS network topology, adapted from [130] 
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The communication between the field sites and the command center is the focus 

of the work presented in this chapter. Adding security to the communications from field 

site to command center will remove the burden of trusting the networks the messages 

might traverse. Adding security to an ICS network is not as simple as doing so for 

traditional corporate networks – timing requirements are stricter, downtime is less 

tolerated, and additional complexity usually means more points of failure. This chapter 

discusses the use of the seL4 microkernel and the TLA+ specification language in 

attempts to create a highly reliable embedded system. Additionally, this chapter describes 

previous work on a bump-in-the-wire2 security preprocessor that could potentially see its 

assurance level benefit from the proposed development process. 

3.3 TLA+ 

Specifying and exhaustively exploring the state space of a distributed and 

concurrent system is more difficult than in a sequential system. The order of actions 

taken in the separate pieces of executing code is not defined, and one piece can affect the 

environment of another, changing the behavior of both. Temporal Logic of Actions was 

designed specifically for concurrent systems [63]. TLA+ is a formal specification 

language with semantics that support temporal logic of actions and modeling complex 

distributed systems [64], [101], [131]. Understanding the semantics of TLA+ will help 

the reader understand how it can be applied and used to check for security and safety 

properties. This section presents a simple example of a distributed decision-making 

 

 

2 Bump-in-the-wire means the system would be put on the network in between two components 

and act without either component noticing a difference. 
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system: multiple database resource managers trying to agree on whether to commit to a 

transaction.  

In the TCommit algorithm, described in [132] and displayed in Equation (5), is a 

process for safely executing a database transaction. The transaction is performed by a set 

of resource managers acting concurrently. The transaction can either commit or abort. 

The resource managers can either be working, prepared to decide, committed, or aborted. 

The desired properties for the system are: 

1 The transaction can only commit if every resource manager is prepared to 

commit. 

2 If a single resource manager aborts, the transaction must be aborted. 

3 All resource managers must agree on whether the transaction committed or 

aborted. 

The first line the TCommit specification defines is a set of resource managers RM. 

The second line defines an array rmState that is indexed by the set of resource managers. 

TCTypeOK defines an invariant property. TCTypeOK is true if the state of any given 

resource manager is an element of the set “working, prepared, committed, aborted”. If a 

resource manager finds itself is any other state, this property is violated. The expression 

rmState[r] will give the state of resource manager r. TCInit describes the initial state of 

the system. In the initial state, rmState is the array indexed by RM such that every 

resource manager r is in the “working” state. The statement canCommit is true when 

every resource manager is in the prepared or committed state. The statement 

notCommitted is true if no resource manager has decided to commit. Following these 

definitions are the actions that a resource manager can take. Prepare can occur when 

resource manager rm is in the working state. The next state is one in which rm is prepared 

and the other resources managers are the same state they were in the previous state. 
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Decide can occur when a given resource manager rm is in the prepared state and 

canCommit is true OR when rm is in the working or prepared state and no other resource 

manager has committed, leading to an abort. 

 The important line in this simple specification is TCConsistent. This 

invariant property is true if no two resource managers are in the committed and aborted 

states at the same time. When this model is used as input to the TLC model checker, 

every generated state will be checked for conformance to TCConsistent. If TLC finds no 

state which violates the property, then work is complete. 

TCInit ≜ rmState = [rm ∈ R ↦ working]  
TCTypeOK ≜ rmState ∈ [RM → {working, prepared, committed, aborted} 

canCommit ≜ ∀rm ∈ RM ∶ rmState[rm] ∈ {prepared, committed} 
notCommitted ≜ ∀rm ∈ RM ∶ rmState[rm] # committed 
Prepare(rm) ≜    ∧ rmState[rm] = working 

        ∧ rmState′ = [rmState EXCEPT ! [rm] = prepared] 
Decide(rm) ≜  ∨  ∧ rmState[rm] = prepared 

        ∧ canCommit 
        ∧ rmState′ = [rmState EXCEPT ! [rm] = committed] 
      ∨  ∧ rmState[rm] ∈ {working, prepared} 
        ∧ notCommitted 
        ∧ rmState′ = [rmState EXCEPT ! [rm] = aborted] 

TCNext ≜ ∃rm ∈ RM ∶ Prepare(rm) ∧ Decide(rm) 
TCSpec ≜ TCInit ∧ [][TCNext]_rmState  
TCConsistent ≜ ∀rm1, rm2 ∈ RM ∶ ¬  ∧ rmState[rm1] = "aborted" 

                         ∧ rmState[rm2] = committed 

(5) 

 

3.4 seL4 and CAmkES 

The seL4 microkernel has been fully verified from design to implementation to 

provide a high level of assurance [109], [110], [133], [134]. seL4 was the evolution from 

the OKL4 family of microkernels developed to reduce the size of a microkernel to the 

point where a guarantee of bug-free code could be realized. seL4 provides a verified-

correct ability to logically separate processes and implement highly specified channels of 

communications between components within the architecture. If a cell in the kernel is 
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compromised, it can be shown that the other cells still hold true to their desired security 

properties. This allows an abstract implementation of Rushby’s separation kernel for 

reducing large security kernels into smaller, more easily provable, components 

mimicking a distributed system. seL4 was developed using Haskell for prototyping and 

Isabelle/HOL for the heavy proof work. It comprises 10,000 lines of verified C code 

requiring 18 person-years of development time as of 2018 [133]. 

Component Architecture for microkernel-based Embedded Systems (CAmkES) is 

a component platform designed to address the increasing complexity and unreliability of 

embedded systems through facilitating a modular design of system services [135], [136]. 

The CAmkES framework provides a language for describing components, component 

interfaces, and shared memory. During the build process, each component description is 

translated into scaffolding and glue code that houses the source code (usually in C) for 

the service that the component provides to create a bootable system image. This 

automatically generated glue code is responsible for initializing the component at boot, 

running threads, and managing the component’s resources, as well as facilitating the 

communication between components. Full verification of the generated glue code is a 

work in progress, but the remote procedure call (RPC) portion that allows one component 

to utilize the service of another has been verified to behave as though the service were 

provided by the originating component itself [137]. 

CAmkES is the recommended tool for creating native seL4 applications and comes 

integrated into the seL4 build system. Only a single CAmkES application can be running 

at a time. Applications built with CAmkES are static, meaning all the specified 

components and connections are created at boot time. No components, connections, or 
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interfaces can be created or destroyed during runtime. Additionally, components have a 

fixed amount of memory available, defined during the design. The philosophy behind a 

static application is to reduce the complexity of the verification efforts and allow 

guarantees to be made about the system’s operation. The target for CAmkES, embedded 

systems, is often static anyway. A device designed for control systems would also be 

static, as it would likely be in the field for a long time with a single responsibility and no 

need for feature changes beyond the initial deployment. 

3.5 Application of Verified Systems for Control Systems Security 

The guarantees offered by the seL4 microkernel can allow a higher level of 

assurance to be achieved than with previous high assurance microkernels. The 

verification work of the microkernel paves a path to fully verified software stacks. The 

CAmkES architecture language and support provides a framework for building native 

applications in small and verifiable chunks. The seL4 microkernel allows the 

development of an embedded system that mimics a distributed system, so TLA+ could be 

a valuable tool in reasoning on these designs. This presents a potential development 

process for creating fully verified designs, if not fully verified implementations. The 

development stages described in previously in Figure 10 can be expanded, with Figure 12 

showing in more detail how to proceed from an idea for an embedded device with high 

assurance requirements to an seL4-based implementation ready for deployment using 

these techniques. The nature of CAmkES must inform the level of abstraction used in the 

formal specification. For example: how the components communicate could potentially 

be left out of the specification, but what the components are saying to each other should 

be explicitly specified to aid in the next stage of development. With the formal 
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specification and formal properties, the TLC Model Checker is used to ensure the 

specification accurately models the design, with each component behaving correctly and 

the interactions between components precisely understood. 

The third step is to define each component formally described in TLA+ within 

CAmkES. This definition includes any special hardware interface capabilities that the 

component might need such as network interfaces and storage. The communication 

between components, handled with remote procedure calls (RPCs) in sel4, must also be 

defined. Each component provides interfaces that other components can use to access 

services. These interfaces and their structure (the calls, the parameters, and return values) 

are statically defined before compilation and do not change after boot. Finally, the RPC 

connections must be defined. A connection must be defined for each interface a 

component might use during operation. If the TLA+ model was designed with an 

appropriate level of abstraction, the CAmkES definitions should be trivial to implement. 

The formal specification in TLA+ give precise documentation for exactly what 

connections and capabilities each CAmkES component needs. 

 

Figure 12: Development steps for verifying seL4 designs using TLA+. 
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3.6 Translation of TLA+ and PlusCal into CAmkES 

Formally verifying a system design with this method involves specifying the 

system in PlusCal, translating the PlusCal to TLA+ for model checking, then translating 

the PlusCal to a CAmkES project that can be deployed on seL4. CAmkES provides 

primitives (Table 9) to designers that come with security and safety guarantees. These 

primitives can be modeled in TLA+ and used in building specifications. With careful 

modeling, these specifications can be directly translated from PlusCal to CAmkES. 

Table 9: CAmkES primitives 

CAmkES primitive Description 

Component A logical grouping of code and resources. Code within 

components has access to all the memory that was assigned to the 

component, but not other components. 

Connection A method of communicating between two components 

Interface The definitions of function calls that occur over connections 

 

A component is modeled in PlusCal using a process. Processes in PlusCal are like 

processes in classical computer science. They have their own local variables just as a 

process would have its own address space, but unlike classical processes they can read 

and write global variables that could potentially affect other PlusCal processes. Because 

of these differences, modeling a classical process in PlusCal requires care from the 

programmer to limit the reach of a PlusCal process to reading and writing specific global 

variables in a controlled manor. In translation, a new component is created for each 

Process keyword found in the PlusCal. Each component requires a new directory with a 

camkes file and a src directory that contains the C code implementation. An example 

CAmkES hierarchy is illustrated in Figure 13. 
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Figure 13: CAmkES directory setup for an example application. Each component has its 

own directory housed within the “Components” directory. Each component directory has 

a camkes file and a src folder containing C code. 

Modeling communication between components is accomplished using a macro 

called Send. Send contains the needed information to construct both an interface and a 

connection. Send is given in Figure 14. It takes as parameters a destination queue (in 

practice, this can be thought of as a destination process) and a message. When translating 

to a connection in CAmkES, an seL4RPCCall is declared from the sending process to the 
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receiving process. Figure 15 shows Send calls that originate from Modtx and forward 

messages to Crypto and Modchk, along with the corresponding connections created in the 

CAmkES project. 

macro send(dest, msg)  
    begin 
        \*print "sending to " \o dest; 
        chan[dest] := Append(chan[dest], msg); 
    end macro; 
 
macro receive(channel, msg)  
    begin 
        \*print channel \o " received msg"; 
        await Len(chan[channel]) > 0; 
        msg := Head(chan[channel]); 
        chan[channel] := Tail(chan[channel]); 
    end macro; 

 

Figure 14: PlusCal definitions for Send and Receive macros 

 

check2: send("messagecheck",  
[id|->msgid, text|->rxBuf, source|->"trustnet_in"]); 

check3: send("sign", [id|->msgid, text|->rxBuf]); 
 
 
 

 

 

/* Things coming out of the modtx component */ 

    connection seL4RPCCall conn1(from modtx.modchk_iface,  

     to modchk.modchk_iface);  

    connection seL4RPCCall conn2(from modtx.crypto_iface,  

     to crypto.crypto_iface); 

 
 

Figure 15: Send macros in TLA+ and their translations into CAmkES connections. 

Declarations of seL4RPCCall connections from the Modtx component to the protocol 

checking component (conn1) and the crypto component (conn2) 

 

Finally, translating Send macros into interfaces can be tricky, as TLA+ is an 

untyped specification language and CAmkES defines interfaces using the strongly typed 

C programming language. There have been efforts to add a refinement type system to 
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TLA+ [138], but those were not used here. Instead, invariants were used to ensure 

variables conformed to their proper encodings within TLA+, and the types were 

translated manually into C. The Send macro example from Figure 15 is refreshed in 

Figure 16 along with its translation into an interface.  

check3: send("sign", [id|->msgid, text|->rxBuf]); 
 
 
 

 

 

procedure CryptoIface { 

    void sign(in string rxBuf, in int msgid); 

};  

Figure 16: A Send macro in TLA+ and its  translation to a CAmkES interface 

Both components involved in the operation see their .camkes files modified to 

reflect that the receiving process provides the interface and the sending process consumes 

the interface. These modifications are seen in Figure 17. 

check2: send("messagecheck",  
[id|->msgid, text|->rxBuf, source|->"trustnet_in"]); 

check3: send("sign", [id|->msgid, text|->rxBuf]); 
 
 
 

 

 

component Modtx { 

 

    control; 

    provides ModtxIface modtx_iface; 

 

    uses ModchkIface modchk_iface; 

    uses CryptoIface crypto_iface; 

 

}  

Figure 17: Translation of a PlusCal send macro to a CAmkES component definition 

The steps for translating from TLA+ (PlusCal specifically) to CAmkES can be 

written as follows: 
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1. Using the Send and Receive macros for inter-process communication, specify a system with 

multiple processes that are well behaved (i.e. they do not modify global variables other than 

through Send and Receive). 

2. Create a CAmkES project with an empty directory structure 

3. For each process: 

a. Create a subdirectory structure with name matching the process label 

b. Create a .idl4 interface file in the interfaces directory with name matching the process 

label 

4. For each process: 

a. For each Send macro in the process: 

i. Create a new interface declaration (if one does not already exist with this name 

and parameters) in the sending process’s .idl4 file 

ii. Within this interface declaration, create a C function prototype with: 

1. return type void 

2. parameters matching the field names in the second argument of the Send 

macro and types as specified in the invariants 

iii. Within the .camkes file for the sending component 

1. Insert “uses *receiving_component_interface*” 

iv. Within the .camkes file for the receiving component 

1. Insert “provides *receiving_component_interface*” 

v. Create a new seL4RPCCall connection from sending process to receiving 

interface in the root .camkes file 

  

The final step is to fill the components with C code that implements the behavior 

specified in the TLA+ model. This cannot be automated in this context as TLA+ is 

designed for reasoning on the what tasks a system accomplishes, not how the system 

accomplishes those tasks. TLA+ specifications provide good guidance on how to 

implement the C code within the components, but this is a manual task. 

3.7 Security Preprocessor as Previously Designed 

In 2012, Hieb, Graham, Schreiver, and Moss presented a design and prototype for 

a Field Device Secuity Preprocessor (FD-SPP) to create and protect a perimeter around 

field devices located at remote stations in a SCADA network [130]. The work builds 

from previous papers describing a security hardened remote terminal unit (RTU) built 
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from the ground up with security as a focus [139]. This hardened RTU logically isolates 

security-critical code such as cryptographic services, access control enforcement, and the 

policy decision point from each other and from the network interfaces. Feedback on this 

work led to pulling the security processing steps out of the RTU and into a separate 

device to minimize impact of installing such features into an existing network. The FD-

SPP is an embedded control systems security device to which the proposed formal 

verification techniques could be applied. 

The FD-SPP can act as a bump-in-the-wire configuration to allow a simple 

installation of two devices at either end of a communication line. Installation should be as 

simple as plugging them in and turning them on – no other devices on either end of the 

network would need to be bothered. Additionally, the FD-SPP should not add any new 

attack vectors to the network. The layered security of isolated components and 

cryptographic mechanisms would reduce the attack surface and make compromising the 

application very difficult. Figure 18 simplifies a SCADA network to the pieces relevant 

to this discussion. A Human-Machine Interface (HMI) or a Programmable Logic 

Controller (PLC) in the control center would communicate through some medium to an 

RTU at a remote substation. Figure 19 illustrates how a FD-SPP would change the 

network diagram. One FD-SPP device would need to be placed in the control center right 

after the HMI, and a second device would need to be place in the substation right before 

the RTU. Both devices encapsulate messages going out of their respective zones, and 

both devices decapsulate messages coming into their prospective zones.  
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Figure 18: Connection from the control center (left) to RTU (right) on a typical SCADA 

network 

 

 

Figure 19: Connection from the control center to RTU with the FD-SPP installed 

 The FD-SPP offered in 2012 was built on top of an unverified but high 

assurance microkernel. Hieb et al. designed the FD-SPP to operate with three 

components, or cells, each with their own responsibilities and a limited ability to affect 

one another. Threads in each cell can communicate with each other normally, but 

communication between cells in different threads is strictly determined at compile time.  

The cell configuration can be seen in Figure 20. The three cells act in sequence, with 

messages moving through all three for processing before reaching the other side. The two 

outer cells interface with the control network (the prototype utilized a serial port, but this 

was not necessary). The inner cell acted as the security controller and housed the access 

control and cryptographic logic. This configuration had the added benefit of protecting 

the security critical process from the outside world. An attack on this device would need 

to bypass at least one networking cell before attempting to compromise the security 

properties.  
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Figure 20: FD-SPP architecture 

The FD-SPP as proposed offered access control and authentication capabilities to 

a Modbus RTU network. Modbus, both Modbus ASCII and Modbus RTU, are missing 

any sort of security mechanism in their specification. As seen in [29], [105], both 

mechanisms could be added with overhead small enough to fit the timing constraints in a 

large portion of SCADA networks. Authentication would be provided through use of a 

pre-shared key for each user and a challenge-response protocol similar to [42]. The 

Modbus protocol would be extended to add the required function codes to allow for a 

challenge-response: a Request code, a Challenge code, and a Response code. A Request 

message would flow to the field device containing a user ID. The field device would 

generate a nonce and send it back as a challenge. Finally, the control center device would 

hash the nonce with the user’s secret using SHA-256 and append the result to the original 

Modbus packet. The field device would also perform the hash with the user’s secret and 

ensure the calculated hash and the response hash are the same. If they are equal, the 
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Modbus message can pass through to the RTU. The response from the RTU can pass 

through the FD-SPP and travel back to the control center without trouble. 

Hieb et al. also proposed a Role-Based Access Control (RBAC) mechanism that 

would operate within the security cell. User roles would be mapped to a set of allowable 

opcodes and users would be assigned user roles. During the challenge-response process, 

the user would be authenticated, then checked against an access control matrix. A low-

level operator might have permission to read the control signals, but an attempt to change 

control logic would be denied. The difficulty of managing roles and complexity of 

management led this feature to be discarded in later designs. 

The FD-SPP was developed for the OKL4 kernel, a precursor to seL4, and as such 

is already separated into critical components. The OKL4 kernel limited designers to up to 

three components per system, but seL4 removes this limitation. The newly designed 

architecture should add a fourth component to separate the critical protocol checking 

code from the critical cryptographic code and perhaps have these components work in 

parallel. Stated very informally, the desired properties of the holistic system include: 

1 Isolation between components such that a compromised component cannot affect 

any others 

2 Only proper messages can be allowed to pass through – no malformed messages 

3 Only properly formed messages can originate from the device 

4 Every message is properly authenticated 

5 Every message is protected from tampering 

6 All legitimate messages do eventually pass through (except in the case of denial 

of service) 

3.8 Summary 

Adding security to an existing control systems network requires careful 

considerations to reduce downtime, reduce added latency, and reduce added failure 
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points. A bump-in-the-wire security preprocessor built atop a high-assurance microkernel 

like seL4 might reduce the impact of added security enough to be palatable to asset 

owners. This chapter proposed a development cycle for engineering high-assurance 

embedded systems with formally described and verified security and safety properties. 

An informal design of an embedded system can be formalized and verified using TLA+. 

The TLA+ specification can be used to define an architecture in CAmkES. Finally, the 

components in the CAmkES architecture can be populated with the C implementations of 

their algorithms. 
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CHAPTER IV 

MODELING A BUMP-IN-THE-WIRE SECURITY PREPROCESSOR 

 

4.1 Introduction 

Formally specifying a system must start with choosing the properties the system 

must possess. Once the properties are chosen, checking those properties informs the 

design of the specification. The level of abstraction depends on what pieces of the system 

are relevant to the properties. Choosing which pieces of the system that can be modeled 

separately depend on how their interactions affect the properties. Metadata like unique 

message identifiers may need to be included in the model that may not exist in the real 

system to keep track of the moving parts. The contributions presented in this chapter are 

the formal specifications written in TLA+ for each piece of a field device security 

preprocessor that needed to be modeled to capture these desired properties:   

1 Isolation between components such that a compromised component cannot affect 

any others 

2 Only proper messages can be allowed to pass through – no malformed messages 

3 Only properly formed messages can originate from the device 

4 Every message is properly authenticated 

5 Every message is protected from tampering 

6 All legitimate messages do eventually pass through (except in the case of denial 

of service) 

None of these properties can be directly described in TLA+.  Each thread defined 

in TLA+ in this chapter has subgoals, or smaller properties that can be proven and then 

used in conjunction to achieve the larger properties. This chapter will first lay out any 
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assumptions made when formulating the models, then go into detail on each of the 

models and their respective properties, and finally explain some novel helper functions 

and formal definitions that aided in the development. 

4.2 Assumptions 

Every security mechanism, verified or otherwise, works on a set of assumptions 

that if violated will compromise the guarantees claimed by the mechanism. An 

assumption can be as simple as “a user’s password will only be known by that user” in a 

corporate network environment. Beyond showing proofs of certain properties, 

verification forces a designer to rigorously define any assumptions made by the system so 

they can be addressed in the implementation and risk assessment. When installing a 

security mechanism into an existing system, care must be taken to ensure all assumptions 

made by the mechanism are met. Formalizing a design produces a list of assumptions as a 

by-product that can be included in any documentation to future engineers and operators. 

The modeling work presented here works from certain assumptions based on two 

limitations: the scope of the research, and resources available. The first limitation 

involves limiting the scope of the research to just the FD-SPP software and architecture. 

The hardware is assumed to be correct. Techniques for developing reliable hardware have 

come a long way, but some level of trust is still needed, specifically on hardware that 

seL4 supports. The second assumption in this category is that the kernel is correct. Use of 

seL4 allows this assumption to be removed in practice, but the kernel is not modeled in 

TLA+. The third assumption is that the trusted parts of the control network are behaving 

properly. The system, and therefore the model, is not acting as an application firewall and 

deciding whether the valid and authentic Modbus messages are appropriate for the 
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control logic. A malicious operator acting on the trusted network could send destructive 

messages through the system if they are properly formed - the destruction would 

potentially affect the cyber-physical portion of the network and ideally leave the network 

nodes unharmed. Finally, this research recognizes the network at large is still vulnerable 

to denial of service attacks whether from the trusted or untrusted network. Enough 

malformed messages could be introduced to the untrusted network to prevent valid 

messages from getting through. The system being modeled does not attempt to address 

this attack vector. 

The second category of assumptions is made to reduce the size of the model and 

allow a higher level of abstraction to reduce the resource strain on the researcher and the 

model checker. Only the behavior of each component and system is modeled. How the 

implementation achieves that behavior is left to future work. The algorithm for each 

action is modeled, but the code that would run on a live system is assumed to be correct. 

Secondly, the secret is assumed to be secret. An attacker that holds the secret can break 

the system. Additionally, each component assumes data from the other components is 

correct. While proof is given that networking components can only send well-formed 

messages out to the networks, they are capable of sending invalid messages if they 

receive invalid messages from the inner components. Finally, the cryptographic 

algorithms are assumed to hold their claimed properties. This assumption can be eased 

for HMAC through use of the verified cryptographic code described in [87], and removed 

through use of CompCert as the compiler. There are currently no proofs that SHA-256 is 

“secure”. The best that can be offered are heuristic arguments. 
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4.3 Formal TLA+ Specifications for Components and Properties 

Formalizing a design in a modeling language like TLA+ requires deciding what is 

important aspects of a system are important to capture in the model and what aspects are 

unimportant and can be abstracted to ease the modeling effort. As model checking can 

quickly run into the state explosion problem, care must be taken to ensure that the system 

is described sufficiently to be of value, while not getting so detailed as to render checking 

infeasible. The system described in the remaining sections of this chapter and seen in 

[140] is modeled component by component, then as a single system. Memory 

management and communication between the components is abstracted. 

Everything should be made as simple as possible, but not simpler. 

– Albert Einstein 

4.3.1 Modeling the Trusted Network Component 

The trusted network component is separated into two processes (processes can be 

thought of as threads), receiving messages from the trusted network and sending 

messages on the trusted network. The receive process, called trustnet_in, is designed to 

poll a serial port for input, so its logic is placed within a while loop that executes while 

there are messages to be processed. The algorithm for this thread is a basic loop, 

visualized in, that will read a byte at a time from an incoming message and place it into a 

buffer. After processing is completed, the buffers are cleared and the thread starts again 

from the top. The more complicated parts come with the desired property that only well-

formed Modbus messages reach the inner components. To achieve this, the logic checks 

each byte of input for “:”, indicating the start of a Modbus ASCII message. If a new 

Modbus message is started before the previous one is finished, the previous message is 

discarded. Whenever a “:” is received, the contents of the buffer are flushed and the “:” is 
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placed at the start of the empty buffer. Similarly, if the buffer is full despite not receiving 

a complete message, its contents are discarded, and the logic waits for a new “:”. 

Secondly, the logic checks for the termination of Modbus messages. Modbus ASCII 

messages end with the two-byte sequence “\r\n”. When this sequence is detected, this 

thread generates an object containing the message, a generated message ID, and 

“trustnet_in” and places the object into the signing queue of Crypto. A similar object is 

created with just the message and ID and placed in the queue of Modchk. 

The desired behavior of the Trustnet_in thread is that it accepts only and all well-

formed Modbus, forwards only well-formed Modbus, forwards the Modbus to both inner 

components in the same atomic step, forwards a single message exactly once, and doesn’t 

overflow any buffers. The properties that need to be proven for this thread are seen in 

Table 10. The formalized property can be seen in the middle and the informal description 

can be seen on the right. There are several variables and custom operators in the 

formalized properties that the reader might like to familiarize themselves with in Table 

11 before examining the properties themselves.  
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Figure 21: Flowchart for Trustnet_in thread 
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Table 10: The desired properties of the Trustnet_in thread 

Name Formalized Property in TLA+ Informal Property 

SAFE1 𝐿𝑒𝑛(𝑟𝑥𝐵𝑢𝑓) ≤ 𝑀𝐴𝑋𝑀𝑂𝐷𝐵𝑈𝑆𝑆𝐼𝑍𝐸 receive buffer never 

overflows 

SAFE2 ∧  ∀ 𝑥 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑠𝑖𝑔𝑛𝐵𝑢𝑓𝑓𝑒𝑟) ∶  𝐿𝑒𝑛(𝑥. 𝑡𝑒𝑥𝑡) ≤ 𝑀𝐴𝑋𝑀𝑂𝐷𝐵𝑈𝑆𝑆𝐼𝑍𝐸 
∧  ∀ 𝑥 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑚𝑜𝑑𝑐ℎ𝑘𝐵𝑢𝑓𝑓𝑒𝑟) ∶  𝐿𝑒𝑛(𝑥. 𝑡𝑒𝑥𝑡)

≤ 𝑀𝐴𝑋𝑀𝑂𝐷𝐵𝑈𝑆𝑆𝐼𝑍𝐸 
 

sending buffer never 

overflows 

SAFE3 𝐿𝑒𝑛(𝑙𝑎𝑠𝑡2) < 3 last2 buffer never 

overflows 

SAFE4 ∧ ∀𝑥 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑠𝑖𝑔𝑛𝐵𝑢𝑓𝑓𝑒𝑟) ∶ 𝐼𝑠𝑊𝑒𝑙𝑙𝐹𝑜𝑟𝑚𝑒𝑑𝑀𝑜𝑑𝑏𝑢𝑠(𝑥. 𝑡𝑒𝑥𝑡) 
∧ ∀𝑥 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑚𝑜𝑑𝑐ℎ𝑘𝐵𝑢𝑓𝑓𝑒𝑟) ∶ 𝐼𝑠𝑊𝑒𝑙𝑙𝐹𝑜𝑟𝑚𝑒𝑑𝑀𝑜𝑑𝑏𝑢𝑠(𝑥. 𝑡𝑒𝑥𝑡) 

only well-formed 

Modbus gets 

forwarded 

SAFE5 ∧ ∀𝑥 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑠𝑖𝑔𝑛𝐵𝑢𝑓𝑓𝑒𝑟) ∶ 
𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦({𝑦 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑠𝑖𝑔𝑛𝐵𝑢𝑓𝑓𝑒𝑟) ∶ 𝑥. 𝑖𝑑 = 𝑦. 𝑖𝑑}) = 1 

∧ ∀𝑥 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑚𝑜𝑑𝑐ℎ𝑘𝐵𝑢𝑓𝑓𝑒𝑟) ∶ 
            𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦({𝑦 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑚𝑜𝑑𝑐ℎ𝑘𝐵𝑢𝑓𝑓𝑒𝑟) ∶ 𝑥. 𝑖𝑑 = 𝑦. 𝑖𝑑}) =
1 

each message that is 

forwarded has a 

unique message id* 

SAFE6 ∧ ∀𝑥 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑠𝑖𝑔𝑛𝐵𝑢𝑓𝑓𝑒𝑟) ∶ 
                          ∃𝑦 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑚𝑜𝑑𝑐ℎ𝑘𝐵𝑢𝑓𝑓𝑒𝑟) ∶ 𝑥. 𝑖𝑑 = 𝑦. 𝑖𝑑 
∧ ∀𝑥 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑚𝑜𝑑𝑐ℎ𝑘𝐵𝑢𝑓𝑓𝑒𝑟) ∶ 
                             ∃𝑦 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑠𝑖𝑔𝑛𝐵𝑢𝑓𝑓𝑒𝑟) ∶ 𝑥. 𝑖𝑑 = 𝑦. 𝑖𝑑 

well-formed messages 

get sent to both inner 

components 

SAFE7 ¬(𝑟𝑥𝐵𝑢𝑓 =  〈〉) ⇒ 𝐻𝑒𝑎𝑑(𝑟𝑥𝐵𝑢𝑓) = ": " rxBuf is either empty 

or starts with ":" 

LIVE1 𝐼𝑠𝑊𝑒𝑙𝑙𝑓𝑜𝑟𝑚𝑒𝑑𝑀𝑜𝑑𝑏𝑢𝑠(𝑚𝑠𝑔) ⇝ 

                          ∃𝑥 ∈ 𝑟𝑎𝑛𝑔𝑒(𝑠𝑖𝑔𝑛𝐵𝑢𝑓𝑓𝑒𝑟) ∶ 𝑥. 𝑡𝑒𝑥𝑡 = 𝑚𝑠𝑔 
if the message is well-

formed then it gets 

sent. This is weaker 

than desired as it only 

shows some message 

exists, not necessarily 

the same message. 

LIVE2 ◇(𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠 = 〈〉) all messages are 

processed 

LIVE3 𝑙𝑎𝑠𝑡2 = 〈"\𝑟", "\𝑛"〉 ⇝ 𝑙𝑎𝑠𝑡2 = 〈0,0〉 last2 buffer gets reset 

after each well-formed 

message 

 

Formalized properties are usually not simple and can take some effort to 

understand. The property SAFE2, given again in Equation (6), is a conjunction of two 

statements. Each line in the conjunction starts with ∧, meaning “and”. These two 

statements make use of a local symbol 𝑥. The first half of the first statement, the portion 

before the colon, can be read as “For all 𝑥, where 𝑥 is an element of the set signBuffer”. 

SignBuffer is an ordered sequence of messages that are meant to be sent to the Crypto  
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Table 11: TLA+ symbols used in the property definitions for trustnet_out 

Symbol Description 

rxBuf A buffer that holds the bytes that are received from the 

network. This is a sequence. 

Range() 𝑅𝑎𝑛𝑔𝑒(𝑇) ≜ {𝑇[𝑥] ∈ 𝐷𝑂𝑀𝐴𝐼𝑁 𝑇}3 

signBuffer, modchkBuffer The buffers that hold messages “sent” to the respective inner 

components. These are an abstraction as the full model 

implements the message passing. 

last2 A sequence for keeping track of the last two characters in 

rxBuf. For finding “\r\n” 

IsWellformedModbus() Is true if the message length, starting, and ending characters 

are all correct. 

msg The raw Modbus message being processed 

incomingMessages The set of messages that will be received 

component. Note that SignBuffer does not contain raw Modbus. It holds message 

structures with fields for the raw Modbus, the message ID, and other piece of metadata 

that might need to be forwarded to a component. Following the colon, Len() returns the 

length of a sequence. Text is the field within the message structure that contains the raw 

Modbus, so the right of the colon is ensuring the length of the raw Modbus contained in 

𝑥. 𝑡𝑒𝑥𝑡 is less than or equal to the maximum size of a Modbus packet. The second line of 

the equation is the same property stated for the modchkBuffer that holds messages to be 

sent to the Modchk component. These properties are invariants; they are checked to be 

true in every state that is generated. 

∧ ∀ x ∈ Range(signBuffer) ∶  Len(x. text) ≤ MAXMODBUSSIZE 

∧ ∀ x ∈ Range(modchkBuffer) ∶  Len(x. text) ≤ MAXMODBUSSIZE (6) 

Properties SAFE2 and SAFE4-6 are two properties ANDed to which the logical 

AND operator is applied as fulfillment of the general property requires checking the same 

 

 

3 In TLA+, as in mathematics, what a programmer calls a function is an array. The domain of the 

function is the set of numbers over which the function is defined. The range of the function is the set of 

values the function produces when a number from its domain is given as input. In programming terms, 

Range(T) returns the elements of an array in an unordered set.  
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thing for two different buffers. SAFE5 shows that the ID sent is unique, but this property 

likely will need to be adjusted upon translation to real code as the implementation for a 

unique identifier will be limited to finite numbers and risks repeating. This property 

might be relaxed to an assumption that the ID implementation has a low repeat 

probability.  

Trustnet_out 

The thread responsible for collating messages from the inner components and 

sending them out to the trusted network is called trustnet_out and can be seen in Figure 

22. This thread works from a FIFO queue that the inner components populate. 

Trustnet_out waits until a message n is placed in its queue, then checks if a message with 

the same ID, message m, has already been received. Checking for the existence of 

message m involves filtering a set4 for a message with the same ID. If the companion 

message has not been received, then n is placed in the set of received messages and the 

loop repeats. If it has, and one or both messages have been marked as invalid, then both 

messages are discarded and the loop repeats. If both messages have been marked valid by 

the inner components, the raw Modbus is placed in the set of valid messages that have 

successfully traversed the device, finished_trustnet. Finished_trustenet abstractly 

represents the raw Modbus that has been printed to the serial port. The properties that 

need to be proven for this thread are seen in Table 12. The formalized property can be 

seen on the left and the informal description can be seen on the right. 

 

 

4 A set in TLA+ is the equivalent of a set in mathematics; it is unordered and potentially infinite. 

Using a set in the specification abstracts away the specific data structure chosen for the C code. The only 

stipulation is the method of the chosen data structure for finding an element must behave equivalently to 

filtering a set. 
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Table 12: The desired properties of the Trustnet_out thread 

Name Formalized Property in TLA+ Informal Property 

SAFE1 ∧ ∀𝑥 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑠𝑒𝑟𝑖𝑎𝑙𝑝𝑜𝑟𝑡) ∶ 
                     ∃𝑦 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑚𝑒𝑡𝑎𝑠𝑒𝑟𝑖𝑎𝑙𝑝𝑜𝑟𝑡) ∶   𝑦. 𝑡𝑒𝑥𝑡 = 𝑥 
∧ ∀𝑦 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑚𝑒𝑡𝑎𝑠𝑒𝑟𝑖𝑎𝑙𝑝𝑜𝑟𝑡) ∶ 
         ∃𝑥 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑠𝑒𝑟𝑖𝑎𝑙𝑝𝑜𝑟𝑡) ∶ 𝑥 = 𝑦. 𝑡𝑒𝑥𝑡 

items on the serial 

port and the 

metaserialport are 

the same (weakly, 

this checks for the 

existance of a 

message but its not 

1-1 mapping) 

SAFE2 ∀𝑥 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑚𝑒𝑡𝑎𝑠𝑒𝑟𝑖𝑎𝑙𝑝𝑜𝑟𝑡): 
      ∧ (∃𝑦 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠𝐹𝑟𝑜𝑚𝐼𝑛𝑛𝑒𝑟𝐶𝑒𝑙𝑙𝑠) ∶ 
                 𝑥. 𝑖𝑑 = 𝑦. 𝑖𝑑 ∧ 𝑦. 𝑖𝑠𝑣𝑎𝑙𝑖𝑑 ∧ 𝑦. 𝑠𝑜𝑢𝑟𝑐𝑒 = "𝑚𝑜𝑑𝑐ℎ𝑘" 

      ∧ (∃𝑦 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠𝐹𝑟𝑜𝑚𝐼𝑛𝑛𝑒𝑟𝐶𝑒𝑙𝑙𝑠) ∶ 
                 𝑥. 𝑖𝑑 = 𝑦. 𝑖𝑑 ∧ 𝑦. 𝑖𝑠𝑉𝑎𝑙𝑖𝑑 ∧ 𝑦. 𝑠𝑜𝑢𝑟𝑐𝑒 = "𝑣𝑒𝑟𝑖𝑓𝑦" 

Only prints if both 

inner components 

say its valid 

SAFE3 𝐿𝑒𝑛(𝑡𝑥𝐵𝑢𝑓) < 𝑀𝐴𝑋𝑀𝑂𝐷𝐵𝑈𝑆𝑆𝐼𝑍𝐸 sending buffer never 

overflows 

SAFE4 ∀𝑥 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑠𝑒𝑟𝑖𝑎𝑙𝑝𝑜𝑟𝑡) ∶ 
   ∃𝑦 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠𝐹𝑟𝑜𝑚𝐼𝑛𝑛𝑒𝑟𝐶𝑒𝑙𝑙𝑠) ∶ 𝑥 = 𝑦. 𝑡𝑒𝑥𝑡 

only valid Modbus 

gets printed (this 

module assumes 

valid Modbus is 

received from both 

inner components 

LIVE1 ∀𝑥 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠𝐹𝑟𝑜𝑚𝐼𝑛𝑛𝑒𝑟𝐶𝑒𝑙𝑙𝑠) ∶ 
     𝑥 ∈ 𝑣𝑎𝑙𝑖𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠 ∧ 𝑥. 𝑖𝑑 = 𝑚𝑠𝑔. 𝑖𝑑 

          ⇝ 𝑥 ∉ 𝑣𝑎𝑙𝑖𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠 

Each message that 

gets its companion 

message is sent or 

discarded 

LIVE2 ∀𝑥 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠𝐹𝑟𝑜𝑚𝐼𝑛𝑛𝑒𝑟𝐶𝑒𝑙𝑙𝑠) ∶ 𝑚𝑠𝑔 = 𝑥 ∧ 
  𝑥. 𝑖𝑠𝑉𝑎𝑙𝑖𝑑 ∧ (∃𝑦 ∈ 𝑣𝑎𝑙𝑖𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠 ∶ 𝑦. 𝑖𝑑 = 𝑥. 𝑖𝑑 ∧ 
      𝑦. 𝑖𝑠𝑉𝑎𝑙𝑖𝑑 ∧ 𝑦. 𝑠𝑜𝑢𝑟𝑐𝑒 ≠ 𝑥. 𝑠𝑜𝑢𝑟𝑐𝑒) 
      ⇝ ∃𝑧 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑚𝑒𝑡𝑎𝑠𝑒𝑟𝑖𝑎𝑙𝑝𝑜𝑟𝑡) ∶ 𝑧. 𝑖𝑑 = 𝑥. 𝑖𝑑 
 

valid messages are 

eventually sent 

LIVE3 ∀𝑥 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠𝐹𝑟𝑜𝑚𝐼𝑛𝑛𝑒𝑟𝐶𝑒𝑙𝑙𝑠) ∶ 𝑇𝑅𝑈𝐸 ⇒ 
    ◇(∃𝑦 ∈ 𝑣𝑎𝑙𝑖𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠 ∶ 𝑦. 𝑖𝑑 = 𝑥. 𝑖𝑑) 

all messages are 

eventually processed 
 

An interesting note with LIVE1 is that it does not ensure that all messages that are 

received are sent out through the serial port. The Trustnet_in and Untrustnet_in modules 

can guarantee that messages they receive (provided the messages are valid) pass through 

to the inner components, but this component and Untrustnet_out rely on messages from 

two sources: Modchk and Crypto. These two sources are not defined in this TLA+ 

module, so no properties can be formulated based on their behavior. As such, the 
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strongest liveness property that can be checked is that if message 𝑥with id 𝑖 is received 

from one inner component, message 𝑦 with id 𝑖 is received from the other inner 

component, then those messages are acted upon (sent or discarded) then removed from 

the set of waiting messages. LIVE1 is restated formally in Equation 7. The variable 

validMessages is a misnomer as it does not contain just valid messages, but all messages 

that have been received from the inner components and are awaiting their corresponding 

message from the opposite component. It is a waiting room for unconsumed messages. A 

message could be stuck in this waiting room forever and the Trustnet_out specification 

would still be valid. 

∀x ∈ Range(MessagesFromInnerCells) ∶ 

x ∈ validMessages ∧ x. id = msg. id 

⇝ x ∉ validMessages 

(7) 

 

While TLA+ is very expressive, there are many expressions that are valid in 

TLA+ but which the TLC model checker refuses to evaluate. TLA+ uses mathematical 

notation, but in this dissertation the expressions are often describing actions rather than 

strictly equations. Actions relate to a state and a successor state, so certain variables at 

given states might not have been assigned at the time TLC tries to evaluate them. While 

working through the formalization of properties for this research, certain properties like 

LIVE1 were repeatedly reworked to account for these limitations. An earlier form of 

LIVE1 is given in Equation (8). This version is accepted by the semantics of TLA+, 

however in the initial state and any next-state computed from the initial state, 

validMessages has no value. The expression 𝑥 ∈ 𝑣𝑎𝑙𝑖𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠 make sense 

mathematically, but TLC is unable to check it. To work around this, the possible values 

of x were defined in the constant MessagesFromInnerCells seen in Equation (7) so the 
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value assigned to x does not depend on validMessages having been assigned a value. 

Describing all possible values of x limits what can be checked, so care is taken to define 

values that allow the entire model to be checked for all properties. More discussion of the 

inner workings of TLC and this concern specifically can be found in chapter 14.2.6 of 

[64].  

∀x ∈ validMessages ∶ 
x. id = msg. id ⇝ x ∉ validMessages 

(8) 

 

 

Figure 22: Flowchart for Trustnet_out thread 
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4.3.2 Modeling the Untrusted Network Component 

The untrusted networking component is similar to the trusted network component. 

As with the opposite network component design, the untrusted network component is 

separated into two processes: receiving messages from the untrusted network and sending 

messages on the untrusted network. The receiving process, called untrustnet_in, is 

designed to poll the serial port for input, so its logic is placed within a while loop that 

executes while there are messages to be processed. The algorithm for this thread is a 

basic loop, visualized in Figure 23, that will read a byte at a time from an incoming 

message and place it into a buffer. After processing is completed, the buffers are cleared 

and the thread starts again from the top. The more complicated parts come with the 

desired property that only well-formed Modbus messages reach the inner components. To 

achieve this, the logic checks each byte of input for “!”, indicating the start of an 

encapsulated message. If a new encapsulated message is started before the previous one 

is finished, the previous message is discarded. Whenever a “!” is received, the contents of 

the buffer are flushed and the “!” is placed at the start of the empty buffer. Similarly, if 

the buffer is full despite not receiving a complete message, its contents are discarded, and 

the logic waits for a new “!”. Secondly, the logic checks for the start of a well-formed 

Modbus message 64 characters later, starting after the HMAC. Next, the logic looks for 

the termination of a Modbus message. Encapsulated messages terminate with Modbus, 

and Modbus ASCII messages end with the two-byte sequence “\r\n”. When this sequence 

is detected, this thread generates a structure containing the message, a generated message 

ID, and “trustnet_in” and places the object into the signing queue of Crypto. A similar 

structure is created with just the message and ID and placed in the queue of Modchk. 
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Figure 23: Flowchart for untrustnet_in thread 



106 

 

The desired behavior of Unrustnet_in is that it accepts only and all well-formed 

encapsulated messages, forwards only well-formed Modbus, forwards the Modbus to 

both inner components in the same atomic step, forwards a single message exactly once, 

and doesn’t overflow any buffers. The properties that need to be proven for this thread 

are seen in Table 13. The formalized property can be seen in the middle and the informal 

description can be seen on the right. Variables and operators in the properties seen in 

Table 13 are largely the same as those seen in Table 11, with the addition of 

IsWellformedEncap that checks for a starting “!”, a terminating “\r\n”, and that the 

message being checked is an appropriate length for encapsulated Modbus.  

Table 13: Properties of the Untrustnet_in thread 

Name Formalized Property in TLA+ Informal Property 

SAFE1 𝐿𝑒𝑛(𝑟𝑥𝐵𝑢𝑓) ≤ 𝑀𝐴𝑋𝐸𝑁𝐶𝐴𝑃𝑆𝐼𝑍𝐸 receive buffer never 

overflows 

SAFE2 ∧ ∀𝑥 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑣𝑒𝑟𝑖𝑓𝑦𝐵𝑢𝑓𝑓𝑒𝑟) ∶ 𝐿𝑒𝑛(𝑥. 𝑡𝑒𝑥𝑡) < 𝑀𝐴𝑋𝐸𝑁𝐶𝐴𝑃𝑆𝐼𝑍𝐸 
∧ ∀𝑥 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑚𝑜𝑑𝑐ℎ𝑘𝐵𝑢𝑓𝑓𝑒𝑟) ∶ 𝐿𝑒𝑛(𝑥. 𝑡𝑒𝑥𝑡) < 𝑀𝐴𝑋𝐸𝑁𝐶𝐴𝑃𝑆𝐼𝑍𝐸 

sending buffer never 

overflows 

SAFE3 𝐿𝑒𝑛(𝑙𝑎𝑠𝑡2) < 3 last2 buffer always 

less than 3 

SAFE4 ∧ ∀𝑥 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑣𝑒𝑟𝑖𝑓𝑦𝐵𝑢𝑓𝑓𝑒𝑟) ∶ 𝐼𝑠𝑊𝑒𝑙𝑙𝑓𝑜𝑟𝑚𝑒𝑑𝑀𝑜𝑑𝑏𝑢𝑠(𝑥. 𝑡𝑒𝑥𝑡) 

∧ ∀𝑥 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑚𝑜𝑑𝑐ℎ𝑘𝐵𝑢𝑓𝑓𝑒𝑟) ∶ 𝐼𝑠𝑊𝑒𝑙𝑙𝑓𝑜𝑟𝑚𝑒𝑑𝑀𝑜𝑑𝑏𝑢𝑠(𝑥. 𝑡𝑒𝑥𝑡) 
only well-formed 

modbus gets 

forwarded 

SAFE5 ∧ ∀𝑥 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑣𝑒𝑟𝑖𝑓𝑦𝐵𝑢𝑓𝑓𝑒𝑟) ∶ 
    𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦({𝑦 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑣𝑒𝑟𝑖𝑓𝑦𝐵𝑢𝑓𝑓𝑒𝑟) ∶ 𝑥. 𝑖𝑑 = 𝑦. 𝑖𝑑}) = 1 

∧ ∀𝑥 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑚𝑜𝑑𝑐ℎ𝑘𝐵𝑢𝑓𝑓𝑒𝑟) ∶ 
    𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦({𝑦 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑚𝑜𝑑𝑐ℎ𝑘𝐵𝑢𝑓𝑓𝑒𝑟) ∶ 𝑥. 𝑖𝑑 = 𝑦. 𝑖𝑑}) = 1 

each message that is 

forwarded has a 

unique message id 

SAFE6 ∧ ∀𝑥 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑣𝑒𝑟𝑖𝑓𝑦𝐵𝑢𝑓𝑓𝑒𝑟) ∃𝑦 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑚𝑜𝑑𝑐ℎ𝑘𝐵𝑢𝑓𝑓𝑒𝑟) ∶ 
             𝑥. 𝑖𝑑 = 𝑦. 𝑖𝑑 

∧ ∀𝑥 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑚𝑜𝑑𝑐ℎ𝑘𝐵𝑢𝑓𝑓𝑒𝑟) ∃𝑦 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑣𝑒𝑟𝑖𝑓𝑦𝐵𝑢𝑓𝑓𝑒𝑟) ∶ 
             𝑥. 𝑖𝑑 = 𝑦. 𝑖𝑑 

well-formed messages 

get sent to both inner 

components 

SAFE7 ¬(𝑟𝑥𝐵𝑢𝑓 =  〈〉) ⇒ 𝐻𝑒𝑎𝑑(𝑟𝑥𝐵𝑢𝑓) = 𝑆𝑇𝐴𝑅𝐶𝐻𝐴𝑅 rxBuf is either empty 

or starts with "!" 

LIVE1 𝐼𝑠𝑊𝑒𝑙𝑙𝑓𝑜𝑟𝑚𝑒𝑑𝐸𝑛𝑐𝑎𝑝(𝑚𝑠𝑔) 

       ⇝ ∃𝑥 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑣𝑒𝑟𝑖𝑓𝑦𝐵𝑢𝑓𝑓𝑒𝑟) ∶ 𝑥. 𝑡𝑒𝑥𝑡 = 𝑚𝑠𝑔 
if the message is well-

formed then it gets 

sent 

LIVE2 ◇(𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠 = 〈〉) all messages are 

processed 

LIVE3 𝑙𝑎𝑠𝑡2 = 〈"\𝑟", "\𝑛"〉 ⇝ 𝑙𝑎𝑠𝑡2 = 〈0,0〉 last2 buffer gets reset 

after each well-formed 

message 
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Liveness property LIVE2 has a structure that might be unfamiliar to those who do 

not work with temporal logic of actions. Liveness properties check that a given condition 

will eventually be met, and this one is checking that all messages that are received by 

Untrustnet_in are eventually processed in some way. LIVE2 starts with the temporal 

operator ◇, indicating that the statement it precedes, □(𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔𝑀𝑒𝑠𝑠𝑎𝑔𝑒 =  ⟨⟩), 

will eventually be true. Following the temporal operator is the invariant operator 

□ indicating the statement it precedes, (𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔𝑀𝑒𝑠𝑠𝑎𝑔𝑒 =  ⟨⟩), is true for all 

states. Using these two operators in sequence indicates a property that eventually 

becomes true and stays true through program termination5. Informally, this 

property can be interpreted as “eventually, the sequence of incoming messages 

to be processed is emptied and stays empty”. 

Untrustnet_out 

The thread responsible for collating messages from the inner components and 

sending them out to the untrusted network is called untrustnet_out and can be seen in 

Figure 24. This thread works from a FIFO queue that the inner components populate. 

Untrustnet_out waits until a message n is placed in its queue, then checks if a message 

with the same ID, message m, has already been received. Checking for the existence of 

message m involves filtering a set for a message with the same ID. If message m has not 

been received, then n is placed in the set of received messages and the loop repeats. If 

both messages m and n have been received and the message from the protocol checking 

 

 

5 The property can oscillate between true and untrue as the state-trace unfolds, but eventually it 

becomes true through the end of the trace. 
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component has been marked as invalid, both messages are discarded. If both messages m 

and n have been received and the message from the protocol checking component has 

been marked as valid, the HMAC is pulled from the opposite message. The full 

encapsulated message, a “!” concatenated with the HMAC and the raw Modbus, is placed 

in the set of valid messages that have successfully traversed the device, 

finished_untrustnet. Finished_untrustnet abstractly represents the encapsulated messages 

that has been printed to the serial port. 

 

Figure 24: Flowchart for Untrustnet_out thread 



109 

 

The properties that need to be proven for this thread are seen in Table 14. The 

formalized property can be seen on the left and the informal description can be seen on 

the right.  

Table 14: The desired properties of the Unrustnet_out thread 

Name Formalized Property in TLA+ Informal Property 

SAFE1 ∧ ∀𝑥 ∈ 𝑟𝑎𝑛𝑔𝑒(𝑠𝑒𝑟𝑖𝑎𝑙𝑝𝑜𝑟𝑡) ∶ ∃𝑦 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑚𝑒𝑡𝑎𝑠𝑒𝑟𝑖𝑎𝑙𝑝𝑜𝑟𝑡)
∶  〈!〉  ○ HMAC ○ y. text = x 

∧ ∀𝑥 ∈ 𝑟𝑎𝑛𝑔𝑒(𝑚𝑒𝑡𝑎𝑠𝑒𝑟𝑖𝑎𝑙𝑝𝑜𝑟𝑡) ∶ ∃𝑦 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑠𝑒𝑟𝑖𝑎𝑙𝑝𝑜𝑟𝑡)
∶  〈"!"〉  ○ HMAC ○ y. text = x 

 
 

stuff on the serial port 

and the metaserialport 

are the same (weakly, 

this checks for the 

existance of a 

message but its not 1-

1 mapping) 

SAFE2 ∀𝑥 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑚𝑒𝑡𝑎𝑠𝑒𝑟𝑖𝑎𝑙𝑝𝑜𝑟𝑡) ∶  
∧ (∃𝑦 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠𝐹𝑟𝑜𝑚𝐼𝑛𝑛𝑒𝑟𝐶𝑒𝑙𝑙𝑠) ∶ 𝑥. 𝑖𝑑

= 𝑦. 𝑖𝑑 ∧ 𝑦. 𝑖𝑠𝑉𝑎𝑙𝑖𝑑 ∧ 𝑦. 𝑠𝑜𝑢𝑟𝑐𝑒
= "𝑚𝑜𝑑𝑐ℎ𝑘" 

∧ (∃𝑦 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠𝐹𝑟𝑜𝑚𝐼𝑛𝑛𝑒𝑟𝐶𝑒𝑙𝑙𝑠) ∶ 𝑥. 𝑖𝑑
= 𝑦. 𝑖𝑑 ∧ 𝑦. 𝑖𝑠𝑣𝑎𝑙𝑖𝑑 ∧ 𝑦. 𝑠𝑜𝑢𝑟𝑐𝑒 = "𝑠𝑖𝑔𝑛" 

 

Only prints if both 

inner components say 

its valid 

SAFE3 𝐿𝑒𝑛(𝑡𝑥𝐵𝑢𝑓) < 𝑀𝐴𝑋𝐸𝑁𝐶𝐴𝑃𝑆𝐼𝑍𝐸 sending buffer never 

overflows 

SAFE4 ∀𝑥 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑠𝑒𝑟𝑖𝑎𝑙𝑝𝑜𝑟𝑡) ∶ 
    ∃𝑦 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠𝐹𝑟𝑜𝑚𝐼𝑛𝑛𝑒𝑟𝐶𝑒𝑙𝑙𝑠) ∶ 
        𝑥 = 〈"! "〉  ○  𝐻𝑀𝐴𝐶  ○  𝑦. 𝑡𝑒𝑥𝑡 

only valid Modbus 

gets printed (this 

module assumes valid 

Modbus is received 

from both inner 

components 

SAFE5 ¬(𝑡𝑥𝐵𝑢𝑓 = ⟨⟩) ⇒ 𝐼𝑠𝑊𝑒𝑙𝑙𝑓𝑜𝑟𝑚𝑒𝑑𝐸𝑛𝑐𝑎𝑝(𝑡𝑥𝐵𝑢𝑓) only well-formed 

encap packets get 

printed 

LIVE1 ∀𝑥 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠𝐹𝑟𝑜𝑚𝐼𝑛𝑛𝑒𝑟𝐶𝑒𝑙𝑙𝑠) ∶ 
    𝑥 ∈ 𝑣𝑎𝑙𝑖𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠 ∧ 𝑥. 𝑖𝑑 = 𝑚𝑠𝑔. 𝑖𝑑  
       ⇝ 𝑥 ∉ 𝑣𝑎𝑙𝑖𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠 

Each message that 

gets its companion 

message is sent or 

discarded 

LIVE2 ∀∈ 𝑅𝑎𝑛𝑔𝑒(𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠𝐹𝑟𝑜𝑚𝐼𝑛𝑛𝑒𝑟𝐶𝑒𝑙𝑙𝑠) ∶ 
   𝑚𝑠𝑔 = 𝑥 ∧ 𝑥. 𝑖𝑠𝑉𝑎𝑙𝑖𝑑 ∧ 

      (
∃𝑦 ∈ 𝑣𝑎𝑙𝑖𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠 ∶

𝑦. 𝑖𝑑 = 𝑥. 𝑖𝑑 ∧ 𝑦. 𝑖𝑠𝑉𝑎𝑙𝑖𝑑 ∧ 𝑦. 𝑠𝑜𝑢𝑐𝑒 ≠ 𝑥. 𝑠𝑜𝑢𝑟𝑐𝑒
) 

    ⇝ ∃𝑧 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑚𝑒𝑡𝑎𝑠𝑒𝑟𝑖𝑎𝑙𝑝𝑜𝑟𝑡) ∶ 𝑧. 𝑖𝑑 = 𝑥. 𝑖𝑑 

valid messages are 

eventually sent 

LIVE3 ∀𝑥 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠𝐹𝑟𝑜𝑚𝐼𝑛𝑛𝑒𝑟𝐶𝑒𝑙𝑙𝑠) ∶ 𝑇𝑅𝑈𝐸 
    ⇒◇(∃𝑦 ∈ 𝑣𝑎𝑙𝑖𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠 ∶ 𝑦. 𝑖𝑑 = 𝑥. 𝑖𝑑) 

all messages are 

eventually processed 
 

This component has an additional responsibility that Trustnet_out does not. 

Trustnet_out prints the raw Modbus message that is received from the inner component 
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to the serial line and is only responsible for faithfully passing on the raw message as 

received without checks or modifications. In contrast, Untrustnet_out is responsible for 

encapsulating the raw Modbus received from the protocol checker with the HMAC 

received from Crypto.  The extra invariant SAFE5 seen in Equation (9) is required to 

ensure this extra responsibility is correct. The symbol txBuf is the buffer that contains 

data to be printed to the serial port. The left-hand side of the equation is a negation of 

txBuf being empty. The right-hand side uses the custom operator IsWellformedEncap to 

determine if the data held in txBuf meets the specification of an encapsulated message. 

Informally, SAFE5 can be stated as “txBuf is either empty or contains a well-formed 

encapsulated message”.  

¬(txBuf = ⟨⟩) ⇒ IsWellformedEncap(txBuf)  (9) 

4.3.3 Modeling the Protocol Checking Component 

Protocol checking in this system is intended to be somewhat flexible. Modbus 

was chosen for this dissertation for its familiarity and ease of use but is not the only 

protocol that sees use on industrial control systems. The desired property that only well-

formed Modbus reaches the inner components of the system prevents the protocol 

checking from being completely modular as the networking components are coupled to 

the protocol, but the deep inspection is contained to the singular protocol checking 

component called Modchk. There are two pieces that act in composition that make up 

Modchk: 1) the portion that interacts with the other components to receive and pass along 

messages with the decision, and 2) the deep inspection that ensures every field of the raw 

Modbus conforms to the specification. There are likely many different customizations 

and extensions to the Modbus protocol that have been made to suit the mission demands 
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at any given Modbus installation, so for this research the official stock Modbus 

specification given in [123] was chosen. 

The first piece is a relatively simple model and can be visualized in the flowchart 

in Figure 25. This is a passive component, so it must be called upon by one of the 

network components to perform work. While the model and flowchart in Figure 25 

express a message arriving in a queue, the seL4 component will receive a Remote 

Procedure Call (RPC). When a message arrives, it will contain the raw Modbus to be 

checked, a message ID, and a source identifier to indicate which networking component 

the message arrived from.  The message is dequeued and passed to the predefined 

IsModbus operator. The output from IsModbus is attached to the message and forwarded 

to the opposite networking component. 

The second piece is a more complex and formalizes the Modbus specification 

described in [123]. The TLA+ specification for Modbus does not produce a model that is 

checked, but rather it can be thought of as a formal definition for a raw Modbus ACSII 

message. The format for a Modbus ASCII message can be seen in Table 15. A separate 

operator has been defined for checking each field. The start and end fields are simply 

checked: the IsStart operator is true if the head of the message is “:” and the IsEnd 

operator is true if the last two bytes are “\r\n”. The IsAddress operator converts the 

address from ACSII to decimal and checks that it is between 0 and 247. The 

IsFunctionCode operator converts the two bytes of ACSII function code data into 

decimal and checks that the result matches one of the 19 codes designated as public in 

[123], or a valid function code +127 to indicate an exception response. Certain function 

codes have sub-codes that add an additional two bytes to the function code field. These 
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sub-codes are checked as well. Table 16 shows the function codes and sub-codes that are 

permissible in the IsFunctionCode operator. The IsData operator simply ensures that the 

data field is equal or fewer than 504 bytes as this data can vary in length and contents 

from transaction to transaction even with the same function code. Finally, IsLRC checks 

that the Longitudinal Redundancy Check (LRC) is accurate. This is accomplished by 

adding up the bytes that form the address, function code, and data fields, discarding all 

but the least significant byte of the result, then negating it. If the calculated LRC matches 

the LRC in the raw Modbus message, then IsLRC is true. Additionally, the entirety of the 

raw Modbus message is checked that each byte is a valid hexadecimal number. Each byte 

represents one hexadecimal digit in ACSII, so the byte 00100110 (38 in decimal and the 

“&” character in ACSII) would not be a valid hex digit in ACII. Figure 26 shows the 

flowchart for the IsModbus operator. The order of checks is not defined in TLA+ so each 

sub-operator runs in one atomic step before the results of each is logically ANDed to 

produce the result.  

Table 15: A Modbus ASCII message 

Start Address 
Function 

Code 
Sub code Data LRC End 

“:” 2 bytes 2 bytes 
2 bytes 

(optional) 

Up to 

504 bytes 
2 bytes “\r\n” 

 

The properties that need to be proven for this thread are seen in Table 17. The 

formalized property can be seen on the left and the informal description can be seen on 

the right.  
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Table 16: Modbus function codes. Adapted from [123] 

 Function Codes  

 Code Sub-code 
H

ex 

Data Access 

Bit 

Access 

Physical 

Discrete 

Inputs 

Read Discrete Inputs 02  
0

2 

Internal Bits 

or Physical 

coils 

Read Coils 01  
0

1 

Write Single Coil 05  
0

5 

Write Multiple Coils 15  
0

F 

16 Bit 

Access 

Physical 

Input 

Registers 

Read Input Register 04  
0

4 

Read Holding Registers 03  
0

3 

Internal 

Registers or 

Physical 

Output 

Registers 

Write Single Register 06  
0

6 

Write Multiple Registers 16  
1

0 

Read/Write Multiple Registers 23  
1

7 

Mask Write Register 22  
1

6 

Read FIFO queue 24  
1

8 

File Record Access 

Read File record 20  
1

4 

Write File record 21  
1

5 

Diagnostics 

Read Exception status 07  
0

7 

Diagnostic 08 00-18,20 
0

8 

Get Com event counter 11  
0

B 

Get Com Event Log 12  
0

C 

Report Server ID 17  
1

1 

Read device Identification 43 14 
2

B 

Other 

Encapsulated Interface Transport 43 13,14 
2

B 

CANopen General Reference 43 13 
2

B 
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Figure 25: Flowchart for the Modchk component 

 

 

 

Figure 26: Flowchart for the IsModbus operator 
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Table 17: The desired properties of the Modchk thread 

Name Formalized Property in TLA+ Informal Property 

SAFE1 ∀𝑥 ∈ 𝑀𝑜𝑑𝑏𝑢𝑠𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠 ∶ 𝑥. 𝑠𝑜𝑢𝑟𝑐𝑒 = trustnet_in 
   ⇒ (∃𝑦 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑡𝑟𝑢𝑠𝑡𝐵𝑢𝑓) ∶ 𝑦. 𝑖𝑑 = 𝑥. 𝑖𝑑) = 𝐹𝐴𝐿𝑆𝐸 
 

Messages from 

untrustnet are 

forwarded to 

trustnet. This is two 

parts, first an 

invariant that says 

no messages from 

untrustnet will ever 

make it into the set 

of messages sent to 

untrustnet 

LIVE1 ∀𝑥 ∈ 𝑀𝑜𝑑𝑏𝑢𝑠𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠 ∶ 𝑥. 𝑠𝑜𝑢𝑟𝑐𝑒 = trustnet_in 
    ⇝ 𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦({𝑦 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑢𝑛𝑡𝑟𝑢𝑠𝑡𝐵𝑢𝑓): 𝑦. 𝑖𝑑 =

𝑥. 𝑖𝑑}) = 1 

The second part is 

that if a message is 

from untrustnet, it 

eventually will be 

sent to trustnet 

exactly once 

SAFE2 ∀𝑥 ∈ 𝑀𝑜𝑑𝑏𝑢𝑠𝑀𝑒𝑠𝑠𝑎𝑔𝑒 ∶ 𝑥. 𝑠𝑜𝑢𝑟𝑐𝑒 = untrustnet_in 
    ⇒ (∃𝑦 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑢𝑛𝑡𝑟𝑢𝑠𝑡𝐵𝑢𝑓) ∶ 𝑦. 𝑖𝑑 = 𝑥. 𝑖𝑑) =

𝐹𝐴𝐿𝑆𝐸 

Same deal as above 

but in reverse 

LIVE2 ∀𝑥 ∈ 𝑀𝑜𝑑𝑏𝑢𝑠𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠 ∶ 𝑥. 𝑠𝑜𝑢𝑟𝑐𝑒 = untrustnet_in ⇝ 
    𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦({𝑦 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑡𝑟𝑢𝑠𝑡𝐵𝑢𝑓): 𝑦. 𝑖𝑑 = 𝑥. 𝑖𝑑}) = 1 

Same deal as above 

but in reverse 

SAFE3 ∧ ∀𝑥 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑢𝑛𝑡𝑟𝑢𝑠𝑡𝐵𝑢𝑓) ∶ 𝑥. 𝑖𝑠𝑉𝑎𝑙𝑖𝑑 ⟺ 𝐼𝑠𝑀𝑜𝑑𝑏𝑢𝑠(𝑥. 𝑡𝑒𝑥𝑡) 
∧ ∀𝑥 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑡𝑟𝑢𝑠𝑡𝐵𝑢𝑓) ∶ 𝑥. 𝑖𝑠𝑉𝑎𝑙𝑖𝑑 ⇔ 𝐼𝑠𝑀𝑜𝑑𝑏𝑢𝑠(𝑥. 𝑡𝑒𝑥𝑡) 

Malformed Modbus 

is marked Invalid 

when it leaves 

Good Modbus is 

marked valid when it 

leaves 

LIVE3 ◇(𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠 = 〈〉) if a message is 

received it is 

eventually processed 
 

Invariant SAFE1 and temporal property LIVE1 work in tandem to check that a 

message received from one networking component is forwarded only to the opposite 

networking component exactly once. SAFE1, restated in Equation (10), states that for all 

messages in the set ModbusMessages (the set of messages that the model consumes for 

checking), if a message came from the trusted network, then it will never be found in the 

set of messages sent back to the untrusted network. This check is accomplished through 
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use of the message IDs. The second line of SAFE1 states that there does not exist a 

message in the set of messages sent to the trusted networking component with an ID that 

matches a message that came from the trusted networking component. LIVE1 checks the 

second part of the desired property; that a received message is eventually forwarded to 

the opposite networking component. LIVE1, seen in Equation (11), shows a similar 

structure to Equation (10). It starts by referencing the set of all received Modbus 

messages and uses message IDs. Cardinality gives the number of elements in a set. The 

expression {𝑦 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑢𝑛𝑡𝑟𝑢𝑠𝑡𝐵𝑢𝑓): 𝑦. 𝑖𝑑 = 𝑥. 𝑖𝑑} is the set of messages that have the 

same ID as 𝑥 ∈ 𝑀𝑜𝑑𝑏𝑢𝑠𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠. The second line of LIVE1 thus states that the set of 

messages that have been sent to the untrusted network that have a matching ID as a give 

message that was received from the trusted network should contain exactly 1 element.  

∀x ∈ ModbusMessages ∶ x. source = trustnet_in ⇒ 
(∃y ∈ Range(trustBuf) ∶ y. id = x. id) = FALSE 

 

(10) 

∀x ∈ ModbusMessages ∶ x. source = trustnet_in ⇝ 

   Cardinality({y ∈ Range(untrustBuf): y. id = x. id}) = 1 
 (11) 

 

Formalizing the specification for Modbus ASCII and its encapsulation format lead 

to some insight into the design decisions found throughout the Modbus documents. 

Working with Modbus ASCII programmatically is a pain at first because there are three 

different formats for the data in use at a time: a byte of data might be represented in 

decimal form, in ASCII, or in ASCII hexadecimal characters. Modbus ASCII is 

communicated in the ASCII hexadecimal form with a single hex digit represented as a 

single ASCII character per byte; for example the single-byte hex value 0x3F would be 

represented as the two byte sequence “3F”. A single byte can hold two hex digits so 

Modbus ASCII creates double the necessary bandwidth by encoding 4 bits of data (a 
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hexadecimal digit) into ASCII (a whole byte). In an ecosystem known for low power and 

minimal resources, doubling bandwidth consumption is not to be taken lightly. The 

earlier incarnation of Modbus, Modbus RTU, sends raw bytes as data with no special 

formatting. A single byte is used to communicate a single byte worth of data. When 

considering how to encapsulate a Modbus packet for transmission across the untrusted 

network, it became evident why Modbus ASCII encodes and transmits the data so 

inefficiently. When the switch was made to use a special character, “:”, to signify the start 

of a new Modbus ASCII message care had to be taken to ensure the selected special 

character could not organically appear within the Modbus ASCII message and cause the 

protocol to accidentally interpret a new message while in the middle of an existing 

message. For the encapsulated packet, “!” was chosen as a header character because the 

ASCII character “!” is not a valid Modbus ASCII hexadecimal character. The designers 

of Modbus ASCII decided to double the bandwidth and represent hex data as ASCII 

characters to make up for the decision to stop using a non-character-related transmission 

delay to signify a new message. This also comes into play when transmitting a 

cryptographic hash. A hash is just bytes of raw data that could be any value from 0 to 

255. A Modbus message might not have the “!” character value even in its RTU variant, 

but the raw bytes of a hash certainly could. Doubling the length of the hash so it can be 

represented as ACSII hexadecimal eliminates this issue.  

4.3.4 Modeling the Cryptographic Component 

Application of cryptography is handled differently than the other pieces of the 

specification. Modeling the cryptographic algorithms has been done before in [86]–[88], 

and is beyond the scope of this research. However, modeling the behaviors of the threads 



118 

 

that apply the cryptographic algorithms with the cryptography itself abstracted away can 

be done in a straight-forward fashion. The Crypto component has two threads: one for 

signing messages passing from a trusted network to an untrusted network, and one for 

verifying the signatures on messages passing through in the opposite direction. 

The signing thread, called sign, is responsible for generating a keyed hash-based 

authentication code (HMAC) signature for each Modbus message that comes from the 

trusted network component. Its flowchart can be seen in Figure 27. The simplicity comes 

from abstracting the HMAC algorithm. Even though the message, secret key, and a 

unique nonce are passed to an HMAC function, the extent of the HMAC operator as 

defined in the model is returning a static 64-byte string. 64 bytes is the length of the 

output for SHA-256 so the proper length is important for determining if an encapsulated 

message is properly formed. Otherwise, the HMAC implementation is assumed to 

generate a unique 64-bit result for each message-secret-nonce combination. 

The desired behavior for the sign thread is that every message is signed, no 

message is forwarded without an HMAC attached, the secret key never changes, and 

every message that is received is processed. The informal and formalized properties are 

shown in Table 18.  

Properties LIVE2 and LIVE3 are subgoals for the larger property that every 

message that is received is passed through the Sign thread, no more and no fewer. There 

is no reason for Sign to be dropping messages so, unlike the network components that 

filter malformed messages, Sign will have a 1-to-1 mapping of input to output. The 

variable testmessages is a static set of messages that are used as input when calculating 

the state space and output holds the messages that pop out the other side of Sign. LIVE2  
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Figure 27: Flowchart for the Sign thread 

Table 18: The desired properties of the Sign thread 

Name Formalized Property in TLA+ Informal Property 

SAFE1 ∀𝑥 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑜𝑢𝑡𝑝𝑢𝑡) ∶ ∃𝑦 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑡𝑒𝑠𝑡𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠)  ∶ 𝑦. 𝑡𝑒𝑥𝑡
= 𝑥. 𝑡𝑒𝑥𝑡 

message sent is exactly 

what was received 

SAFE2 ∀𝑥 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑜𝑢𝑡𝑝𝑢𝑡) ∶ 𝑥. ℎ𝑚𝑎𝑐
= 𝐻𝑀𝐴𝐶(𝑚𝑠𝑔. 𝑡𝑒𝑥𝑡, 𝑃𝐴𝑆𝑆𝑊𝑂𝑅𝐷) 

output has good hash 

SAFE3 ∧     𝐿𝑒𝑛(𝑚𝑠𝑔. 𝑡𝑒𝑥𝑡) ≤ 𝑀𝐴𝑋𝑀𝑂𝐷𝐵𝑈𝑆𝑆𝐼𝑍𝐸 
∧   ∀𝑥 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑜𝑢𝑡𝑝𝑢𝑡) ∶ 𝐿𝑒𝑛(𝑥. 𝑡𝑒𝑥𝑡) ≤ 𝑀𝐴𝑋𝑀𝑂𝐷𝐵𝑈𝑆𝑆𝐼𝑍𝐸 
∧   ∨   𝐿𝑒𝑛(𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑𝐻𝑀𝐴𝐶)

=  𝐿𝑒𝑛(𝐻𝑀𝐴𝐶("𝑎𝑛𝑦𝑡ℎ𝑖𝑛𝑔", "ℎ𝑒𝑟𝑒")) 
     ∨   𝐿𝑒𝑛(𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑𝐻𝑀𝐴𝐶) = 0 

buffers don't overflow 

SAFE4 𝑃𝐴𝑆𝑆𝑊𝑂𝑅𝐷 = "𝑙𝑜𝑙𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑" password never changes 

LIVE1 ◇𝐿𝑒𝑛(𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠) = 0) All messages are 

eventually sent 

LIVE2 ◇(𝐿𝑒𝑛(𝑜𝑢𝑡𝑝𝑢𝑡) = 𝐿𝑒𝑛(𝑡𝑒𝑠𝑡𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠)) if we get a message then 

something is eventually 

sent 

LIVE3 ∀𝑥 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑡𝑒𝑠𝑡𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠) ∶ 
       ◇(∃𝑦 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑜𝑢𝑡𝑝𝑢𝑡) ∶ 𝑦. 𝑡𝑒𝑥𝑡 = 𝑥. 𝑡𝑒𝑥𝑡 ∧ 𝑦. 𝑖𝑑 = 𝑥. 𝑖𝑑) 

if we get a message it is 

eventually sent (part 2) 
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and LIVE3 thus combine to show the 1-to-1 mapping, and further the direct relation of 

messages, between testmessages and output. LIVE1 states the number of elements in 

output will become equal and stay equal to the number of elements in testmessages. 

LIVE3 states for all messages in testmessages, there will eventually exist a message with 

the same text and ID in output. LIVE2 is inadequate by itself as it could be true with all 

messages in testmessages being garbage. LIVE3 is inadequate by itself as it could be true 

with more messages than necessary, whether the extra messages are duplicates or 

garbage.  

Verify 

The verify thread makes similar abstractions with the implementation of the 

HMAC. The flowchart in Figure 28 shows a simple comparison operation as the heart of 

the thread. Within the received message is an HMAC that was (presumably) generated by 

the preprocessor at the other end of the line. The verify thread calculates the HMAC for 

the message itself using the message text, the secret key, and the nonce, the compares the 

received HMAC and the calculated HMAC. If these two values are equal, then the 

message is verified authentic and integrity is preserved. If these two values are different, 

then something is causing the message to be invalid. This is a critical decision and 

motivates the design of isolating this functionality within its own component. 

The model as specified does not calculate an HMAC as the cryptographic 

algorithms are beyond the scope of this dissertation. With no calculated HMAC there is 

nothing to compare the received HMAC with, so the comparison is abstracted as well. 

This does not mean messages are marked valid or invalid randomly though, TLA+ and 
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the TLC model checker have some cleverness that allows this abstraction without 

oversimplifying the model. The comparison variable is defined in Equation 12.  

CompareHMAC ∈ BOOLEAN  (12) 

CompareHMAC is what is used in the critical decision of the verify thread. Its 

values can be anything in the BOOLEAN set {true, false}. TLA+ handles this assignment 

by branching, creating different behaviors for each possible value of CompareHMAC and 

checking every value independently. In the context of this specification, the verify thread 

branches on its critical decision and a new behavior to explore the states of the system 

that are reached for both a valid and invalid HMAC. Regardless of the result of the 

HMAC function that has been abstracted, the desired properties of the component and 

system at large must still hold. These properties are shown in Table 19 and are largely 

similar to the Sign thread.  

Table 19: Desired properties of the Verify thread 

Name Formalized Property in TLA+ Informal Property 

SAFE1 ∀𝑥 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑡𝑟𝑢𝑠𝑡𝑛𝑒𝑡𝑜𝑢𝑡) ∶ ∃𝑦 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑠𝑖𝑔𝑛𝑒𝑑𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠)  
∶ 𝑦. 𝑡𝑒𝑥𝑡 = 𝑥. 𝑡𝑒𝑥𝑡 

message sent is exactly 

what was received 

SAFE2 ∧     𝐼𝐹 𝑚𝑠𝑔 ≠  ⟨⟩ 
       𝑇𝐻𝐸𝑁 𝐿𝑒𝑛(𝑚𝑠𝑔. 𝑡𝑒𝑥𝑡) ≤ 𝑀𝐴𝑋𝑀𝑂𝐷𝐵𝑈𝑆𝑆𝐼𝑍𝐸 
      ELSE  TRUE 
∧   ∀𝑥 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑡𝑟𝑢𝑠𝑡𝑛𝑒𝑡𝑜𝑢𝑡) ∶ 𝐿𝑒𝑛(𝑥. 𝑡𝑒𝑥𝑡)

≤ 𝑀𝐴𝑋𝑀𝑂𝐷𝐵𝑈𝑆𝑆𝐼𝑍𝐸 
∧   ∨   𝐿𝑒𝑛(𝑟𝑒𝑡𝑟𝑒𝑖𝑣𝑒𝑑𝐻𝑀𝐴𝐶) =  64 
     ∨   𝐿𝑒𝑛(𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑𝐻𝑀𝐴𝐶) = 0 

buffers don't overflow 

SAFE3 𝑃𝐴𝑆𝑆𝑊𝑂𝑅𝐷 = "𝑙𝑜𝑙𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑" the password is never 

changed 

LIVE1 ◇𝐿𝑒𝑛(𝑠𝑖𝑔𝑛𝑒𝑑𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠) = 0) All messages are 

eventually sent 

LIVE2 ◇(𝐿𝑒𝑛(𝑡𝑟𝑢𝑠𝑡𝑛𝑒𝑡𝑜𝑢𝑡) = 𝐿𝑒𝑛(𝑠𝑖𝑔𝑛𝑒𝑑𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠)) if we get a message then 

something is eventually 

sent 

LIVE3 ∀𝑥 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑠𝑖𝑔𝑛𝑒𝑑𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠) ∶ 
     ◇(∃𝑦 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑡𝑟𝑢𝑠𝑡𝑛𝑒𝑡𝑜𝑢𝑡) ∶ 𝑦. 𝑡𝑒𝑥𝑡 = 𝑥. 𝑡𝑒𝑥𝑡 ∧ 𝑦. 𝑖𝑑 =
𝑥. 𝑖𝑑) 

if we get a message it is 

eventually sent (part 2) 
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One unfortunate part of leveraging TLA+’s branching and generating a new state 

for each of the two possible outcomes of the HMAC comparison is that there is no way or 

reason to ensure the HMAC is properly calculated and compared. The result of the 

“comparison”, whether TRUE or FALSE, is picked at the time the comparison is made. If 

the properties were to try to make the comparison again, say to verify that the messages 

that are forwarded on to the next component are marked correctly, another random 

Boolean value will be chosen instead of the same value that was chosen for the initial 

comparison. 

 

Figure 28: Flowchart for the Verify thread 



123 

 

4.3.5 Modeling the System 

Certain desirable properties of the system cannot be checked with the piecewise 

specifications described in this chapter. Properties such as LIVE1 of Trustnet_out (Table 

12) that shows a message will pass through Trustnet_out (either printed or discarded) if it 

is received from both inner components is too weak to be useful by itself. A stronger and 

more useful property is that every message that is received by Trustnet_out is eventually 

printed or dropped. The specification of Trustnet_out is not capable of proving this 

stronger property because it has no way of controlling the inputs from the inner 

components, no way of ensuring it receives a decision from both of them. This is where 

combining each of the piecewise specifications into a single, larger specification is 

useful. A composite specification can show that Trustnet_in will eventually receive a 

message from both inner cells, therefore demonstrating the stronger property. There are a 

few such properties that require a system-wide view to be proven. This section will 

describe how the components are combined, considerations for state-space of a larger 

specification, and writing new desired properties. 

TLA+ allows defining processes that can run in parallel. In practice, this means 

that the atomic steps within each process have no defined execution order and TLA+ may 

choose any next-step to execute at any time. Each module defined for each component 

operates within its own process. The trusted networking component comprises a 

processes for reading the serial port and a process for writing to the serial port, the 

untrusted networking component comprises a process for reading the serial port and 

writing to the serial port, the cryptographic component comprises a process for signing 

messages and verifying signatures, and the protocol checking component comprises a 
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single process for validating messages. Each process communicates with each other 

process via first-in-first-out (FIFO) queues. Inter process communication from process a 

to process b is abstractly modeled with a placing a message in the FIFO queue of b. 

When b finishes its processing steps with its current input, it either dequeues a message 

from its assigned queue or blocks until its queue is non-empty. For this model a state-

trace is complete when all processes are blocked. 

Detailing each process within the security preprocessor specification would be 

redundant so the focus here will be on the desired macroscopic properties as laid out in 

Chapter 3. They are restated in Table 20.  

Table 20: Desired informal properties of the security preprocessor 

Property Description 

1 Isolation between components such that a compromised component cannot 

affect any others 

2 Only proper messages can be allowed to pass through – no malformed 

messages 

3 Only properly formed messages can originate from the device 

4 Every message is properly authenticated 

5 Every message is protected from tampering 

6 All legitimate messages do eventually pass through (except in the case of 

denial of service) 

 

Property 1 is granted automatically through the use of the seL4 microkernel. 

Properties 2-5 are invariants and property 6 is temporal. Properties 2 and 3 are similar but 

different in that property 2 deals with messages that the preprocessor receives from the 

network. Property 3 concerns with messages that might be created by the preprocessor if 

it were compromised in some way. Both 2 and 3 are handled by the specification of the 

networking components. Their design requirements state that they are only able to print 
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well-formed (not necessarily valid) messages. Properties 4 and 5 require a general 

specification; the cryptographic component can ensure it does its job for every message it 

encounters, but a general specification is required to show that every well-formed 

message from the network ever reaches the cryptographic component. Finally, Property 6 

gains the most from a general specification. Each component has been shown to 

eventually process all messages they encounter, but the nature of parallel critical 

decisions in the cryptographic and protocol checking components requires both be 

modeled in the same specification to ensure the networking components receive the 

decision from both of them. The general specification takes a set message end-to-end 

through the preprocessor model to check this property. The formalized properties and 

their subgoals can be seen in Table 21.  

Table 21: The desired formal properties of the security preprocessor 

Name Formalized Property in TLA+ Informal Property 

SAFE1 ∀𝑚 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑐ℎ𝑎𝑛[messagecheck] 
∶ 𝐿𝑒𝑛(𝑚. 𝑡𝑒𝑥𝑡)
≤ 𝑀𝐴𝑋𝑀𝑂𝐷𝐵𝑈𝑆𝑆𝐼𝑍𝐸 

modbus check module: 

 

SAFE2 ∀𝑚 ∈ 𝑣𝑎𝑙𝑖𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠 ∶ 𝑚. 𝑖𝑠𝑉𝑎𝑙𝑖𝑑 message parts waiting 

for their counterpart 

are valid 

SAFE3 ∀𝑚 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑐ℎ𝑎𝑛[finished_untrustnet])
∶ 𝐺𝑒𝑡𝐻𝑀𝐴𝐶(𝑚) = 𝐻𝑀𝐴𝐶(𝑚, 𝑚) 

HMACs are properly 

applied 

SAFE4 ∀𝑚 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑐ℎ𝑎𝑛[finished_untrustnet])
∶ 𝐼𝑠𝑀𝑜𝑑𝑏𝑢𝑠(𝐺𝑒𝑡𝑀𝑒𝑠𝑠𝑎𝑔𝑒(𝑚)) 

only properly signed 

messages are sent to 

untrustnet 

SAFE5 ∀𝑚 ∈ 𝑣𝑎𝑙𝑖𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠 ∶ 𝑚. 𝑖𝑠𝑉𝑎𝑙𝑖𝑑 message parts waiting 

for their counterpart 

are valid 

SAFE6 ∀𝑚 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑐ℎ𝑎𝑛[finsihed_trustnet])
∶ 𝐼𝑠𝑀𝑜𝑑𝑏𝑢𝑠(𝑚) 

only properly formed 

modbus is sent to 

trustnet 

LIVE1 <>(𝐿𝑒𝑛(𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠_) = 0) All messages 

eventually processed 

from trustnet 

LIVE2 <>(𝐿𝑒𝑛(𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠) = 0) All messages 
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eventually processed 

from untrustnet 

LIVE3 <> (𝐿𝑒𝑛(𝑐ℎ𝑎𝑛[finsihed_untrustnet]) > 0) Messages pass through 

device going one way 

LIVE4 <>𝐿𝑒𝑛(𝑐ℎ𝑎𝑛[finsihed_trustnet]) > 0 Messages pass through 

the device going the 

other way 
     

4.3.6 Additional Operators and Functions in TLA+ 

Modeling the desired security properties of the security preprocessor allowed the 

cryptographic algorithms to be reduced to an abstraction, but the protocol checking and 

networking components required a deeper level of implementation. This section discusses 

some of the helper operators and functions that were developed in TLA+ to assist in the 

model checking. The definitions presented here are novel contributions, though they are 

not directly relevant to the research in the previous sections of this chapter. 

American Standard Code for Information Interchange (ACSII)  

American Standard Code for Information Interchange (ACSII), is an encoding 

standard for representing characters from the English language and electronic 

transmission codes as numbers to facilitate digital communication. The portion of the 

ACSII standard used here is limited to 7-bits of data capable of representing 128 different 

characters seen in Appendix x. This research opted to concretely model the inputs and 

outputs of the serial ports. The selected protocol is Modbus ACSII, so a few helper 

functions were created to help with the specifics of ACSII. Firstly, a definition for a 

sequence of usable ACSII characters. The contiguous characters from 3210 to 12610 that 

might be seen in a Modbus ASCII network are seen in TLA+ Snippet 1. This definition 

requires an ordered sequence rather than a set because the position of each element 

matters for conversion back and forth from ACSII to decimal representation.  
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𝑢𝑠𝑎𝑏𝑙𝑒𝐴𝑆𝐶𝐼𝐼 ≜  ⟨" ","!","\"","#","$","%","&","'","(",")", 
                     "*","+",",","-",".","/","0","1","2","3", 

                     "4","5","6","7","8","9",":",";","<","=", 

                     ">","?","@","A","B","C","D","E","F","G", 

                     "H","I","J","K","L","M","N","O","P","Q", 

                     "R","S","T","U","V","W","X","Y","Z","[", 

                     "\\","]","^","_","_","a","b","c","d","e", 

                     "f","g","h","i","j","k","l","m","n","o", 

                     "p","q","r","s","t","u","v","w","x","y", 

                     "z","{","|","}","~"⟩ 

TLA+ Snippet 1: The definition of usableACSII 

There are a few special characters used in Modbus ACSII communications that 

are not part of the contiguous block of usable ACSII. Their order is not as relevant, so 

their definition is a set shown in TLA+ Snippet 2. Symbols included in the set of special 

characters are \t for tab, \r for carriage return, \n for line feed, and \f for form feed. 

specialChars ≜ {"\t", "\r", "\n", "\f"} 

TLA+ Snippet 2: The definition of specialChars 

With the sequence usableACSII and the set specialChars, the set of relevant 

ACSII can be easily defined as follows: 

𝑠𝑒𝑡𝑂𝑓𝐴𝑆𝐶𝐼𝐼 ≜ 𝑅𝑎𝑛𝑔𝑒(𝑢𝑠𝑎𝑏𝑙𝑒𝐴𝐶𝑆𝐼𝐼)  ∪ 𝑠𝑝𝑒𝑐𝑖𝑎𝑙𝐶ℎ𝑎𝑟𝑠 

TLA+ Snippet 3: The definition of setOfACSII 

Conversion from decimal representation to ASCII representation is necessary for 

easier understanding of messages while writing and debugging the specifications. The 

specification for the preprocessor is designed to operate on the decimal representation 

that would be received from the serial port. Converting the messages to ACSII makes 

them human-readable. Converting from an ASCII character to a decimal number is done 

using CharToNum in TLA+ Snippet 4. TLA+ keyword CHOOSE selects a single element 

from the set constructed from the right-hand side of the colon; in this case the set should 

only contain a single number that maps to the input character in usableACSII. 
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𝐶ℎ𝑎𝑟𝑇𝑜𝑁𝑢𝑚(𝑐ℎ𝑎𝑟) ≜ 𝐼𝐹 𝑐ℎ𝑎𝑟 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑢𝑠𝑎𝑏𝑙𝑒𝐴𝐶𝑆𝐼𝐼) 

𝑇𝐻𝐸𝑁 31 + 𝐶𝐻𝑂𝑂𝑆𝐸  𝑖 ∈ 1. .95 ∶ 𝑢𝑠𝑎𝑏𝑙𝑒𝐴𝐶𝑆𝐼𝐼[𝑖] = 𝑐ℎ𝑎𝑟 

𝐸𝐿𝑆𝐸 𝐶𝐴𝑆𝐸 𝑐ℎ𝑎𝑟 = "\𝑡"  → 9 

□ 𝑐ℎ𝑎𝑟 = "\𝑟"  → 13 

□ 𝑐ℎ𝑎𝑟 = "\𝑛"  → 10 

□ 𝑐ℎ𝑎𝑟 = "\𝑓"  → 12 

□ 𝑂𝑇𝐻𝐸𝑅  → 0 

TLA+ Snippet 4: The CharToNum operator 

Conversion from ACSII to decimal is similarly achieved with NumToChar see in 

TLA+ Snippet 5. 

𝑁𝑢𝑚𝑇𝑜𝐶ℎ𝑎𝑟(𝑛𝑢𝑚) ≜ 𝐼𝐹 𝑛𝑢𝑚 ∈ 32. .126 

𝑇𝐻𝐸𝑁 𝑢𝑠𝑎𝑏𝑙𝑒𝐴𝐶𝑆𝐼𝐼[𝑛𝑢𝑚 − 31] 

𝐸𝐿𝑆𝐸 𝐶𝐴𝑆𝐸 𝑛𝑢𝑚 = 9 → "\𝑡" 

□ 𝑛𝑢𝑚 = 13 → "\𝑟" 

□ 𝑛𝑢𝑚 = 10 → "\𝑛"  

□ 𝑛𝑢𝑚 = 12 → "\𝑓" 

□ 𝑂𝑇𝐻𝐸𝑅  → "" 

TLA+ Snippet 5: The NumtoChar operator 

NumtoChar and CharToNum were never really used by themselves. Rather, they 

were used to convert a sequence of numbers or characters (a message) from one format to 

the other. NumTupleToStrTuple and StrTupleToNumTuple in TLA+ Snippet 6 are 

functions designed to map ASCII to decimal for sequences. 

𝑁𝑢𝑚𝑇𝑢𝑝𝑙𝑒𝑇𝑜𝑆𝑡𝑟𝑇𝑢𝑝𝑙𝑒(𝑛𝑢𝑚𝑇𝑢𝑝𝑙𝑒) ≜ [𝑥 ∈ 𝐷𝑂𝑀𝐴𝐼𝑁 𝑛𝑢𝑚𝑇𝑢𝑝𝑙𝑒 

↦ 𝑁𝑢𝑚𝑇𝑜𝐶ℎ𝑎𝑟(𝑛𝑢𝑚𝑇𝑢𝑝𝑙𝑒[𝑥])] 

𝑆𝑡𝑟𝑇𝑢𝑝𝑙𝑒𝑇𝑜𝑁𝑢𝑚𝑇𝑢𝑝𝑙𝑒(𝑠𝑡𝑟) ≜ [𝑥 ∈ 𝐷𝑂𝑀𝐴𝐼𝑁 𝑠𝑡𝑟 ↦ 𝐶ℎ𝑎𝑟𝑇𝑜𝑁𝑢𝑚(𝑠𝑡𝑟[𝑥])] 

TLA+ Snippet 6: The NumTupleToStrTuple and StrTupleToNumTuble functions 

One of the properties of a valid Modbus ASCII message is that every character in 

the message is a valid ASCII character. Checking that every character in a message is a 

valid Modbus ASCII character is accomplished ensuring each character is an element of 

setOfASCII shown in TLA+ Snippet 7. 
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𝐼𝑠𝑈𝑠𝑎𝑏𝑙𝑒𝐴𝑆𝐶𝐼𝐼(𝑠𝑡𝑟) ≜ 𝑠𝑡𝑟 = 𝑆𝑒𝑙𝑒𝑐𝑡𝑆𝑒𝑞(𝑠𝑡𝑟, 𝐿𝐴𝑀𝐵𝐷𝐴 𝑥 ∶ 𝑥 ∈ 𝑆𝑒𝑡𝑂𝑓𝐴𝑆𝐶𝐼𝐼 

TLA+ Snippet 7: The IsUsableACSII operator 

After checking ASCII and decimal representations, checking sequences, and 

checking sets, the final thing to check is sanity. In theory, the operator for converting 

from ASCII to decimal should be inverses of one another. Checking sanity means 

ensuring the conversion of the sequence of ASCII chars to decimal and back again should 

yield the same sequence. The sanity check is shown in TLA+ Snippet 8. 

𝑆𝑎𝑛𝑖𝑡𝑦𝐶ℎ𝑒𝑐𝑘 ≜ 𝑢𝑠𝑎𝑏𝑙𝑒𝐴𝑆𝐶𝐼𝐼

= 𝑁𝑢𝑚𝑇𝑢𝑝𝑙𝑒𝑇𝑜𝑆𝑡𝑟𝑇𝑢𝑝𝑙𝑒(𝑆𝑡𝑟𝑇𝑢𝑝𝑙𝑒𝑇𝑜𝑁𝑢𝑚𝑇𝑢𝑝𝑙𝑒(𝑢𝑠𝑎𝑏𝑙𝑒𝐴𝐶𝑆𝐼𝐼)) 

TLA+ Snippet 8: The SanityCheck operator 

Hexadecimal 

Modbus ACSII is printed to the serial line in hexadecimal. Certain operations 

involving Modbus ASCII require manipulating hexadecimal values so a hex module was 

adapted and expanded from Andrew Helwer’s Hex.tla in [141]. A TLA+ formula for 

converting from the ASCII representation of a string of hexadecimal digits to a sequence 

of base-10 digits is needed for calculating the longitudinal redundancy check (LRC). 

ASCIIHexToDecimal (TLA+ Snippet 9) takes as input a sequence of ASCII hex digits 

and calculates a sequence of decimals. In practice, two bytes of Modbus ASCII 

represents one byte of data. This formula thus converts the first two characters into a 

single decimal before recursing on the rest of the input. StringToHex is a simple formula 

that maps the character “1” to the number 1, “2” to 2, and so on. The symbol ○ means 

append. 
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𝐴𝑆𝐶𝐼𝐼𝐻𝑒𝑥𝑇𝑜𝐷𝑒𝑐𝑖𝑚𝑎𝑙(𝑠𝑡𝑟) ≜  

𝐼𝐹 𝑠𝑡𝑟 = ⟨⟩ 

𝑇𝐻𝐸𝑁 ⟨⟩ 

𝐸𝐿𝑆𝐸 ⟨𝑆𝑡𝑟𝑖𝑛𝑔𝑇𝑜𝐻𝑒𝑥(𝑠𝑡𝑟[1]) ∗ 16 

+ 𝑆𝑡𝑟𝑖𝑛𝑔𝑇𝑜𝐻𝑒𝑥(𝑠𝑡𝑟[2]⟩  

○  𝐴𝑆𝐶𝐼𝐼𝐻𝑒𝑥𝑇𝑜𝐷𝑒𝑐𝑖𝑚𝑎𝑙(𝑇𝑎𝑖𝑙(𝑇𝑎𝑖𝑙(𝑠𝑡𝑟))) 

TLA+ Snippet 9: The ACSIIHexToDecimal operator 

Longitudinal Redundancy Check 

 Longitudinal Redundancy Check (LRC) is an algorithm for detecting 

transmission errors often used in serial communication. Its simplicity allows for quickly 

checking if part of a message has been lost or interfered with but does not try to fix any 

errors and does not protect against intentional tampering. LRC operates on bits, so the 

ASCII, hexadecimal, and decimal formats used throughout this research need to be 

converted before applying LRC. Hex sequences can be converted to decimal with 

ASCIIHexToDecimal. Likewise, ASCII sequences can be converted to decimal with 

StrTupleToNumTuple and CharToNum. To obtain bits (big-endian), any format in use 

must first be converted to decimal, then the decimal format can be converted to bits using 

DecimalToBinarySeq (TLA+ Snippet 10). The ⟨⟩ indicate sequences. 

𝐷𝑒𝑐𝑖𝑚𝑎𝑙𝑇𝑜𝐵𝑖𝑛𝑎𝑟𝑦𝑆𝑒𝑞(𝑛𝑢𝑚) ≜  ⟨𝑛𝑢𝑚 ÷ 128 % 2⟩ 

○ ⟨𝑛𝑢𝑚 ÷ 64 % 2⟩ 

○ ⟨𝑛𝑢𝑚 ÷ 32 % 2⟩ 

○ ⟨𝑛𝑢𝑚 ÷ 16 % 2⟩ 

○ ⟨𝑛𝑢𝑚 ÷ 8 % 2⟩ 

○ ⟨𝑛𝑢𝑚 ÷ 4 % 2⟩ 

○ ⟨𝑛𝑢𝑚 ÷ 2 % 2⟩ 

○ ⟨𝑛𝑢𝑚 % 2⟩ 
TLA+ Snippet 10: The DecimalToBinarySeq operator 

 

The inverse of DecimalToBinarySeq is the formula BinarySeqToDecimal (TLA+ 

Snippet 11). This formula takes as input a sequence of N bits and multiples the least 
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significant bit by 20. It then adds the result to the recursion of the formula calculated with 

the first 𝑁 − 1 bits and 21, the first 𝑁 − 2 bits and 22, and so on. 

𝐵2𝐷(𝑛𝑢𝑚, 𝑠𝑒𝑞) ≜ 𝐼𝐹 𝑠𝑒𝑞 =  ⟨⟩ 

𝑇𝐻𝐸𝑁 0 

𝐸𝐿𝑆𝐸 (𝑠𝑒𝑞[𝐿𝑒𝑛(𝑠𝑒𝑞)] ∗ 𝑛𝑢𝑚) + 𝐵2𝐷(2

∗ 𝑛𝑢𝑚, 𝑆𝑢𝑏𝑆𝑒𝑞(𝑠𝑒𝑞, 1, 𝐿𝑒𝑛(𝑠𝑒𝑞) − 1)) 

𝐵𝑖𝑛𝑎𝑟𝑦𝑆𝑒𝑞𝑇𝑜𝐷𝑒𝑐𝑖𝑚𝑎𝑙(𝑠𝑒𝑞) ≜ 𝐵2𝐷(1, 𝑠𝑒𝑞) 

TLA+ Snippet 11: The BinarySeqToDecimal operator and its helper function B2D 

 

The LRC algorithm is relatively simple bit arithmetic and manipulation. LRC 

takes as input a sequence of bytes representing a message. The bytes are added together 

and all but the least significant byte of the sum is discarded. The least significant byte is 

negated using Two’s compliment to produce the LRC value. The sum of all the bytes that 

comprise the address, function code, and data fields of a Modbus message AND FF plus 

the LRC value should equal 0. Formula addSeq is used to add each element of a decimal 

sequence in TLA+ Snippet 12. 

𝑎𝑑𝑑𝑆𝑒𝑞(𝑠𝑒𝑞) ≜ 𝐼𝐹 𝑠𝑒𝑞 =  ⟨⟩ 

𝑇𝐻𝐸𝑁 0 

𝐸𝐿𝑆𝐸 𝐻𝑒𝑎𝑑(𝑠𝑒𝑞) + 𝑎𝑑𝑑𝑆𝑒𝑞(𝑇𝑎𝑖𝑙(𝑠𝑒𝑞)) 

TLA+ Snippet 12: The addSeq operator 

Two’s complement is a method for representing signed integers in binary. Its 

algorithm, formulated as TwosComp, performs an XOR of each bit of input with 1 then 

adds 1 to the final bit sequence. XOR is formulated as well; though TLA+ has a built-in 

XOR symbol, it only operates on Boolean values. The formula for BinaryAdd1 is a 

composition of other formulas that converts a binary sequence to a single decimal 

number, adds 1, then converts back to a binary sequence. These three operators are 

shown in TLA+ Snippet 13. 
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𝑇𝑤𝑜𝑠𝐶𝑜𝑚𝑝(𝑠𝑒𝑞) ≜ 𝐵𝑖𝑛𝑎𝑟𝑦𝐴𝑑𝑑1([𝑥 ∈ 𝐷𝑂𝑀𝐴𝐼𝑁 𝑠𝑒𝑞 ↦ 𝑋𝑂𝑅(𝑠𝑒𝑞[𝑥], 1)]) 

𝑋𝑂𝑅(𝑎, 𝑏) ≜ 𝐶𝐴𝑆𝐸 𝑎 = 1 ∧ 𝑏 = 1 → 0 

□ 𝑎 = 1 ∧ 𝑏 = 0 → 1 

□ 𝑎 = 0 ∧ 𝑏 = 1 → 1 

□ 𝑂𝑇𝐻𝐸𝑅 → 0 

𝐵𝑖𝑛𝑎𝑟𝑦𝐴𝑑𝑑1(𝑠𝑒𝑞) ≜ 𝐷𝑒𝑐𝑖𝑚𝑎𝑙𝑇𝑜𝐵𝑖𝑛𝑎𝑟𝑦𝑆𝑒𝑞(𝐵𝑖𝑛𝑎𝑟𝑦𝑆𝑒𝑞𝑇𝑜𝐷𝑒𝑐𝑖𝑚𝑎𝑙(𝑠𝑒𝑞) + 1) 

TLA+ Snippet 13: The TwosComp and BinaryAdd1 operators 

The TLA+ formula for calculating the LRC of a sequence, CalculateLRC, can 

thus be written as a composition of the other formulas in TLA+ Snippet 14. The 

𝑎𝑑𝑑𝑆𝑒𝑞(𝑠𝑒𝑞)%256 ensures the composed formulas are only operating on the least 

significant byte of the sum of all the bytes. 

𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐿𝑅𝐶(𝑠𝑒𝑞)

≜ 𝐵𝑖𝑛𝑎𝑟𝑦𝑆𝑒𝑞𝑇𝑜𝐷𝑒𝑐𝑖𝑚𝑎𝑙 (𝑇𝑤𝑜𝑠𝐶𝑜𝑚𝑝(𝐷𝑒𝑐𝑖𝑚𝑎𝑙𝑇𝑜𝑏𝑖𝑛𝑎𝑟𝑦𝑆𝑒𝑞(𝑎𝑑𝑑𝑆𝑒𝑞(𝑠𝑒𝑞)%256))) 

TLA+ Snippet 14: The CalculateLRC Operator 

4.4  Summary 

This chapter presented the formalized specification in TLA+ for the field device 

security preprocessor and the formalized security and safety properties required to check 

the correctness of the specification. Each thread within each component of the 

preprocessor is defined with its own formal specification and its own security properties. 

After each component is finalized, it is composed into a single specification for the 

security preprocessor and new properties that could not be checked in individual 

components are formalized for checking. Additionally, some helper functions that were 

used during the research and are novel formal specification in TLA+ are presented. The 

next chapter will discuss the model checking strategies used to reduce the state space and 

the results produced by the TLC checker.  
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CHAPTER V 

MODEL CHECKING, INPUT VALUES, STATES 

 

5.1 Introduction 

Checking a TLA+ specification involves using the TLC model checker to 

generate a state-space and exhaust that space looking for violations of properties. This 

chapter describes the checking statistics produced by TLA+ and the design strategies 

employed to reduce the size of the state-space and create models that are feasible to 

check. All properties described in Chapter 0 are checked for their respective 

specifications. While each TLA+ design required multiple revisions and intensive 

thought to build, the stats and results presented in this chapter are only for the final 

iteration wherein all properties were successfully validated and all states were visited at 

least once. Most of the designs were checked quickly, around 10 seconds when not 

looking checking temporal properties and roughly 10 minutes when temporal properties 

are enabled. 

5.2 TLC Model Checker 

Temporal Logic of Actions, and the TLA+ language, are expressive tools for 

specifying concurrent distributed systems using the notation of mathematics and logic. 

The expressiveness of the TLA+ language is intentionally designed with formal 

reasoning on complex specifications in mind, not for mechanically checking those 

specifications. TLA+ allows specifying a system with an undefined number of 
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processors, unbounded message queues, and other potentially infinite constructs that do 

not cooperate with exhaustive checking. Model checking a system specified in TLA+ 

thus involves designing a finite-state model from the TLA+ specification - forgoing some 

of the undefined characteristics to search for simple design-level logic bugs. 

If model checking is the goal then the selection of TLA+, a language that is too 

expressive to be directly checked, might raise some questions. Model checking a formal 

specification can be considered a steppingstone to an eventual goal of a proof of 

correctness. Yuan Yu et al set forth the motivations for creating a mechanical checker for 

TLA+ in [142]. Their motivations are summarized here: 

1 Allow design of a complex system in an expressive language like TLA+ and 

check a finite-state model6 of that design to catch bugs before proof work. 

2 Allow designers to check their design while developing it without translation into 

a separate, less expressive language removing the complications that could arise 

from such a translation. 

A TLA+ specification is expressive enough to allow formal proofs. The TLC 

model checker can thus be thought of as a proof aid in allowing designs to be easily 

checked for logical inconsistencies before investing time in theorem proving. A 

specification can be as expressive as needed but contain parameters to limit the 

specification at time of checking. 

 

 

 

6 A specification models a design if it meets the requirements of that design. In this case, a model 

of a model is checked.  
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5.3 State Explosion Considerations 

Exponential increase in state-space, referred to as state explosion, is a driving 

force in model checking projects and research [80]. The work presented here includes a 

variety of considerations that could drastically affect the runtime of TLC. The most 

prominent consideration is the selection of Modbus messages that are passed between 

components in this system, both in number and in branching techniques. Firstly, the 

number of messages that are passed in the specification increases the size of the state 

space as a new set of states it generated for each new message. Secondly, the way the 

successive messages are handled can drastically affect the rate of growth of the state 

space. A specification that is designed to process every message in a queue within a 

single trace enjoys a tragic fall into the depths of computational complexity as each 

successive message compounds the state-space generated from processing the previous 

messages. Alternatively, a specification that is designed to generate a new trace for each 

message will check the processing of each message independently. The difference in 

these two scenarios can be boiled down to the selection of either Equation (13) or 

Equation (14) where messages represents the queue of messages waiting to be processed 

by the system and testmessages is a set or ordered sequence (depending on the needs of 

the specification) of relevant messages with which to test the model. A state-space is 

complete when all messages have been processed.  

messages = testmessages (13) 

messages ∈ testmessages (14) 

Assuming two models are equivalent but for the value of messages in the initial 

state, Equation (13) was found to produce an exponentially larger state-space in practice. 
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Equation (13) assigns to messages the entire set or sequence testmessages. In the thread-

level specifications found in this research, once a message is fully processed the thread 

checks messages for another message to process. If messages contains more than one 

element, a state-space for the successor message must be initiated from every state the 

system could find itself in after completing the predecessor message resulting in multiple 

traces for a single message. If there are more messages, this process repeats for each 

ending state of each trace of the previous message. Figure 29 shows the development of 

such a state-space. TLC includes some tricks behind the scenes to prevent redundant state 

generation where it can be detected. Even with optimization, Equation (13) produces a 

narrower, deeper tree of states. TLC generates and checks new states using a breadth-first 

search so a deep and narrow tree could result in property violations being discovered 

later. Further discussion can be found in [64]. 

 

Figure 29: The state space generated from Equation (13). 

Where appropriate, Equation (14) is used to give messages a value in the initial 

state. This definition tells TLC that messages could hold any value that is an element of 
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testmessages, so TLC branches and creates a separate trace for each possible value of 

messages. Practically, this means a separate state-trace is created for each message in 

testmessages and is terminated at the end of that message’s processing. Figure 30 shows 

the state-space for this method. This figure also demonstrates an obvious path for 

parallelization of the state generation and checking as each next-state after the initial can 

be handed off to another process. 

 

Figure 30: The state space generated from Equation (14. 

Another consideration for handling the state explosion problem in this work is the 

type of properties to be checked. Invariants, properties that must always be true, are 

quickly checked upon generation of each state. Temporal properties are difficult and slow 

because the path a given trace took through the state-space matters. For temporal property 

Q, TLC must check if there exists a path through the state space that does not contain a 
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state that satisfies Q. All paths must be checked to satisfy temporal properties. As much 

of the checking for temporal requirements for the field device is pushed into the 

individual thread models as possible as these are small. The few temporal properties that 

could not be avoided are checked over several different models (the same specification 

but with different initial values) to check sections of the state-space individually. At time 

of writing, TLC does not offer strong support for parallelization of temporal property 

checking [101]. 

5.4 Trusted Network Component States and Inputs 

The trusted network component is the network interface that communicates with a 

PLC or other ICS actor within a physically protected process network. It is considered 

“trusted” because messages that are received from this network are assumed to be good-

intentioned (though not necessarily well-formed). Two threads make up the trusted 

network component – Trustnet_in that receives messages from the network and passes 

them to inner components, and Trustnet_out that receives messages from the inner 

components and relays them to the process network. 

The behavior of the Trustnet_in thread should not depend on any specific 

sequence of well-formed Modbus messages. Once a well-formed message has been 

completely processed, Trustnet_in should return to its initial state and no well-formed 

message should affect any successive messages. This allows use of Equation (14) in 

defining the set of messages to be processed in the initial state, meaning a separate state-

space can be calculated for each test message quickly and concurrently. The behavior of 

Trustnet_out is potentially different from message to message so it is appropriate to 

specify a sequence of test messages using Equation (13). This thread operates on input 
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from the inner components, so its input is complete messages rather than bytes. Operating 

on complete messages allows a significant reduction in the state-space generated by TLC. 

Processing a message byte-by-byte requires loops and additional steps. Processing an 

entire message at once allows the specification to be greatly simplified. State-space 

statistics for Trustnet_in and Trustnet_out can be seen in Table 22: TLC Running 

Statistics for the trusted network component. Time is the wall time required to build and 

check the model. Diameter is the length of the longest state-trace.  

Table 22: TLC Running Statistics for the trusted network component 

Spec Time Diameter States Found Distinct States 

trustnet_in 0:07 6609 10037 9774 

trustnet_out 0:06 30 31 30 

 

The test messages crafted for Trustnet_in were a collection of malformed Modbus 

messages, a collection of well-formed Modbus messages, and every possible single-byte 

value that could cross the serial port (0-255). The selected test messages can be found in 

Table 23. These messages were translated into ACII hex before use in the model. 

Trustnet_out required structures for testing as the messages it received included the 

critical decision from inner components and message IDs. The test structures can be 

found in the appendix. 

Table 23: Test messages for Trustnet_in 

Message Purpose 

:JGP9432J39JGWIRW Improper message with proper start 

:<\r><\n> Empty message with proper start and 

termination 

JGP9432J39JGWIRW<\r><\n> Improper message with proper 

termination 

:1103006B00037E<\r><\n> Well-formed message 

:1103006B00037ECRL103006B00037ECRL10300

6B00037ECRL103006B00037ECRL103006B0003

Improper message, for troubleshooting 

model first and design second. 
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7ECRL103006B00037ECRL103006B00037ECRL

103006B00037ECRL103006B00037ECRL103006

B00037ECRL103006B00037ECRL103006B00037

ECRL103006B00037ECRL103006B00037ECRL1

03006B00037ECRL103006B00037ECRL103006B

00037ECRL103006B00037ECRL103006B00037E

CRL103006B00037ECRL103006B00037ECRL10

3006B00037ECRL103006B00037ECRL103006B0

0037ECRL103006B00037ECRL103006B00037EC

RL103006B00037ECRL103006B00037ECRL1030

06B00037ECR1103006B00037ECRL103006B000

37ECRL103006B00037ECRL103006B00037ECR

L103006B00037ECRL103006B00037ECRL10300

6B00037ECRL103006B00037ECRL103006B0003

7ECRL103006B00037ECRL103006B00037ECRL

103006B00037ECRL103006B00037ECRL103006

B00037ECRL103006B00037ECRL103006B00037

ECRL103006B00037ECRL103006B00037ECRL1

03006B00037ECRL103006B00037ECRL103006B

00037ECRL103006B00037ECRL103006B00037E

CRL103006B00037ECRL103006B00037ECRL10

3006B00037ECRL103006B00037ECRL103006B0

0037ECRL103006B00037ECGLF 

:1103006B000:1103006B00037E<\r><\n Well-formed message interrupts 

previous well-formed message 

0,1, 2, 3, … 254, 255 All possible bytes, 0-255 

       

5.5 Untrusted Network Component States and Inputs 

Untrustnet_in is similar to Trustnet_in. It operates on bytes rather than whole 

messages and its state is unaffected by well-formed encapsulated messages. TLC found 

more states for Untrustnet_in than Trustnet_in because of the additional constraint of 

picking the well-formed Modbus message out of the encapsulated data that is received 

from the serial port. Trustnet_out operates on full messages rather than bytes so its 

specification generates much fewer states. TLC’s state statistics for the untrusted network 

component can be found in Table 24. Test messages and structures for these specs can be 

found in the appendix.  
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Table 24: TLC Running Statistics for the untrusted network component 

Spec Time Diameter States Found Distinct States 

Trustnet_in 0:09 12015 16532 16269 

Trustnet_out 0:09 58 59 58 

 

5.6 Protocol Checking States and Inputs 

The protocol checking state-space is the simplest of those described here. Its 

diameter, that is the longest useful trace through the state-space found by TLC, is only 

five states wide. This is likely because the protocol checking spec simply checks 

messages against a definition of Modbus before forwarding them. The bulk of the 

specification work occurs in the definitions of Modbus and its helper functions, but these 

would only generate transition rules between states. This component trusts the input from 

the other components, so the test structures were crafted to exhaust the definition of 

Modbus that this component is checking against. TLC’s statistics for this component’s 

single thread can be found in Table 25 and the test messages can be found with the 

specification in the appendix. 

Table 25: TLC Running Statistics for the protocol checking component 

Time Diameter States Found Distinct States 

0:10 5 24 20 

5.7 Cryptographic Component States and Inputs 

 The cryptographic component produces another relatively simple state-space 

compared to the networking components. Like the protocol checker, the cryptographic 

component’s complexity comes from its transition rules and definitions. The 

cryptographic checking additionally benefits from the abstraction of cryptographic 

function, reducing the state-space and complexity. A hash value is hard coded within the 
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model - no calculations are performed. TLC’s statistics for Sign and Verify can be found 

in Table 26 and the test messages can be found with the specification in the appendix. 

Table 26: TLC Running Statistics for the cryptographic component 

spec Time Diameter States Found Distinct States 

sign 0:06 14 15 14 

verify 0:05 18 38 38 

 

5.8 System Model States and Inputs 

Checking the model of the entire system presented the largest challenge as ensuring 

the properties for the individual models were preserved often clashed with abstracting 

already-proved pieces to reduce the complexity of the composite. The composite model is 

where the majority of the strategies for controlling the state-space growth came into play. 

This is the only model that exercises the concurrent modeling abilities of TLA+. The 

extra complexity of undefined execution order of concurrent states was made evident in 

the drastically higher running statistics produced by TLC in Table 27. 

Table 27: TLC Running Statistics for the security preprocessor 

spec Time Diameter States Found Distinct States 

Composite w/ 

trustnet input 

31:11:07 7822 946,531,170 221,952,298 

composite w/ 

untrustnet input 

31:08:01 7821 942,382,213 221,005,455 

 

Checking had to be divided across multiple runs with different inputs to 

networking components. Input to the model was designed such that every state was 

visited at least once across the runs. In the first run, the test messages were placed into 

the queue of the trusted networking component while the queue of the untrusted 

networking component was left empty. In the second run, test messages were placed into 
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the queue of the untrusted networking component while the queue of the trusted 

networking component was left empty. Time was also saved by checking all the invariant 

properties first, then checking the temporal properties one at a time across different runs. 

While this may not have saved computation time, it did reduce the time between runs 

during development when changes to the properties and specification were frequent. 

5.9 Summary 

The process of checking a TLA+ model is simple: configure the properties to 

check then run TLC. Writing a model and properties to be checked efficiently can be 

difficult and time-consuming. This chapter detailed the statistics from the TLC model 

checker when run on the completed models presented in Chapter 0. These statistics are 

for the runs in which TLC did not find any property violations after an exhaustive search. 

The individual threads were quick and easy to check by design, but they were not enough 

to validate all the desired properties. Validating the remaining properties on the larger 

model was a greater task that often required days of computation. When taken together, 

these runs offer proof that the properties this thesis set out to prove hold for every state 

the security preprocessor could find itself it. 
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CHAPTER VI 

CAMKES ARCHITECTURE FOR A BUMP-IN-THE-WIRE SECURITY PREPROCESSOR 

 

6.1 Introduction 

Designing an embedded system with security in mind often has competing goals. 

Embedded systems are generally low on processing power and memory which limits the 

functionality that can be supported, especially in time-sensitive environments [2], [17], 

[104]. Simplifying the design can help, as well as working from a microkernel that adds a 

lot of security and safety features natively. CAmkES is the architecture design framework 

for building native seL4 applications. A native seL4 application, as opposed to an 

application that would run in a Windows or Linux virtual machine on top of seL4, is built 

to take advantage of the security and safety features the seL4 microkernel provides. A 

virtualized instance of Windows or Linux would add millions of lines of unnecessary and 

unsafe code to an embedded device, potentially expanding the attack surface. However, a 

native seL4 application that runs directly on top of seL4 could have its critical 

components isolated. Isolation not only add layers of security within the native 

application, but also eliminates categories of vulnerabilities common in less reliable 

applications and microkernels such as memory violations and pivoting malware. This 

chapter presents the CAmkES definitions for each component and connection that was 

formally specified in TLA+ in Chapter x for a native seL4 control system security 

preprocessor (SPP). This chapter demonstrates
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 the implementation portion of the developments steps proposed in Chapter x and 

refreshed in Figure 31. 

 

Figure 31: Development steps for verifying seL4 designs using TLA+. 

6.2 CAmkES Definitions for Components, Interfaces, and Connections 

The work presented here leverages the isolation guarantees provided by the seL4 

microkernel and carried through the automatic code generation of the CAmkES 

framework. There are four components described in this section: a cryptographic service 

provider, a Modbus protocol checker, a network interface for the trusted network, and a 

network interface for the untrusted network. Figure 32 illustrates the components and 

their connections. The blue outline of two components indicate they are active, meaning 

they have a thread of control. The other two components are passive, meaning they only 

provide a service and must be called by an active component before any work is done. 

Table 28 shows the relationship between CAmkES components and TLA+ specifications 

described in the Chapter 0. Some of the components have multiple specifications, one for 

each thread of execution within the component. The remainder of this section describes 

each component and each connection in more detail. 
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Figure 32: CAmkES output for the system architecture 

Table 28: Relationship between TLA+ specifications and CAmkES components 

CAmkES Component TLA+ Specification 

Modtx 
Trustnet_in 

Trustnet_out 

Crypto 
Sign 

Verify 

Modchk Modchk 

Signtx 
Untrustnet_in 

Untrustnet_out 

 

6.2.1 Modtx: The Trusted Network Interface 

The trusted network is the control system intranet, or process network. In the 

control center this means the HMI, the PLC, the engineers and operators, the data 

historian, and any control equipment required within the confines of the building. In a 

substation, the trusted network includes the remote terminal unit and any cyber-physical 

instrumentation required for the mission. The trusted network utilizes SCADA network 

protocols, in this case Modbus. The purpose of the trusted network interface is to read 

bytes from the serial port and pass well-formed messages to the inner components with a 

generated ID. Note that well-formed does not mean valid. Modtx simply looks for the “:” 

character that indicates the start of a Modbus message and the “/r/n” sequence that 
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indicates a finished message and ensures that the message is an appropriate length. 

Message validation is left to the inner components. 

Modtx is also responsible for sending well-formed, valid Modbus messages out of 

the serial port onto the trusted network. This functionality is a bit more complex as the 

validation of a Modbus message requires agreement from two other components working 

asynchronously. When a message is received from an inner component, it is stored until 

its counterpart (indicated by a message ID) is received from the other component. If both 

components agree that the message is valid, it is sent byte-by-byte through the serial port. 

If one or both inner components indicate the message is invalid, Modtx drops the 

message. This design facilitates proofs that only well-formed, valid Modbus can be sent 

to the trusted network. Figure 33 illustrates the flow of messages through the Modtx 

component. 

The code in Figure 34 shows the definition for the Modtx component. As it is 

responsible for polling the serial interface, line 9 designates this as an active component. 

It provides a single interface called ModtxIface that provides the message compiling and 

sending service. It consumes two interfaces, one for each inner component, that allow 

Modtx to forward a message through the system. The code in Figure 35 shows the 

definition for Modtx’s interface. The lone function, print, is meant to be consumed by the 

inner components. It takes as parameters the contents of the Modbus message, the 

component from which the RPC originated, the ID of the message, and finally the 

decision of the inner component on whether the message is valid. 
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Figure 33: Flow of messages through Modtx 

 

6.2.2 Signtx: The Untrusted Network Interface 

The untrusted network is anything outside the control network. In this specific 

case, it is the connection from the control center to the substation. This medium can vary 

from installation to installation, and might use network infrastructure that is not within 
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the operator’s control such as a telephone lines. The protocols used over the untrusted 

network will also vary depending on the installation. The system described in this section 

will send and receive an encapsulated Modbus packet over a serial line to and from a 

modem. In a similar fashion to Modtx described in section 6.2.1, the Signtx component is 

responsible for reading well-formed (not necessarily valid) encapsulated messages from 

the serial port, assigning an ID, and forwarding the message to the inner components. A 

well-formed message starts with a “!” character, ends with a “/r/n” sequence of 

characters, and is between 78 and 578 bytes long. Message validation is left to the inner 

components. 

1 /* Modtx.camkes */ 
2  
3 import "../../interfaces/ModchkIface.idl4"; 
4 import "../../interfaces/ModtxIface.idl4"; 
5 import "../../interfaces/CryptoIface.idl4"; 
6  
7 component Modtx { 
8  
9     control; 
10  
11     provides ModtxIface modtx_iface; 
12     uses ModchkIface modchk_iface; 
13     uses CryptoIface crypto_iface; 
14  

15 }  

Figure 34: The Modtx component definition 

1 /* ModtxIface.idl4 */ 
2 /* Simple RPC interface */ 
3  
4 procedure ModtxIface { 
5     void print(in string text, in string source,  

   in int id, in int isValid); 
6 };  

Figure 35: The ModtxIface interface definition 
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The Signtx component is also responsible for sending well-formed, valid, signed 

encapsulated messages out of the serial port onto the untrusted network. This 

functionality is a bit more complex as the signing and validation of the Modbus message 

requires actions from two other components working asynchronously. When a message is 

received from an inner component, it is stored until its counterpart (indicated by a 

message ID) is received from the other component. If the protocol checker identifies the 

Modbus as valid and the signature has been received from the inner components, the final 

encapsulated message is sent byte-by-byte through the serial port. If the protocol checker 

decides the Modbus message is invalid, Signtx drops the message. This design facilitates 

proofs that only well-formed, valid, and signed encapsulated Modbus can be sent to the 

untrusted network. Figure 36 illustrates the message flow through Signtx. 

The code in Figure 37 shows the definition for the Signtx component. As it is 

responsible for polling the serial interface, line 9 designates this as an active component. 

It provides a single interface called SigntxIface that initiates the message compiling and 

sending service. It consumes two interfaces, one for each inner component, that allow 

Signtx to forward a message and signature through the system. The code in Figure 38 

shows the definition for Signtx’s interface. There is a function within the interface for 

each of the inner components. The first, print_sign, is meant to be used by the 

cryptographic component to pass the cryptographic hashes of messages. It accepts as 

parameters the contents of the message, the source from which this RPC originated, the 

ID of the message, and the calculated HMAC. The second function of the interface, 

print_mod, is meant to be used by the protocol checker. It accepts as parameters the 
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contents of the message, the source from which the RPC originated, the ID of the 

message, and the protocol checker’s decision on whether the Modbus message is valid. 

 

Figure 36: Flow of messages through Signtx 
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1 /*  Signtx.camkes   */ 
2  
3 import "../../interfaces/ModchkIface.idl4"; 
4 import "../../interfaces/CryptoIface.idl4"; 
5 import "../../interfaces/SigntxIface.idl4"; 
6  
7 component Signtx { 
8  
9     control; 
10     provides SigntxIface signtx_iface; 
11  
12     uses CryptoIface crypto_iface; 
13     uses ModchkIface modchk_iface; 
14  
15 }  

Figure 37: The Signtx component definition 

1 /* SigntxIface.idl4    */ 
2  
3 procedure SigntxIface { 
4      
5     void print_sign(in string text, in string source,  

   in int id, in string hmac); 
6     void print_mod(in string text, in string source,  

   in int id, in int isValid); 

7 };  

Figure 38: The SigntxIface interface definition 

6.2.3 Modchk: The Protocol Checker 

Modbus is an open standard communication protocol developed by Modicon in 

1979. It is a simple and connectionless call-and-response protocol that allows straight-

forward modeling. This research deals specifically with Modbus ASCII, a version that 

uses a leading “:” to signal a new packet, contains two bytes to indicate the recipient's 

address, contains two bytes describing the function code, contains a payload of data, and 

finally a Longitudinal Redundancy Check (LRC) to detect transmission errors and an 

ending character sequence. It contains a simple addressing scheme allowing for up to 247 

devices on a common bus, a field for a function code that tells the target devices which 

procedure to run, and a data field that can contain up to 252 bytes of information for the 
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target device to act on. The layout of a Modbus packet can be seen in Table 29. Modbus 

ASCII in particular requires two bytes to represent one byte of information, thus the data 

field for Modbus ASCII has a maximum length of 504 instead of 252.  Further reference 

about Modbus can be found in [29], while discussion of its use and security can be found 

in [21], [105].   

Table 29: A Modbus ASCII message 

Start Address 
Function 

Code 

Sub code 
Data LRC End 

“:” 2 bytes 2 bytes 
2 bytes 

(optional) 

Up to 

504 bytes 
2 bytes “\r\n” 

 

Modchk is an inner component responsible for checking the validity of Modbus 

messages it receives from either networking component. Messages it receives should 

already be well-formed, as the networking components only allow well-formed messages 

to pass. A valid Modbus message is a message in which every field conforms to the 

Modbus standard as described in [29]. This means the address field should contain a valid 

address from 0 (broadcast) to 247, the LRC matches a calculated LRC, and so forth. Once 

the message has been analyzed, it is forwarded to the opposite networking component 

with the critical decision attached. 

The code in Figure 39 shows the definition for the Modchk component. This 

component merely provides a service and does not initiate any actions on its own, so it is 

passive. Modchk provides the same service regardless of the direction a message is 

passing through the system, so it can offer a single interface called ModchkIface. It 

consumes two interfaces, one from each networking component. When a message is 

received from Modtx, it is eventually forwarded using the Signtx interface and vice-
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versa. The ModchkIface is defined in Figure 40. It implements a single service: verify. 

Verify accepts as parameters the message text to be checked, the source component from 

which the RPC originated, and the ID of the message. The source allows Modchk to keep 

track of which component sent which message so the message can be forwarded 

appropriately. 

1 /* Modchk.camkes */ 
2  
3 import "../../interfaces/ModchkIface.idl4"; 
4 import "../../interfaces/ModtxIface.idl4"; 
5 import "../../interfaces/SigntxIface.idl4"; 
6  
7 component Modchk { 
8  
9     provides ModchkIface modchk_iface; 
10     uses ModtxIface modtx_iface; 
11     uses SigntxIface signtx_iface; 
12  

13 }  

Figure 39: The Modchk component definition 

1 /* ModchkIface.idl4 */ 
2  
3 procedure ModchkIface { 
4     void verify(in string text, in string source, in int id); 
5 };  

Figure 40: The ModchkIface interface definition 

6.2.4 Crypto: The Cryptographic Service 

The cryptographic component provides the signing and verifying services for the 

system. The goal of the system is to add authentication and integrity to an existing 

SCADA installation. To achieve that goal Crypto houses a secret key, a nonce generator, 

the cryptographic primitive SHA-256 cryptographic hashing function, and the 

cryptographic construction HMAC. Proper use of an HMAC can allow the system to 

detect if a message has been tampered with, as even the slightest change in the message 
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will alter the resulting HMAC calculation. Additionally, because the secret key is 

included in the input to the HMAC, a message with a valid HMAC calculation can 

trusted to be from the opposite security device and not a forgery from an attacker. 

The specific implementations of both SHA-256 and HMAC used in Crypto are 

verified to meet their respective FIPS specifications in [89] and [92]. The HMAC 

specification has been further verified to hold the security properties it claims in [143]. 

The verification work for these pieces of code can be seen in [144] and [88]. The 

properties have been proven to hold from the specification down to the C code that is 

found within Crypto. Currently, the default compiler for CAmkES and seL4 is the 

unverified gcc, so the binary that is produced from compilation of the C code must be 

trusted. Appel notes in [88] that gcc and the verified CompCert generally agree on 

language semantics, so the effort to verify the C code still adds value to the binary 

compiled by gcc. 

The code in Figure 41 shows the definition for the Crypto component. This 

component merely provides a service and does not initiate any actions on its own, so it is 

passive. Crypto provides a single interface called CryptoIface that handles both the 

signing and verifying capabilities. It consumes two interfaces, one from each networking 

component. When a message is received from Modtx, it is eventually forwarded using the 

Signtx interface and vice-versa. The Crypto interface CryptoIface is defined in Figure 42. 

It implements two services: sign and verify. Sign is intended for consumption by the 

trusted network component, receiving raw Modbus messages and generating a 

cryptographic HMAC before forwarding the message and HMAC to the untrusted 

network component. It accepts as parameters the contents of a message and the message 



156 

 

ID. Verify is intended for consumption by the untrusted network component, receiving a 

Modbus message and HMAC then calculating the HMAC itself and checking if the two 

HMACs match. It accepts as parameters the message contents, the ID of the message, and 

the HMAC that accompanied the message from the untrusted network. Once the 

cryptographic work has been done, both functions forward the results to the opposite 

network component. 

1 /* Crypto.camkes */ 
2  
3 import "../../interfaces/CryptoIface.idl4"; 
4 import "../../interfaces/ModtxIface.idl4"; 
5 import "../../interfaces/SigntxIface.idl4"; 
6  
7 component Crypto { 
8  
9     provides CryptoIface crypto_iface; 
10     uses ModtxIface modtx_iface; 
11     uses SigntxIface signtx_iface; 
12  
13 } 

 
 

Figure 41: The Crypto component definition 

1 /* CryptoIface.idl4 */ 
2  
3 procedure CryptoIface { 
4     void sign(in string text, in int id); 
5     void verify(in string text, in int id, in string hmac); 
6 }; 

 
 

Figure 42: The CryptoIface interface definition 

6.2.5 Pre-defined RPC Connections 

With the components and interfaces defined, the last piece within CAmkES is to 

define the RPC paths that components can use to communicate with each other. These 

paths static and defined in the design before boot so they cannot be changed without 
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recompiling the CAmkES application. The code snippet in Figure 43 defines the RPC 

calls from component interface to component interface, and create the lines and circles 

between components seen in Figure 32. An important feature of this design is the lack of 

allowed connections directly between the two networking components. Messages cannot 

flow through the system without going through the two inner components to be validated. 

1 ...*snip*... 
2     /* Things coming out of the modtx component */ 
3     connection seL4RPCCall conn1(from modtx.modchk_iface,  

to modchk.modchk_iface);  
4     connection seL4RPCCall conn2(from modtx.crypto_iface,  

    to crypto.crypto_iface); 
5  
6     /* Things coming out of the crypto component*/ 
7     connection seL4RPCCall conn3(from crypto.modtx_iface,  

    to modtx.modtx_iface); 
8     connection seL4RPCCall conn4(from crypto.signtx_iface,  

    to signtx.signtx_iface); 
9  
10     /* Things coming out of the signtx component */ 
11     connection seL4RPCCall conn5(from signtx.crypto_iface,  

    to crypto.crypto_iface); 
12     connection seL4RPCCall conn6(from signtx.modchk_iface,  

    to modchk.modchk_iface); 
13  
14     /* Things coming out of the modchk component */ 
15     connection seL4RPCCall conn7(from modchk.modtx_iface,  

    to modtx.modtx_iface); 
16     connection seL4RPCCall conn8(from modchk.signtx_iface,  

    to signtx.signtx_iface); 
  

Figure 43: The system composition definition 

6.3 Summary 

This chapter detailed each CAmkES component for the native seL4 security 

preprocessor device. There are two passive inner components that handle critical 

decisions and two active outer components that interact with the network. The interfaces 

provided by each component are detailed, with the networking components providing 

interfaces with functions to print to the network and the inner components providing 
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interfaces for the cryptographic and protocol checking services they provide. Finally, the 

seL4 RPC connections are detailed. The network components can communicate with the 

inner components but not with each other, no component can directly access functionality 

of another, and no sections of memory are shared between components. 
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CHAPTER VII 

CONCLUSIONS AND FUTURE WORK 

The contributions presented in this dissertation fill a gap in the current state of the 

art research in securing industrial control and SCADA systems. This document describes 

the method for increasing the assurance and security level of a legacy control system 

though formal specification and model checking a bump-in-the-wire security 

preprocessor that adds much needed security mechanisms where none previously exists. 

Further, this dissertation serves as a proof of concept for the method of producing high-

assurance industrial devices by targeting the seL4 microprocessor with TLA+ designs. 

TLA+ can be structured to intuitively flow from formally specified design to embedded 

CAmkES architecture running on seL4. 

Adding security to an existing control systems network requires careful 

considerations to reduce downtime, reduce added latency, and reduce added failure 

points. A bump-in-the-wire security preprocessor built atop a high-assurance microkernel 

like seL4 might reduce the impact of added security enough to be palatable to asset 

owners. This thesis proposed a development cycle for engineering high-assurance 

embedded systems with formally described and verified security and safety properties. 

An informal design of an embedded system can be formalized and verified using TLA+. 

The TLA+ specification can be used to define an architecture in CAmkES. Finally, the
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components in the CAmkES architecture can be populated with the C implementations of 

their algorithms. 

Building trustworthy systems is a key component in both safety and security. The 

previous chapters have described a model of a bolt-on security device split into its 

integral pieces. Each state that each component can reach is described and automatically 

checked, demonstrating proof of relevant security properties. Building this system atop 

seL4 ensure that even though these components are proven to be isolated from each 

other, they are proven to be able to communicate with each other through highly 

specified channels. Thus this paper describes a system modeled and checked from end to 

end. 

This work stops short of formally verifying an implementation of each cell 

specified in this paper. The described system takes advantage of seL4's distributed 

component architecture to show how a correct system should behave but does not 

describe its implementation. The initial steps of the next stage of research have been 

started to include a verified implementation, using Microsoft and INRIA's F* proof 

language[145][146][147] for the verification efforts then translating to C for use in each 

individual component. Verification of the implementation has not been attempted, but the 

pipeline of TLA+ to F* to C source to compiled C within the CAmkES components has 

been shown to work with an implementation of a basic 4-component message passing 

system. 

Another interesting avenue of research is a translation tool to automatically move 

from a TLA+ specification to a CAmkES architecture. This thesis performed the 

translation manually, but it might be possible to encode a subset of TLA+ semantics to 
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generate the necessary directory structure, interface definitions, and CAmkES component 

definitions in an seL4 project. Processes in TLA+ might extract to components and 

message queues might extract to interface definitions. Such a tool will allow an engineer 

to specify, check, and reason about an seL4 architecture directly in TLA+.
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APPENDICIES 

 

This appendix presents the ASCII table and TLA+ specification for the models 

used in chapter Chapter IV and Chapter V. 

The ASCII Table. 

 

For TLA+ and CAmkES code, as well as the seL4 prototype for the security 

preprocessor, see https://github.com/mssabr01/Dissertation-Work   
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