
University of Louisville
ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

8-2019

Formally designing and implementing cyber
security mechanisms in industrial control networks.
Mehdi Sabraoui
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd
Part of the Computer and Systems Architecture Commons, Controls and Control Theory

Commons, Information Security Commons, OS and Networks Commons, Other Computer
Engineering Commons, Software Engineering Commons, Systems Architecture Commons, and the
Theory and Algorithms Commons

This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional Repository. It has been
accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of ThinkIR: The University of Louisville's Institutional
Repository. This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact
thinkir@louisville.edu.

Recommended Citation
Sabraoui, Mehdi, "Formally designing and implementing cyber security mechanisms in industrial control networks." (2019). Electronic
Theses and Dissertations. Paper 3271.
https://doi.org/10.18297/etd/3271

https://ir.library.louisville.edu/?utm_source=ir.library.louisville.edu%2Fetd%2F3271&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F3271&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F3271&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=ir.library.louisville.edu%2Fetd%2F3271&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/269?utm_source=ir.library.louisville.edu%2Fetd%2F3271&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/269?utm_source=ir.library.louisville.edu%2Fetd%2F3271&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=ir.library.louisville.edu%2Fetd%2F3271&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=ir.library.louisville.edu%2Fetd%2F3271&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=ir.library.louisville.edu%2Fetd%2F3271&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=ir.library.louisville.edu%2Fetd%2F3271&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ir.library.louisville.edu%2Fetd%2F3271&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=ir.library.louisville.edu%2Fetd%2F3271&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=ir.library.louisville.edu%2Fetd%2F3271&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/3271
mailto:thinkir@louisville.edu

FORMALLY DESIGNING AND IMPLEMENTING CYBER SECURITY

MECHANISMS IN INDUSTRIAL CONTROL NETWORKS

BY

Mehdi Sabraoui

B.S., University of Louisville, 2013

M.Eng., University of Louisville, 2014

A Dissertation

Submitted to the Faculty of the

J. B. Speed School of Engineering

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in Computer Science and Engineering

Department of Computer Science and Engineering

J.B Speed School of Engineering

University of Louisville

Louisville, Kentucky

August 2019

ii

FORMALLY DESIGNING AND IMPLEMENTING CYBER SECURITY

MECHANISMS IN INDUSTRIAL CONTROL NETWORKS

BY

Mehdi Sabraoui

B.S., University of Louisville, 2013

M.Eng., University of Louisville, 2014

A Dissertation Approved on

July 23, 2019

By the following Dissertation Committee members

__

Dr. Adrian P. Lauf, Dissertation Director

__

Dr. Jeffrey L. Hieb, Dissertation Co-Director

__

Dr. Roman V. Yampolskiy

__

Dr. Michael Losavio

__

Dr. Adel Elmaghraby

iii

DEDICATION

This dissertation is dedicated to my parents

Rebecca Sabraoui and Ben Sabraoui

whose hard work and constant support have granted me this privilege.

iv

ACKNOWLEDGEMENTS

I cannot understate how much the support of my advisors, Dr. Jeff Hieb and Dr.

Adrian Lauf, have helped me through the academic, professional, and emotional ups and

downs of this journey. I would also like to extend my deepest gratitude to Dr. Adel

Elmaghraby for his clever administrative support for me and all the students in the

department who come to him for help and guidance. I am grateful to the rest of my

committee members, Dr. Roman Yampolskiy and Dr. Michael Losavio, for their

invaluable insights and friendly conversations through the tough times. Finally, I want to

recognize all the friends and family who have been patient and understanding with my

occasional absences through the past few years.

v

ABSTRACT

FORMALLY DESIGNING AND IMPLEMENTING CYBER SECURITY

MECHANISMS IN INDUSTRIAL CONTROL NETWORKS

Mehdi Sabraoui

July 23, 2019

This dissertation describes progress in the state-of-the-art for developing and

deploying formally verified cyber-resilient devices in industrial control networks. It

begins by detailing the unique struggles that are faced in industrial control networks and

why concepts and technologies developed for securing traditional networks might not be

appropriate. It uses these unique struggles and examples of contemporary cyber-attacks

targeting control systems to argue that progress in securing control systems is best met

with formal verification of systems, their specifications, and their security properties.

This dissertation then presents a development process and identifies two technologies,

TLA+ and seL4, that can be leveraged to produce a high-assurance embedded security

device.

The method presented in this dissertation takes an informal design of an

embedded device that might be found in a control system and 1) formalizes the design

within TLA+, 2) creates and mechanically checks a model built from the formal design,

and 3) translates the TLA+ design into a component-based architecture of a native seL4

vi

application. The later chapters of this dissertation describe an application of the process

to a security preprocessor embedded device that was designed to add security

mechanisms to the network communication of an existing control system. The device and

its security properties are formally specified in TLA+ in chapter 4, mechanically checked

in chapter 5, and finally its native seL4 architecture is implemented in chapter 6. Finally,

the conclusions derived from the research are laid out, as well as some possibilities for

expanding the presented method in the future.

vii

TABLE OF CONTENTS

PAGE

DEDICATION .. iii
ACKNOWLEDGEMENTS .. iv

ABSTRACT .. v

LIST OF TABLES ... xii
LIST OF FIGURES ... xiv

 CHAPTER I INTRODUCTION .. 1

1.1 Industrial Control Systems .. 3

1.2 Components of Industrial Control ... 7

1.3 ICS Network Devices and Requirements .. 8

1.4 Cyber Security for Industrial Control Systems ... 11

1.5 Vulnerabilities ... 13

1.6 ICS Policies & Best Practices ... 17

1.6.1 Systems Design ... 17

1.6.2 Configurations... 20

1.6.3 Patch Management and Disaster Recovery... 23

1.6.4 Hardware Device Solution .. 24

1.7 Cyber Attacks .. 26

1.8 Summary ... 31

 CHAPTER II LITERATURE SURVEY ... 32

2.1 Introduction ... 32

2.2 Formal Methods .. 33

viii

2.2.1 Model Checking .. 34

2.2.2 Theorem Proving .. 40

2.2.3 Standards and Certifications ... 40

2.2.4 Limits of Formal Methods .. 43

2.3 Verification .. 44

2.3.1 Verification of a Cryptographic Primitive: SHA-256 45

2.3.2 Verified correctness and security of OpenSSL HMAC 46

2.3.3 HACL∗: A Verified Modern Cryptographic Library 48

2.3.4 Breaking and fixing the Needham-Schroeder Public-Key Protocol using

FDR ... 49

2.3.5 Implementing TLS with Verified Cryptographic Security 51

2.3.6 The Temporal Logic of Actions, TLA+ .. 53

2.3.7 Use of Formal Methods at Amazon Web Services 54

2.4 Modeling and Verification of Operating Systems ... 55

2.4.1 The Bell-La Padula model .. 56

2.4.2 The transfer of information and authority in a protection system 58

2.4.3 seL4: formal verification of an OS kernel .. 60

2.4.4 The HACMS program: using formal methods to eliminate exploitable

bugs ... 62

2.5 Cyber Security for Control Systems .. 64

2.5.1 Formal Vulnerability Analysis of a Security System for Remote Fieldbus

Access ... 64

2.5.2 Towards Formal Security Analysis of Industrial Control Systems 66

ix

2.5.3 Anomaly detection in cyber-physical systems: A formal methods approach

... 67

2.5.4 Formal modelling and analysis of DNP3 secure authentication 68

2.5.5 Attack taxonomies for the Modbus protocols ... 70

2.6 Summary ... 71

 CHAPTER III HIGH ASSURANCE CYBER-SECURITY DEVICES FOR INDUSTRIAL

 CONTROL SYSTEMS USING TLA+ AND SEL4 .. 72

3.1 Introduction ... 72

3.2 Industrial Control Systems (ICS) .. 74

3.3 TLA+ ... 76

3.4 seL4 and CAmkES .. 78

3.5 Application of Verified Systems for Control Systems Security 80

3.6 Translation of TLA+ and PlusCal into CAmkES .. 82

3.7 Security Preprocessor as Previously Designed ... 86

3.8 Summary ... 90

 CHAPTER IV MODELING A BUMP-IN-THE-WIRE SECURITY

PREPROCESSOR ... 92
4.1 Introduction ... 92

4.2 Assumptions .. 93

4.3 Formal TLA+ Specifications for Components and Properties 95

4.3.1 Modeling the Trusted Network Component ... 95

4.3.2 Modeling the Untrusted Network Component .. 104

4.3.3 Modeling the Protocol Checking Component... 110

4.3.4 Modeling the Cryptographic Component ... 117

x

4.3.5 Modeling the System .. 123

4.3.6 Additional Operators and Functions in TLA+ .. 126

4.4 Summary ... 132

 CHAPTER V MODEL CHECKING, INPUT VALUES, STATES 133

5.1 Introduction ... 133

5.2 TLC Model Checker .. 133

5.3 State Explosion Considerations ... 135

5.4 Trusted Network Component States and Inputs .. 138

5.5 Untrusted Network Component States and Inputs .. 140

5.6 Protocol Checking States and Inputs ... 141

5.7 Cryptographic Component States and Inputs .. 141

5.8 System Model States and Inputs ... 142

5.9 Summary ... 143

 CHAPTER VI CAMKES ARCHITECTURE FOR A BUMP-IN-THE-WIRE SECURITY

PREPROCESSOR .. 144

6.1 Introduction ... 144

6.2 CAmkES Definitions for Components, Interfaces, and Connections 145

6.2.1 Modtx: The Trusted Network Interface .. 146

6.2.2 Signtx: The Untrusted Network Interface ... 148

6.2.3 Modchk: The Protocol Checker .. 152

6.2.4 Crypto: The Cryptographic Service .. 154

6.2.5 Pre-defined RPC Connections .. 156

6.3 Summary ... 157

xi

 CHAPTER VII CONCLUSIONS AND FUTURE WORK .. 159

 REFERENCES .. 162

 APPENDICIES .. 171

 CURRICULUM VITA .. 172

xii

LIST OF TABLES

TABLE PAGE

Table 1: A Modbus ASCII message ... 9

Table 2: Priorities of IT and ICS Networks .. 13

Table 3: Stuxnet Capabilities and Targeted Vulnerability .. 28

Table 4: EAL descriptions and example products .. 41

Table 5: Criticality Levels of DO-178B Standard .. 42

Table 6: Benefits of TLA+ in Amazon's Ecosystem. Adapted from [103] 55

Table 7: Comparison of attacker profiles, from [118] .. 67

Table 8: Sample of Possible Attacks against Modbus .. 70

Table 9: CAmkES primitives .. 82

Table 9: The desired properties of the Trustnet_in thread .. 98

Table 10: TLA+ symbols used in the property definitions for trustnet_out 99

Table 11: The desired properties of the Trustnet_out thread .. 101

Table 12: Properties of the Untrustnet_in thread .. 106

Table 13: The desired properties of the Unrustnet_out thread 109

Table 14: A Modbus ASCII message ... 112

Table 15: Modbus function codes. Adapted from [123] ... 113

Table 16: The desired properties of the Modchk thread ... 115

Table 17: The desired properties of the Sign thread ... 119

xiii

Table 18: Desired properties of the Verify thread .. 121

Table 19: Desired informal properties of the security preprocessor 124

Table 20: The desired formal properties of the security preprocessor 125

Table 21: TLC Running Statistics for the trusted network component 139

Table 22: Test messages for Trustnet_in .. 139

Table 23: TLC Running Statistics for the untrusted network component 141

Table 24: TLC Running Statistics for the protocol checking component 141

Table 25: TLC Running Statistics for the cryptographic component 142

Table 26: TLC Running Statistics for the security preprocessor 142

Table 27: Relationship between TLA+ specifications and CAmkES components 146

Table 28: A Modbus ASCII message ... 153

xiv

LIST OF FIGURES

FIGURE PAGE

Figure 1: A PLC field device setup... 5

Figure 2: A PLC process network setup ... 6

Figure 3: Proposed network design for a unidirectional gateway. Taken from [49] 26

Figure 4: An example Kripke structure. Taken from [69] .. 36

Figure 5:A FIFO queue capped at 3 elements .. 37

Figure 6: Range of costs required for completing product evaluations at various

evaluation assurance levels. Adapted from GAO report [24] ... 44

Figure 7: Range of sample cost of NIAP evaluations to vendors by evaluation assurance

level. Adapted from GAO report .. 44

Figure 8: The verified components of the TLS1.3 suite. Image from https://project-

everest.github.io/ ... 52

Figure 9: A sample fieldbus architecture, from [116]... 65

Figure 10: Development steps for verifying embedded control system devices. 74

Figure 11: A typical ICS network topology, adapted from [130] 75

Figure 12: Development steps for verifying seL4 designs using TLA+. 81

Figure 13: CAmkES directory setup for an example application. Each component has its

own directory housed within the “Components” directory. Each component directory has

a camkes file and a src folder containing C code. ... 83

xv

Figure 14: PlusCal definitions for Send and Receive macros ... 84

Figure 15: Send macros in TLA+ and their translations into CAmkES connections.

Declarations of seL4RPCCall connections from the Modtx component to the protocol

checking component (conn1) and the crypto component (conn2) 84

Figure 16: A Send macro in TLA+ and its translation to a CAmkES interface 85

Figure 17: Translation of a PlusCal send macro to a CAmkES component definition 85

Figure 18: Connection from the control center (left) to RTU (right) on a typical SCADA

network ... 88

Figure 19: Connection from the control center to RTU with the FD-SPP installed 88

Figure 20: FD-SPP architecture .. 89

Figure 21: Flowchart for Trustnet_in thread ... 97

Figure 22: Flowchart for Trustnet_out thread ... 103

Figure 23: Flowchart for untrustnet_in thread .. 105

Figure 24: Flowchart for Untrustnet_out thread ... 108

Figure 25: Flowchart for the Modchk component .. 114

Figure 26: Flowchart for the IsModbus operator .. 114

Figure 27: Flowchart for the Sign thread .. 119

Figure 28: Flowchart for the Verify thread ... 122

Figure 29: The state space generated from (13). ... 136

Figure 30: The state space generated from Equation 14.. ... 137

Figure 31: Development steps for verifying seL4 designs using TLA+. 145

Figure 32: CAmkES output for the system architecture ... 146

Figure 33: Flow of messages through Modtx ... 148

xvi

Figure 34: The Modtx component definition .. 149

Figure 35: The ModtxIface interface definition .. 149

Figure 36: Flow of messages through Signtx ... 151

Figure 37: The Signtx component definition .. 152

Figure 38: The SigntxIface interface definition .. 152

Figure 39: The Modchk component definition ... 154

Figure 40: The ModchkIface interface definition ... 154

Figure 41: The Crypto component definition ... 156

Figure 42: The CryptoIface interface definition ... 156

Figure 43: The system composition definition ... 157

1

CHAPTER I

INTRODUCTION

Industrial control system (ICS) is a general term describing multiple

configurations of networked industrial computer systems [1]. ICSs regulate factory floors

and utilities such as power grids, dams, water-treatment facilities, and many more. Unlike

typical corporate IT networks, ICS engineers value availability above confidentiality [2].

Keeping the data in the system private is not as important as keeping the system running.

Threats to an ICS reflect this priority: an attacker seeks to disturb and disrupt the

controlled process. Disrupting these processes could lead to physical consequences

affecting the surrounding area like the attack on Maroochy Water Services, a water-

treatment plant in Australia. A disgruntled employee manipulated the control systems to

seize control from plant engineers and dump sewage into surrounding parks and rivers

[3]. The importance of availability disincentivizes ICS engineers making regular changes

or updates to the systems for fear of unscheduled downtime.

A variety of factors have led to the current challenge-riddled state of ICS cyber

security. One of the primary reasons for lack of security is that ICS networks have

historically been physically isolated from the greater internet [4][5]. SCADA

communications protocols were therefore designed to prevent accidental corruption from

a well-meaning operator rather than a purposeful attack. Incidents like Stuxnet have

shown that air-gapping a SCADA network is no longer enough protection [6]. Many

2

industry-standard protocols such as MODBUS, EtherNet/IP, Profibus, and others have no

means for ensuring the validity of messages [7], [8], [5]. This presents an opening for a

malicious user to pretend to be either an operator controlling a Programmable Logic

Controller (PLC) directly or an intermediate PLC controlling a device located at a remote

substation. Once an attacker is inside a network any message the attacker sends is trusted

and processed by the devices --- to potentially disastrous effects. A layering of multiple

defensive strategies is required to mitigate this vulnerability and adding security to the

communication protocols can cover some of the security holes. The need for security in

protocols is shown in DNP3's efforts to create Secure Authentication (SA) within the

DNP3 specification. The expanded capability of DNP3 SA currently offers protection

against many common attacks by adding a challenge-response system for ensuring

validity of communication across the DNP3 network[9]. DNP3 Secure Authentication is

limited in its coverage of security concerns: it applies only to infrastructure currently

using DNP3 and can be troublesome on networks using a variety of networking

technologies to connect central control facilities to remote substations.

Formal methods are techniques for adding a high level of assurance to designs

and implementations[10]–[14]. Human languages are ambiguous by nature and thus are

not suited to describing software beyond the planning phases. Formal modeling can be

used not only to create explicit designs, but also to logically prove certain properties of

the designs. Proofs of security and fail-safety can be very useful in an ICS environment.

This paper looks to use formal modeling and logic to prove security and assurance

properties of a protocol designed to encapsulate SCADA traffic.

3

This chapter seeks to provide the reader with enough background information on

the fields of Industrial Control Systems (ICS), ICS security, and formal methods to

understand the context behind the research presented in the following chapters. The

practical aspects of this research require a mix of resources from peer-reviewed academic

papers, established industry standards, and white papers.

1.1 Industrial Control Systems

Industrial control extends it reach across electrical grids, wastewater treatment

facilities, dams, water distribution systems, agricultural irrigation systems, pipelines for

oil and natural gas, railroads, manufacturing plants, and air traffic control. The physical

processes in these systems are controlled using electrical, mechanical, hydraulic, or

pneumatic components [1]. Historically, such processes were operated by humans using

analog mechanisms. Advances in digital technology offered new opportunities for control

systems as integrated circuits and microprocessors started to replace old analog control

loops and their human operators. As more of the controls became digital, the value of an

interconnected control system became apparent. New communication mediums and

protocols were developed to extend the reach of the system to geographically distant

substations such as a neighborhood water tower located miles away from the city’s

central distribution facility.

While advancements in ICS technology sometimes mirror that of a traditional

corporate network, its requirements and operation do not. ICS networks are seeing more

use of Ethernet, however, the protocols selected allow for some level of determinism,

real-time collection, and low overhead [15]. Traditional networks are shallow in their

functionality with a very limited set of protocols and standards. ICS networks are more

4

varied with separate entities performing separate duties with physical goals in mind [16].

Knowledge of a traditional IT network will help in understanding an ICS network, but

some key terminology explained below helps illustrate the difference.

Supervisory Control and Data Acquisition (SCADA) systems are used to control

and monitor physical systems spread over a wide geographical region [15], [17], [18].

The first SCADA systems were simple configurations of sensors connected to dials,

lights analog strip charts organized on a panel. Changes in the physical system would be

picked up by the sensor and turn a dial or register on the chart in real time. A human

would read the panel then act to adjust the system as needed. This basic system, while

admirably fulfilling its purpose of getting the operator information about the system in

real time, had some key shortcomings: an operator had to be present and monitoring the

system at all times, each output on the panel was directly connected to a sensor so wiring

new sensors became unwieldy, everything was local – substations could not be monitored

from a central location, reconfiguring the system became increasingly difficult as the

system grew, the type of data that could be collected and displayed was basic, and storage

of the data was virtually non-existent.

Modern SCADA systems utilize advancements in communication to operate over

distances of a few hundred yards to thousands of miles. Modern visual displays and

microcontrollers/microcomputers allows more flexibility in the data collected and the

control that can be exerted upon the system. There are three configurations for modern

SCADA systems: open loop where the controls on the system are defined in advance and

the state of the system has no bearing on the automated instructions, closed loop where

the data acquired from the physical system is fed into the control modules and

5

instructions are adjusted accordingly, and manual systems in which a human manually

controls the system based on the data collected.

Distributed control systems (DCS) are used to control the automation of industrial

processes at a single location. DCS oversee multiple subsystems that each have separate

responsibilities at individual points in a process. Through a DCS these subsystems can be

integrated with feedback and/or feed forward loops to compensate for variability at each

stage of the process. This allows the process as a whole to self-correct in the event a

single point misbehaves. DCS are widespread in oil refineries and food, chemical, and

automotive production plants. These connect with programmable logic controllers

(PLCs) that governs industrial equipment and processes. PLCs can be used as field

devices on SCADA and DCS systems as seen in Figure 1 or as primary control devices in

smaller systems like in Figure 2.

Figure 1: A PLC field device setup

6

Figure 2: A PLC process network setup

Understanding the manufacturing needs of the industries that use ICS helps to

understand the ICS configurations. There are manufacturing industries and distribution

industries [16]. Manufacturing industries typically involve a single location such as a

factory and are further split into continuous manufacturing process wherein the process

from raw materials to finished product runs continuously and batch manufacturing

process where the process is broken into distinct steps producing a specific amount of the

product. Examples of continuous manufacturing processes include petroleum and

distillation in a chemical plant. Food and consumer goods are examples of batch

manufacturing. The small area of operation allows for greater reliability and performance

in the networking technology used within the factory. Distribution industries, on the other

hand, control devices spread over large distances such as oil and water pipelines and

railway systems and offer less assurance in communication. These systems use leased

lines, radio frequency, and satellite links [15] to overcome these great distances, each of

7

these with their own security and reliability concerns. Distribution industries are typically

designed to handle the reliability and timing challenges that come with long distance

communications.

1.2 Components of Industrial Control

The differences between IT networks and control networks can further be detailed

in the devices and protocols that make up the environment. A Remote Terminal Unit

(RTU) interface with machinery and sensors in modern ICS networks. RTUs govern

industrial equipment and processes. They are lower cost and lower capability than a PLC

and are used in remote stations where less functionality is required and less user

interaction is desired. RTUs often comes equipped with radio capabilities for wireless

communications to the central stations. A control server (or master server) hosts the

control software and sends instructions to the PLCs and RTUs around the network. This

is usually located at the central control facility and is used to collect and process

information relayed from field devices. An Intelligent Electronic Device (IED) is a

“smart” sensor/actuator that may sit between the RTU and the machinery or it may

replace the RTU entirely and communicate directly with the control server. IEDs have

functionality to run simple routines to react to changes in the parameters of the system,

but are usually polled by RTUs or PLCs and given instructions from there.

ICS operators manipulate the system through a Human Machine Interface (HMI).

An HMI is software that allows the control engineers to monitor the elements of the

processes under control. A typical HMI can allow an engineer to set alarms in case

certain limits are exceeded, modify the processes, take manual control in case of

emergency, and read reports on runtime information. HMIs can be located in the control

8

center, on engineer workstations or laptops, and more recently on mobile devices. The

data that is collected or calculated and any triggered events or alarms are usually saved

and stored for later analysis. This data can be collected in a data historian that can reside

on the control network or an outside network with security restrictions in place to prevent

it from communicating in any way with the control network other than receiving

information. A slave historian can be used to duplicate the historian’s data onto a server

on the corporate network for the business to access and analyze.

1.3 ICS Network Devices and Requirements

ICS networking concepts and requirements evolved from a need to rein in the

wiring of early control systems. As described earlier, each sensor used to be wired

directly to the meter displaying its reading to the operator. Each sensor required a

separate wire for each binary digit it was expected to record [19]. This method of wiring

was quickly outgrown and the industry requested a solution from its vendors and

university researchers. The solution was a Fieldbus, a network that connected devices in

the field such as RTUs and IEDs to the central facilities. Fieldbus is a broad term to

describe all the communication technologies that solve this wiring problem. Many

protocols, such as Modbus[20]–[22], Distributed Network Protocol (DNP3)[23][24]–

[26], and Common Industrial Protocol (CIP) family of protocols [27], [28] are used on a

fieldbus network. These protocols are responsible for handling any device identification

in place of individual wires for each sensor. The medium for communication is undefined

for a fieldbus and may include multiple technologies such as Ethernet, serial, satellite

link, telephone lines, or radio frequency [15]. To this end, a modem is a device that can

translate a digital signal into analog for easier transmission over any number of long-

9

distance mediums. One modem would be connected at a remote substation to translate

digital signals from the RTU into analog and another would be located at the central

facility to translate the analog signal back into digital for use.

This research makes heavy use of Modbus, so it may benefit the reader to have a

longer explanation of Modbus in particular. Modbus is an open communication protocol

developed in 1979 by Modicon for use in ICS networks. ICS are difficult to install and

difficult to upgrade and have longer lifecycles relative to corporate networks. This lead to

operators preferring open standards and the proliferation of protocols like Modbus [16].

As described in the specification guide in [29], the base Modbus is a simple, stateless,

call-and-response protocol. It contains a simple addressing scheme allowing for up to 247

devices on a common bus, a field for a function code that tells the target devices which

procedure to run, and a data field that can contain up to 252 bytes for the target device to

act on. There are two versions of Modbus: Modbus RTU and Modbus ASCII. Modbus

RTU transmits raw bytes and uses a specific minimum time between bytes sent over the

bus to distinguish between frames and a Cyclic Redundancy Check (CRC) to detect errors

in transmission. Modbus ASCII operates on ASCII-encoded messages, utilizing two

bytes where Modbus RTU would only require one. Modbus ASCII distinguishes frames

with a colon. Whenever a device receives a “:” it knows a new message has started,

regardless of where the previous message left off. To detect transmission errors, Modbus

ASCII makes use of a Longitudinal Redundancy Check (LRC). The structure of a

Modbus ACSII message is presented in Table 1. This research uses Modbus ASCII for

simplicity.

Table 1: A Modbus ASCII message

10

Start Address
Function

Code
Sub code Data LRC End

“:” 2 bytes 2 bytes
2 bytes

(optional)

Up to 504

bytes
2 bytes “\r\n”

The growing interconnectedness of ICS networks with corporate networks

and devices have led to incorporation of corporate network technologies. A router is a

networking device that allows communication between logically separated networks.

These are used to allow access to the control network from the corporate network and

vice-versa. A firewall allows a network engineer to closely regulate the connections that

are made across networks. A firewall (sometimes multiple [30], [31]) located at strategic

points such as between the ICS and the corporate network or between the engineers

terminal and the fieldbus can block unwanted network traffic from reaching the ICS. A

remote access point is a device that allows control over the ICS remotely. Such devices

include laptops, tablets, and smartphones that access the control network from anywhere

through a Virtual Private Network (VPN), which encrypts traffic and “tunnels” through a

public network.

Special considerations must be made when designing an ICS network. Each

system is unique in its requirements and goals, and these factors inform the decisions

made in selecting technologies and topologies. Depending on the nature of the industry,

the timing requirements may range from 250 microseconds to 10 milliseconds. A

response time that is less than the sensor’s sample time is recommended [16]. This can

necessitate processing power at a remote substation, as performing computations

remotely might incur too significant of a delay. A distribution industry such as an oil

pipeline would have SCADA components spread over thousands of miles with different

11

options for communications at different substations. The complexity of control needed

for the system might allow simple controllers with predefined routines or might require

high-level decision making from a human operator such as in air traffic control [1]. The

need for high uptime, 99.999% or 5 minutes and 35 seconds per year of allowable

downtime per year in some cases [32], and reliability would push for a system with more

redundancy and alternate forms of communication should one fail. To go along with

availability, the impact of a failure in the system must be considered. A failure in a

nuclear reactor could have significant environmental impacts and would require both

redundant control systems and physical safety mechanisms. Finally, operator safety must

be considered. A control network in a car must be able to detect a sudden application of

the brakes to tighten the seatbelt, apply the automatic braking system, and deploy airbags

if needed.

1.4 Cyber Security for Industrial Control Systems

Industrial Control Systems (ICS) regulate processes that, if compromised, can have a

physical effect on the environment around them. A broken ICS process can cause

damages to the facilities containing the machinery and/or endanger human life [33]. As

with the design considerations varying across industry, so too do the means by which an

attacker can cause harm. Strict timing requirements mean that slowing down response

time would disrupt the system. This is especially true of close-loop systems, where a

transmission time exceeds the sample time. This error can propagate and amplify over

cycles to force the system into an unstable state [34], [35]. Programmable Logic

Controllers (PLCs), Remote Terminal Units (RTUs) and Intelligent Electronic Devices

(IEDs) are designed to be programmed and reprogrammed as needed to suit changing

12

requirements in the system. An attacker could reprogram one of these devices to modify

its behavior or adjust thresholds to effectively disable alarms. An attacker could modify

or fake information being sent to PLCs and Human-Machine Interfaces (HMIs) to

disguise unauthorized changes in the system or cause the operator to initiate inappropriate

actions. As with a corporate or home network, malware-infected workstations can have

degraded system performance or actively disrupt the system by modifying configurations.

An attacker can also interfere with the safety mechanisms such as emergency shutdown

systems, safety shutdown systems, or safety interlock systems [1], [36].

The design of ICS networks makes manipulating SCADA components simple.

ICS networks were originally isolated from corporate networks and the greater networks,

thus network traffic moving across the lines is inherently trusted. Early systems used

specialized software and hardware with proprietary protocols. Modern systems are using

cheap commercial off the shelf (COTS) hardware with open protocols and IT design

principles that promote connectivity with corporate networks and erode the isolation that

control networks used to enjoy [1][5]. While this integration of IT technology allows

corporate network security measures to be utilized, the special considerations discussed

in the previous section can limit their viability. These special considerations can also

require new technologies to be developed.

When considering the CIA triad [37], the priorities for an ICS are different than

traditional IT as seen in Table 2 [2]. Confidentiality is paramount for most IT systems.

Trade secrets, banking information, employee personal information, and other sensitive

data are stored on the IT network. The greatest cost to the organization is in this

information leaking out, so the highest priority is confidentiality. Availability is last

13

because a traditional IT staff would rather have their system go down than have sensitive

information compromised.

Table 2: Priorities of IT and ICS Networks

Priority IT SCADA/ICS

1 Confidentiality Availability

2 Integrity Integrity

3 Availability Confidentiality

Availability is the highest priority for ICS. Downtime of an ICS network could

potentially damage expensive equipment as seen in the Stuxnet attack[6], damage the

surrounding environment as seen in the Maroochy attack [3], deprive the community of

critical utilities as seen in the Ukraine attacks[38], damage the company's reputation, or

cause a loss of metering data, damaging the company's profits. Confidentiality is last

because an ICS operator would rather have an attacker in the system snooping than to

have any downtime. These factors present the challenge to security professionals.

Security professionals face an infrastructure that was built before security was a concern,

equipment that is old enough to be vulnerable to common attacks, and a zero-downtime

mindset that makes applying updates and security patches difficult.

1.5 Vulnerabilities

The National Institute of Standards and Technology (NIST) separates ICS

vulnerabilities into 6 categories: Policy and Procedural, Configuration and Maintenance,

Architecture and Design, Physical, Software Development, and Communication and

Network. Causes of security failures might overlap across categories. Specific systems

may also have unique vulnerabilities as each ICS is specially designed. Some

14

vulnerabilities can be removed or mitigated, while others must simply be accepted. See

Special Publications 800-82[1] and 800-53A[39] for detailed analysis.

Policy and Procedural vulnerabilities are introduced into ICS through lack of

security policies and a relaxed security posture in the organization. Security policies

govern staff and stakeholders on proper use of systems to reduce the attack surface of the

system. As shown above, security of ICS is often not the top priority so such policies can

be scarce. Mitigations of this class of vulnerability include awareness and training

programs to educate employees on proper upkeep of a secure environment, as well as

maintaining a proper written security policy and plans for breaches. Proper authentication

policies for employees such as smart cards and strictly enforced access policies, as well

as proper authorization policies following the principle of least privilege as described in

[37].

Misconfigured or default-configured devices make up Configuration and

Maintenance vulnerabilities. NIST describes this class of vulnerabilities as those that

would be similar to challenges faced by a corporate IT network; namely up-to-date

patches of software and proper use of security controls available from vendors such as

access control policies and firewall rules. The uptime requirements of some ICS networks

as described in the previous sections can make patching and upgrading difficult, with

some vendors recommending staying on outdated versions of software to ensure

functionality or contractually obligating asset owners to involve the vendors in upgrades

or risk voiding warrantees [32]. Legacy ICS components may be no longer supported, but

still in production. Malicious software, or malware, is a common method of attack which

can be mitigated. To go along with access control configurations, deficiencies in logging

15

can prevent detection of abnormal behavior and make forensic analysis of attacks

impossible.

Architecture and Design vulnerabilities arise from inadequate planning of ICS

growth and failure to incorporate security priorities from the beginning of development.

Legacy systems may have been designed before security technologies were widely

available or may have expanded and changed without evaluating the effects of new

capabilities on the organizations security posture. Loosely defined security perimeters

around ICS networks make proper enforcement of security policies difficult. Intermixing

of control and non-control network services and can cause control networks to be

vulnerable to common non-control issues. A control network that depends on services

such as Domain Name System (DNS) on an IT network might see reduced availability as

an IT network typically does not conform to the same uptime standards.

Physical vulnerabilities range from physical access to control equipment to

natural disasters. Improper access to network or control equipment could lead to theft,

damage of hardware, unauthorized changes or additions to software and configurations of

devices on the network, or installation of new unauthorized devices. Most devices, while

properly access controlled from networked ports, have local ports with no access control

capabilities to aid in maintenance. Consideration must be taken when securing safety-

critical equipment to not make access to emergency shutdown functions too difficult for

authorized personnel. Certain natural phenomena such as Electromagnetic Pulses, Radio

Frequency (RF) interference, and power dips and spikes can cause temporary loss of

service or permanent damage to devices and networks.

16

Software Development vulnerabilities cover errors in the design and

implementation of the software running in the environment. Fragile or bug-ridden

software that has not been developed to high-assurance standards (or was developed

before such standards existed) leave holes open for malicious or erroneous behavior to

impact operation [40][41]. Specially designed ICS networks and components make patch

release cycles difficult for vendors of ICS devices. Specific requirements for systems

mean unique software patches made available for certain customers, each with their own

testing cycles, leaving vulnerable components with no mitigations for extended periods of

time. Software lacking security tools such as separate privileges and access controls also

fit into this category.

Communication and network vulnerabilities that are present in traditional IT

networks are present in ICS networks. Unsecured communication across the network or

lack of a managed solution for restricting communication (such as proper firewalls) can

open an ICS network to attack. There are cases specific to ICS networks though; such as

use of proprietary protocols or encryption and simple embedded device drivers that are

unable to handle anything but the most expected network traffic [41]. Previous sections

described ICS networking protocol such as Modbus, but notably absent from the

discussion of the base protocol was any form of authorization or authentication. These

protocols are vulnerable to Man in the Middle attacks wherein a malicious actor

intercepts communications, and to spoofing attacks wherein an attacker masquerades as a

legitimate network device sending fake traffic. There have been efforts to retroactively

add security to open protocols [7] and to update standards to include secure operating

17

modes [23], but these still succumb to errors in design leading to more vulnerabilities

[42].

Each of these classes of vulnerabilities have seen significant effort toward

mitigation from both the private and public sector. Some of the mitigations include new

technology and software developed to fill a hole in security capabilities, while others

involve new methods for applying existing technology. There are numerous best-

practices guides [32], [1], [15], [39], [43] and whitepapers addressing each class that will

be described in the next section.

1.6 ICS Policies & Best Practices

The vulnerabilities described in the previous section have mitigating controls via

both additional technologies and more strict policies. This section describes some of the

industry standard best practices for software configurations, infrastructure designs, and

human policy to harden Industrial Control System (ICS) networks against attack. The

goal of policies is to reduce the effectiveness of attacks against existing vulnerabilities.

As such they can be considered mitigating controls for cases where a security fix cannot

be applied or does not exist. These also follow a defense-in-depth philosophy, working in

tandem to boost the effective mitigation of the system as a whole. These

recommendations come from National Institute of Standards and Technology (NIST) [1],

[39], and industry group whitepapers.

1.6.1 Systems Design

The engineering of a system is more complex than ensuring each technical

component is operating as intended. The definition of a system can change depending on

18

context. Ross Anderson describes a variety of definitions in [44] and summarized below

and applied to ICS.

1. A component such as a network card or cryptographic hardware.

2. A collection of the above plus an operating system, physical networking

devices, and networking protocols.

3. The above plus applications that run on the nodes of the network such as an

HMI.

4. The above plus operators.

5. The above plus management and corporate users

6. The above plus venders and customers

A system is more than its individual components. How the components interact

with one another and how a system might allow the human element to compromise its

integrity must be carefully considered.

The Physical Topology is the physical location and design of facilities in and

around components of an ICS. In an ICS just as in traditional IT, if an attacker has

physical access to a device then that device should be considered compromised. Physical

security is just as important as electronic security and should be closely monitored. All

doors should have locks, locks should be controlled with card readers, and physical

security logs should be monitored just as closely as firewall logs. In highly critical

systems armed guards may be necessary. Similarly, any computer devices used in the day

to day operation of the ICS such as engineering laptops or PLC programming tools

should never leave the area. Just as no unauthorized personnel should be allowed in, no

operations equipment should be allowed out.

Physical topology can extend to environmental considerations for protections

against mistake or malice. In the event a process is disrupted, having physical safeguards

such as spillways to direct overflowing liquid materials and natural berms to prevent

19

contamination outside of the area of operation. Designing physical systems to fail safe is

an integral part of safety considerations, and can act as a means to mitigate certain

security vulnerabilities.

Logical Topology, or Network Topology, is the design for the system’s behavior

and how a system’s components interact with one another. This includes considerations

for how networks are divided, restrictions on network access to certain areas and certain

devices, and policies governing behavior of humans interacting with the ICS. ICS must

be logically separated from any other network it is connected to. A demilitarized zone is

recommended as a buffer between the corporate network and the ICS. This prevents

traffic from flowing directly between the two networks. To further the separation separate

sets of authentication credentials should be used for both networks. If a control engineer’s

credentials on the corporate network are compromised then the impact to the ICS is

limited, if there is any impact at all.

The ICS itself must be split into multiple layers. An attacker should have to

penetrate multiple levels of security before reaching the critical systems. This can be

accomplished with firewalls on the drop of the ICS, between the control server and

PLCs/RTUs, and between the historian and the remote substations. Individual

components of an ICS must also be separated from one another. Traffic between the

control server and a pump at one end of the plant should have no business touching the

assembly line at the other end of the plant. Similarly the pump operator should not have

access to send commands to the assembly line.

Traffic on an ICS can be more strictly defined than traffic on a traditional IT

corporate network. With this in mind any extra functionality provided by devices on the

20

ICS that is not being used such as extra radios, open ports, and web interfaces should be

disabled. Not only does this reduce the attack surface of the ICS, but it also reduces the

amount of monitoring and logging that needs to be done. The simpler nature of ICS also

means operator roles can be more rigorously defined. Roles for operators should be

designed according to the principle of least privilege [45][44]. If a lower level operator’s

credentials are compromised the breach will only affect the systems that operator is

authorized to use.

1.6.2 Configurations

Components of an ICS network must be configured to suit their roles sufficiently

within the design of the system. While many devices might not support security-specific

features such as cryptography or access controls, they can be configured intelligently to

reduce their attack surface and improve the security of the system as a whole.

Additionally, for the devices that do support security specific features, special efforts

should be made to ensure these features are properly enabled, configured, and tested. This

section describes some of these configuration options and considerations.

Address Space Layout Randomization (ASLR) seeks to render shell code and

return-oriented programming exploits difficult by reordering the memory addresses of

elements of a program each time the program is run. ASLR is a setting that affects

software in development. The software must have a specific linker flag at compile time to

enable ASLR. ASLR is supported on Windows operating systems from Vista onward,

FreeBSD, OpenBSD, Linux, Solaris, and OS X 10.7 onward. ASLR compliments data

execution prevention (DEP) technologies. Where ASLR randomizes memory locations,

DEP prevents execution of code from certain parts of memory that are commonly

21

targeted by attackers, such as the heap and the stack. Support for ASLR and DEP is not

common in embedded devices, with only 22% of devices supporting ASLR and 44%

supporting DEP [46].

Application whitelisting is a method to eliminate the problem of having to track

the changing malware trends by only allowing applications to run which have been given

specific permission. Whitelisting software allows an administrator to specify which

executables she wants enabled on the system. Malware that infects the system would

never get a chance to execute. A case study from the Amor Group in 2012 reviewed the

results of applying application whitelisting in the North Sea oil and gas industry [47].

Implementing whitelisting on the oil rigs, ships, and other assets revealed the presence of

previously unidentified malware and helped the team catalog all of the legitimate

software running on the multitude of computer systems. After whitelisting, no

reinfections of systems were detected and a stricter management of applications was

enabled.

As control systems gradually become less isolated, the edge of the network (or

subnetworks if the control system is divided) must enforce proper access controls through

firewalling. If the ICS cannot be air-gapped from the corporate network then strict control

over all physical connections is essential to protecting the network. Firewall strategy for

an ICS is similar to firewall strategy for a traditional IT network. When deciding on a

firewall solution at minimum the firewall should require authentication before any

configuration changes are made, be able to perform self-testing, and be able to perform

logging. Firewall rules must be made according to the whitelist philosophy: traffic is

denied unless it is explicitly allowed. This is vitally important because even the most

22

innocent of traffic can cause problems to an ICS. A simple network enumeration, a

perfectly harmless operation on a corporate network, can cause system outages.

Considering how time-sensitive an ICS can be this “harmless” traffic can consume

enough processing time to effectively render the nodes in the network unavailable. A

firewalling strategy can be split between two separate methods, ingress and egress.

Ingress filtering means filtering network traffic coming into the network from the

outside. Filtering incoming traffic is the first line of defense against malware infiltrating

the ICS. There is very little traffic that should be entering the ICS. Traffic allowed to

enter an industrial control system (ICS), if there is to be any allowed, can be clearly

defined. Consideration can be given to the purpose of incoming traffic, from where the

traffic originates, the communication protocols necessary, whether these operations can

be done locally, and the time of day or week this traffic can be expected. These questions

allow strict rules to be implemented and policies for temporary rules to be enforced.

Egress filtering involves filtering the network traffic leaving the network and

originating from the inside. Since no system is unbreakable, it is important to implement

firewall rules under the assumption that the system has already been compromised. A

compromised system often makes outbound connections to a control server, either to

push data or to receive further instructions. To this end it is necessary to filter outbound

traffic just as much as inbound traffic. If malware finds its way onto the system through

USB, such as described earlier with Stuxnet, then its damages can be limited by blocking

its attempts to make connections outside the network. The same consideration should be

made for egress filtering as ingress, with traffic leaving the network clearly defined

before allowing traffic to egress. Another important consideration is whether the traffic

23

needs to be part of a session, with packets traveling both in and out of the network to

complete transactions. Special hardware, such as the unidirectional gateway described

later, can be used to physically limit data to a single direction should this not be required.

1.6.3 Patch Management and Disaster Recovery

Because of the extremely high importance of uptime, change and patch

management of ICS can be more daunting than traditional IT. Protecting the individual

components of the ICS, the field devices, the historians, and the operation centers at the

operating system and firmware level adds to the security of the ICS as a whole. If an

attacker can compromise a single device by exploiting outdated or misconfigured

firmware then that attacker is now in control of a trusted node and is now operating at

that node’s trust level across the network. However, an improperly tested patch can bring

just as much harm as an outdated patch that has been compromised.

Proper testing of patches is necessary before the patches reach the production

system. One of the major challenges in keeping an ICS up to date is the sheer number of

variables that can be unique to a specific ICS environment. A vendor may not be able to

tailor patches specifically enough to support a given deployment. It is possible a patch

may do more harm than good if not tested well enough. A security patch released by a

vendor must be thoroughly tested on a system as close to production as possible in

functionality before deployment. This problem is not solely the responsibility of the

control engineers. Vendors should be held to a higher standard in creating software and

patches robust enough to handle the vast variability from system to system.

24

Disaster recovery is the ability for a system to return to normal operation after an

incident, whether accidental or by malice. Adverse conditions and disasters will happen

and having procedures in place for these events is crucial to protecting the uptime of the

ICS. This policy solution takes place in the planning stages of the ICS. The ICS must be

designed in such a way that an unforeseen event can safely take down a part of the

network with minimal effect on other parts of the system. To accomplish this each

component of the system should be made redundant. If the first component goes down

the second should be ready to instantly pick up the workload. An often missed

component of redundancy is that components should fail in a way that does not result in

diverted traffic overloading other systems either at the same stage of the process,

upstream, or downstream. A graceful failure should be tested before the system goes into

production. Should the entire system go down it is important to have a disaster recovery

plan in place to get the system producing again. This can mean having a store of product

in reserve while production is restored, or having multiple plants dispersed across

multiple geographic regions which would be unlikely to be hit by the same natural

disaster.

1.6.4 Hardware Device Solution

1.6.4.1 Blue Coat ICS Protection Station Scanner

Blue Coat’s ICS Protection is a software and hardware solution that mitigates the

risk of using USB storage devices on industrial networks. Stuxnet spread so successfully

through removable drives and ICS Protection Station Scanner is designed to limit this

specific attack surface. ICS Protection Station Scanner combines a hardware solution that

resides outside the ICS and a software solution that runs on all Windows workstations

25

within the ICS. Under Blue Coat’s recommended policies any USB removable storage

must be verified by its dedicated appliance before it can be used within the ICS[48]

1.6.4.2 Unidirectional Security Gateway

Waterfall Security’s Unidirectional Security Gateway [49] addresses the problem

of securely isolating the control network while also allowing business users on the

corporate network to perform their job functions. This technology has been used to safely

replicate the plant historian outside the network for the business to read. Transfer (TX)

equipment sits inside the control network and queries the plant historian. The TX

gateway then sends this data through a one-way fiber communication channel to an RX

gateway sitting on the corporate network. The receive (RX) equipment then builds a

faithful replica of the plant historian called a corporate historian on the corporate

network. Corporate users and applications connect to the corporate historian to process

the operating data. The one-way communication is enforced in the hardware of the

gateways. The TX gateway only comes equipped with a laser, the RX gateway with only

a photocell, and data is transferred through fiber. Sending data to the plant through this

technology is not possible. A proposed network design for a unidirectional gateway is

shown in Figure 3.

Another proposed use of this technology is allowing vendor support to

troubleshoot problems on the control network without any actual remote access. A

program records the local engineer’s screen and sends that data through the unidirectional

gateway to the vendor screen. The vendor directs any troubleshooting steps through

telephone to the local engineer. In this scenario the vendor gets visual, real-time feedback

from the system while also ensuring any actions are performed by a local plant engineer.

26

Figure 3: Proposed network design for a unidirectional gateway. Taken from [49]

1.6.4.3 Tofino Xenon Security Appliance

Tofino developed a security appliance specifically for SCADA environments that

resembles a plug-and-play firewall. It is designed to operate between a process network

and the business network. It is capable of filtering messages at layers 2, 3, and 4 of the

OSI model, as well as performing deep-packet inspection to make filtering decisions

based on the specifics of the control network protocol (Modbus, DNP3, Profibus, and the

like) in use. The deep packet inspection of control network protocols is what separates

the Tofino security appliance from a typical corporate firewall solution [50].

1.7 Cyber Attacks

The instances of the aforementioned vulnerabilities being exploited has been

increasing recently as more Industrial Control Systems (ICS) have lost their isolation

from their corporate network counterparts [40][30], [51]. This section describes some

select attacks with information gathered from technical reports and forensic analyses of

27

the attacks after the fact. This section describes three attacks: Maroochy water treatment

facility attacks, the STUXNET attacks, and the Ukrainian power grid attacks. These

incidents were chosen to highlight different threat actors, different vulnerabilities

exploited, and different industries affected.

The Maroochy attacks in 2000 involved a formal employee of the asset owner

using stolen equipment to remotely manipulate water treatment facilities. Vitek Boden, a

disgruntled former employee of Hunter Watertech in Queensland, Australia,

compromised sewage equipment to dump 800,000 litres of raw sewage into local parks

and rivers [3]. Boden used intimate knowledge of the sewage system his former employer

installed to enact revenge on both Hunter Watertech and Maroochy Shire Council. Boden

drove from site to site over a 2 month period using stolen radio equipment to interfere

with signals being sent between the control server and the RTUs in the remote

substations. Boden would craft communication packets to spoof a station on the SCADA

network and send out commands as though he were that station. Because there was no

authentication processes present in the system Boden was able use this method to shut off

pumps, disable communications between components in the system, and disable the

alarms that would have alerted the plant operators to any suspicious activity. After an

investigation, Hunter Watertech determined the problems were caused by a malicious

attacker rather than faulty equipment. Boden was put under surveillance and eventually

caught when stolen radio equipment was found in his car during a routine traffic stop [3].

This attack exploited poor or non-existent security measures from the Configuration and

Maintenance class of vulnerabilities described above. Its complexity was relatively low; a

former employee was able to exploit stolen equipment without needing to develop new

28

software exploits or circumventing many security controls. As demonstrated with

STUXNET, attacks on ICS networks can get significantly more complex.

Stuxnet was an elaborate malware targeting a specific configuration of ICS in

2009 and 2010. It is a definitive example of network isolation not guaranteeing safety

[52]. Stuxnet gained infamy through its unprecedented level of complexity and because

of its notable target in nuclear facilities. Roughly 60% of all infected hosts were found in

Iran, with the remaining hosts spread across Europe, Asia, and the US. The worm was

designed to reprogram a specific set of Siemens PLCs in such a way that the system

being controlled would operate outside of its limits and degrade. It would also forge the

operating data seen on the plant monitors so plant operators would not be able to detect

any differences in the system. The complexity of the malware is readily apparent in the

sheer breadth of its functionality. Symantecs Stuxnet Dossier lists the functionality

described in Table 3, along with the category or categories of vulnerabilities the

capability targeted.

Table 3: Stuxnet Capabilities and Targeted Vulnerability

 Stuxnet Capability NIST Vulnerability Category
Self-replicates through removable drives

exploiting a vulnerability allowing auto-

execution. Microsoft Windows Shortcut

LNK/PIF Files (Automatic File Execution

Vulnerability (BID 41732))

Configuration and Maintenance

Spreads in a LAN through a vulnerability

in the Windows Print Spooler. Microsoft

Windows Print Spooler Service Remote

Code Execution Vulnerability (BID 43073)

Configuration and Maintenance

Communication and Network

Configuration

Spreads through SMB by exploiting the

Microsoft Windows Server Service RPC

Handling Remote Code Execution

Vulnerability (BID31874).

Configuration and Maintenance

Copies and executes itself on remote Configuration and Maintenance

29

computers through network shares. Policy and Procedure

Architecture and Design

Copies and executes itself on remote

computers running a WinCC database

server.

Policy and Procedure

Communication and Network

Configuration

Architecture and Design

Copies itself into Step 7 projects in such a

way that it automatically executes when the

Step 7 project is loaded.

Software Development

Updates itself through a peer-to-peer

mechanism within a LAN.

Configuration and Maintenance

Policy and Procedure

Architecture and Design

Attempts to bypass security products. Configuration and Maintenance

Policy and Procedure

Exploits a total of four unpatched Microsoft

vulnerabilities, two of which are previously

mentioned vulnerabilities for self-

replication and the other two are escalation

of privilege vulnerabilities that had yet to

be disclosed.

Software Development

Contacts a command and control server that

allows the hacker to download and execute

code, including updated versions

Configuration and Maintenance

Policy and Procedure

Contains a Windows rootkit that hid its

binaries.

Software Development

Fingerprints a specific industrial control

system and modifies code on the Siemens

PLCs to potentially sabotage the system

Configuration and Maintenance

Policy and Procedure

Hides modified code on PLCs, essentially a

rootkit for PLCs.

Software Development

This robustness suggest an immense amount of resources and person-hours

poured into the product and perhaps hints at just how high value the target in Iran was to

the authors. Symantec estimates a team of 5-10 developers and a team of management

and QA engineers were required to produce the malware [52]. Not only did it require a

lot of developers it also required a lot of ground work. Stuxnet used two compromised

digital certificates and four 0-day vulnerabilities. It required a significant amount of

reconnaissance on systems that were never connected to the internet. This means physical

30

access to the systems was required to gather information on the infrastructure, then again

to deploy the worm [6], [52]–[54]. STUXNET targeted state nuclear facilities and was

not meant to spread outside of its specific target. Its collateral damage was limited and

damage to civilian systems was limited. This care is not always taken as shown with

power grid attacks in Ukraine.

A more recent attack on utility infrastructure occurred on the 23rd of December,

2015 [38], [55], [56]. This attack, launched in Ukraine, was the first publicly known

cyber-attack targeting power infrastructure. The attack was able to disrupt power to

225,000 customers spread over 3 different service territories. The attack started off with a

spear fishing campaign and an infected Microsoft Excel document loaded with

BlackEnergy 3 [57], a malware toolkit that allows for connection to a command and

control server. With BlackEnergy 3 the attackers were able to gain persistence on the

power companies' business network and find their way through the VPN connecting the

business and ICS networks. This attack involved at least 6 months of network

reconnaissance and many steps of non-ICS related activities to reach the intended target.

Once on the control network the attackers used built-in commands of the entity's RTUs to

open the breakers in at least 27 substations to cause the outage. The attackers also

overwrote the firmware of serial-to-Ethernet devices on the network to translate traffic

from the operator's Human Machine Interface (HMI) to the Remote Terminal Units

(RTUs) to block plant operators from issuing commands to restore the substations

remotely. A telephone denial-of-service attack was subsequently launched on the

companies' call centers to restrict the flow of information to the customers affected. On a

global scale this attack was relatively small; only affecting 225,000 citizens for roughly 3

31

hours. On a local scale this attack was catastrophic to the power networks and operators

[38].

1.8 Summary

This chapter provided some insight into the motivations and challenges faced by

industrial control systems and their operators. While safety has been a primary concern

for control systems throughout their history, security has only recently become a priority.

As control systems operators gradually opted out of air-gapping their networks in favor

of better remote access, security researchers and malicious attackers alike have descended

upon the field to find and document security holes in control network components new

and old. A robust operator policy, intelligent network design, and utilization of security

mechanisms can help mitigate potential threats, but a critical cyber-physical system with

real-world consequences for failure requires a more formal approach. Chapter 2

introduces and discusses formal methods in software design and development to

guarantee a piece of software will behave in a safe and secure manner, along with

relevant research in the development of formal methods and its application to security

and control systems. Chapter 3 presents a specific issue within control systems security

and outlines the central contribution of this dissertation: a method of applying formal

methods to control system security using TLA+ and seL4. Chapter 4 details the formal

specification of a bump-in-the-wire security preprocessor, presented as a novel

contribution to the field of control system security and as a proof on concept for the

method. Chapter 5 discusses the mechanical model checking results of the specification.

Chapter 6 lays out the design for the security preprocessor in CAmkES. Finally, chapter 7

summarizes these contributions and discusses possible avenues for future work.

32

CHAPTER II

LITERATURE SURVEY

2.1 Introduction

Developments in formal analysis and security have occurred in tandem since the

1970s. Interest in the physical and logical security of data grew as mainframes and

terminals gained widespread use in both the private sector and intelligence communities.

Initially, government security efforts focused on finding and fixing software

vulnerabilities through use of “Tiger Teams” [58], [59]. These teams consisted of

computer experts acting as attackers, finding and exploiting software vulnerabilities then

reporting their results so the vulnerabilities could be fixed. After many rounds of

successful attacks, the Tiger Teams and security community at large concluded the cycle

of finding and fixing security holes was futile – a secure system must be built with an

intention to be secure from the start. Early steps of security research included finding a

definition of secure, or more accurately a method of defining security for a given system.

As can be seen in the research and development efforts in this chapter, formal methods

help do each of the following things precisely:

• Describe a system’s boundaries

• Describe a system’s desired behavior

• Describe a system’s desired properties

• Prove a system meets its specification

• Determine the circumstances under which the system does not meet its

specification

33

Funding from the National Security Agency (NSA) poured into the security

community [59], and from there flowed into the formal methods community. The early

research funded by the U.S. intelligence agencies culminated in the Trusted Computer

System Evaluation Criteria, also known as “The Orange Book”, first published by the

Department of Defense in 1983 [60]. This document provided a metric for comparing the

security posture of different computer systems, a guideline for vendors in the

development of secure computer systems, and a means for specifying security

requirements in government contracts. For example, for a system to be “A.1” certified

according to “The Orange Book”, the security requirements must be formally specified,

the system must be formally modeled, and a formal proof must exist that the model meets

its specification. The works described in this chapter are efforts to apply the A.1

certification criteria to an increasingly complex set of systems in an increasingly diverse

set of scenarios, as well as efforts to bring a more formal approach to security of cyber

physical systems.

2.2 Formal Methods

Progress of a society can generally be observed by the increase in complexity of

its mechanisms, both social and technological. As complexity increases, it becomes easier

to make errors in the design and implementation of systems –the accelerating rate of

vulnerability reporting seen in [61] can attest to this. Formal methods are means for

allowing engineers to develop increasingly complex systems while retaining a high

degree of reliability. When a system is formally described, it can be better understood.

Leslie Lamport, a pioneer in reasoning on distributed systems and inventor of Latex[62]

34

and Temporal Logic of Actions (TLA)[63], says on pages 1 and 2 in his book Specifying

Systems [64]:

Writing is nature’s way of letting you know how sloppy your

thinking is… Mathematics is nature’s way of letting you know how

sloppy your writing is… Formal mathematics is nature’s way of letting

you know how sloppy your mathematics is.

There are a variety of formal method techniques, each seeking to remove logical

errors from systems. The four key types of formal method techniques discussed in this

chapter are Model checking [64], Deductive Theorem proving [65], Abstract

interpretation (also known as static analysis) [66], and Type inference [67]. Model

checking involves creating a finite state machine that acts as a model of a real-world

system and relevant propositions; the checker (human or machine) attempts to show that

propositions hold in every state. Deductive theorem proving starts with a set of axioms

and deduces properties of the system the axioms describe. Abstract interpretation tries to

create an abstraction of code to form a less precise, but tractable model that can be

reasoned upon. Finally, type inference is a completely automated method for deducing

variable types at compile time and is available in many strongly-typed languages today

[67]. Each of these techniques has its own strengths and weaknesses as discussed in the

following sections.

2.2.1 Model Checking

Model checking creates a specification, or description of the system using the

system’s requirements as a starting place. The specification includes defining desired

properties and structuring each individual piece within the system [68]. Formal

specification introduces rigor using specification languages with mathematically defined

35

syntax and semantics. Even though it is only the first step in the formal methods process,

the act of formally specifying a design – describing a design precisely – can be enough to

discover and remove inconsistencies and flaws in a non-formal design. Case studies using

formal specifications at Oxford University, IBM, and Lockheed alone have shown

reduction in production costs and improvement in code quality (fewer errors, earlier

detection of errors) [11], [13], [14]. A specification can be as abstract or as granular as

necessary, ranging from describing a perfect oracle that returns perfectly encrypted

ciphertext to describing individual memory operations.

Model checking is a method for automating verification of specifications [69],

[70]. A model checker typically comes with a custom language parser to allow an analyst

to formally describe a system and requirements. A model checker requires the analyst to

describe the system as a finite-state specification Φ and the desired property or set of

properties to prove ϕ. Such a system can be described using temporal logic and drawn out

in Kripke structures [71]. Kripke structures take the form of M = (S, I, R,

L)where S is a finite set of states, I is an initial state in S, R is a subset of S × S such that

∀s ∈ S, ∃s' ∈ S, (s,s') ∈ R where s and s’ are individual states, and L is an interpretation

function that maps to the alphabet of states [69]. An example of a Kripke structure of a

microwave is seen in Figure 4, taken from a lecture by Edmond Clarke on [69].

The properties to be verified can be described using linear temporal logic

[72][73]. Equations can take the form of propositions such as 𝐴 ⇒ 𝐵 (A implies B);

Boolean operations such as AND, OR and NOT; and temporal operators. Temporal

operators can be described with statements such as Xa for “a is true in the next state,” Fa

for “a will eventually be true,” Ga for “a is globally true”, and a U b for “a is true until b

36

is true.” Ga can also be expressed as “a will be true in every state” and is called an

invariant. This is sometimes called a safety property, as it specifies a dangerous state the

system should never reach. The other operators can be used to describe liveness

properties, or properties that are used to verify a system will eventually reach some set of

states.

Figure 4: An example Kripke structure. Taken from [69]

The model checker can then automatically verify the property shown in Equation

(1), that the specification models the requirements (i.e., the specification meets the

requirements and desired properties). Model checking as a discipline is most useful when

it finds counterexamples to requirements. If a model to be checked is not valid, a checker

can discover difficult to find, easily checked, counter examples that can be fixed.

However, if a model is valid, there is no easily checked method for the model checker to

verify that. The most a model checker can say is that it could not find any

37

counterexamples. Once a counterexample is found, an exact trace to the counter-example,

or bug in the system being specified and checked, is available. This is useful when the

nature of concurrent systems often produces exceedingly subtle bugs [possible ref to one

such case].

𝝓 ⊨ 𝝋 (1)

This method has classically been used in the design phase of software

development. Properties of the design can be reasoned on before any investment has been

made into writing code. This allows for fundamental problems to be captured and fixed

early and cheaply. This is not to say checking a model is easy. Even simple programs can

suffer from the State Explosion Problem, wherein the number of states to be checked

grows exponentially. Figure 5 shows the state space of a first-in-first-out (FIFO) queue

algorithm containing more than 3800 states and more than 9600 transitions, with a

maximum length of 3 elements taken from [74]. Such a small FIFO queue might not be

practical, but it gives an example of the state explosion of even relatively simple

programs.

Figure 5:A FIFO queue capped at 3 elements

38

The state explosion problem has seen significant research efforts. State explosion

is present in parallelized systems, verification of which is paramount for adoption of such

techniques in industry. An n-bit counter will have 2n states, while m interleaved processes

with n states each will have nm states. Edmund Clarke opines that there have been four

big breakthroughs in the state explosion problem thus far: Symbolic model checking with

binary decision diagrams [75], partial order reduction [76]–[78], bounded model

checking [79], and counter-example guided abstraction refinement (CEGAR) [80].

Symbolic model checking with ordered binary decision diagrams were introduced

in the mid-1980s. Representing the states as a Kripke structure invited applications of

graph theory into reducing the state space. Before this, states and transitions were

represented explicitly with linked lists in memory as any directional graph might be. In

1986, Randal Bryant showed that larger specifications could be checked if their states and

transitions were intelligently ordered into a binary decision diagram rather than a naïve

linked list, reducing the states to be checked [75]. The binary decision diagram removes

states and transitions that are implied in the specification and thus do not need to be

explicitly written and computed, saving space and processing time. It should be noted

that binary decision diagrams do not improve worst-case complexity of a model and in

practice have been unpredictable in their complexity-savings.

Partial order reduction is a method for reducing the amount of redundant work

done while processing models of concurrent systems. This method takes advantage of the

commutative nature of some processes. Often, processing step A then step B will produce

the same result as processing step B then step A. Using this property of some distributed

processes, redundant branches of states can be eliminated from the necessary

39

computation to exhaust the search space. Partial order reduction was developed

independently in the early 90s in [76]–[78].

Bounded model checking introduces satisfiability solvers to the model checking

domain. Clarke et al. found that for certain properties, especially invariants, satisfiability

solvers can find counter examples must faster than symbolic model checking and often

without the exponential space requirement of binary decision diagrams [79]. The idea is

to create a propositional formula from the states and transitions. This formula is Boolean

– meaning its variables are either true of false and can be manipulated so the formula

evaluates to either TRUE or FALSE. If the variables can be manipulated such that the

formula evaluates to TRUE, the formula is said to be satisfiable. In bounded model

checking, if the formula is satisfiable then a desired state can be reached within a set

number of transitions. This method is somewhat restricting in that it can only test for

certain properties. It is also not complete – at this time there is no way to know how long

the bounded model checker must run before a counter-example is found if one exists.

Finally, Counter-Example Guided Abstraction Refinement (CEGAR), also known

as localization reduction, is a means for automatically generating a model from a

program, then automatically abstracting away unnecessary complexity within a model

while checking [80]. The checking algorithm generates an over-approximation of the

program that includes all the behaviors of the program by creating a state for every

possible assignment of every possible variable. The transition relation is generated

through the changing of variables in the program. If the specification holds on the

abstraction, it is shown that it will hold for the concrete model. However, if a counter

example is found, the algorithm checks if the counter example exists in the concrete

40

program. If the counter example is found in the concrete program then this result is

returned. If the counter example is not found in the concrete program, then it was

introduced through the abstraction process. The abstraction is refined until the counter

example is removed and the process repeats. A discussion of the advancements in

CEGAR can be found in [80].

2.2.2 Theorem Proving

Theorem proving is the derivation of proofs from a formal system of axioms and

inference rules. A developer expresses the program to be reasoned on and the desired

properties of the systems as formulas then works to prove the properties from the given

axioms within the formal system. Such work can involve deriving new definitions from

the axioms and constructing intermediate lemmas to aid in the proving process. Though

much of this work can be done by hand, this research focuses on automated and

interactive (human-guided automation) theorem proving. Much of the work found in

section 2.3 relies heavy theorem proving, and more discussion can be found in [65].

2.2.3 Standards and Certifications

Verifying systems can be prohibitively expensive. The larger the system the

greater the expense of formal verification [11][81]. Full verification is not always

necessary though and, depending on the system and use cases, value can be derived from

a partial verification. Specific safety or security-critical properties of systems can be

reasoned and proved at a reasonable cost. There are multiple industry- and field-specific

standards for partial and full verification.

41

Common Criteria

The NIST Computer Security Division started the Common Criteria Project to

develop safety and security standards and certifications for software [82]. The goal of

these standards was to improve the availability and efficiency of evaluating and verifying

systems across IT systems. To facilitate this goal Common Criteria describes seven

Evaluation of Assurance Levels (EAL). Each level builds on top of previous levels. Table

4 lists each level, a description of the requirements to achieve that level, and example of a

product that has been certified at that level. More details of the process and requirements,

as well as more examples of projects at each assurance level, can be found on the

Common Criteria Portal [83], [84].

Table 4: EAL descriptions and example products

Level Description Example

EAL1 Functionally Tested - The system in question is

functionally tested for when security is not of great

concern. EAL1 provides evidence the implementation

functions according to the documentation. An

example of this would be a college senior capstone

project.

Microsoft Windows

Vista

EAL2 Structurally tested - a developer’s cooperation is

required. This level introduces developer testing,

configuration management, and penetration testing.

This level describes typical software development

assurance requirements in industry today.

Cisco’s Remote

Access VPN

EAL3 Methodically tested and checked - Procedures are

defined and followed throughout development to

meaningfully increase testing coverage. This level

also provides some assurance the system was not

tampered with during development.

Huawei AR series

routers

EAL4 Methodically designed, tested, and reviewed -

Maximum achievable level through good commercial

development practices, highest level likely attainable

by modifying existing software. This level has a high

security testing expectation, requiring demonstrating

Oracle Enterprise

Linux version 5

update 1

42

resistance to a medium level attack. Assurance comes

in the form of a detailed design specification.

EAL5 Semi-formally designed and tested - This is the first

level that requires some specialized security

engineering and is beyond the scope of general good

development practices. Software that reaches EAL5

likely was targeting EAL5 from the start of

development. Extra cost beyond the good

development practices is usually minimal. This level

requires semiformal design descriptions and a

structured, analyzable architecture.

Samsung S3FT9PE

16-bit RISC

Microcontroller for

Smart Card

EAL6 Semi-formally verified design and tested - When a

higher cost for a high level of assurance and security

is acceptable. A formal model of the most important

security policies is required and a semiformal design

specification. The testing requirements grow stricter:

documentation of developer testing, independent

recreation of test results, and independent penetration

testing with a high level of attacker skill. EAL6

represents a highly structured design, architecture,

and vulnerability analysis.

Crypto Library

V3.1.x

EAL7 Formally verified design and tested - The highest

level when security and safety assurance is of the

highest importance. EAL7 requires full analysis using

formally verified design and implementation as well

as comprehensive and independently confirmed

testing procedures.

Tenix Interactive

Link Data Diode

Device Version 2.1

DO-178B

DO-178B is a standard for avionics software developed by Radio Technical

Commission for Aeronautics. It defines five levels of safety criticality that help judge the

priority that should be given to the assurance of software [85]. Table 5 lists and describes

each level.

Table 5: Criticality Levels of DO-178B Standard

Criticality Level Description

No effect This software does not affect safety at all.

Minor This software reduces safety or efficiency of airplane but not

beyond capabilities of the crew to handle without injury.

43

Major Software with a Major Priority classification could cause

discomfort and possible injury to occupants.

Hazardous Software in this category could cause potentially hazardous injury

to occupants.

Catastrophic When judging avionics software, this category describes software

that, should it fail, would prevent flight and cause the deaths of

pilots, crew, and passengers.

2.2.4 Limits of Formal Methods

Formal program verification is an undecidable problem. Much like a system

approaching infallible security, a system approaching complete verification will see its

cost in time and resources also approach infinity for any non-trivial system. Formal

methods are not an end-all answer to information security. A system can never be said to

be completely secure and applying formal methods to verify a design does not change

this fact. Formal methods allow only for a specific piece of a system to be mathematically

described and its properties to be reasoned upon subjected to certain assumptions. As

soon as these assumptions are violated, the equations and proofs cease to be useful.

Because software is generally useful only when used in conjunction with other software,

hardware, people, and environments, it becomes difficult to account for all possible

external factors. A system is only as secure as its weakest link; a fully verified EAL7

application is only as secure as the kernel on which it runs, which in turn is only as secure

as the hardware on which it runs, which is only as secure as the environment in which it

runs, which is only as secure as the people who are running it. Formal methods are useful

in increasing a system’s security and robustness, but no system can ever be said to be

100% secure.

Formal methods have been time consuming and expensive in the past. Figure 6

and Figure 7 show 2006 U.S. Government Accountability Office estimates on the cost in

44

money and time for climbing the ladder of common criteria levels. The figures show the

resources required for just the evaluation piece of the certification for government

projects that pursue the certification. Higher levels of verification may also negatively

impact performance of an application as concessions might be necessary to model the

system more efficiently and prove properties [81].

Figure 6: Range of costs required for

completing product evaluations at

various evaluation assurance levels.

Adapted from GAO report [24]

Figure 7: Range of sample cost of NIAP evaluations

to vendors by evaluation assurance level. Adapted

from GAO report [24]

2.3 Verification

Modern cryptography is an intersection between mathematics and computer

science. Cryptography can be thought of in two parts: cryptographic primitives and

cryptographic systems. A cryptographic primitive is the smallest piece of a cryptographic

routine that has security properties (for example, a one-way hash algorithm or an

encryption algorithm [86]). Cryptographic systems use primitives as building blocks to

45

achieve security goals like keeping secrets and authenticating users. Primitives are

difficult to mathematically prove secure, and usually rely on heuristic security arguments

such as maturity of the algorithm and lack of weaknesses found by the community [87].

Cryptographic systems, on the other hand, can be proven secure when the primitives are

assumed secure [88]. While this survey does not go into advances in cryptography, the

research summarized in this section describes relevant advances is ensuring the code that

implements the cryptographic primitives is correct.

2.3.1 Verification of a Cryptographic Primitive: SHA-256

Code that implements cryptographic primitives correctly is valuable in raising the

level of available security, as a single correct implementation of a widely used primitive

can be used everywhere. Andrew Appel presented his work on formally verifying SHA-

256, the Secure Hash Algorithm with a 256-bit digest [88]. SHA-256 is part of the SHA-

2 family of hash functions published by the NSA in 2001. Appel specifically looked

OpenSSL’s implementation of SHA-256, noting that because his proof work applies to

the code and not to the algorithm itself, the many years of open-source scrutiny that

OpenSSL has endured is still a valuable argument to its resilience against attack. The

work shows, through a machine checked proof, that OpenSSL’s SHA-256 correctly

implements the formal specification of SHA-256 provided by the U.S. government in the

Federal Information Processing Standards (FIPS) 180-4 Secure Hash Standard [89].

Appel’s research served as a stress test for the Verifiable C program logic for the

C language and an example of how the Verified Software Toolchain (VST) can be

practically utilized. Verifiable C logic has been proven to be sound with respect to the

semantics of CompCert C, a subset of C digestible by the CompCert compiler [90]. This

46

means code properties that have been proven in Verifiable C hold for the source code.

CompCert has also been proven correct [90], meaning that properties that have been

proven for the source code will hold in the compiled code. Thus, it can be shown that the

compiled code for the SHA-256 algorithm satisfies its specification in Verifiable C. The

proof process required started by building a functional specification, or a formalization,

of the FIPS 180-4 standard in a mechanized proof assistant called Coq [91]. As this is a

process done by a human, one might ask, “how can we trust that this formalization

correctly describes the standard?” Appel points out that this trust is unnecessary, as even

if the translation is incorrect, the properties described by the standard can still be proven

in the functional specification. This work serves as a building block for future work on

verifying higher order cryptographic functions, and on verifying entire cryptographic

libraries.

2.3.2 Verified correctness and security of OpenSSL HMAC

Building on the SHA-256 verification work of Appel, Beringer et al. used a

similar method to extend the verification to include OpenSSL’s Keyed-Hash Message

Authentication Code (HMAC) algorithm [87]. This research uses the FIPS 198-1

standard for HMAC [92] and verifies that OpenSSL’s HMAC code correctly implements

FIPS 198-1 as with the previous work, but goes further than previous work to show that

the standard correctly holds its intended cryptographic properties.

HMAC is an authentication algorithm often used in communication protocols.

When using HMAC, the sender of a message m uses a secret key k that has been pre-

shared with the intended receiver. The sender computes the authentication code

s=HMAC(m,k), then attaches s to the message. When the message reaches the receiver, it

47

computes the authentication code s’ = HMAC(m,k), then verifies s’=s. Ideally, an

attacker does not know k and could not compute s. If the receiver determines s’=s, it

could trust that the message originated from the sender (as opposed to an attacker), and

has not been tampered with. FIPS has requirements on the strength of the hashing

function that can be used, but the HMAC specification can be generalized (without

specifying the cryptographic hash algorithm used) as in Equation ((2.

𝑠 = 𝐻𝐴𝑆𝐻((𝑜𝑝𝑎𝑑 ⊕ 𝑘)(𝐻𝐴𝑆𝐻(𝑖𝑝𝑎𝑑 ⊕ 𝑘)𝑚)
(

(2)

The verification steps built off both Appel’s work and earlier cryptographic proof

work by Bellare on HMAC security properties [86], [93]. The first steps were to

formalize specifications within the Coq proof assistant. The specifications are FIPS 198-1

and FIPS 180-4 for HMAC and SHA-256 respectively, Bellare’s function for the HMAC

algorithm (with pre-existing proofs), the API for OpenSSL header files for HMAC and

SHA-256, and finally assumptions made about the security properties of the underlying

cryptographic hashing algorithm. Next, the formalized specifications for Bellare’s

HMAC and the FIPS HMAC were shown to be equivalent, demonstrating that the

security proofs derived from the earlier work apply to the later standard. Further, the

formalized assumptions (common for pseudorandom functions) allowed new

cryptographic security proofs to be derived from the standards. Finally, the process of

translating from formalized specification into verified compiled binary1 is followed as

described earlier. Beringer’s research advanced the pursuit of a widely available,

verified-secure, cryptographic library.

1 The source, proof, and executable files can be found on Princeton’s VST Github Repository

(https://github.com/PrincetonUniversity/VST)

https://github.com/PrincetonUniversity/VST

48

2.3.3 HACL∗: A Verified Modern Cryptographic Library

 A collaboration between Microsoft Research and Inria has been pushing the state-

of-the-art in cryptographic verification. In 2017, this collaboration presented the High

Assurance Cryptographic Library (HACL*), a suite of formally verified implementations

of cryptographic primitives and cryptographic systems [94]. HACL* specifically targeted

the minimalist NaCl cryptographic library and API for verification work, as other

libraries like OpenSSL are complex and unsuited to verification. NaCL (pronounced

“salt”) was developed to improving the state of the art on cryptographic library security,

speed, and usability by simplifying and optimizing a core set of widely-used

cryptographic functions [95], [96]. TweetNaCl, a particularly minuscule implementation

of NaCl, fits into 100 tweets and implements ChaCha20 and Salsa20 stream ciphers, the

SHA-2 family of cryptographic hash functions, Poly1305 and HMAC authentication,

Curve25519 elliptic curve encryption, and the Ed25519 elliptic curve signature scheme

[97]. Each of these were verified and combined into a library of about 7000 lines of code

that supports the NaCl API, and TLS-specific APIs used by OpenSSL, NSS, and miTLS.

 Research on HACL* stated three goals: memory safety, functional correctness,

and secret independence. Memory safety means the software never reads or writes at

invalid memory locations. This can be achieved through strict coding practices such as

ensuring no operation reads or writes past the last cell of an array and properly

deallocating memory to leave no dangling pointers. Certain modern languages, such as

Python and Java, include garbage collection techniques that manage memory for the

coder and produces memory-safe code. However, this convenience is paid for with a

performance reduction that can be unacceptable for cryptographic applications. The

49

second goal, functional correctness with respect to the published standards, has been

explained earlier. Finally, HACL* also strives for secret independence to eliminate

certain classes of side-channel attacks. Secret independence is a coding technique that

ensures:

1. Secrets cannot be used to decide what code executes next

2. Secrets cannot be used to decide what memory to access

3. Secrets cannot be used as input to instructions with a variable time

These methods ensure that a secret cannot affect how much time a particular piece of

code takes to execute. By disconnecting the execution time from the secret, an attacker

would not be able to weaken the security by timing inputs and outputs.

 Microsoft and Inria’s techniques differ from those previously discussed. Work on

HACL* relies heavily on type-checking, instead of the automated theorem proving of

previously discussed works, though theorem proving is still used when required. A

formalized specification is still required and is created from the algorithm standards, but

using F* language (and its subsets) rather than Coq. Then, an optimized implementation

is written in Low* (a subset of F* that efficiently compiles to C) and the proof work is

done to show the implementation and formal specification are equivalent. Finally, the F*

code is compiled to verified C code with the KreMLin compiler. At the moment,

KreMLin, the F* type checker, and the theorem proving tool Z3 are unverified and must

be trusted [94].

2.3.4 Breaking and fixing the Needham-Schroeder Public-Key Protocol using FDR

Data in motion can be particularly tricky to secure correctly. Sending an

encrypted message from Alice to Bob, when both share the secret key and understand the

algorithm, might be trivially easy to analyze, but network protocols are rarely so simple.

What if the message is intended for more than one person? What if the different parties

50

don’t have a pre-shared secret key? What if the parties understand multiple encryption

algorithms and must select one? How can one party be sure of the other’s identity? How

can the sender ensure the message that is received has not been tampered with?

Answering any permutation of these questions can grow a network protocol beyond what

can be trivially understood, and often lead to mistakes that break the security of the

protocol without breaking the cryptographic primitives the protocol employs. The next

two works represent formal verification efforts in networking protocols.

One of the foundational papers in formal analysis of secure networking protocols

is Gavin Lowe’s 1996 work on the Needham-Schroeder Public-Key Protocol [98].

Needham-Schroeder was used to establish mutual identity between two agents, an

initiator A and a responder B. Public key cryptography is employed, meaning each agent

has an associated public key which can be found on a public key server, and an inverse of

the public key that is kept secret. This protocol also employs a nonce, a unique number

included in the message to keep track of messages that have already been sent. The nonce

is used to prevent an old message from being reused by an attacker. The important steps

of the protocol can be described formally in Equation (3). Na and Nb are nonces generated

by A and B respectively. {m}PK(B) indicates a message encrypted with B’s public key.

This message can only be decrypted using B’s private key, thus ensuring only B can read

the message.

Message 1. A → B ∶ A. B. {Na. A}PK(B)

Message 2. B → A ∶ B. A. {Na. Nb}PK(A)

Message 3. A → B ∶ A. B{Nb}PK(B)

(3)

51

Lowe modeled the protocol and checked it using Failures Divergences Refinement

Checker (FDR). The attacker is assumed to have full access to messages traversing the

network, but no ability to break encryption. All normal activities, such as decrypting

messages encrypted with the attacker’s public key and sending new messages are

permitted. The attacker can also replay old messages, with or without knowing the

encrypted contents of the message. The FDR checker produced a breach of security when

checking that the responder (B) will only start a session with the initiator A if A took part

in the protocol run. The model checker found this to not be the case, producing the steps

seen in Equation (4) to breach the protocol’s security guarantees. These steps show an

attacker I can use two different runs of the protocol to fool B into thinking it is

communicating with A while sending messages to I. Lowe goes further to propose a fix

to this vulnerability with proofs that the proposed fix works. Needham-Schroeder is a

large component of widely used Kerberos cryptographic system [99].

Message α. 1. A → I ∶ A. I{Na. A}PK(I)

Message β. 1. I(A) → B ∶ A. B. {Na. A}PK(B)

Message β. 2. B → I(A) ∶ B. A. {Na. Nb}PK(A)

Message α. 2. I → A ∶ I. A. {Na. Nb}PK(A)

Message α. 3. A → I ∶ A. I. {Nb}PK(I)

Message β. 3. I(A) → B ∶ A. B. {Nb}PK(B)

(4)

2.3.5 Implementing TLS with Verified Cryptographic Security

 The original communication protocol of the internet, Hypertext Transfer Protocol

(HTTP), did not include any means for encrypting transmitted data, requiring sensitive

information such as usernames and passwords and credit card information to be sent in

plaintext. Secure Hypertext Transfer Protocol (HTTPS) is the current solution for

securing general internet traffic. HTTPS is built using Transport Layer Security (TLS),

TLS is itself is a suite of many cryptographic primitives and systems. The wide variety of

52

implementations, supported protocols, and versions of TLS installed on servers leaves the

state of web security an unmanageable mess. Project Everest is a collaboration between

Microsoft Research and Inria to transform the formal specification for the newly finalized

TLS 1.3 standard into a portable library [100]. This project produced many relevant tools

and supportive libraries to aid in the proofs and translations required to produce verified

assembly. The scope of the Everest project can be seen in Figure 8.

Figure 8: The verified components of the TLS1.3 suite. Image from https://project-

everest.github.io/

 The verified libraries are only half of the contributions of the Everest project. The

authors note that software is not static; as the years pass and the web landscape evolves,

changes will need to be made to the TLS 1.3 standard, then added to the Everest portable

libraries. Changing verified code is not easy, and few organizations are capable of

modifying verified code without compromising the proofs and properties. The Everest

team will probably have to continually support the project, but future projects might be

https://project-everest.github.io/
https://project-everest.github.io/

53

undertaken by less-funded organizations with fewer verification experts thanks to the

supported tools developed alongside. These tools include:

1. HACL*: Seen in section 2.3.3

2. Low*: a subset of F* targeting low-level programming that allows finer

optimizations

3. KreMLin: a compiler (unverified currently) that extracts Low* to C

4. Vale: A tool for writing verified and high performance assemble code

2.3.6 The Temporal Logic of Actions, TLA+

Early research in formally specifying software focused on sequential actions and

produced tools that could express and reason on sequences with an acceptable level of

complexity. These tools and approaches struggled when tasked with modelling

concurrent systems [63]. Efforts to extend these tools to be applicable to concurrent

systems, usually by replacing predicate calculus with temporal logic, could not reduce the

computational complexity to be practical enough for use. Temporal reasoning on an

entire system can be prohibitively expensive. In 1994, Leslie Lamport presented his work

on modelling concurrent systems through use of actions [63]. While work focused on a

single state of a specification, Lamport’s actions comprised assertions about pairs of

states. Temporal Logic of Actions allows much of the temporal reasoning that was

consuming computer power and brain power to be replaced with standard, non-temporal,

reasoning about actions.

TLA+ is a formal modeling language developed by Leslie Lamport with a focus

on modeling and reasoning on concurrent systems [64][101]. PlusCal is an “algorithm

language” used to model algorithms in a much more expressive fashion than a typical

programming language. Both TLA+ and PlusCal use mathematical notation to expand the

reach of a model beyond a programming language to allow for more rigorous definitions

54

and descriptions of algorithms and systems[101]. The inclusion of mathematical notation

also facilitates model checking and proofs on properties of systems and algorithms.

PlusCal, a more programmer-friendly route into the TLA+ toolchain, can be

automatically translated into TLA+ and used with the TLC model checker. The TLC

model checker can be described as a brute-force checker that will explore all states up to

a certain number of state transitions and alert on any properties that have been violated

and give a trace of the steps to violate such property.

2.3.7 Use of Formal Methods at Amazon Web Services

Amazon has published at least two experience reports on using formal methods in

the design of their web services platform, specifically with TLA+ [102], [103]. Amazon

has found multiple benefits while incorporating formal specification into their

development process. The first and likely most obvious is finding existing bugs in their

platforms. Table 6 lists some of the results of checking the formalized models of systems

within Amazon’s ecosystem, with multiple bugs usually found in less than 1000 lines of

specification code. The second benefit is an increase in understanding of designs for new

systems, or new features for existing systems. Instead of building a naïve design then

modifying it to handle what might go wrong, the new design process places more focus

on “what needs to go right” from the start. This prevents edge cases from presenting new

and unimagined ways for the systems to fail. A third benefit described in the experience

report is that engineers could proceed with applying changes, whether increasing

scalability or increasing existing performance, with greater confidence. Downtime in

production services is expensive, and the risk of extended downtime must weigh into the

analysis of whether an upgrade is worth the cost. Making the proposed changes to the

55

formal specification and rechecking that all desired properties hold has given Amazon

engineers a way to achieve greater confidence in upgrades to production systems. An

optimization can only be applied if it does not introduce any problematic edge cases;

formal specification and analysis give added proof that even the most aggressive of

optimization are safe. Finally, the experience report describes the formal specifications as

useful in documenting the systems. The specifications act as precise reference for

engineers to communicate ideas and allow new engineers to learn about the system

quickly. The documentation is essentially “free”, as it is a byproduct of the formalization

process.

Table 6: Benefits of TLA+ in Amazon's Ecosystem. Adapted from [103]

System Components Line Count Benefit

S3

Fault-tolerant low-level

network algorithm
804 PlusCal Found 2 bugs

Background

redistribution of data
645 PlusCal

Found 1 bug, and

found a bug in the first

proposed fix

DynamoDB
Replication & group

membership system
939 TLA+

Found 3 bugs, some

requiring traces of 35

steps

EBS Volume management 102 PlusCal Found 3 bugs.

Internal distributed

lock manager

Fault tolerant

replication and

reconfiguration

algorithm

318 TLA+ Found 1 bug

2.4 Modeling and Verification of Operating Systems

 Achieving verified secure control systems is a game of compromises. Formal

analysis is a difficult process and it can be infeasible to verify every piece of code that

could run, or even every physical process that could occur. As such, current state-of-the-

art tries to strategically apply a formal approach to only the most critical pieces or makes

strategic compromises to performance metrics to attain a simpler and more verifiable

56

design. Some designers may only wish to verify certain properties of processes, while

leaving others to traditional testing methods. An operating system presents a level of

complexity that must be strategically planned for and verifying operating system

properties have produced valuable insight into the problem of verifying security at a large

scale. Presented here are examples of formal methods applied to operating systems.

2.4.1 The Bell-La Padula model

 The state of computing in the 1960s and 1970s encouraged time-sharing strategies

for companies and agencies that had trouble covering the costs of monolithic mainframes

on their own. For agencies that handled classified data, a separate mainframe was

required for each of the independent security levels. While time sharing presented a

major cost-saving opportunity, it also presented a novel risk in handling classified

processes, as multiple security levels would run on the same hardware and data. A high

degree of assurance that processing artifacts of each security level was kept separate was

required. There are many examples of insecure software and systems that were built only

focusing on function, that patch security holes after-the-fact [61], [104]–[106].

 David Bell and Len La Padula, as part of MITRE, were involved in early research

on defining a “mathematical model of security in computer systems”. The long-term goal

was to formally specify what security meant in a computing environment, and to build

computing environments from the ground up to meet such a definition. The Bell-La

Padula Model [59] established three rudimentary properties that must hold for a mixed-

classification system to be considered secure: simple-security (the user hold an equal or

greater security clearance than the object he or she is trying to use), discretionary-

security (the user has been granted permission to use the object), and the *-property

57

(sometimes known as the “No-Write-Down” property, where the user is not able to

transfer information to a security object of a lower specification). Any rules governing

the changes of the system’s state (accessing objects, creating objects, granting access to

another user, among others) must be proven to preserve these three properties. A system

with state-transition rules proven to preserve the three properties thus stayed in a secure

state, assuming it started in a secure state.

 Formal models require refinement before they are worth anything more than the

paper they are written on. Bell and La Padula’s model gradually matured as attempts

were made to put its rules into practice. Originally, the time required to check all the

objects a user is currently accessing when a request is made to access a new object was

punishing. Certain questions were left unanswered in the early versions of Bell-La Padula

like what level of clearance should be assigned to a task scheduler that must both read

and write multiple clearance levels simultaneously (thus violating simple-security and

star-property) when swapping jobs. These engineering problems forced the Bell-La

Padula model to more and more accurately describe a real-life computer system. More

rules were added, rules and state-transitions became more nuanced, subjects became

differentiated. Demands at the time pushed the model to more accurately describe the

Multics operating system [45] in particular.

 In his Look Back on the Bell-La Padula Model [59], David Bell notes the benefit

of the back and forth communication between himself in his modeling role and the

engineers implementing the design, both in simplifying the general model, and in

tailoring the model to ease some of the engineering challenges that were encountered. He

also acknowledges the pace of software development has harmed the security posture or

58

systems, despite advances in security technology. Easing the burden of verified security,

while also performing “selfless acts of security in the form of crafting and sharing

reference implementations of widely needed components” as David suggests, would be

common themes in the research that followed.

2.4.2 The transfer of information and authority in a protection system

 Proposed in 1977 by Richard Lipton and Lawrence Snyder [107], take-grant

consists of subjects, objects, a finite set of access rights, and a finite set of rules for

distributing the access rights. The safety analysis then determines if, given the set of rules

and initial distribution of access rights, whether a subject could ever be granted some

specific right it did not originally possess. Take-grant is decidable - that is, the safety

analysis can be completed in linear time. This model can be represented as a directed

graph, with subjects and objects as nodes, and permissions (capabilities) as edges. The

node from where the edge originates has authority (as defined by the label of the edge)

over the node to which the edge terminates. Take-grant and its variations/refinements

have many different rules, but four rules are fundamental (images adapted from [107]):

Take: If a subject s has take capability t over an object x, the subject can assume any

capabilities the object possesses.

59

Grant: If a subject s has grant capability g over an object x, s can share any of the

capabilities it posses with the x.

Create: A subject s can create a new node on the graph x with a subset of capabilities p

from the set of possible capabilities.

Remove: A subject s with a set of capabilities 𝑝 over an object x can delete a set of

capabilities 𝑟 ∈ 𝑝. The resulting capabilities s has over x can be described as 𝑝 − 𝑟. If

𝑝 − 𝑟 is empty, the edge is deleted.

Lipton and Snyder’s work was expanded by Bishop et al in a 1979 paper to include

analysis of de facto capabilities and de jure capabilities [108]. These cover capabilities

that can be obtained through some combination of take and grant capabilities of other

subjects (de facto) and capabilities that can be indirectly exercised through other nodes

on the graph (de jure). An example of de jure is a graph with 3 nodes S, X, and Y

wherein S can write to X, X can write to Y, but S cannot write directly to Y. The

60

information S is trying to write can be passed through X, then to Y. In this case, X can be

called a co-conspirator.

2.4.3 seL4: formal verification of an OS kernel

As with Bell-La Padula with Multics, Data61, under The Commonwealth

Scientific and Industrial Research Organization (CSIRO, formerly NICTA), refined and

evolved the take-grant security model to prove components running on the same

hardware could be logically isolated from one another for its secure embedded L4 (seL4)

microkernel series [10], [109], [110]. The seL4 security model modified the create rule of

the original take-grant model. After boot, all memory that has not been pre-allocated for

the kernel is divided into untyped memory (UM) objects. A resource manager outside of

the kernel has a full rights over each of the UM objects, meaning that all memory is

accounted for with capabilities. With this in mind, the create rule used in seL4’s model

requires the subject to have the create capability over some UM object. This operation is

called retype, as it takes an existing object and transforms it into something useful to the

subject. Retype is restricted to ensure no overlapping of retyped objects, and no

previously retyped objects within the memory region being retyped. The seL4 security

model makes a few other less significant changes. Its remove rule does not modify an

existing edge in the graph. As capability lists within seL4 are immutable, an edge must be

deleted then recreated with the desired set of capabilities. Revoke is an operation to

remove a set’s capabilities at once, though this can be thought of as a sequence of remove

operations. Finally, the seL4 security model does not include a take rule. A subject can

give capabilities, but cannot take capabilities.

61

 Refinement of the seL4 security model to the seL4 microkernel involved proving

that each operation that the microkernel can perform can be mapped to a single or

sequence of rules in the security model. Thus, each state the microkernel can find itself in

can be represented in the security model, and shown to hold the any properties

guaranteed by the model. One such property is isolation. Data61 was able to show that a

subsystem, a set of connected entities within the graph, is not able to gain a capability

over an entity inside another subsystem if that capability was not already present.

Additionally, they were able to show that if that capability was already present, it could

not be increased. Practically, as the kernel operations have been shown to refine the

model rules, this means components running on top of the kernel have proven isolation

properties. Proofs were completed in the proof assistant software Isabelle/HOL [111].

Every line of code within seL4 is proven to behave exactly as the specification

intended, with a focus on performance and security. Some compromises were made, such

as making no guarantees with regards to timing of execution, aggressively pushing

functionality out of the kernel and into user space where possible to reduce the codebase,

and a slight performance drop from non-verified microkernels. Despite these

compromises, the microkernel provides valuable guarantees with respect to safety,

security, and reliability.

 The seL4 microkernel has proofs of stability through use of invariants. Data61

recognizes four categories of invariants used in the proof work: low-level memory,

typing, data structure, and algorithmic invariants. Memory invariants include no objects

at memory address 0 and kernel objects do not overlap. The type invariants ensure every

kernel object has a well-defined type, and that references point to objects of the correct

62

type. The data type invariants ensure data cannot be corrupted by sloppy construction of

structures like linked lists. Examples of data type invariants are no loops in pointer

structures and that lists are always terminated with NULL. The final category is

invariants more specific to the operation of seL4, such as removing the overhead of a

runtime check by proving the condition being checked is always true. The seL4 team

notes that cleverness was needed when working with operations that delete or retype

objects but have shown that the kernel is not able to perform unsafe operations.

2.4.4 The HACMS program: using formal methods to eliminate exploitable bugs

The Defense Advanced Research Projects Agency (DARPA) has been looking at

ways to practically apply formal methods research to current and legacy projects to

bolster the resilience of U.S. military systems to cyber-attacks. In the past, researchers

had to develop their own tools to tackle the specific case of software they were trying to

verify. Often, the tools would be just as valuable to the community as the verification

work. However, the steady increase in formal methods infrastructure, that is the rise in

the level of expertise, the improvement in proof automation techniques, the exponential

increase in computing power available, and the maturity of tools, has finally brought the

techniques into the realm of practicality. In the experience report in [112], Fisher et. al.

describe DARPA’s High Assurance Cyber-Military Systems (HACMS) program and its

efforts to apply verified components to existing, unverified systems [112].

HACMS research began with an open source quadcopter. A red team

(professional hacking team) tested the security of the quadcopter and demonstrated

multiple mission-critical vulnerabilities, eventually gaining full control and flying the

quadcopter. Then, the HACMS team refactored the quadcopter and formalized its design.

63

The new design had proof of several security properties: memory safety, resilience

against malformed or unauthenticated messages, and that any authenticated and well-

formed message from the control station will eventually reach the motor controller. Once

implemented, the red team was given six weeks and full access to all the design

documents of the systems with the goal of wirelessly disrupting the operation of the new

quadcopter but were unsuccessful.

The next stage of research involved a Boeing Unmanned Little Bird helicopter

and additional constraints of not being able to refactor the hardware of the system as they

had with the quadcopter. The goal was to retrofit the Little Bird with verified components

to increase its resilience to cyber-attacks with the acknowledgement that not every piece

of software in legacy systems could be verified. For this system, HACMS employed the

seL4 microkernel to act as a layer between the hardware, the verified software

components responsible for communication with the control station, and the unverified

components responsible for the mission cameras. The isolation guarantees provided by

seL4 were leveraged to ensure that even though certain components within the helicopter

might be vulnerable, they could not be used to compromise the components critical to the

mission. After the retrofit, the red team was given root access to the mission camera

component and tasked with disrupting operation of the helicopter in general. The red

team was able to destroy the component they were given, but was not able to pivot from

that component to control others or cause a cascading failure affecting other components

[112].

64

2.5 Cyber Security for Control Systems

 Control systems have a notoriously low-priority view of cyber security. Many

popular standards for control network design and protocols were developed and

implemented before cyber threats were prevalent enough to consider. The Maroochy

attack described in [3] was the first known attack on a control system, and since then the

landscape has seen more frequent [113], [114] and more sophisticated [57], [115] attacks.

The nature of control systems requires security mechanisms to be reliable on the order of

decades, with little tolerance for disruptions in day-to-day operation. Formally verified

security systems, with precisely understood behavior, then become valuable tools in both

retrofitting existing system and designing new systems to be resilient to cyber-attack.

Works in this section apply a formal approach to control systems security.

2.5.1 Formal Vulnerability Analysis of a Security System for Remote Fieldbus Access

 In 2011, Cheminod, Pironti, and Sisto presented their formal analysis of

vulnerabilities in a secure remote fieldbus access system [116]. The system to be

analyzed is depicted in Figure 9. Communication with the fieldbus is initiated by users in

the corporate network and is policed by the gateway (GW) according to access control

lists. A hierarchical symmetric key system is used to achieve confidentiality, integrity,

and authentication: there is a single domain key from which each gateway derives the

Gateway User Authentication key (GUA) and the Gateway User Encryption key (GUE).

From these, each user derives a unique User Authentication key (UA) and a unique User

Encryption key (UE). Each gateway shares the same GUA and GUE, and each gateway

and user stores their own key-pairs locally. A user can use the same key-pair to interact

with any gateway.

65

Figure 9: A sample fieldbus architecture, from [116]

 The protocol was modeled using ProVerif [117], with a User role and a Gateway

role performing the necessary actions. The authors noted that previous papers only

informally described the protocol, so formalizing it required making design choices

where the original specification was not clear. The security goals of the protocol also

needed to be formalized within ProVerif and can be informally described as such:

Privacy:

Given an attacker that is able to see all traffic on the network and produce new

messages, the attacker must never know the identity of a sender that is not itself,

the data in the request, or the response to the request.

Authentication:

Whenever a gateway receives a message from the user, the user previously and

intentionally sent that message.

An attacker is not able to forge a valid message.

Integrity:

A response is only valid if it is a response to the originating request.

 Of these properties, the authors found that only the privacy could be proven to

hold; the remaining were proven to not hold. The results produced by ProVerif showed

that this protocol is susceptible to replay attacks at multiple steps during the transaction.

An attacker could fool the gateway into thinking it is communicating with a valid user by

66

replaying a previous request within 150 seconds. An attacker can also replay a request

back to the user as though it were a response from the gateway as the request and

response share the same format.

 Next, the authors formalized the entire system infrastructure to analyze security of

a particular network configuration using a Prolog-based tool and approach. At this level

of abstraction, the protocol is assumed to be flawless at first, then flawed as described

above, to determine if a given networking configuration exposes the vulnerabilities to

attack. A state-transition system was used, defining an initial state of the network then

allowing the status of the network to evolve as actions were performed. Analysis of this

model involved determining if any state could be reached such that the security properties

were violated. The analysis determined that a flawless protocol left the system in a safe

state regardless of transitions, but the flawed protocol allowed invalid operations to

occur.

2.5.2 Towards Formal Security Analysis of Industrial Control Systems

 Marco Rocchetto and Nils Tippenhauer have extended the Dolev-Yao model for

interactive cryptographic protocols to suit the needs of control systems – specifically, a

water treatment plant [118]. The new model is then used to find potential attack vectors

of the control systems through formal analysis. The Dolev-Yao models an attacker with

full access to the network, but who is unable to break the cryptography [119]. Extensions

by Rocchetto and Tippenhauer and related works add new attacker profiles that are more

specific to control systems, as well as rules that govern the interactions between the

software and hardware (like opening a valve), and rules governing physical capabilities

of the attacker (like physical access to certain ICS components). This work is specific to

67

water treatment plants, so the authors define additional security goals of the model to

include physical preventions like over/under flow of tanks, increases/decreases in

pressure, and arbitrary changes of components (opening and closing of a valve).

 The authors demonstrated the extended model on a water treatment testbed with

two specific attacker models shown in Table 7. The Insider profile represents an

employee or contractor with full physical and virtual access to the control system. The

Cybercriminal represents a typical cyber miscreant from the dark web with little

knowledge of the system and no physical access. The demonstration revealed attack

traces that compromised the security goals stated earlier. A practical analysis was later

performed, with real people attacking the water treatment testbed roleplaying as either

insiders or cybercriminals. The formal analysis was able to detect 7 of the 8 attacks

performed in the practical analysis.

Table 7: Comparison of attacker profiles, from [118]

2.5.3 Anomaly detection in cyber-physical systems: A formal methods approach

In 2014, Jones, Kong, and Belta presented a method of detecting anomalies in

cyber-physical systems through an artificial-intelligence-generated formal specification

[120]. Anomaly detection is a common practice in traditional cyber security spaces, and

tries to erase the problem of signature detection where the detection system would need

68

to know exactly what an attack looks like in order to detect it. Instead, the anomaly

detection software knows the expected behavior of the system and can flag activity that

does not conform to expectation. The authors note that cyber-physical systems are

designed with the assumption that the design team has perfect knowledge of the system.

While this may be true in the design and implementation phases, this assumption breaks

down as the system gets more complex and human actors act like humans. Designs also

seldom account for human actors behaving maliciously, and such behavior is

intentionally hard to predict.

Jones et al. make use of a subset of signal temporal logic (STL) [73] to create

formulae that describes how a cyber-physical system should behave. Creating such

formulae to describe system behaviors is a difficult problem, even when correct models

of the system are available, so building a set of formulae through monitoring normal use

of the system would be beneficial. Monitoring and analyzing all the variables in a cyber-

physical system creates high dimensional datasets with many records, and such datasets

are the domain of artificial intelligences. The authors created an unsupervised learning

algorithm that can produce formulae describing expected activities of the system. While

the specifics of the algorithm is beyond the scope of this survey, its machine-checkable

and human-readable outputs are significant.

2.5.4 Formal modelling and analysis of DNP3 secure authentication

 The Distributed Network Protocol, Version 3 (DNP3) [23], [24], [26], [121] is a

widely-used and rigorously specified SCADA networking protocol. DNP3 was originally

designed to be reliable, but had no mechanisms for security and many attacks have been

demonstrated or theorized in [106]. DNP3-SA, or Secure Authentication, attempts to add

69

encryption and authentication through inclusion of cryptographic algorithms [9], [42].

Specifically, DNP3-SA uses two methods for adding security: non-aggressive challenge-

response to force a client to authenticate itself upon receiving a critical instruction, and

aggressive mode that allows the client to bypass the challenge-response pattern by

proving it successfully completed the previous challenge-response. However, the

specification for DNP3-SA is informal and ambiguous, leading to difficulty in both

implementing and analyzing the specification for weaknesses.

Amoah, Camptepe, and Foo presented a formalized specification of DNP3-SA

and a formal security analysis of the specification [42]. This research used Coloured Petri

Nets (CPN), a formal modeling language for discrete events [122]. CPN allows building

a master and slave, then building the protocol instructions and creating a state space of

possible behaviors through simulation. The authors also formalized the desired security

property, stated informally as: The slave is able to authenticate the master station if the

master station is able to produce a valid HMAC tag. The state space can then be

traversed to find states where the property is violated.

 As might be expected from this research’s inclusion in the survey, DNP3-SA was

found to be vulnerable. The security property was violated and the trace produced a

previously-unknown vulnerability. The specific vulnerability results from the relation

between non-aggressive mode and aggressive mode. DNP3-SA messages are sent in clear

text and can be manipulated. An attacker can break the protocol by intercepting the

challenge message and incrementing the sequence number to force an authentication

failure. Because the sequence numbers would then increment, the “old” response from

the master can then be used in aggressive mode to carry out whatever command suits the

70

attacker’s fancy. Amoah et al. also propose a solution and proof the solution removed the

vulnerability, but at time of writing this solution has not been added to the standard.

2.5.5 Attack taxonomies for the Modbus protocols

 Modbus is a relatively simple and widely-used SCADA communication protocol

developed in the 1970s [22], [123], [124]. It has a call-and-response structure and no

security considerations whatsoever [21], [125]. Modbus has two variants: Modbus Serial

where in a master communicates with slaves over a serial line, and Modbus TCP where a

set of masters can communicate with possibly overlapping sets of slaves. Huitsing et al.

analyzed both Modbus specifications and developed a taxonomy of attacks for each

[105], finding 20 attacks for Modbus serial and 28 attacks for Modbus TCP.

 The authors identified four threat categories for their taxonomies: Interception,

Interruption, Modification, and Fabrication. The attack vectors for each Modbus variant

included the master devices, the slave devices, and the communication link connecting

them, and required materials are simple a network sniffer and some device to introduce

fabricated messages to the network. A sample of the attacks is listed in Table 8.

Table 8: Sample of Possible Attacks against Modbus

Modbus Serial Modbus TCP

Diagnostic register reset

Remote restart

Slave reconnaissance

Broadcast message spoofing*

Baseline response delay*

Direct slave control*

Modbus network scanning*

Passive reconnaissance*

Response delay*

Man-in-the-middle*

Broadcast Message Spoofing*

Baseline Response Delay*

Direct Slave Control*

Modbus Network Scanning*

Passive Reconnaissance*

Response Delay*

Man-in-the-Middle*

Irregular TCP Framing

TCP FIN Flood

TCP Pool Exhaustion

TCP RST Flood

*Attack affects both protocols.

71

2.6 Summary

This chapter presents a direction and purpose of formal methods and security

research efforts generally and specifically for industrial control systems. A lot of research

effort has been put into verifying the cryptographic primitives and systems to ensure

secrecy, authentication, and integrity can be strongly preserved as in sections 2.3.1, 2.3.2,

and 2.3.3. Section 2.4 identifies research into verification of operating systems from

general, exceedingly abstract models to verified implementations with dozens of verified

security properties. Industrial control systems-specific formal work can be seen in 2.5,

with a distinct focus on protocols, vulnerability hunting, and modeling entire systems.

The original research found in this thesis recognizes previous work at the system level

and control network protocol level and fills in a gap present at the control network device

level. Moreover, previous work has a focus on new control systems as they are deployed,

and limited effect on legacy control systems currently in use. This thesis fills the support

gap in which legacy systems currently reside. The remainder of this document presents a

novel workflow for moving from a verified model to implementation in seL4 and

describes a verified specification of a security preprocessor for adding security properties

to existing control systems using legacy protocols.

72

CHAPTER III

HIGH ASSURANCE CYBER-SECURITY DEVICES FOR INDUSTRIAL CONTROL

SYSTEMS USING TLA+ AND SEL4

3.1 Introduction

While high assurance of any device that could affect a factory floor or distributed

control network has always been a goal, the focus has usually been on safety and

durability rather than security. Additionally, the methods for achieving high assurance are

typically exhaustive testing at the application level and hardware level of the device,

leaving out the operating system and any other unnecessary services that may be running

[126]. Sixnet RTUs for instance run their application on top of Linux, Allen-Bradley’s

PLC5 runs on top of Microware OS-9, and a few others run on top of VxWorks [127].

These devices are reliable but possess no proven security or safety properties. As

demonstrated with a Sixnet Remote Terminal Unit (RTU) in [128], the operating system

could potentially violate environmental assumptions made by the designers during

development and present new vulnerabilities.

This thesis presents a novel approach for verifying cyber security relevant

properties for control system devices. Using a microkernel that isolates application

components, an architecture can be developed that can be treated as a distributed system

from a security perspective. Different pieces of code with critical responsibilities can be

isolated from one another, their interactions with each other can be strictly controlled,

and proper separation of duties can be established in a similar fashion to the separation

73

kernel described by John Rushby in 1981 [129]. Reasoning about distributed,

concurrent systems can be accomplished with formally specifying the system and model

checking the specification. This presents a potential development process for creating

fully verified designs, if not fully verified implementations. The development stages in

Figure 10 show how to proceed from an idea for an embedded device with high assurance

requirements to an implementation ready for deployment on a microkernel capable of

isolating components. Development begins with informal discussions of requirements

and desired properties of the device, with a special emphasis on separating critical duties

into isolated components. These initial concepts are then formalized with a modeling

language. Often, the process of formalizing the specification and security properties

uncover design flaws before the verification step takes place.

The third step is to structure the architecture of the microkernel to match the

formal model. This definition includes any special hardware interface capabilities that the

component might need such as network interfaces and storage. The communication

between components must also be defined. If the formal model was designed with an

appropriate level of abstraction, the microkernel architecture should be simple to

implement. The formal specification gives precise documentation for exactly what

connections and capabilities each component needs.

The process described in Figure 10 can be applied to any high-assurance

embedded device. Isolated moving parts allows for small pieces of larger systems to be

verified independently. Smaller, isolated pieces also facilitate code reuse and abstraction,

simplifying the design and implementation steps of future projects. With regard to

industrial control systems, this process can be applied to the development of any

74

embedded device that typically operate in the network such as the RTUs, PLCs, modems,

intelligent electronic devices (IEDs), and multiplexers. This process would probably not

work well for the more complex hosts on a control network such as data historians and

operator workstations that often run a full commercial operating system like Windows.

This proposed work is specifically concerning the security of these control systems rather

than their operation, so the following section describes a security preprocessor embedded

device intended for use in control systems.

Figure 10: Development steps for verifying embedded control system devices.

3.2 Industrial Control Systems (ICS)

An industrial control system (ICS) network can be spread over a large geographic

distance. While communication between nodes within a single factory floor might be

easy and reliable, reaching substations and water towers across a metropolitan area is

more difficult. ICS operators utilize a variety of communication media to reach these

field sites, with differing levels of inherent privacy and resistance to tampering. The

topology shown in Figure 11 is typical of a water treatment facility control network. The

control center is where the engineers and operators will spend most of their time. The

75

control center might contain a server to record and archive all activity on the process

network called a data historian, the engineer workstations, SCADA servers or

programmable logic controllers (PLCs), and a multiplexer for communicating outside.

The water towers are located away from the command center, and might be reached via

telephone line, leased line, radio towers, cellular networks, or in the worst-case scenario

the open internet. The field sites usually contain a remote terminal unit (RTU) for

interacting with the physical processes at the field site and a modem to communicate with

the command center. ICS network protocols are notoriously lax with respect to security

mechanisms as seen in the attack taxonomies in [105], [106]. The stretch of network

infrastructure between the field sites and control center presents an attack vector as long

stretches are difficult to physically protect. Messages traversing these stretches are

vulnerable to tampering. An attacker could even introduce new, fraudulent messages to

the network. Control systems developed before security was a significant concern would

have little recourse against this sort of attack.

Figure 11: A typical ICS network topology, adapted from [130]

76

The communication between the field sites and the command center is the focus

of the work presented in this chapter. Adding security to the communications from field

site to command center will remove the burden of trusting the networks the messages

might traverse. Adding security to an ICS network is not as simple as doing so for

traditional corporate networks – timing requirements are stricter, downtime is less

tolerated, and additional complexity usually means more points of failure. This chapter

discusses the use of the seL4 microkernel and the TLA+ specification language in

attempts to create a highly reliable embedded system. Additionally, this chapter describes

previous work on a bump-in-the-wire2 security preprocessor that could potentially see its

assurance level benefit from the proposed development process.

3.3 TLA+

Specifying and exhaustively exploring the state space of a distributed and

concurrent system is more difficult than in a sequential system. The order of actions

taken in the separate pieces of executing code is not defined, and one piece can affect the

environment of another, changing the behavior of both. Temporal Logic of Actions was

designed specifically for concurrent systems [63]. TLA+ is a formal specification

language with semantics that support temporal logic of actions and modeling complex

distributed systems [64], [101], [131]. Understanding the semantics of TLA+ will help

the reader understand how it can be applied and used to check for security and safety

properties. This section presents a simple example of a distributed decision-making

2 Bump-in-the-wire means the system would be put on the network in between two components

and act without either component noticing a difference.

77

system: multiple database resource managers trying to agree on whether to commit to a

transaction.

In the TCommit algorithm, described in [132] and displayed in Equation (5), is a

process for safely executing a database transaction. The transaction is performed by a set

of resource managers acting concurrently. The transaction can either commit or abort.

The resource managers can either be working, prepared to decide, committed, or aborted.

The desired properties for the system are:

1 The transaction can only commit if every resource manager is prepared to

commit.

2 If a single resource manager aborts, the transaction must be aborted.

3 All resource managers must agree on whether the transaction committed or

aborted.

The first line the TCommit specification defines is a set of resource managers RM.

The second line defines an array rmState that is indexed by the set of resource managers.

TCTypeOK defines an invariant property. TCTypeOK is true if the state of any given

resource manager is an element of the set “working, prepared, committed, aborted”. If a

resource manager finds itself is any other state, this property is violated. The expression

rmState[r] will give the state of resource manager r. TCInit describes the initial state of

the system. In the initial state, rmState is the array indexed by RM such that every

resource manager r is in the “working” state. The statement canCommit is true when

every resource manager is in the prepared or committed state. The statement

notCommitted is true if no resource manager has decided to commit. Following these

definitions are the actions that a resource manager can take. Prepare can occur when

resource manager rm is in the working state. The next state is one in which rm is prepared

and the other resources managers are the same state they were in the previous state.

78

Decide can occur when a given resource manager rm is in the prepared state and

canCommit is true OR when rm is in the working or prepared state and no other resource

manager has committed, leading to an abort.

 The important line in this simple specification is TCConsistent. This

invariant property is true if no two resource managers are in the committed and aborted

states at the same time. When this model is used as input to the TLC model checker,

every generated state will be checked for conformance to TCConsistent. If TLC finds no

state which violates the property, then work is complete.

TCInit ≜ rmState = [rm ∈ R ↦ working]
TCTypeOK ≜ rmState ∈ [RM → {working, prepared, committed, aborted}

canCommit ≜ ∀rm ∈ RM ∶ rmState[rm] ∈ {prepared, committed}
notCommitted ≜ ∀rm ∈ RM ∶ rmState[rm] # committed
Prepare(rm) ≜ ∧ rmState[rm] = working

 ∧ rmState′ = [rmState EXCEPT ! [rm] = prepared]
Decide(rm) ≜ ∨ ∧ rmState[rm] = prepared

 ∧ canCommit
 ∧ rmState′ = [rmState EXCEPT ! [rm] = committed]
 ∨ ∧ rmState[rm] ∈ {working, prepared}
 ∧ notCommitted
 ∧ rmState′ = [rmState EXCEPT ! [rm] = aborted]

TCNext ≜ ∃rm ∈ RM ∶ Prepare(rm) ∧ Decide(rm)
TCSpec ≜ TCInit ∧ [][TCNext]_rmState
TCConsistent ≜ ∀rm1, rm2 ∈ RM ∶ ¬ ∧ rmState[rm1] = "aborted"

 ∧ rmState[rm2] = committed

(5)

3.4 seL4 and CAmkES

The seL4 microkernel has been fully verified from design to implementation to

provide a high level of assurance [109], [110], [133], [134]. seL4 was the evolution from

the OKL4 family of microkernels developed to reduce the size of a microkernel to the

point where a guarantee of bug-free code could be realized. seL4 provides a verified-

correct ability to logically separate processes and implement highly specified channels of

communications between components within the architecture. If a cell in the kernel is

79

compromised, it can be shown that the other cells still hold true to their desired security

properties. This allows an abstract implementation of Rushby’s separation kernel for

reducing large security kernels into smaller, more easily provable, components

mimicking a distributed system. seL4 was developed using Haskell for prototyping and

Isabelle/HOL for the heavy proof work. It comprises 10,000 lines of verified C code

requiring 18 person-years of development time as of 2018 [133].

Component Architecture for microkernel-based Embedded Systems (CAmkES) is

a component platform designed to address the increasing complexity and unreliability of

embedded systems through facilitating a modular design of system services [135], [136].

The CAmkES framework provides a language for describing components, component

interfaces, and shared memory. During the build process, each component description is

translated into scaffolding and glue code that houses the source code (usually in C) for

the service that the component provides to create a bootable system image. This

automatically generated glue code is responsible for initializing the component at boot,

running threads, and managing the component’s resources, as well as facilitating the

communication between components. Full verification of the generated glue code is a

work in progress, but the remote procedure call (RPC) portion that allows one component

to utilize the service of another has been verified to behave as though the service were

provided by the originating component itself [137].

CAmkES is the recommended tool for creating native seL4 applications and comes

integrated into the seL4 build system. Only a single CAmkES application can be running

at a time. Applications built with CAmkES are static, meaning all the specified

components and connections are created at boot time. No components, connections, or

80

interfaces can be created or destroyed during runtime. Additionally, components have a

fixed amount of memory available, defined during the design. The philosophy behind a

static application is to reduce the complexity of the verification efforts and allow

guarantees to be made about the system’s operation. The target for CAmkES, embedded

systems, is often static anyway. A device designed for control systems would also be

static, as it would likely be in the field for a long time with a single responsibility and no

need for feature changes beyond the initial deployment.

3.5 Application of Verified Systems for Control Systems Security

The guarantees offered by the seL4 microkernel can allow a higher level of

assurance to be achieved than with previous high assurance microkernels. The

verification work of the microkernel paves a path to fully verified software stacks. The

CAmkES architecture language and support provides a framework for building native

applications in small and verifiable chunks. The seL4 microkernel allows the

development of an embedded system that mimics a distributed system, so TLA+ could be

a valuable tool in reasoning on these designs. This presents a potential development

process for creating fully verified designs, if not fully verified implementations. The

development stages described in previously in Figure 10 can be expanded, with Figure 12

showing in more detail how to proceed from an idea for an embedded device with high

assurance requirements to an seL4-based implementation ready for deployment using

these techniques. The nature of CAmkES must inform the level of abstraction used in the

formal specification. For example: how the components communicate could potentially

be left out of the specification, but what the components are saying to each other should

be explicitly specified to aid in the next stage of development. With the formal

81

specification and formal properties, the TLC Model Checker is used to ensure the

specification accurately models the design, with each component behaving correctly and

the interactions between components precisely understood.

The third step is to define each component formally described in TLA+ within

CAmkES. This definition includes any special hardware interface capabilities that the

component might need such as network interfaces and storage. The communication

between components, handled with remote procedure calls (RPCs) in sel4, must also be

defined. Each component provides interfaces that other components can use to access

services. These interfaces and their structure (the calls, the parameters, and return values)

are statically defined before compilation and do not change after boot. Finally, the RPC

connections must be defined. A connection must be defined for each interface a

component might use during operation. If the TLA+ model was designed with an

appropriate level of abstraction, the CAmkES definitions should be trivial to implement.

The formal specification in TLA+ give precise documentation for exactly what

connections and capabilities each CAmkES component needs.

Figure 12: Development steps for verifying seL4 designs using TLA+.

82

3.6 Translation of TLA+ and PlusCal into CAmkES

Formally verifying a system design with this method involves specifying the

system in PlusCal, translating the PlusCal to TLA+ for model checking, then translating

the PlusCal to a CAmkES project that can be deployed on seL4. CAmkES provides

primitives (Table 9) to designers that come with security and safety guarantees. These

primitives can be modeled in TLA+ and used in building specifications. With careful

modeling, these specifications can be directly translated from PlusCal to CAmkES.

Table 9: CAmkES primitives

CAmkES primitive Description

Component A logical grouping of code and resources. Code within

components has access to all the memory that was assigned to the

component, but not other components.

Connection A method of communicating between two components

Interface The definitions of function calls that occur over connections

A component is modeled in PlusCal using a process. Processes in PlusCal are like

processes in classical computer science. They have their own local variables just as a

process would have its own address space, but unlike classical processes they can read

and write global variables that could potentially affect other PlusCal processes. Because

of these differences, modeling a classical process in PlusCal requires care from the

programmer to limit the reach of a PlusCal process to reading and writing specific global

variables in a controlled manor. In translation, a new component is created for each

Process keyword found in the PlusCal. Each component requires a new directory with a

camkes file and a src directory that contains the C code implementation. An example

CAmkES hierarchy is illustrated in Figure 13.

83

Figure 13: CAmkES directory setup for an example application. Each component has its

own directory housed within the “Components” directory. Each component directory has

a camkes file and a src folder containing C code.

Modeling communication between components is accomplished using a macro

called Send. Send contains the needed information to construct both an interface and a

connection. Send is given in Figure 14. It takes as parameters a destination queue (in

practice, this can be thought of as a destination process) and a message. When translating

to a connection in CAmkES, an seL4RPCCall is declared from the sending process to the

84

receiving process. Figure 15 shows Send calls that originate from Modtx and forward

messages to Crypto and Modchk, along with the corresponding connections created in the

CAmkES project.

macro send(dest, msg)
 begin
 *print "sending to " \o dest;
 chan[dest] := Append(chan[dest], msg);
 end macro;

macro receive(channel, msg)
 begin
 *print channel \o " received msg";
 await Len(chan[channel]) > 0;
 msg := Head(chan[channel]);
 chan[channel] := Tail(chan[channel]);
 end macro;

Figure 14: PlusCal definitions for Send and Receive macros

check2: send("messagecheck",
[id|->msgid, text|->rxBuf, source|->"trustnet_in"]);

check3: send("sign", [id|->msgid, text|->rxBuf]);

/* Things coming out of the modtx component */

 connection seL4RPCCall conn1(from modtx.modchk_iface,

 to modchk.modchk_iface);

 connection seL4RPCCall conn2(from modtx.crypto_iface,

 to crypto.crypto_iface);

Figure 15: Send macros in TLA+ and their translations into CAmkES connections.

Declarations of seL4RPCCall connections from the Modtx component to the protocol

checking component (conn1) and the crypto component (conn2)

Finally, translating Send macros into interfaces can be tricky, as TLA+ is an

untyped specification language and CAmkES defines interfaces using the strongly typed

C programming language. There have been efforts to add a refinement type system to

85

TLA+ [138], but those were not used here. Instead, invariants were used to ensure

variables conformed to their proper encodings within TLA+, and the types were

translated manually into C. The Send macro example from Figure 15 is refreshed in

Figure 16 along with its translation into an interface.

check3: send("sign", [id|->msgid, text|->rxBuf]);

procedure CryptoIface {

 void sign(in string rxBuf, in int msgid);

};

Figure 16: A Send macro in TLA+ and its translation to a CAmkES interface

Both components involved in the operation see their .camkes files modified to

reflect that the receiving process provides the interface and the sending process consumes

the interface. These modifications are seen in Figure 17.

check2: send("messagecheck",
[id|->msgid, text|->rxBuf, source|->"trustnet_in"]);

check3: send("sign", [id|->msgid, text|->rxBuf]);

component Modtx {

 control;

 provides ModtxIface modtx_iface;

 uses ModchkIface modchk_iface;

 uses CryptoIface crypto_iface;

}

Figure 17: Translation of a PlusCal send macro to a CAmkES component definition

The steps for translating from TLA+ (PlusCal specifically) to CAmkES can be

written as follows:

86

1. Using the Send and Receive macros for inter-process communication, specify a system with

multiple processes that are well behaved (i.e. they do not modify global variables other than

through Send and Receive).

2. Create a CAmkES project with an empty directory structure

3. For each process:

a. Create a subdirectory structure with name matching the process label

b. Create a .idl4 interface file in the interfaces directory with name matching the process

label

4. For each process:

a. For each Send macro in the process:

i. Create a new interface declaration (if one does not already exist with this name

and parameters) in the sending process’s .idl4 file

ii. Within this interface declaration, create a C function prototype with:

1. return type void

2. parameters matching the field names in the second argument of the Send

macro and types as specified in the invariants

iii. Within the .camkes file for the sending component

1. Insert “uses *receiving_component_interface*”

iv. Within the .camkes file for the receiving component

1. Insert “provides *receiving_component_interface*”

v. Create a new seL4RPCCall connection from sending process to receiving

interface in the root .camkes file

The final step is to fill the components with C code that implements the behavior

specified in the TLA+ model. This cannot be automated in this context as TLA+ is

designed for reasoning on the what tasks a system accomplishes, not how the system

accomplishes those tasks. TLA+ specifications provide good guidance on how to

implement the C code within the components, but this is a manual task.

3.7 Security Preprocessor as Previously Designed

In 2012, Hieb, Graham, Schreiver, and Moss presented a design and prototype for

a Field Device Secuity Preprocessor (FD-SPP) to create and protect a perimeter around

field devices located at remote stations in a SCADA network [130]. The work builds

from previous papers describing a security hardened remote terminal unit (RTU) built

87

from the ground up with security as a focus [139]. This hardened RTU logically isolates

security-critical code such as cryptographic services, access control enforcement, and the

policy decision point from each other and from the network interfaces. Feedback on this

work led to pulling the security processing steps out of the RTU and into a separate

device to minimize impact of installing such features into an existing network. The FD-

SPP is an embedded control systems security device to which the proposed formal

verification techniques could be applied.

The FD-SPP can act as a bump-in-the-wire configuration to allow a simple

installation of two devices at either end of a communication line. Installation should be as

simple as plugging them in and turning them on – no other devices on either end of the

network would need to be bothered. Additionally, the FD-SPP should not add any new

attack vectors to the network. The layered security of isolated components and

cryptographic mechanisms would reduce the attack surface and make compromising the

application very difficult. Figure 18 simplifies a SCADA network to the pieces relevant

to this discussion. A Human-Machine Interface (HMI) or a Programmable Logic

Controller (PLC) in the control center would communicate through some medium to an

RTU at a remote substation. Figure 19 illustrates how a FD-SPP would change the

network diagram. One FD-SPP device would need to be placed in the control center right

after the HMI, and a second device would need to be place in the substation right before

the RTU. Both devices encapsulate messages going out of their respective zones, and

both devices decapsulate messages coming into their prospective zones.

88

Figure 18: Connection from the control center (left) to RTU (right) on a typical SCADA

network

Figure 19: Connection from the control center to RTU with the FD-SPP installed

 The FD-SPP offered in 2012 was built on top of an unverified but high

assurance microkernel. Hieb et al. designed the FD-SPP to operate with three

components, or cells, each with their own responsibilities and a limited ability to affect

one another. Threads in each cell can communicate with each other normally, but

communication between cells in different threads is strictly determined at compile time.

The cell configuration can be seen in Figure 20. The three cells act in sequence, with

messages moving through all three for processing before reaching the other side. The two

outer cells interface with the control network (the prototype utilized a serial port, but this

was not necessary). The inner cell acted as the security controller and housed the access

control and cryptographic logic. This configuration had the added benefit of protecting

the security critical process from the outside world. An attack on this device would need

to bypass at least one networking cell before attempting to compromise the security

properties.

89

Figure 20: FD-SPP architecture

The FD-SPP as proposed offered access control and authentication capabilities to

a Modbus RTU network. Modbus, both Modbus ASCII and Modbus RTU, are missing

any sort of security mechanism in their specification. As seen in [29], [105], both

mechanisms could be added with overhead small enough to fit the timing constraints in a

large portion of SCADA networks. Authentication would be provided through use of a

pre-shared key for each user and a challenge-response protocol similar to [42]. The

Modbus protocol would be extended to add the required function codes to allow for a

challenge-response: a Request code, a Challenge code, and a Response code. A Request

message would flow to the field device containing a user ID. The field device would

generate a nonce and send it back as a challenge. Finally, the control center device would

hash the nonce with the user’s secret using SHA-256 and append the result to the original

Modbus packet. The field device would also perform the hash with the user’s secret and

ensure the calculated hash and the response hash are the same. If they are equal, the

90

Modbus message can pass through to the RTU. The response from the RTU can pass

through the FD-SPP and travel back to the control center without trouble.

Hieb et al. also proposed a Role-Based Access Control (RBAC) mechanism that

would operate within the security cell. User roles would be mapped to a set of allowable

opcodes and users would be assigned user roles. During the challenge-response process,

the user would be authenticated, then checked against an access control matrix. A low-

level operator might have permission to read the control signals, but an attempt to change

control logic would be denied. The difficulty of managing roles and complexity of

management led this feature to be discarded in later designs.

The FD-SPP was developed for the OKL4 kernel, a precursor to seL4, and as such

is already separated into critical components. The OKL4 kernel limited designers to up to

three components per system, but seL4 removes this limitation. The newly designed

architecture should add a fourth component to separate the critical protocol checking

code from the critical cryptographic code and perhaps have these components work in

parallel. Stated very informally, the desired properties of the holistic system include:

1 Isolation between components such that a compromised component cannot affect

any others

2 Only proper messages can be allowed to pass through – no malformed messages

3 Only properly formed messages can originate from the device

4 Every message is properly authenticated

5 Every message is protected from tampering

6 All legitimate messages do eventually pass through (except in the case of denial

of service)

3.8 Summary

Adding security to an existing control systems network requires careful

considerations to reduce downtime, reduce added latency, and reduce added failure

91

points. A bump-in-the-wire security preprocessor built atop a high-assurance microkernel

like seL4 might reduce the impact of added security enough to be palatable to asset

owners. This chapter proposed a development cycle for engineering high-assurance

embedded systems with formally described and verified security and safety properties.

An informal design of an embedded system can be formalized and verified using TLA+.

The TLA+ specification can be used to define an architecture in CAmkES. Finally, the

components in the CAmkES architecture can be populated with the C implementations of

their algorithms.

92

CHAPTER IV

MODELING A BUMP-IN-THE-WIRE SECURITY PREPROCESSOR

4.1 Introduction

Formally specifying a system must start with choosing the properties the system

must possess. Once the properties are chosen, checking those properties informs the

design of the specification. The level of abstraction depends on what pieces of the system

are relevant to the properties. Choosing which pieces of the system that can be modeled

separately depend on how their interactions affect the properties. Metadata like unique

message identifiers may need to be included in the model that may not exist in the real

system to keep track of the moving parts. The contributions presented in this chapter are

the formal specifications written in TLA+ for each piece of a field device security

preprocessor that needed to be modeled to capture these desired properties:

1 Isolation between components such that a compromised component cannot affect

any others

2 Only proper messages can be allowed to pass through – no malformed messages

3 Only properly formed messages can originate from the device

4 Every message is properly authenticated

5 Every message is protected from tampering

6 All legitimate messages do eventually pass through (except in the case of denial

of service)

None of these properties can be directly described in TLA+. Each thread defined

in TLA+ in this chapter has subgoals, or smaller properties that can be proven and then

used in conjunction to achieve the larger properties. This chapter will first lay out any

93

assumptions made when formulating the models, then go into detail on each of the

models and their respective properties, and finally explain some novel helper functions

and formal definitions that aided in the development.

4.2 Assumptions

Every security mechanism, verified or otherwise, works on a set of assumptions

that if violated will compromise the guarantees claimed by the mechanism. An

assumption can be as simple as “a user’s password will only be known by that user” in a

corporate network environment. Beyond showing proofs of certain properties,

verification forces a designer to rigorously define any assumptions made by the system so

they can be addressed in the implementation and risk assessment. When installing a

security mechanism into an existing system, care must be taken to ensure all assumptions

made by the mechanism are met. Formalizing a design produces a list of assumptions as a

by-product that can be included in any documentation to future engineers and operators.

The modeling work presented here works from certain assumptions based on two

limitations: the scope of the research, and resources available. The first limitation

involves limiting the scope of the research to just the FD-SPP software and architecture.

The hardware is assumed to be correct. Techniques for developing reliable hardware have

come a long way, but some level of trust is still needed, specifically on hardware that

seL4 supports. The second assumption in this category is that the kernel is correct. Use of

seL4 allows this assumption to be removed in practice, but the kernel is not modeled in

TLA+. The third assumption is that the trusted parts of the control network are behaving

properly. The system, and therefore the model, is not acting as an application firewall and

deciding whether the valid and authentic Modbus messages are appropriate for the

94

control logic. A malicious operator acting on the trusted network could send destructive

messages through the system if they are properly formed - the destruction would

potentially affect the cyber-physical portion of the network and ideally leave the network

nodes unharmed. Finally, this research recognizes the network at large is still vulnerable

to denial of service attacks whether from the trusted or untrusted network. Enough

malformed messages could be introduced to the untrusted network to prevent valid

messages from getting through. The system being modeled does not attempt to address

this attack vector.

The second category of assumptions is made to reduce the size of the model and

allow a higher level of abstraction to reduce the resource strain on the researcher and the

model checker. Only the behavior of each component and system is modeled. How the

implementation achieves that behavior is left to future work. The algorithm for each

action is modeled, but the code that would run on a live system is assumed to be correct.

Secondly, the secret is assumed to be secret. An attacker that holds the secret can break

the system. Additionally, each component assumes data from the other components is

correct. While proof is given that networking components can only send well-formed

messages out to the networks, they are capable of sending invalid messages if they

receive invalid messages from the inner components. Finally, the cryptographic

algorithms are assumed to hold their claimed properties. This assumption can be eased

for HMAC through use of the verified cryptographic code described in [87], and removed

through use of CompCert as the compiler. There are currently no proofs that SHA-256 is

“secure”. The best that can be offered are heuristic arguments.

95

4.3 Formal TLA+ Specifications for Components and Properties

Formalizing a design in a modeling language like TLA+ requires deciding what is

important aspects of a system are important to capture in the model and what aspects are

unimportant and can be abstracted to ease the modeling effort. As model checking can

quickly run into the state explosion problem, care must be taken to ensure that the system

is described sufficiently to be of value, while not getting so detailed as to render checking

infeasible. The system described in the remaining sections of this chapter and seen in

[140] is modeled component by component, then as a single system. Memory

management and communication between the components is abstracted.

Everything should be made as simple as possible, but not simpler.

– Albert Einstein

4.3.1 Modeling the Trusted Network Component

The trusted network component is separated into two processes (processes can be

thought of as threads), receiving messages from the trusted network and sending

messages on the trusted network. The receive process, called trustnet_in, is designed to

poll a serial port for input, so its logic is placed within a while loop that executes while

there are messages to be processed. The algorithm for this thread is a basic loop,

visualized in, that will read a byte at a time from an incoming message and place it into a

buffer. After processing is completed, the buffers are cleared and the thread starts again

from the top. The more complicated parts come with the desired property that only well-

formed Modbus messages reach the inner components. To achieve this, the logic checks

each byte of input for “:”, indicating the start of a Modbus ASCII message. If a new

Modbus message is started before the previous one is finished, the previous message is

discarded. Whenever a “:” is received, the contents of the buffer are flushed and the “:” is

96

placed at the start of the empty buffer. Similarly, if the buffer is full despite not receiving

a complete message, its contents are discarded, and the logic waits for a new “:”.

Secondly, the logic checks for the termination of Modbus messages. Modbus ASCII

messages end with the two-byte sequence “\r\n”. When this sequence is detected, this

thread generates an object containing the message, a generated message ID, and

“trustnet_in” and places the object into the signing queue of Crypto. A similar object is

created with just the message and ID and placed in the queue of Modchk.

The desired behavior of the Trustnet_in thread is that it accepts only and all well-

formed Modbus, forwards only well-formed Modbus, forwards the Modbus to both inner

components in the same atomic step, forwards a single message exactly once, and doesn’t

overflow any buffers. The properties that need to be proven for this thread are seen in

Table 10. The formalized property can be seen in the middle and the informal description

can be seen on the right. There are several variables and custom operators in the

formalized properties that the reader might like to familiarize themselves with in Table

11 before examining the properties themselves.

97

Figure 21: Flowchart for Trustnet_in thread

98

Table 10: The desired properties of the Trustnet_in thread

Name Formalized Property in TLA+ Informal Property

SAFE1 𝐿𝑒𝑛(𝑟𝑥𝐵𝑢𝑓) ≤ 𝑀𝐴𝑋𝑀𝑂𝐷𝐵𝑈𝑆𝑆𝐼𝑍𝐸 receive buffer never

overflows

SAFE2 ∧ ∀ 𝑥 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑠𝑖𝑔𝑛𝐵𝑢𝑓𝑓𝑒𝑟) ∶ 𝐿𝑒𝑛(𝑥. 𝑡𝑒𝑥𝑡) ≤ 𝑀𝐴𝑋𝑀𝑂𝐷𝐵𝑈𝑆𝑆𝐼𝑍𝐸
∧ ∀ 𝑥 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑚𝑜𝑑𝑐ℎ𝑘𝐵𝑢𝑓𝑓𝑒𝑟) ∶ 𝐿𝑒𝑛(𝑥. 𝑡𝑒𝑥𝑡)

≤ 𝑀𝐴𝑋𝑀𝑂𝐷𝐵𝑈𝑆𝑆𝐼𝑍𝐸

sending buffer never

overflows

SAFE3 𝐿𝑒𝑛(𝑙𝑎𝑠𝑡2) < 3 last2 buffer never

overflows

SAFE4 ∧ ∀𝑥 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑠𝑖𝑔𝑛𝐵𝑢𝑓𝑓𝑒𝑟) ∶ 𝐼𝑠𝑊𝑒𝑙𝑙𝐹𝑜𝑟𝑚𝑒𝑑𝑀𝑜𝑑𝑏𝑢𝑠(𝑥. 𝑡𝑒𝑥𝑡)
∧ ∀𝑥 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑚𝑜𝑑𝑐ℎ𝑘𝐵𝑢𝑓𝑓𝑒𝑟) ∶ 𝐼𝑠𝑊𝑒𝑙𝑙𝐹𝑜𝑟𝑚𝑒𝑑𝑀𝑜𝑑𝑏𝑢𝑠(𝑥. 𝑡𝑒𝑥𝑡)

only well-formed

Modbus gets

forwarded

SAFE5 ∧ ∀𝑥 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑠𝑖𝑔𝑛𝐵𝑢𝑓𝑓𝑒𝑟) ∶
𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦({𝑦 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑠𝑖𝑔𝑛𝐵𝑢𝑓𝑓𝑒𝑟) ∶ 𝑥. 𝑖𝑑 = 𝑦. 𝑖𝑑}) = 1

∧ ∀𝑥 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑚𝑜𝑑𝑐ℎ𝑘𝐵𝑢𝑓𝑓𝑒𝑟) ∶
 𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦({𝑦 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑚𝑜𝑑𝑐ℎ𝑘𝐵𝑢𝑓𝑓𝑒𝑟) ∶ 𝑥. 𝑖𝑑 = 𝑦. 𝑖𝑑}) =
1

each message that is

forwarded has a

unique message id*

SAFE6 ∧ ∀𝑥 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑠𝑖𝑔𝑛𝐵𝑢𝑓𝑓𝑒𝑟) ∶
 ∃𝑦 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑚𝑜𝑑𝑐ℎ𝑘𝐵𝑢𝑓𝑓𝑒𝑟) ∶ 𝑥. 𝑖𝑑 = 𝑦. 𝑖𝑑
∧ ∀𝑥 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑚𝑜𝑑𝑐ℎ𝑘𝐵𝑢𝑓𝑓𝑒𝑟) ∶
 ∃𝑦 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑠𝑖𝑔𝑛𝐵𝑢𝑓𝑓𝑒𝑟) ∶ 𝑥. 𝑖𝑑 = 𝑦. 𝑖𝑑

well-formed messages

get sent to both inner

components

SAFE7 ¬(𝑟𝑥𝐵𝑢𝑓 = 〈〉) ⇒ 𝐻𝑒𝑎𝑑(𝑟𝑥𝐵𝑢𝑓) = ": " rxBuf is either empty

or starts with ":"

LIVE1 𝐼𝑠𝑊𝑒𝑙𝑙𝑓𝑜𝑟𝑚𝑒𝑑𝑀𝑜𝑑𝑏𝑢𝑠(𝑚𝑠𝑔) ⇝

 ∃𝑥 ∈ 𝑟𝑎𝑛𝑔𝑒(𝑠𝑖𝑔𝑛𝐵𝑢𝑓𝑓𝑒𝑟) ∶ 𝑥. 𝑡𝑒𝑥𝑡 = 𝑚𝑠𝑔
if the message is well-

formed then it gets

sent. This is weaker

than desired as it only

shows some message

exists, not necessarily

the same message.

LIVE2 ◇(𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠 = 〈〉) all messages are

processed

LIVE3 𝑙𝑎𝑠𝑡2 = 〈"\𝑟", "\𝑛"〉 ⇝ 𝑙𝑎𝑠𝑡2 = 〈0,0〉 last2 buffer gets reset

after each well-formed

message

Formalized properties are usually not simple and can take some effort to

understand. The property SAFE2, given again in Equation (6), is a conjunction of two

statements. Each line in the conjunction starts with ∧, meaning “and”. These two

statements make use of a local symbol 𝑥. The first half of the first statement, the portion

before the colon, can be read as “For all 𝑥, where 𝑥 is an element of the set signBuffer”.

SignBuffer is an ordered sequence of messages that are meant to be sent to the Crypto

99

Table 11: TLA+ symbols used in the property definitions for trustnet_out

Symbol Description

rxBuf A buffer that holds the bytes that are received from the

network. This is a sequence.

Range() 𝑅𝑎𝑛𝑔𝑒(𝑇) ≜ {𝑇[𝑥] ∈ 𝐷𝑂𝑀𝐴𝐼𝑁 𝑇}3

signBuffer, modchkBuffer The buffers that hold messages “sent” to the respective inner

components. These are an abstraction as the full model

implements the message passing.

last2 A sequence for keeping track of the last two characters in

rxBuf. For finding “\r\n”

IsWellformedModbus() Is true if the message length, starting, and ending characters

are all correct.

msg The raw Modbus message being processed

incomingMessages The set of messages that will be received

component. Note that SignBuffer does not contain raw Modbus. It holds message

structures with fields for the raw Modbus, the message ID, and other piece of metadata

that might need to be forwarded to a component. Following the colon, Len() returns the

length of a sequence. Text is the field within the message structure that contains the raw

Modbus, so the right of the colon is ensuring the length of the raw Modbus contained in

𝑥. 𝑡𝑒𝑥𝑡 is less than or equal to the maximum size of a Modbus packet. The second line of

the equation is the same property stated for the modchkBuffer that holds messages to be

sent to the Modchk component. These properties are invariants; they are checked to be

true in every state that is generated.

∧ ∀ x ∈ Range(signBuffer) ∶ Len(x. text) ≤ MAXMODBUSSIZE

∧ ∀ x ∈ Range(modchkBuffer) ∶ Len(x. text) ≤ MAXMODBUSSIZE (6)

Properties SAFE2 and SAFE4-6 are two properties ANDed to which the logical

AND operator is applied as fulfillment of the general property requires checking the same

3 In TLA+, as in mathematics, what a programmer calls a function is an array. The domain of the

function is the set of numbers over which the function is defined. The range of the function is the set of

values the function produces when a number from its domain is given as input. In programming terms,

Range(T) returns the elements of an array in an unordered set.

100

thing for two different buffers. SAFE5 shows that the ID sent is unique, but this property

likely will need to be adjusted upon translation to real code as the implementation for a

unique identifier will be limited to finite numbers and risks repeating. This property

might be relaxed to an assumption that the ID implementation has a low repeat

probability.

Trustnet_out

The thread responsible for collating messages from the inner components and

sending them out to the trusted network is called trustnet_out and can be seen in Figure

22. This thread works from a FIFO queue that the inner components populate.

Trustnet_out waits until a message n is placed in its queue, then checks if a message with

the same ID, message m, has already been received. Checking for the existence of

message m involves filtering a set4 for a message with the same ID. If the companion

message has not been received, then n is placed in the set of received messages and the

loop repeats. If it has, and one or both messages have been marked as invalid, then both

messages are discarded and the loop repeats. If both messages have been marked valid by

the inner components, the raw Modbus is placed in the set of valid messages that have

successfully traversed the device, finished_trustnet. Finished_trustenet abstractly

represents the raw Modbus that has been printed to the serial port. The properties that

need to be proven for this thread are seen in Table 12. The formalized property can be

seen on the left and the informal description can be seen on the right.

4 A set in TLA+ is the equivalent of a set in mathematics; it is unordered and potentially infinite.

Using a set in the specification abstracts away the specific data structure chosen for the C code. The only

stipulation is the method of the chosen data structure for finding an element must behave equivalently to

filtering a set.

101

Table 12: The desired properties of the Trustnet_out thread

Name Formalized Property in TLA+ Informal Property

SAFE1 ∧ ∀𝑥 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑠𝑒𝑟𝑖𝑎𝑙𝑝𝑜𝑟𝑡) ∶
 ∃𝑦 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑚𝑒𝑡𝑎𝑠𝑒𝑟𝑖𝑎𝑙𝑝𝑜𝑟𝑡) ∶ 𝑦. 𝑡𝑒𝑥𝑡 = 𝑥
∧ ∀𝑦 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑚𝑒𝑡𝑎𝑠𝑒𝑟𝑖𝑎𝑙𝑝𝑜𝑟𝑡) ∶
 ∃𝑥 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑠𝑒𝑟𝑖𝑎𝑙𝑝𝑜𝑟𝑡) ∶ 𝑥 = 𝑦. 𝑡𝑒𝑥𝑡

items on the serial

port and the

metaserialport are

the same (weakly,

this checks for the

existance of a

message but its not

1-1 mapping)

SAFE2 ∀𝑥 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑚𝑒𝑡𝑎𝑠𝑒𝑟𝑖𝑎𝑙𝑝𝑜𝑟𝑡):
 ∧ (∃𝑦 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠𝐹𝑟𝑜𝑚𝐼𝑛𝑛𝑒𝑟𝐶𝑒𝑙𝑙𝑠) ∶
 𝑥. 𝑖𝑑 = 𝑦. 𝑖𝑑 ∧ 𝑦. 𝑖𝑠𝑣𝑎𝑙𝑖𝑑 ∧ 𝑦. 𝑠𝑜𝑢𝑟𝑐𝑒 = "𝑚𝑜𝑑𝑐ℎ𝑘"

 ∧ (∃𝑦 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠𝐹𝑟𝑜𝑚𝐼𝑛𝑛𝑒𝑟𝐶𝑒𝑙𝑙𝑠) ∶
 𝑥. 𝑖𝑑 = 𝑦. 𝑖𝑑 ∧ 𝑦. 𝑖𝑠𝑉𝑎𝑙𝑖𝑑 ∧ 𝑦. 𝑠𝑜𝑢𝑟𝑐𝑒 = "𝑣𝑒𝑟𝑖𝑓𝑦"

Only prints if both

inner components

say its valid

SAFE3 𝐿𝑒𝑛(𝑡𝑥𝐵𝑢𝑓) < 𝑀𝐴𝑋𝑀𝑂𝐷𝐵𝑈𝑆𝑆𝐼𝑍𝐸 sending buffer never

overflows

SAFE4 ∀𝑥 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑠𝑒𝑟𝑖𝑎𝑙𝑝𝑜𝑟𝑡) ∶
 ∃𝑦 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠𝐹𝑟𝑜𝑚𝐼𝑛𝑛𝑒𝑟𝐶𝑒𝑙𝑙𝑠) ∶ 𝑥 = 𝑦. 𝑡𝑒𝑥𝑡

only valid Modbus

gets printed (this

module assumes

valid Modbus is

received from both

inner components

LIVE1 ∀𝑥 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠𝐹𝑟𝑜𝑚𝐼𝑛𝑛𝑒𝑟𝐶𝑒𝑙𝑙𝑠) ∶
 𝑥 ∈ 𝑣𝑎𝑙𝑖𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠 ∧ 𝑥. 𝑖𝑑 = 𝑚𝑠𝑔. 𝑖𝑑

 ⇝ 𝑥 ∉ 𝑣𝑎𝑙𝑖𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠

Each message that

gets its companion

message is sent or

discarded

LIVE2 ∀𝑥 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠𝐹𝑟𝑜𝑚𝐼𝑛𝑛𝑒𝑟𝐶𝑒𝑙𝑙𝑠) ∶ 𝑚𝑠𝑔 = 𝑥 ∧
 𝑥. 𝑖𝑠𝑉𝑎𝑙𝑖𝑑 ∧ (∃𝑦 ∈ 𝑣𝑎𝑙𝑖𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠 ∶ 𝑦. 𝑖𝑑 = 𝑥. 𝑖𝑑 ∧
 𝑦. 𝑖𝑠𝑉𝑎𝑙𝑖𝑑 ∧ 𝑦. 𝑠𝑜𝑢𝑟𝑐𝑒 ≠ 𝑥. 𝑠𝑜𝑢𝑟𝑐𝑒)
 ⇝ ∃𝑧 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑚𝑒𝑡𝑎𝑠𝑒𝑟𝑖𝑎𝑙𝑝𝑜𝑟𝑡) ∶ 𝑧. 𝑖𝑑 = 𝑥. 𝑖𝑑

valid messages are

eventually sent

LIVE3 ∀𝑥 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠𝐹𝑟𝑜𝑚𝐼𝑛𝑛𝑒𝑟𝐶𝑒𝑙𝑙𝑠) ∶ 𝑇𝑅𝑈𝐸 ⇒
 ◇(∃𝑦 ∈ 𝑣𝑎𝑙𝑖𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠 ∶ 𝑦. 𝑖𝑑 = 𝑥. 𝑖𝑑)

all messages are

eventually processed

An interesting note with LIVE1 is that it does not ensure that all messages that are

received are sent out through the serial port. The Trustnet_in and Untrustnet_in modules

can guarantee that messages they receive (provided the messages are valid) pass through

to the inner components, but this component and Untrustnet_out rely on messages from

two sources: Modchk and Crypto. These two sources are not defined in this TLA+

module, so no properties can be formulated based on their behavior. As such, the

102

strongest liveness property that can be checked is that if message 𝑥with id 𝑖 is received

from one inner component, message 𝑦 with id 𝑖 is received from the other inner

component, then those messages are acted upon (sent or discarded) then removed from

the set of waiting messages. LIVE1 is restated formally in Equation 7. The variable

validMessages is a misnomer as it does not contain just valid messages, but all messages

that have been received from the inner components and are awaiting their corresponding

message from the opposite component. It is a waiting room for unconsumed messages. A

message could be stuck in this waiting room forever and the Trustnet_out specification

would still be valid.

∀x ∈ Range(MessagesFromInnerCells) ∶

x ∈ validMessages ∧ x. id = msg. id

⇝ x ∉ validMessages

(7)

While TLA+ is very expressive, there are many expressions that are valid in

TLA+ but which the TLC model checker refuses to evaluate. TLA+ uses mathematical

notation, but in this dissertation the expressions are often describing actions rather than

strictly equations. Actions relate to a state and a successor state, so certain variables at

given states might not have been assigned at the time TLC tries to evaluate them. While

working through the formalization of properties for this research, certain properties like

LIVE1 were repeatedly reworked to account for these limitations. An earlier form of

LIVE1 is given in Equation (8). This version is accepted by the semantics of TLA+,

however in the initial state and any next-state computed from the initial state,

validMessages has no value. The expression 𝑥 ∈ 𝑣𝑎𝑙𝑖𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠 make sense

mathematically, but TLC is unable to check it. To work around this, the possible values

of x were defined in the constant MessagesFromInnerCells seen in Equation (7) so the

103

value assigned to x does not depend on validMessages having been assigned a value.

Describing all possible values of x limits what can be checked, so care is taken to define

values that allow the entire model to be checked for all properties. More discussion of the

inner workings of TLC and this concern specifically can be found in chapter 14.2.6 of

[64].

∀x ∈ validMessages ∶
x. id = msg. id ⇝ x ∉ validMessages

(8)

Figure 22: Flowchart for Trustnet_out thread

104

4.3.2 Modeling the Untrusted Network Component

The untrusted networking component is similar to the trusted network component.

As with the opposite network component design, the untrusted network component is

separated into two processes: receiving messages from the untrusted network and sending

messages on the untrusted network. The receiving process, called untrustnet_in, is

designed to poll the serial port for input, so its logic is placed within a while loop that

executes while there are messages to be processed. The algorithm for this thread is a

basic loop, visualized in Figure 23, that will read a byte at a time from an incoming

message and place it into a buffer. After processing is completed, the buffers are cleared

and the thread starts again from the top. The more complicated parts come with the

desired property that only well-formed Modbus messages reach the inner components. To

achieve this, the logic checks each byte of input for “!”, indicating the start of an

encapsulated message. If a new encapsulated message is started before the previous one

is finished, the previous message is discarded. Whenever a “!” is received, the contents of

the buffer are flushed and the “!” is placed at the start of the empty buffer. Similarly, if

the buffer is full despite not receiving a complete message, its contents are discarded, and

the logic waits for a new “!”. Secondly, the logic checks for the start of a well-formed

Modbus message 64 characters later, starting after the HMAC. Next, the logic looks for

the termination of a Modbus message. Encapsulated messages terminate with Modbus,

and Modbus ASCII messages end with the two-byte sequence “\r\n”. When this sequence

is detected, this thread generates a structure containing the message, a generated message

ID, and “trustnet_in” and places the object into the signing queue of Crypto. A similar

structure is created with just the message and ID and placed in the queue of Modchk.

105

Figure 23: Flowchart for untrustnet_in thread

106

The desired behavior of Unrustnet_in is that it accepts only and all well-formed

encapsulated messages, forwards only well-formed Modbus, forwards the Modbus to

both inner components in the same atomic step, forwards a single message exactly once,

and doesn’t overflow any buffers. The properties that need to be proven for this thread

are seen in Table 13. The formalized property can be seen in the middle and the informal

description can be seen on the right. Variables and operators in the properties seen in

Table 13 are largely the same as those seen in Table 11, with the addition of

IsWellformedEncap that checks for a starting “!”, a terminating “\r\n”, and that the

message being checked is an appropriate length for encapsulated Modbus.

Table 13: Properties of the Untrustnet_in thread

Name Formalized Property in TLA+ Informal Property

SAFE1 𝐿𝑒𝑛(𝑟𝑥𝐵𝑢𝑓) ≤ 𝑀𝐴𝑋𝐸𝑁𝐶𝐴𝑃𝑆𝐼𝑍𝐸 receive buffer never

overflows

SAFE2 ∧ ∀𝑥 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑣𝑒𝑟𝑖𝑓𝑦𝐵𝑢𝑓𝑓𝑒𝑟) ∶ 𝐿𝑒𝑛(𝑥. 𝑡𝑒𝑥𝑡) < 𝑀𝐴𝑋𝐸𝑁𝐶𝐴𝑃𝑆𝐼𝑍𝐸
∧ ∀𝑥 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑚𝑜𝑑𝑐ℎ𝑘𝐵𝑢𝑓𝑓𝑒𝑟) ∶ 𝐿𝑒𝑛(𝑥. 𝑡𝑒𝑥𝑡) < 𝑀𝐴𝑋𝐸𝑁𝐶𝐴𝑃𝑆𝐼𝑍𝐸

sending buffer never

overflows

SAFE3 𝐿𝑒𝑛(𝑙𝑎𝑠𝑡2) < 3 last2 buffer always

less than 3

SAFE4 ∧ ∀𝑥 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑣𝑒𝑟𝑖𝑓𝑦𝐵𝑢𝑓𝑓𝑒𝑟) ∶ 𝐼𝑠𝑊𝑒𝑙𝑙𝑓𝑜𝑟𝑚𝑒𝑑𝑀𝑜𝑑𝑏𝑢𝑠(𝑥. 𝑡𝑒𝑥𝑡)

∧ ∀𝑥 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑚𝑜𝑑𝑐ℎ𝑘𝐵𝑢𝑓𝑓𝑒𝑟) ∶ 𝐼𝑠𝑊𝑒𝑙𝑙𝑓𝑜𝑟𝑚𝑒𝑑𝑀𝑜𝑑𝑏𝑢𝑠(𝑥. 𝑡𝑒𝑥𝑡)
only well-formed

modbus gets

forwarded

SAFE5 ∧ ∀𝑥 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑣𝑒𝑟𝑖𝑓𝑦𝐵𝑢𝑓𝑓𝑒𝑟) ∶
 𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦({𝑦 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑣𝑒𝑟𝑖𝑓𝑦𝐵𝑢𝑓𝑓𝑒𝑟) ∶ 𝑥. 𝑖𝑑 = 𝑦. 𝑖𝑑}) = 1

∧ ∀𝑥 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑚𝑜𝑑𝑐ℎ𝑘𝐵𝑢𝑓𝑓𝑒𝑟) ∶
 𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦({𝑦 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑚𝑜𝑑𝑐ℎ𝑘𝐵𝑢𝑓𝑓𝑒𝑟) ∶ 𝑥. 𝑖𝑑 = 𝑦. 𝑖𝑑}) = 1

each message that is

forwarded has a

unique message id

SAFE6 ∧ ∀𝑥 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑣𝑒𝑟𝑖𝑓𝑦𝐵𝑢𝑓𝑓𝑒𝑟) ∃𝑦 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑚𝑜𝑑𝑐ℎ𝑘𝐵𝑢𝑓𝑓𝑒𝑟) ∶
 𝑥. 𝑖𝑑 = 𝑦. 𝑖𝑑

∧ ∀𝑥 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑚𝑜𝑑𝑐ℎ𝑘𝐵𝑢𝑓𝑓𝑒𝑟) ∃𝑦 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑣𝑒𝑟𝑖𝑓𝑦𝐵𝑢𝑓𝑓𝑒𝑟) ∶
 𝑥. 𝑖𝑑 = 𝑦. 𝑖𝑑

well-formed messages

get sent to both inner

components

SAFE7 ¬(𝑟𝑥𝐵𝑢𝑓 = 〈〉) ⇒ 𝐻𝑒𝑎𝑑(𝑟𝑥𝐵𝑢𝑓) = 𝑆𝑇𝐴𝑅𝐶𝐻𝐴𝑅 rxBuf is either empty

or starts with "!"

LIVE1 𝐼𝑠𝑊𝑒𝑙𝑙𝑓𝑜𝑟𝑚𝑒𝑑𝐸𝑛𝑐𝑎𝑝(𝑚𝑠𝑔)

 ⇝ ∃𝑥 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑣𝑒𝑟𝑖𝑓𝑦𝐵𝑢𝑓𝑓𝑒𝑟) ∶ 𝑥. 𝑡𝑒𝑥𝑡 = 𝑚𝑠𝑔
if the message is well-

formed then it gets

sent

LIVE2 ◇(𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠 = 〈〉) all messages are

processed

LIVE3 𝑙𝑎𝑠𝑡2 = 〈"\𝑟", "\𝑛"〉 ⇝ 𝑙𝑎𝑠𝑡2 = 〈0,0〉 last2 buffer gets reset

after each well-formed

message

107

Liveness property LIVE2 has a structure that might be unfamiliar to those who do

not work with temporal logic of actions. Liveness properties check that a given condition

will eventually be met, and this one is checking that all messages that are received by

Untrustnet_in are eventually processed in some way. LIVE2 starts with the temporal

operator ◇, indicating that the statement it precedes, □(𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔𝑀𝑒𝑠𝑠𝑎𝑔𝑒 = ⟨⟩),

will eventually be true. Following the temporal operator is the invariant operator

□ indicating the statement it precedes, (𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔𝑀𝑒𝑠𝑠𝑎𝑔𝑒 = ⟨⟩), is true for all

states. Using these two operators in sequence indicates a property that eventually

becomes true and stays true through program termination5. Informally, this

property can be interpreted as “eventually, the sequence of incoming messages

to be processed is emptied and stays empty”.

Untrustnet_out

The thread responsible for collating messages from the inner components and

sending them out to the untrusted network is called untrustnet_out and can be seen in

Figure 24. This thread works from a FIFO queue that the inner components populate.

Untrustnet_out waits until a message n is placed in its queue, then checks if a message

with the same ID, message m, has already been received. Checking for the existence of

message m involves filtering a set for a message with the same ID. If message m has not

been received, then n is placed in the set of received messages and the loop repeats. If

both messages m and n have been received and the message from the protocol checking

5 The property can oscillate between true and untrue as the state-trace unfolds, but eventually it

becomes true through the end of the trace.

108

component has been marked as invalid, both messages are discarded. If both messages m

and n have been received and the message from the protocol checking component has

been marked as valid, the HMAC is pulled from the opposite message. The full

encapsulated message, a “!” concatenated with the HMAC and the raw Modbus, is placed

in the set of valid messages that have successfully traversed the device,

finished_untrustnet. Finished_untrustnet abstractly represents the encapsulated messages

that has been printed to the serial port.

Figure 24: Flowchart for Untrustnet_out thread

109

The properties that need to be proven for this thread are seen in Table 14. The

formalized property can be seen on the left and the informal description can be seen on

the right.

Table 14: The desired properties of the Unrustnet_out thread

Name Formalized Property in TLA+ Informal Property

SAFE1 ∧ ∀𝑥 ∈ 𝑟𝑎𝑛𝑔𝑒(𝑠𝑒𝑟𝑖𝑎𝑙𝑝𝑜𝑟𝑡) ∶ ∃𝑦 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑚𝑒𝑡𝑎𝑠𝑒𝑟𝑖𝑎𝑙𝑝𝑜𝑟𝑡)
∶ 〈!〉 ○ HMAC ○ y. text = x

∧ ∀𝑥 ∈ 𝑟𝑎𝑛𝑔𝑒(𝑚𝑒𝑡𝑎𝑠𝑒𝑟𝑖𝑎𝑙𝑝𝑜𝑟𝑡) ∶ ∃𝑦 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑠𝑒𝑟𝑖𝑎𝑙𝑝𝑜𝑟𝑡)
∶ 〈"!"〉 ○ HMAC ○ y. text = x

stuff on the serial port

and the metaserialport

are the same (weakly,

this checks for the

existance of a

message but its not 1-

1 mapping)

SAFE2 ∀𝑥 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑚𝑒𝑡𝑎𝑠𝑒𝑟𝑖𝑎𝑙𝑝𝑜𝑟𝑡) ∶
∧ (∃𝑦 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠𝐹𝑟𝑜𝑚𝐼𝑛𝑛𝑒𝑟𝐶𝑒𝑙𝑙𝑠) ∶ 𝑥. 𝑖𝑑

= 𝑦. 𝑖𝑑 ∧ 𝑦. 𝑖𝑠𝑉𝑎𝑙𝑖𝑑 ∧ 𝑦. 𝑠𝑜𝑢𝑟𝑐𝑒
= "𝑚𝑜𝑑𝑐ℎ𝑘"

∧ (∃𝑦 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠𝐹𝑟𝑜𝑚𝐼𝑛𝑛𝑒𝑟𝐶𝑒𝑙𝑙𝑠) ∶ 𝑥. 𝑖𝑑
= 𝑦. 𝑖𝑑 ∧ 𝑦. 𝑖𝑠𝑣𝑎𝑙𝑖𝑑 ∧ 𝑦. 𝑠𝑜𝑢𝑟𝑐𝑒 = "𝑠𝑖𝑔𝑛"

Only prints if both

inner components say

its valid

SAFE3 𝐿𝑒𝑛(𝑡𝑥𝐵𝑢𝑓) < 𝑀𝐴𝑋𝐸𝑁𝐶𝐴𝑃𝑆𝐼𝑍𝐸 sending buffer never

overflows

SAFE4 ∀𝑥 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑠𝑒𝑟𝑖𝑎𝑙𝑝𝑜𝑟𝑡) ∶
 ∃𝑦 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠𝐹𝑟𝑜𝑚𝐼𝑛𝑛𝑒𝑟𝐶𝑒𝑙𝑙𝑠) ∶
 𝑥 = 〈"! "〉 ○ 𝐻𝑀𝐴𝐶 ○ 𝑦. 𝑡𝑒𝑥𝑡

only valid Modbus

gets printed (this

module assumes valid

Modbus is received

from both inner

components

SAFE5 ¬(𝑡𝑥𝐵𝑢𝑓 = ⟨⟩) ⇒ 𝐼𝑠𝑊𝑒𝑙𝑙𝑓𝑜𝑟𝑚𝑒𝑑𝐸𝑛𝑐𝑎𝑝(𝑡𝑥𝐵𝑢𝑓) only well-formed

encap packets get

printed

LIVE1 ∀𝑥 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠𝐹𝑟𝑜𝑚𝐼𝑛𝑛𝑒𝑟𝐶𝑒𝑙𝑙𝑠) ∶
 𝑥 ∈ 𝑣𝑎𝑙𝑖𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠 ∧ 𝑥. 𝑖𝑑 = 𝑚𝑠𝑔. 𝑖𝑑
 ⇝ 𝑥 ∉ 𝑣𝑎𝑙𝑖𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠

Each message that

gets its companion

message is sent or

discarded

LIVE2 ∀∈ 𝑅𝑎𝑛𝑔𝑒(𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠𝐹𝑟𝑜𝑚𝐼𝑛𝑛𝑒𝑟𝐶𝑒𝑙𝑙𝑠) ∶
 𝑚𝑠𝑔 = 𝑥 ∧ 𝑥. 𝑖𝑠𝑉𝑎𝑙𝑖𝑑 ∧

 (
∃𝑦 ∈ 𝑣𝑎𝑙𝑖𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠 ∶

𝑦. 𝑖𝑑 = 𝑥. 𝑖𝑑 ∧ 𝑦. 𝑖𝑠𝑉𝑎𝑙𝑖𝑑 ∧ 𝑦. 𝑠𝑜𝑢𝑐𝑒 ≠ 𝑥. 𝑠𝑜𝑢𝑟𝑐𝑒
)

 ⇝ ∃𝑧 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑚𝑒𝑡𝑎𝑠𝑒𝑟𝑖𝑎𝑙𝑝𝑜𝑟𝑡) ∶ 𝑧. 𝑖𝑑 = 𝑥. 𝑖𝑑

valid messages are

eventually sent

LIVE3 ∀𝑥 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠𝐹𝑟𝑜𝑚𝐼𝑛𝑛𝑒𝑟𝐶𝑒𝑙𝑙𝑠) ∶ 𝑇𝑅𝑈𝐸
 ⇒◇(∃𝑦 ∈ 𝑣𝑎𝑙𝑖𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠 ∶ 𝑦. 𝑖𝑑 = 𝑥. 𝑖𝑑)

all messages are

eventually processed

This component has an additional responsibility that Trustnet_out does not.

Trustnet_out prints the raw Modbus message that is received from the inner component

110

to the serial line and is only responsible for faithfully passing on the raw message as

received without checks or modifications. In contrast, Untrustnet_out is responsible for

encapsulating the raw Modbus received from the protocol checker with the HMAC

received from Crypto. The extra invariant SAFE5 seen in Equation (9) is required to

ensure this extra responsibility is correct. The symbol txBuf is the buffer that contains

data to be printed to the serial port. The left-hand side of the equation is a negation of

txBuf being empty. The right-hand side uses the custom operator IsWellformedEncap to

determine if the data held in txBuf meets the specification of an encapsulated message.

Informally, SAFE5 can be stated as “txBuf is either empty or contains a well-formed

encapsulated message”.

¬(txBuf = ⟨⟩) ⇒ IsWellformedEncap(txBuf) (9)

4.3.3 Modeling the Protocol Checking Component

Protocol checking in this system is intended to be somewhat flexible. Modbus

was chosen for this dissertation for its familiarity and ease of use but is not the only

protocol that sees use on industrial control systems. The desired property that only well-

formed Modbus reaches the inner components of the system prevents the protocol

checking from being completely modular as the networking components are coupled to

the protocol, but the deep inspection is contained to the singular protocol checking

component called Modchk. There are two pieces that act in composition that make up

Modchk: 1) the portion that interacts with the other components to receive and pass along

messages with the decision, and 2) the deep inspection that ensures every field of the raw

Modbus conforms to the specification. There are likely many different customizations

and extensions to the Modbus protocol that have been made to suit the mission demands

111

at any given Modbus installation, so for this research the official stock Modbus

specification given in [123] was chosen.

The first piece is a relatively simple model and can be visualized in the flowchart

in Figure 25. This is a passive component, so it must be called upon by one of the

network components to perform work. While the model and flowchart in Figure 25

express a message arriving in a queue, the seL4 component will receive a Remote

Procedure Call (RPC). When a message arrives, it will contain the raw Modbus to be

checked, a message ID, and a source identifier to indicate which networking component

the message arrived from. The message is dequeued and passed to the predefined

IsModbus operator. The output from IsModbus is attached to the message and forwarded

to the opposite networking component.

The second piece is a more complex and formalizes the Modbus specification

described in [123]. The TLA+ specification for Modbus does not produce a model that is

checked, but rather it can be thought of as a formal definition for a raw Modbus ACSII

message. The format for a Modbus ASCII message can be seen in Table 15. A separate

operator has been defined for checking each field. The start and end fields are simply

checked: the IsStart operator is true if the head of the message is “:” and the IsEnd

operator is true if the last two bytes are “\r\n”. The IsAddress operator converts the

address from ACSII to decimal and checks that it is between 0 and 247. The

IsFunctionCode operator converts the two bytes of ACSII function code data into

decimal and checks that the result matches one of the 19 codes designated as public in

[123], or a valid function code +127 to indicate an exception response. Certain function

codes have sub-codes that add an additional two bytes to the function code field. These

112

sub-codes are checked as well. Table 16 shows the function codes and sub-codes that are

permissible in the IsFunctionCode operator. The IsData operator simply ensures that the

data field is equal or fewer than 504 bytes as this data can vary in length and contents

from transaction to transaction even with the same function code. Finally, IsLRC checks

that the Longitudinal Redundancy Check (LRC) is accurate. This is accomplished by

adding up the bytes that form the address, function code, and data fields, discarding all

but the least significant byte of the result, then negating it. If the calculated LRC matches

the LRC in the raw Modbus message, then IsLRC is true. Additionally, the entirety of the

raw Modbus message is checked that each byte is a valid hexadecimal number. Each byte

represents one hexadecimal digit in ACSII, so the byte 00100110 (38 in decimal and the

“&” character in ACSII) would not be a valid hex digit in ACII. Figure 26 shows the

flowchart for the IsModbus operator. The order of checks is not defined in TLA+ so each

sub-operator runs in one atomic step before the results of each is logically ANDed to

produce the result.

Table 15: A Modbus ASCII message

Start Address
Function

Code
Sub code Data LRC End

“:” 2 bytes 2 bytes
2 bytes

(optional)

Up to

504 bytes
2 bytes “\r\n”

The properties that need to be proven for this thread are seen in Table 17. The

formalized property can be seen on the left and the informal description can be seen on

the right.

113

Table 16: Modbus function codes. Adapted from [123]

 Function Codes

 Code Sub-code
H

ex

Data Access

Bit

Access

Physical

Discrete

Inputs

Read Discrete Inputs 02
0

2

Internal Bits

or Physical

coils

Read Coils 01
0

1

Write Single Coil 05
0

5

Write Multiple Coils 15
0

F

16 Bit

Access

Physical

Input

Registers

Read Input Register 04
0

4

Read Holding Registers 03
0

3

Internal

Registers or

Physical

Output

Registers

Write Single Register 06
0

6

Write Multiple Registers 16
1

0

Read/Write Multiple Registers 23
1

7

Mask Write Register 22
1

6

Read FIFO queue 24
1

8

File Record Access

Read File record 20
1

4

Write File record 21
1

5

Diagnostics

Read Exception status 07
0

7

Diagnostic 08 00-18,20
0

8

Get Com event counter 11
0

B

Get Com Event Log 12
0

C

Report Server ID 17
1

1

Read device Identification 43 14
2

B

Other

Encapsulated Interface Transport 43 13,14
2

B

CANopen General Reference 43 13
2

B

114

Figure 25: Flowchart for the Modchk component

Figure 26: Flowchart for the IsModbus operator

115

Table 17: The desired properties of the Modchk thread

Name Formalized Property in TLA+ Informal Property

SAFE1 ∀𝑥 ∈ 𝑀𝑜𝑑𝑏𝑢𝑠𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠 ∶ 𝑥. 𝑠𝑜𝑢𝑟𝑐𝑒 = trustnet_in
 ⇒ (∃𝑦 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑡𝑟𝑢𝑠𝑡𝐵𝑢𝑓) ∶ 𝑦. 𝑖𝑑 = 𝑥. 𝑖𝑑) = 𝐹𝐴𝐿𝑆𝐸

Messages from

untrustnet are

forwarded to

trustnet. This is two

parts, first an

invariant that says

no messages from

untrustnet will ever

make it into the set

of messages sent to

untrustnet

LIVE1 ∀𝑥 ∈ 𝑀𝑜𝑑𝑏𝑢𝑠𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠 ∶ 𝑥. 𝑠𝑜𝑢𝑟𝑐𝑒 = trustnet_in
 ⇝ 𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦({𝑦 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑢𝑛𝑡𝑟𝑢𝑠𝑡𝐵𝑢𝑓): 𝑦. 𝑖𝑑 =

𝑥. 𝑖𝑑}) = 1

The second part is

that if a message is

from untrustnet, it

eventually will be

sent to trustnet

exactly once

SAFE2 ∀𝑥 ∈ 𝑀𝑜𝑑𝑏𝑢𝑠𝑀𝑒𝑠𝑠𝑎𝑔𝑒 ∶ 𝑥. 𝑠𝑜𝑢𝑟𝑐𝑒 = untrustnet_in
 ⇒ (∃𝑦 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑢𝑛𝑡𝑟𝑢𝑠𝑡𝐵𝑢𝑓) ∶ 𝑦. 𝑖𝑑 = 𝑥. 𝑖𝑑) =

𝐹𝐴𝐿𝑆𝐸

Same deal as above

but in reverse

LIVE2 ∀𝑥 ∈ 𝑀𝑜𝑑𝑏𝑢𝑠𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠 ∶ 𝑥. 𝑠𝑜𝑢𝑟𝑐𝑒 = untrustnet_in ⇝
 𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦({𝑦 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑡𝑟𝑢𝑠𝑡𝐵𝑢𝑓): 𝑦. 𝑖𝑑 = 𝑥. 𝑖𝑑}) = 1

Same deal as above

but in reverse

SAFE3 ∧ ∀𝑥 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑢𝑛𝑡𝑟𝑢𝑠𝑡𝐵𝑢𝑓) ∶ 𝑥. 𝑖𝑠𝑉𝑎𝑙𝑖𝑑 ⟺ 𝐼𝑠𝑀𝑜𝑑𝑏𝑢𝑠(𝑥. 𝑡𝑒𝑥𝑡)
∧ ∀𝑥 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑡𝑟𝑢𝑠𝑡𝐵𝑢𝑓) ∶ 𝑥. 𝑖𝑠𝑉𝑎𝑙𝑖𝑑 ⇔ 𝐼𝑠𝑀𝑜𝑑𝑏𝑢𝑠(𝑥. 𝑡𝑒𝑥𝑡)

Malformed Modbus

is marked Invalid

when it leaves

Good Modbus is

marked valid when it

leaves

LIVE3 ◇(𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠 = 〈〉) if a message is

received it is

eventually processed

Invariant SAFE1 and temporal property LIVE1 work in tandem to check that a

message received from one networking component is forwarded only to the opposite

networking component exactly once. SAFE1, restated in Equation (10), states that for all

messages in the set ModbusMessages (the set of messages that the model consumes for

checking), if a message came from the trusted network, then it will never be found in the

set of messages sent back to the untrusted network. This check is accomplished through

116

use of the message IDs. The second line of SAFE1 states that there does not exist a

message in the set of messages sent to the trusted networking component with an ID that

matches a message that came from the trusted networking component. LIVE1 checks the

second part of the desired property; that a received message is eventually forwarded to

the opposite networking component. LIVE1, seen in Equation (11), shows a similar

structure to Equation (10). It starts by referencing the set of all received Modbus

messages and uses message IDs. Cardinality gives the number of elements in a set. The

expression {𝑦 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑢𝑛𝑡𝑟𝑢𝑠𝑡𝐵𝑢𝑓): 𝑦. 𝑖𝑑 = 𝑥. 𝑖𝑑} is the set of messages that have the

same ID as 𝑥 ∈ 𝑀𝑜𝑑𝑏𝑢𝑠𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠. The second line of LIVE1 thus states that the set of

messages that have been sent to the untrusted network that have a matching ID as a give

message that was received from the trusted network should contain exactly 1 element.

∀x ∈ ModbusMessages ∶ x. source = trustnet_in ⇒
(∃y ∈ Range(trustBuf) ∶ y. id = x. id) = FALSE

(10)

∀x ∈ ModbusMessages ∶ x. source = trustnet_in ⇝

 Cardinality({y ∈ Range(untrustBuf): y. id = x. id}) = 1
 (11)

Formalizing the specification for Modbus ASCII and its encapsulation format lead

to some insight into the design decisions found throughout the Modbus documents.

Working with Modbus ASCII programmatically is a pain at first because there are three

different formats for the data in use at a time: a byte of data might be represented in

decimal form, in ASCII, or in ASCII hexadecimal characters. Modbus ASCII is

communicated in the ASCII hexadecimal form with a single hex digit represented as a

single ASCII character per byte; for example the single-byte hex value 0x3F would be

represented as the two byte sequence “3F”. A single byte can hold two hex digits so

Modbus ASCII creates double the necessary bandwidth by encoding 4 bits of data (a

117

hexadecimal digit) into ASCII (a whole byte). In an ecosystem known for low power and

minimal resources, doubling bandwidth consumption is not to be taken lightly. The

earlier incarnation of Modbus, Modbus RTU, sends raw bytes as data with no special

formatting. A single byte is used to communicate a single byte worth of data. When

considering how to encapsulate a Modbus packet for transmission across the untrusted

network, it became evident why Modbus ASCII encodes and transmits the data so

inefficiently. When the switch was made to use a special character, “:”, to signify the start

of a new Modbus ASCII message care had to be taken to ensure the selected special

character could not organically appear within the Modbus ASCII message and cause the

protocol to accidentally interpret a new message while in the middle of an existing

message. For the encapsulated packet, “!” was chosen as a header character because the

ASCII character “!” is not a valid Modbus ASCII hexadecimal character. The designers

of Modbus ASCII decided to double the bandwidth and represent hex data as ASCII

characters to make up for the decision to stop using a non-character-related transmission

delay to signify a new message. This also comes into play when transmitting a

cryptographic hash. A hash is just bytes of raw data that could be any value from 0 to

255. A Modbus message might not have the “!” character value even in its RTU variant,

but the raw bytes of a hash certainly could. Doubling the length of the hash so it can be

represented as ACSII hexadecimal eliminates this issue.

4.3.4 Modeling the Cryptographic Component

Application of cryptography is handled differently than the other pieces of the

specification. Modeling the cryptographic algorithms has been done before in [86]–[88],

and is beyond the scope of this research. However, modeling the behaviors of the threads

118

that apply the cryptographic algorithms with the cryptography itself abstracted away can

be done in a straight-forward fashion. The Crypto component has two threads: one for

signing messages passing from a trusted network to an untrusted network, and one for

verifying the signatures on messages passing through in the opposite direction.

The signing thread, called sign, is responsible for generating a keyed hash-based

authentication code (HMAC) signature for each Modbus message that comes from the

trusted network component. Its flowchart can be seen in Figure 27. The simplicity comes

from abstracting the HMAC algorithm. Even though the message, secret key, and a

unique nonce are passed to an HMAC function, the extent of the HMAC operator as

defined in the model is returning a static 64-byte string. 64 bytes is the length of the

output for SHA-256 so the proper length is important for determining if an encapsulated

message is properly formed. Otherwise, the HMAC implementation is assumed to

generate a unique 64-bit result for each message-secret-nonce combination.

The desired behavior for the sign thread is that every message is signed, no

message is forwarded without an HMAC attached, the secret key never changes, and

every message that is received is processed. The informal and formalized properties are

shown in Table 18.

Properties LIVE2 and LIVE3 are subgoals for the larger property that every

message that is received is passed through the Sign thread, no more and no fewer. There

is no reason for Sign to be dropping messages so, unlike the network components that

filter malformed messages, Sign will have a 1-to-1 mapping of input to output. The

variable testmessages is a static set of messages that are used as input when calculating

the state space and output holds the messages that pop out the other side of Sign. LIVE2

119

Figure 27: Flowchart for the Sign thread

Table 18: The desired properties of the Sign thread

Name Formalized Property in TLA+ Informal Property

SAFE1 ∀𝑥 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑜𝑢𝑡𝑝𝑢𝑡) ∶ ∃𝑦 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑡𝑒𝑠𝑡𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠) ∶ 𝑦. 𝑡𝑒𝑥𝑡
= 𝑥. 𝑡𝑒𝑥𝑡

message sent is exactly

what was received

SAFE2 ∀𝑥 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑜𝑢𝑡𝑝𝑢𝑡) ∶ 𝑥. ℎ𝑚𝑎𝑐
= 𝐻𝑀𝐴𝐶(𝑚𝑠𝑔. 𝑡𝑒𝑥𝑡, 𝑃𝐴𝑆𝑆𝑊𝑂𝑅𝐷)

output has good hash

SAFE3 ∧ 𝐿𝑒𝑛(𝑚𝑠𝑔. 𝑡𝑒𝑥𝑡) ≤ 𝑀𝐴𝑋𝑀𝑂𝐷𝐵𝑈𝑆𝑆𝐼𝑍𝐸
∧ ∀𝑥 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑜𝑢𝑡𝑝𝑢𝑡) ∶ 𝐿𝑒𝑛(𝑥. 𝑡𝑒𝑥𝑡) ≤ 𝑀𝐴𝑋𝑀𝑂𝐷𝐵𝑈𝑆𝑆𝐼𝑍𝐸
∧ ∨ 𝐿𝑒𝑛(𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑𝐻𝑀𝐴𝐶)

= 𝐿𝑒𝑛(𝐻𝑀𝐴𝐶("𝑎𝑛𝑦𝑡ℎ𝑖𝑛𝑔", "ℎ𝑒𝑟𝑒"))
 ∨ 𝐿𝑒𝑛(𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑𝐻𝑀𝐴𝐶) = 0

buffers don't overflow

SAFE4 𝑃𝐴𝑆𝑆𝑊𝑂𝑅𝐷 = "𝑙𝑜𝑙𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑" password never changes

LIVE1 ◇𝐿𝑒𝑛(𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠) = 0) All messages are

eventually sent

LIVE2 ◇(𝐿𝑒𝑛(𝑜𝑢𝑡𝑝𝑢𝑡) = 𝐿𝑒𝑛(𝑡𝑒𝑠𝑡𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠)) if we get a message then

something is eventually

sent

LIVE3 ∀𝑥 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑡𝑒𝑠𝑡𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠) ∶
 ◇(∃𝑦 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑜𝑢𝑡𝑝𝑢𝑡) ∶ 𝑦. 𝑡𝑒𝑥𝑡 = 𝑥. 𝑡𝑒𝑥𝑡 ∧ 𝑦. 𝑖𝑑 = 𝑥. 𝑖𝑑)

if we get a message it is

eventually sent (part 2)

120

and LIVE3 thus combine to show the 1-to-1 mapping, and further the direct relation of

messages, between testmessages and output. LIVE1 states the number of elements in

output will become equal and stay equal to the number of elements in testmessages.

LIVE3 states for all messages in testmessages, there will eventually exist a message with

the same text and ID in output. LIVE2 is inadequate by itself as it could be true with all

messages in testmessages being garbage. LIVE3 is inadequate by itself as it could be true

with more messages than necessary, whether the extra messages are duplicates or

garbage.

Verify

The verify thread makes similar abstractions with the implementation of the

HMAC. The flowchart in Figure 28 shows a simple comparison operation as the heart of

the thread. Within the received message is an HMAC that was (presumably) generated by

the preprocessor at the other end of the line. The verify thread calculates the HMAC for

the message itself using the message text, the secret key, and the nonce, the compares the

received HMAC and the calculated HMAC. If these two values are equal, then the

message is verified authentic and integrity is preserved. If these two values are different,

then something is causing the message to be invalid. This is a critical decision and

motivates the design of isolating this functionality within its own component.

The model as specified does not calculate an HMAC as the cryptographic

algorithms are beyond the scope of this dissertation. With no calculated HMAC there is

nothing to compare the received HMAC with, so the comparison is abstracted as well.

This does not mean messages are marked valid or invalid randomly though, TLA+ and

121

the TLC model checker have some cleverness that allows this abstraction without

oversimplifying the model. The comparison variable is defined in Equation 12.

CompareHMAC ∈ BOOLEAN (12)

CompareHMAC is what is used in the critical decision of the verify thread. Its

values can be anything in the BOOLEAN set {true, false}. TLA+ handles this assignment

by branching, creating different behaviors for each possible value of CompareHMAC and

checking every value independently. In the context of this specification, the verify thread

branches on its critical decision and a new behavior to explore the states of the system

that are reached for both a valid and invalid HMAC. Regardless of the result of the

HMAC function that has been abstracted, the desired properties of the component and

system at large must still hold. These properties are shown in Table 19 and are largely

similar to the Sign thread.

Table 19: Desired properties of the Verify thread

Name Formalized Property in TLA+ Informal Property

SAFE1 ∀𝑥 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑡𝑟𝑢𝑠𝑡𝑛𝑒𝑡𝑜𝑢𝑡) ∶ ∃𝑦 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑠𝑖𝑔𝑛𝑒𝑑𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠)
∶ 𝑦. 𝑡𝑒𝑥𝑡 = 𝑥. 𝑡𝑒𝑥𝑡

message sent is exactly

what was received

SAFE2 ∧ 𝐼𝐹 𝑚𝑠𝑔 ≠ ⟨⟩
 𝑇𝐻𝐸𝑁 𝐿𝑒𝑛(𝑚𝑠𝑔. 𝑡𝑒𝑥𝑡) ≤ 𝑀𝐴𝑋𝑀𝑂𝐷𝐵𝑈𝑆𝑆𝐼𝑍𝐸
 ELSE TRUE
∧ ∀𝑥 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑡𝑟𝑢𝑠𝑡𝑛𝑒𝑡𝑜𝑢𝑡) ∶ 𝐿𝑒𝑛(𝑥. 𝑡𝑒𝑥𝑡)

≤ 𝑀𝐴𝑋𝑀𝑂𝐷𝐵𝑈𝑆𝑆𝐼𝑍𝐸
∧ ∨ 𝐿𝑒𝑛(𝑟𝑒𝑡𝑟𝑒𝑖𝑣𝑒𝑑𝐻𝑀𝐴𝐶) = 64
 ∨ 𝐿𝑒𝑛(𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑𝐻𝑀𝐴𝐶) = 0

buffers don't overflow

SAFE3 𝑃𝐴𝑆𝑆𝑊𝑂𝑅𝐷 = "𝑙𝑜𝑙𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑" the password is never

changed

LIVE1 ◇𝐿𝑒𝑛(𝑠𝑖𝑔𝑛𝑒𝑑𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠) = 0) All messages are

eventually sent

LIVE2 ◇(𝐿𝑒𝑛(𝑡𝑟𝑢𝑠𝑡𝑛𝑒𝑡𝑜𝑢𝑡) = 𝐿𝑒𝑛(𝑠𝑖𝑔𝑛𝑒𝑑𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠)) if we get a message then

something is eventually

sent

LIVE3 ∀𝑥 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑠𝑖𝑔𝑛𝑒𝑑𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠) ∶
 ◇(∃𝑦 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑡𝑟𝑢𝑠𝑡𝑛𝑒𝑡𝑜𝑢𝑡) ∶ 𝑦. 𝑡𝑒𝑥𝑡 = 𝑥. 𝑡𝑒𝑥𝑡 ∧ 𝑦. 𝑖𝑑 =
𝑥. 𝑖𝑑)

if we get a message it is

eventually sent (part 2)

122

One unfortunate part of leveraging TLA+’s branching and generating a new state

for each of the two possible outcomes of the HMAC comparison is that there is no way or

reason to ensure the HMAC is properly calculated and compared. The result of the

“comparison”, whether TRUE or FALSE, is picked at the time the comparison is made. If

the properties were to try to make the comparison again, say to verify that the messages

that are forwarded on to the next component are marked correctly, another random

Boolean value will be chosen instead of the same value that was chosen for the initial

comparison.

Figure 28: Flowchart for the Verify thread

123

4.3.5 Modeling the System

Certain desirable properties of the system cannot be checked with the piecewise

specifications described in this chapter. Properties such as LIVE1 of Trustnet_out (Table

12) that shows a message will pass through Trustnet_out (either printed or discarded) if it

is received from both inner components is too weak to be useful by itself. A stronger and

more useful property is that every message that is received by Trustnet_out is eventually

printed or dropped. The specification of Trustnet_out is not capable of proving this

stronger property because it has no way of controlling the inputs from the inner

components, no way of ensuring it receives a decision from both of them. This is where

combining each of the piecewise specifications into a single, larger specification is

useful. A composite specification can show that Trustnet_in will eventually receive a

message from both inner cells, therefore demonstrating the stronger property. There are a

few such properties that require a system-wide view to be proven. This section will

describe how the components are combined, considerations for state-space of a larger

specification, and writing new desired properties.

TLA+ allows defining processes that can run in parallel. In practice, this means

that the atomic steps within each process have no defined execution order and TLA+ may

choose any next-step to execute at any time. Each module defined for each component

operates within its own process. The trusted networking component comprises a

processes for reading the serial port and a process for writing to the serial port, the

untrusted networking component comprises a process for reading the serial port and

writing to the serial port, the cryptographic component comprises a process for signing

messages and verifying signatures, and the protocol checking component comprises a

124

single process for validating messages. Each process communicates with each other

process via first-in-first-out (FIFO) queues. Inter process communication from process a

to process b is abstractly modeled with a placing a message in the FIFO queue of b.

When b finishes its processing steps with its current input, it either dequeues a message

from its assigned queue or blocks until its queue is non-empty. For this model a state-

trace is complete when all processes are blocked.

Detailing each process within the security preprocessor specification would be

redundant so the focus here will be on the desired macroscopic properties as laid out in

Chapter 3. They are restated in Table 20.

Table 20: Desired informal properties of the security preprocessor

Property Description

1 Isolation between components such that a compromised component cannot

affect any others

2 Only proper messages can be allowed to pass through – no malformed

messages

3 Only properly formed messages can originate from the device

4 Every message is properly authenticated

5 Every message is protected from tampering

6 All legitimate messages do eventually pass through (except in the case of

denial of service)

Property 1 is granted automatically through the use of the seL4 microkernel.

Properties 2-5 are invariants and property 6 is temporal. Properties 2 and 3 are similar but

different in that property 2 deals with messages that the preprocessor receives from the

network. Property 3 concerns with messages that might be created by the preprocessor if

it were compromised in some way. Both 2 and 3 are handled by the specification of the

networking components. Their design requirements state that they are only able to print

125

well-formed (not necessarily valid) messages. Properties 4 and 5 require a general

specification; the cryptographic component can ensure it does its job for every message it

encounters, but a general specification is required to show that every well-formed

message from the network ever reaches the cryptographic component. Finally, Property 6

gains the most from a general specification. Each component has been shown to

eventually process all messages they encounter, but the nature of parallel critical

decisions in the cryptographic and protocol checking components requires both be

modeled in the same specification to ensure the networking components receive the

decision from both of them. The general specification takes a set message end-to-end

through the preprocessor model to check this property. The formalized properties and

their subgoals can be seen in Table 21.

Table 21: The desired formal properties of the security preprocessor

Name Formalized Property in TLA+ Informal Property

SAFE1 ∀𝑚 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑐ℎ𝑎𝑛[messagecheck]
∶ 𝐿𝑒𝑛(𝑚. 𝑡𝑒𝑥𝑡)
≤ 𝑀𝐴𝑋𝑀𝑂𝐷𝐵𝑈𝑆𝑆𝐼𝑍𝐸

modbus check module:

SAFE2 ∀𝑚 ∈ 𝑣𝑎𝑙𝑖𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠 ∶ 𝑚. 𝑖𝑠𝑉𝑎𝑙𝑖𝑑 message parts waiting

for their counterpart

are valid

SAFE3 ∀𝑚 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑐ℎ𝑎𝑛[finished_untrustnet])
∶ 𝐺𝑒𝑡𝐻𝑀𝐴𝐶(𝑚) = 𝐻𝑀𝐴𝐶(𝑚, 𝑚)

HMACs are properly

applied

SAFE4 ∀𝑚 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑐ℎ𝑎𝑛[finished_untrustnet])
∶ 𝐼𝑠𝑀𝑜𝑑𝑏𝑢𝑠(𝐺𝑒𝑡𝑀𝑒𝑠𝑠𝑎𝑔𝑒(𝑚))

only properly signed

messages are sent to

untrustnet

SAFE5 ∀𝑚 ∈ 𝑣𝑎𝑙𝑖𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠 ∶ 𝑚. 𝑖𝑠𝑉𝑎𝑙𝑖𝑑 message parts waiting

for their counterpart

are valid

SAFE6 ∀𝑚 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑐ℎ𝑎𝑛[finsihed_trustnet])
∶ 𝐼𝑠𝑀𝑜𝑑𝑏𝑢𝑠(𝑚)

only properly formed

modbus is sent to

trustnet

LIVE1 <>(𝐿𝑒𝑛(𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠_) = 0) All messages

eventually processed

from trustnet

LIVE2 <>(𝐿𝑒𝑛(𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠) = 0) All messages

126

eventually processed

from untrustnet

LIVE3 <> (𝐿𝑒𝑛(𝑐ℎ𝑎𝑛[finsihed_untrustnet]) > 0) Messages pass through

device going one way

LIVE4 <>𝐿𝑒𝑛(𝑐ℎ𝑎𝑛[finsihed_trustnet]) > 0 Messages pass through

the device going the

other way

4.3.6 Additional Operators and Functions in TLA+

Modeling the desired security properties of the security preprocessor allowed the

cryptographic algorithms to be reduced to an abstraction, but the protocol checking and

networking components required a deeper level of implementation. This section discusses

some of the helper operators and functions that were developed in TLA+ to assist in the

model checking. The definitions presented here are novel contributions, though they are

not directly relevant to the research in the previous sections of this chapter.

American Standard Code for Information Interchange (ACSII)

American Standard Code for Information Interchange (ACSII), is an encoding

standard for representing characters from the English language and electronic

transmission codes as numbers to facilitate digital communication. The portion of the

ACSII standard used here is limited to 7-bits of data capable of representing 128 different

characters seen in Appendix x. This research opted to concretely model the inputs and

outputs of the serial ports. The selected protocol is Modbus ACSII, so a few helper

functions were created to help with the specifics of ACSII. Firstly, a definition for a

sequence of usable ACSII characters. The contiguous characters from 3210 to 12610 that

might be seen in a Modbus ASCII network are seen in TLA+ Snippet 1. This definition

requires an ordered sequence rather than a set because the position of each element

matters for conversion back and forth from ACSII to decimal representation.

127

𝑢𝑠𝑎𝑏𝑙𝑒𝐴𝑆𝐶𝐼𝐼 ≜ ⟨" ","!","\"","#","$","%","&","'","(",")",
 "*","+",",","-",".","/","0","1","2","3",

 "4","5","6","7","8","9",":",";","<","=",

 ">","?","@","A","B","C","D","E","F","G",

 "H","I","J","K","L","M","N","O","P","Q",

 "R","S","T","U","V","W","X","Y","Z","[",

 "\\","]","^","_","_","a","b","c","d","e",

 "f","g","h","i","j","k","l","m","n","o",

 "p","q","r","s","t","u","v","w","x","y",

 "z","{","|","}","~"⟩

TLA+ Snippet 1: The definition of usableACSII

There are a few special characters used in Modbus ACSII communications that

are not part of the contiguous block of usable ACSII. Their order is not as relevant, so

their definition is a set shown in TLA+ Snippet 2. Symbols included in the set of special

characters are \t for tab, \r for carriage return, \n for line feed, and \f for form feed.

specialChars ≜ {"\t", "\r", "\n", "\f"}

TLA+ Snippet 2: The definition of specialChars

With the sequence usableACSII and the set specialChars, the set of relevant

ACSII can be easily defined as follows:

𝑠𝑒𝑡𝑂𝑓𝐴𝑆𝐶𝐼𝐼 ≜ 𝑅𝑎𝑛𝑔𝑒(𝑢𝑠𝑎𝑏𝑙𝑒𝐴𝐶𝑆𝐼𝐼) ∪ 𝑠𝑝𝑒𝑐𝑖𝑎𝑙𝐶ℎ𝑎𝑟𝑠

TLA+ Snippet 3: The definition of setOfACSII

Conversion from decimal representation to ASCII representation is necessary for

easier understanding of messages while writing and debugging the specifications. The

specification for the preprocessor is designed to operate on the decimal representation

that would be received from the serial port. Converting the messages to ACSII makes

them human-readable. Converting from an ASCII character to a decimal number is done

using CharToNum in TLA+ Snippet 4. TLA+ keyword CHOOSE selects a single element

from the set constructed from the right-hand side of the colon; in this case the set should

only contain a single number that maps to the input character in usableACSII.

128

𝐶ℎ𝑎𝑟𝑇𝑜𝑁𝑢𝑚(𝑐ℎ𝑎𝑟) ≜ 𝐼𝐹 𝑐ℎ𝑎𝑟 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑢𝑠𝑎𝑏𝑙𝑒𝐴𝐶𝑆𝐼𝐼)

𝑇𝐻𝐸𝑁 31 + 𝐶𝐻𝑂𝑂𝑆𝐸 𝑖 ∈ 1. .95 ∶ 𝑢𝑠𝑎𝑏𝑙𝑒𝐴𝐶𝑆𝐼𝐼[𝑖] = 𝑐ℎ𝑎𝑟

𝐸𝐿𝑆𝐸 𝐶𝐴𝑆𝐸 𝑐ℎ𝑎𝑟 = "\𝑡" → 9

□ 𝑐ℎ𝑎𝑟 = "\𝑟" → 13

□ 𝑐ℎ𝑎𝑟 = "\𝑛" → 10

□ 𝑐ℎ𝑎𝑟 = "\𝑓" → 12

□ 𝑂𝑇𝐻𝐸𝑅 → 0

TLA+ Snippet 4: The CharToNum operator

Conversion from ACSII to decimal is similarly achieved with NumToChar see in

TLA+ Snippet 5.

𝑁𝑢𝑚𝑇𝑜𝐶ℎ𝑎𝑟(𝑛𝑢𝑚) ≜ 𝐼𝐹 𝑛𝑢𝑚 ∈ 32. .126

𝑇𝐻𝐸𝑁 𝑢𝑠𝑎𝑏𝑙𝑒𝐴𝐶𝑆𝐼𝐼[𝑛𝑢𝑚 − 31]

𝐸𝐿𝑆𝐸 𝐶𝐴𝑆𝐸 𝑛𝑢𝑚 = 9 → "\𝑡"

□ 𝑛𝑢𝑚 = 13 → "\𝑟"

□ 𝑛𝑢𝑚 = 10 → "\𝑛"

□ 𝑛𝑢𝑚 = 12 → "\𝑓"

□ 𝑂𝑇𝐻𝐸𝑅 → ""

TLA+ Snippet 5: The NumtoChar operator

NumtoChar and CharToNum were never really used by themselves. Rather, they

were used to convert a sequence of numbers or characters (a message) from one format to

the other. NumTupleToStrTuple and StrTupleToNumTuple in TLA+ Snippet 6 are

functions designed to map ASCII to decimal for sequences.

𝑁𝑢𝑚𝑇𝑢𝑝𝑙𝑒𝑇𝑜𝑆𝑡𝑟𝑇𝑢𝑝𝑙𝑒(𝑛𝑢𝑚𝑇𝑢𝑝𝑙𝑒) ≜ [𝑥 ∈ 𝐷𝑂𝑀𝐴𝐼𝑁 𝑛𝑢𝑚𝑇𝑢𝑝𝑙𝑒

↦ 𝑁𝑢𝑚𝑇𝑜𝐶ℎ𝑎𝑟(𝑛𝑢𝑚𝑇𝑢𝑝𝑙𝑒[𝑥])]

𝑆𝑡𝑟𝑇𝑢𝑝𝑙𝑒𝑇𝑜𝑁𝑢𝑚𝑇𝑢𝑝𝑙𝑒(𝑠𝑡𝑟) ≜ [𝑥 ∈ 𝐷𝑂𝑀𝐴𝐼𝑁 𝑠𝑡𝑟 ↦ 𝐶ℎ𝑎𝑟𝑇𝑜𝑁𝑢𝑚(𝑠𝑡𝑟[𝑥])]

TLA+ Snippet 6: The NumTupleToStrTuple and StrTupleToNumTuble functions

One of the properties of a valid Modbus ASCII message is that every character in

the message is a valid ASCII character. Checking that every character in a message is a

valid Modbus ASCII character is accomplished ensuring each character is an element of

setOfASCII shown in TLA+ Snippet 7.

129

𝐼𝑠𝑈𝑠𝑎𝑏𝑙𝑒𝐴𝑆𝐶𝐼𝐼(𝑠𝑡𝑟) ≜ 𝑠𝑡𝑟 = 𝑆𝑒𝑙𝑒𝑐𝑡𝑆𝑒𝑞(𝑠𝑡𝑟, 𝐿𝐴𝑀𝐵𝐷𝐴 𝑥 ∶ 𝑥 ∈ 𝑆𝑒𝑡𝑂𝑓𝐴𝑆𝐶𝐼𝐼

TLA+ Snippet 7: The IsUsableACSII operator

After checking ASCII and decimal representations, checking sequences, and

checking sets, the final thing to check is sanity. In theory, the operator for converting

from ASCII to decimal should be inverses of one another. Checking sanity means

ensuring the conversion of the sequence of ASCII chars to decimal and back again should

yield the same sequence. The sanity check is shown in TLA+ Snippet 8.

𝑆𝑎𝑛𝑖𝑡𝑦𝐶ℎ𝑒𝑐𝑘 ≜ 𝑢𝑠𝑎𝑏𝑙𝑒𝐴𝑆𝐶𝐼𝐼

= 𝑁𝑢𝑚𝑇𝑢𝑝𝑙𝑒𝑇𝑜𝑆𝑡𝑟𝑇𝑢𝑝𝑙𝑒(𝑆𝑡𝑟𝑇𝑢𝑝𝑙𝑒𝑇𝑜𝑁𝑢𝑚𝑇𝑢𝑝𝑙𝑒(𝑢𝑠𝑎𝑏𝑙𝑒𝐴𝐶𝑆𝐼𝐼))

TLA+ Snippet 8: The SanityCheck operator

Hexadecimal

Modbus ACSII is printed to the serial line in hexadecimal. Certain operations

involving Modbus ASCII require manipulating hexadecimal values so a hex module was

adapted and expanded from Andrew Helwer’s Hex.tla in [141]. A TLA+ formula for

converting from the ASCII representation of a string of hexadecimal digits to a sequence

of base-10 digits is needed for calculating the longitudinal redundancy check (LRC).

ASCIIHexToDecimal (TLA+ Snippet 9) takes as input a sequence of ASCII hex digits

and calculates a sequence of decimals. In practice, two bytes of Modbus ASCII

represents one byte of data. This formula thus converts the first two characters into a

single decimal before recursing on the rest of the input. StringToHex is a simple formula

that maps the character “1” to the number 1, “2” to 2, and so on. The symbol ○ means

append.

130

𝐴𝑆𝐶𝐼𝐼𝐻𝑒𝑥𝑇𝑜𝐷𝑒𝑐𝑖𝑚𝑎𝑙(𝑠𝑡𝑟) ≜

𝐼𝐹 𝑠𝑡𝑟 = ⟨⟩

𝑇𝐻𝐸𝑁 ⟨⟩

𝐸𝐿𝑆𝐸 ⟨𝑆𝑡𝑟𝑖𝑛𝑔𝑇𝑜𝐻𝑒𝑥(𝑠𝑡𝑟[1]) ∗ 16

+ 𝑆𝑡𝑟𝑖𝑛𝑔𝑇𝑜𝐻𝑒𝑥(𝑠𝑡𝑟[2]⟩

○ 𝐴𝑆𝐶𝐼𝐼𝐻𝑒𝑥𝑇𝑜𝐷𝑒𝑐𝑖𝑚𝑎𝑙(𝑇𝑎𝑖𝑙(𝑇𝑎𝑖𝑙(𝑠𝑡𝑟)))

TLA+ Snippet 9: The ACSIIHexToDecimal operator

Longitudinal Redundancy Check

 Longitudinal Redundancy Check (LRC) is an algorithm for detecting

transmission errors often used in serial communication. Its simplicity allows for quickly

checking if part of a message has been lost or interfered with but does not try to fix any

errors and does not protect against intentional tampering. LRC operates on bits, so the

ASCII, hexadecimal, and decimal formats used throughout this research need to be

converted before applying LRC. Hex sequences can be converted to decimal with

ASCIIHexToDecimal. Likewise, ASCII sequences can be converted to decimal with

StrTupleToNumTuple and CharToNum. To obtain bits (big-endian), any format in use

must first be converted to decimal, then the decimal format can be converted to bits using

DecimalToBinarySeq (TLA+ Snippet 10). The ⟨⟩ indicate sequences.

𝐷𝑒𝑐𝑖𝑚𝑎𝑙𝑇𝑜𝐵𝑖𝑛𝑎𝑟𝑦𝑆𝑒𝑞(𝑛𝑢𝑚) ≜ ⟨𝑛𝑢𝑚 ÷ 128 % 2⟩

○ ⟨𝑛𝑢𝑚 ÷ 64 % 2⟩

○ ⟨𝑛𝑢𝑚 ÷ 32 % 2⟩

○ ⟨𝑛𝑢𝑚 ÷ 16 % 2⟩

○ ⟨𝑛𝑢𝑚 ÷ 8 % 2⟩

○ ⟨𝑛𝑢𝑚 ÷ 4 % 2⟩

○ ⟨𝑛𝑢𝑚 ÷ 2 % 2⟩

○ ⟨𝑛𝑢𝑚 % 2⟩
TLA+ Snippet 10: The DecimalToBinarySeq operator

The inverse of DecimalToBinarySeq is the formula BinarySeqToDecimal (TLA+

Snippet 11). This formula takes as input a sequence of N bits and multiples the least

131

significant bit by 20. It then adds the result to the recursion of the formula calculated with

the first 𝑁 − 1 bits and 21, the first 𝑁 − 2 bits and 22, and so on.

𝐵2𝐷(𝑛𝑢𝑚, 𝑠𝑒𝑞) ≜ 𝐼𝐹 𝑠𝑒𝑞 = ⟨⟩

𝑇𝐻𝐸𝑁 0

𝐸𝐿𝑆𝐸 (𝑠𝑒𝑞[𝐿𝑒𝑛(𝑠𝑒𝑞)] ∗ 𝑛𝑢𝑚) + 𝐵2𝐷(2

∗ 𝑛𝑢𝑚, 𝑆𝑢𝑏𝑆𝑒𝑞(𝑠𝑒𝑞, 1, 𝐿𝑒𝑛(𝑠𝑒𝑞) − 1))

𝐵𝑖𝑛𝑎𝑟𝑦𝑆𝑒𝑞𝑇𝑜𝐷𝑒𝑐𝑖𝑚𝑎𝑙(𝑠𝑒𝑞) ≜ 𝐵2𝐷(1, 𝑠𝑒𝑞)

TLA+ Snippet 11: The BinarySeqToDecimal operator and its helper function B2D

The LRC algorithm is relatively simple bit arithmetic and manipulation. LRC

takes as input a sequence of bytes representing a message. The bytes are added together

and all but the least significant byte of the sum is discarded. The least significant byte is

negated using Two’s compliment to produce the LRC value. The sum of all the bytes that

comprise the address, function code, and data fields of a Modbus message AND FF plus

the LRC value should equal 0. Formula addSeq is used to add each element of a decimal

sequence in TLA+ Snippet 12.

𝑎𝑑𝑑𝑆𝑒𝑞(𝑠𝑒𝑞) ≜ 𝐼𝐹 𝑠𝑒𝑞 = ⟨⟩

𝑇𝐻𝐸𝑁 0

𝐸𝐿𝑆𝐸 𝐻𝑒𝑎𝑑(𝑠𝑒𝑞) + 𝑎𝑑𝑑𝑆𝑒𝑞(𝑇𝑎𝑖𝑙(𝑠𝑒𝑞))

TLA+ Snippet 12: The addSeq operator

Two’s complement is a method for representing signed integers in binary. Its

algorithm, formulated as TwosComp, performs an XOR of each bit of input with 1 then

adds 1 to the final bit sequence. XOR is formulated as well; though TLA+ has a built-in

XOR symbol, it only operates on Boolean values. The formula for BinaryAdd1 is a

composition of other formulas that converts a binary sequence to a single decimal

number, adds 1, then converts back to a binary sequence. These three operators are

shown in TLA+ Snippet 13.

132

𝑇𝑤𝑜𝑠𝐶𝑜𝑚𝑝(𝑠𝑒𝑞) ≜ 𝐵𝑖𝑛𝑎𝑟𝑦𝐴𝑑𝑑1([𝑥 ∈ 𝐷𝑂𝑀𝐴𝐼𝑁 𝑠𝑒𝑞 ↦ 𝑋𝑂𝑅(𝑠𝑒𝑞[𝑥], 1)])

𝑋𝑂𝑅(𝑎, 𝑏) ≜ 𝐶𝐴𝑆𝐸 𝑎 = 1 ∧ 𝑏 = 1 → 0

□ 𝑎 = 1 ∧ 𝑏 = 0 → 1

□ 𝑎 = 0 ∧ 𝑏 = 1 → 1

□ 𝑂𝑇𝐻𝐸𝑅 → 0

𝐵𝑖𝑛𝑎𝑟𝑦𝐴𝑑𝑑1(𝑠𝑒𝑞) ≜ 𝐷𝑒𝑐𝑖𝑚𝑎𝑙𝑇𝑜𝐵𝑖𝑛𝑎𝑟𝑦𝑆𝑒𝑞(𝐵𝑖𝑛𝑎𝑟𝑦𝑆𝑒𝑞𝑇𝑜𝐷𝑒𝑐𝑖𝑚𝑎𝑙(𝑠𝑒𝑞) + 1)

TLA+ Snippet 13: The TwosComp and BinaryAdd1 operators

The TLA+ formula for calculating the LRC of a sequence, CalculateLRC, can

thus be written as a composition of the other formulas in TLA+ Snippet 14. The

𝑎𝑑𝑑𝑆𝑒𝑞(𝑠𝑒𝑞)%256 ensures the composed formulas are only operating on the least

significant byte of the sum of all the bytes.

𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐿𝑅𝐶(𝑠𝑒𝑞)

≜ 𝐵𝑖𝑛𝑎𝑟𝑦𝑆𝑒𝑞𝑇𝑜𝐷𝑒𝑐𝑖𝑚𝑎𝑙 (𝑇𝑤𝑜𝑠𝐶𝑜𝑚𝑝(𝐷𝑒𝑐𝑖𝑚𝑎𝑙𝑇𝑜𝑏𝑖𝑛𝑎𝑟𝑦𝑆𝑒𝑞(𝑎𝑑𝑑𝑆𝑒𝑞(𝑠𝑒𝑞)%256)))

TLA+ Snippet 14: The CalculateLRC Operator

4.4 Summary

This chapter presented the formalized specification in TLA+ for the field device

security preprocessor and the formalized security and safety properties required to check

the correctness of the specification. Each thread within each component of the

preprocessor is defined with its own formal specification and its own security properties.

After each component is finalized, it is composed into a single specification for the

security preprocessor and new properties that could not be checked in individual

components are formalized for checking. Additionally, some helper functions that were

used during the research and are novel formal specification in TLA+ are presented. The

next chapter will discuss the model checking strategies used to reduce the state space and

the results produced by the TLC checker.

133

CHAPTER V

MODEL CHECKING, INPUT VALUES, STATES

5.1 Introduction

Checking a TLA+ specification involves using the TLC model checker to

generate a state-space and exhaust that space looking for violations of properties. This

chapter describes the checking statistics produced by TLA+ and the design strategies

employed to reduce the size of the state-space and create models that are feasible to

check. All properties described in Chapter 0 are checked for their respective

specifications. While each TLA+ design required multiple revisions and intensive

thought to build, the stats and results presented in this chapter are only for the final

iteration wherein all properties were successfully validated and all states were visited at

least once. Most of the designs were checked quickly, around 10 seconds when not

looking checking temporal properties and roughly 10 minutes when temporal properties

are enabled.

5.2 TLC Model Checker

Temporal Logic of Actions, and the TLA+ language, are expressive tools for

specifying concurrent distributed systems using the notation of mathematics and logic.

The expressiveness of the TLA+ language is intentionally designed with formal

reasoning on complex specifications in mind, not for mechanically checking those

specifications. TLA+ allows specifying a system with an undefined number of

134

processors, unbounded message queues, and other potentially infinite constructs that do

not cooperate with exhaustive checking. Model checking a system specified in TLA+

thus involves designing a finite-state model from the TLA+ specification - forgoing some

of the undefined characteristics to search for simple design-level logic bugs.

If model checking is the goal then the selection of TLA+, a language that is too

expressive to be directly checked, might raise some questions. Model checking a formal

specification can be considered a steppingstone to an eventual goal of a proof of

correctness. Yuan Yu et al set forth the motivations for creating a mechanical checker for

TLA+ in [142]. Their motivations are summarized here:

1 Allow design of a complex system in an expressive language like TLA+ and

check a finite-state model6 of that design to catch bugs before proof work.

2 Allow designers to check their design while developing it without translation into

a separate, less expressive language removing the complications that could arise

from such a translation.

A TLA+ specification is expressive enough to allow formal proofs. The TLC

model checker can thus be thought of as a proof aid in allowing designs to be easily

checked for logical inconsistencies before investing time in theorem proving. A

specification can be as expressive as needed but contain parameters to limit the

specification at time of checking.

6 A specification models a design if it meets the requirements of that design. In this case, a model

of a model is checked.

135

5.3 State Explosion Considerations

Exponential increase in state-space, referred to as state explosion, is a driving

force in model checking projects and research [80]. The work presented here includes a

variety of considerations that could drastically affect the runtime of TLC. The most

prominent consideration is the selection of Modbus messages that are passed between

components in this system, both in number and in branching techniques. Firstly, the

number of messages that are passed in the specification increases the size of the state

space as a new set of states it generated for each new message. Secondly, the way the

successive messages are handled can drastically affect the rate of growth of the state

space. A specification that is designed to process every message in a queue within a

single trace enjoys a tragic fall into the depths of computational complexity as each

successive message compounds the state-space generated from processing the previous

messages. Alternatively, a specification that is designed to generate a new trace for each

message will check the processing of each message independently. The difference in

these two scenarios can be boiled down to the selection of either Equation (13) or

Equation (14) where messages represents the queue of messages waiting to be processed

by the system and testmessages is a set or ordered sequence (depending on the needs of

the specification) of relevant messages with which to test the model. A state-space is

complete when all messages have been processed.

messages = testmessages (13)

messages ∈ testmessages (14)

Assuming two models are equivalent but for the value of messages in the initial

state, Equation (13) was found to produce an exponentially larger state-space in practice.

136

Equation (13) assigns to messages the entire set or sequence testmessages. In the thread-

level specifications found in this research, once a message is fully processed the thread

checks messages for another message to process. If messages contains more than one

element, a state-space for the successor message must be initiated from every state the

system could find itself in after completing the predecessor message resulting in multiple

traces for a single message. If there are more messages, this process repeats for each

ending state of each trace of the previous message. Figure 29 shows the development of

such a state-space. TLC includes some tricks behind the scenes to prevent redundant state

generation where it can be detected. Even with optimization, Equation (13) produces a

narrower, deeper tree of states. TLC generates and checks new states using a breadth-first

search so a deep and narrow tree could result in property violations being discovered

later. Further discussion can be found in [64].

Figure 29: The state space generated from Equation (13).

Where appropriate, Equation (14) is used to give messages a value in the initial

state. This definition tells TLC that messages could hold any value that is an element of

137

testmessages, so TLC branches and creates a separate trace for each possible value of

messages. Practically, this means a separate state-trace is created for each message in

testmessages and is terminated at the end of that message’s processing. Figure 30 shows

the state-space for this method. This figure also demonstrates an obvious path for

parallelization of the state generation and checking as each next-state after the initial can

be handed off to another process.

Figure 30: The state space generated from Equation (14.

Another consideration for handling the state explosion problem in this work is the

type of properties to be checked. Invariants, properties that must always be true, are

quickly checked upon generation of each state. Temporal properties are difficult and slow

because the path a given trace took through the state-space matters. For temporal property

Q, TLC must check if there exists a path through the state space that does not contain a

138

state that satisfies Q. All paths must be checked to satisfy temporal properties. As much

of the checking for temporal requirements for the field device is pushed into the

individual thread models as possible as these are small. The few temporal properties that

could not be avoided are checked over several different models (the same specification

but with different initial values) to check sections of the state-space individually. At time

of writing, TLC does not offer strong support for parallelization of temporal property

checking [101].

5.4 Trusted Network Component States and Inputs

The trusted network component is the network interface that communicates with a

PLC or other ICS actor within a physically protected process network. It is considered

“trusted” because messages that are received from this network are assumed to be good-

intentioned (though not necessarily well-formed). Two threads make up the trusted

network component – Trustnet_in that receives messages from the network and passes

them to inner components, and Trustnet_out that receives messages from the inner

components and relays them to the process network.

The behavior of the Trustnet_in thread should not depend on any specific

sequence of well-formed Modbus messages. Once a well-formed message has been

completely processed, Trustnet_in should return to its initial state and no well-formed

message should affect any successive messages. This allows use of Equation (14) in

defining the set of messages to be processed in the initial state, meaning a separate state-

space can be calculated for each test message quickly and concurrently. The behavior of

Trustnet_out is potentially different from message to message so it is appropriate to

specify a sequence of test messages using Equation (13). This thread operates on input

139

from the inner components, so its input is complete messages rather than bytes. Operating

on complete messages allows a significant reduction in the state-space generated by TLC.

Processing a message byte-by-byte requires loops and additional steps. Processing an

entire message at once allows the specification to be greatly simplified. State-space

statistics for Trustnet_in and Trustnet_out can be seen in Table 22: TLC Running

Statistics for the trusted network component. Time is the wall time required to build and

check the model. Diameter is the length of the longest state-trace.

Table 22: TLC Running Statistics for the trusted network component

Spec Time Diameter States Found Distinct States

trustnet_in 0:07 6609 10037 9774

trustnet_out 0:06 30 31 30

The test messages crafted for Trustnet_in were a collection of malformed Modbus

messages, a collection of well-formed Modbus messages, and every possible single-byte

value that could cross the serial port (0-255). The selected test messages can be found in

Table 23. These messages were translated into ACII hex before use in the model.

Trustnet_out required structures for testing as the messages it received included the

critical decision from inner components and message IDs. The test structures can be

found in the appendix.

Table 23: Test messages for Trustnet_in

Message Purpose

:JGP9432J39JGWIRW Improper message with proper start

:<\r><\n> Empty message with proper start and

termination

JGP9432J39JGWIRW<\r><\n> Improper message with proper

termination

:1103006B00037E<\r><\n> Well-formed message

:1103006B00037ECRL103006B00037ECRL10300

6B00037ECRL103006B00037ECRL103006B0003

Improper message, for troubleshooting

model first and design second.

140

7ECRL103006B00037ECRL103006B00037ECRL

103006B00037ECRL103006B00037ECRL103006

B00037ECRL103006B00037ECRL103006B00037

ECRL103006B00037ECRL103006B00037ECRL1

03006B00037ECRL103006B00037ECRL103006B

00037ECRL103006B00037ECRL103006B00037E

CRL103006B00037ECRL103006B00037ECRL10

3006B00037ECRL103006B00037ECRL103006B0

0037ECRL103006B00037ECRL103006B00037EC

RL103006B00037ECRL103006B00037ECRL1030

06B00037ECR1103006B00037ECRL103006B000

37ECRL103006B00037ECRL103006B00037ECR

L103006B00037ECRL103006B00037ECRL10300

6B00037ECRL103006B00037ECRL103006B0003

7ECRL103006B00037ECRL103006B00037ECRL

103006B00037ECRL103006B00037ECRL103006

B00037ECRL103006B00037ECRL103006B00037

ECRL103006B00037ECRL103006B00037ECRL1

03006B00037ECRL103006B00037ECRL103006B

00037ECRL103006B00037ECRL103006B00037E

CRL103006B00037ECRL103006B00037ECRL10

3006B00037ECRL103006B00037ECRL103006B0

0037ECRL103006B00037ECGLF

:1103006B000:1103006B00037E<\r><\n Well-formed message interrupts

previous well-formed message

0,1, 2, 3, … 254, 255 All possible bytes, 0-255

5.5 Untrusted Network Component States and Inputs

Untrustnet_in is similar to Trustnet_in. It operates on bytes rather than whole

messages and its state is unaffected by well-formed encapsulated messages. TLC found

more states for Untrustnet_in than Trustnet_in because of the additional constraint of

picking the well-formed Modbus message out of the encapsulated data that is received

from the serial port. Trustnet_out operates on full messages rather than bytes so its

specification generates much fewer states. TLC’s state statistics for the untrusted network

component can be found in Table 24. Test messages and structures for these specs can be

found in the appendix.

141

Table 24: TLC Running Statistics for the untrusted network component

Spec Time Diameter States Found Distinct States

Trustnet_in 0:09 12015 16532 16269

Trustnet_out 0:09 58 59 58

5.6 Protocol Checking States and Inputs

The protocol checking state-space is the simplest of those described here. Its

diameter, that is the longest useful trace through the state-space found by TLC, is only

five states wide. This is likely because the protocol checking spec simply checks

messages against a definition of Modbus before forwarding them. The bulk of the

specification work occurs in the definitions of Modbus and its helper functions, but these

would only generate transition rules between states. This component trusts the input from

the other components, so the test structures were crafted to exhaust the definition of

Modbus that this component is checking against. TLC’s statistics for this component’s

single thread can be found in Table 25 and the test messages can be found with the

specification in the appendix.

Table 25: TLC Running Statistics for the protocol checking component

Time Diameter States Found Distinct States

0:10 5 24 20

5.7 Cryptographic Component States and Inputs

 The cryptographic component produces another relatively simple state-space

compared to the networking components. Like the protocol checker, the cryptographic

component’s complexity comes from its transition rules and definitions. The

cryptographic checking additionally benefits from the abstraction of cryptographic

function, reducing the state-space and complexity. A hash value is hard coded within the

142

model - no calculations are performed. TLC’s statistics for Sign and Verify can be found

in Table 26 and the test messages can be found with the specification in the appendix.

Table 26: TLC Running Statistics for the cryptographic component

spec Time Diameter States Found Distinct States

sign 0:06 14 15 14

verify 0:05 18 38 38

5.8 System Model States and Inputs

Checking the model of the entire system presented the largest challenge as ensuring

the properties for the individual models were preserved often clashed with abstracting

already-proved pieces to reduce the complexity of the composite. The composite model is

where the majority of the strategies for controlling the state-space growth came into play.

This is the only model that exercises the concurrent modeling abilities of TLA+. The

extra complexity of undefined execution order of concurrent states was made evident in

the drastically higher running statistics produced by TLC in Table 27.

Table 27: TLC Running Statistics for the security preprocessor

spec Time Diameter States Found Distinct States

Composite w/

trustnet input

31:11:07 7822 946,531,170 221,952,298

composite w/

untrustnet input

31:08:01 7821 942,382,213 221,005,455

Checking had to be divided across multiple runs with different inputs to

networking components. Input to the model was designed such that every state was

visited at least once across the runs. In the first run, the test messages were placed into

the queue of the trusted networking component while the queue of the untrusted

networking component was left empty. In the second run, test messages were placed into

143

the queue of the untrusted networking component while the queue of the trusted

networking component was left empty. Time was also saved by checking all the invariant

properties first, then checking the temporal properties one at a time across different runs.

While this may not have saved computation time, it did reduce the time between runs

during development when changes to the properties and specification were frequent.

5.9 Summary

The process of checking a TLA+ model is simple: configure the properties to

check then run TLC. Writing a model and properties to be checked efficiently can be

difficult and time-consuming. This chapter detailed the statistics from the TLC model

checker when run on the completed models presented in Chapter 0. These statistics are

for the runs in which TLC did not find any property violations after an exhaustive search.

The individual threads were quick and easy to check by design, but they were not enough

to validate all the desired properties. Validating the remaining properties on the larger

model was a greater task that often required days of computation. When taken together,

these runs offer proof that the properties this thesis set out to prove hold for every state

the security preprocessor could find itself it.

144

CHAPTER VI

CAMKES ARCHITECTURE FOR A BUMP-IN-THE-WIRE SECURITY PREPROCESSOR

6.1 Introduction

Designing an embedded system with security in mind often has competing goals.

Embedded systems are generally low on processing power and memory which limits the

functionality that can be supported, especially in time-sensitive environments [2], [17],

[104]. Simplifying the design can help, as well as working from a microkernel that adds a

lot of security and safety features natively. CAmkES is the architecture design framework

for building native seL4 applications. A native seL4 application, as opposed to an

application that would run in a Windows or Linux virtual machine on top of seL4, is built

to take advantage of the security and safety features the seL4 microkernel provides. A

virtualized instance of Windows or Linux would add millions of lines of unnecessary and

unsafe code to an embedded device, potentially expanding the attack surface. However, a

native seL4 application that runs directly on top of seL4 could have its critical

components isolated. Isolation not only add layers of security within the native

application, but also eliminates categories of vulnerabilities common in less reliable

applications and microkernels such as memory violations and pivoting malware. This

chapter presents the CAmkES definitions for each component and connection that was

formally specified in TLA+ in Chapter x for a native seL4 control system security

preprocessor (SPP). This chapter demonstrates

145

 the implementation portion of the developments steps proposed in Chapter x and

refreshed in Figure 31.

Figure 31: Development steps for verifying seL4 designs using TLA+.

6.2 CAmkES Definitions for Components, Interfaces, and Connections

The work presented here leverages the isolation guarantees provided by the seL4

microkernel and carried through the automatic code generation of the CAmkES

framework. There are four components described in this section: a cryptographic service

provider, a Modbus protocol checker, a network interface for the trusted network, and a

network interface for the untrusted network. Figure 32 illustrates the components and

their connections. The blue outline of two components indicate they are active, meaning

they have a thread of control. The other two components are passive, meaning they only

provide a service and must be called by an active component before any work is done.

Table 28 shows the relationship between CAmkES components and TLA+ specifications

described in the Chapter 0. Some of the components have multiple specifications, one for

each thread of execution within the component. The remainder of this section describes

each component and each connection in more detail.

146

Figure 32: CAmkES output for the system architecture

Table 28: Relationship between TLA+ specifications and CAmkES components

CAmkES Component TLA+ Specification

Modtx
Trustnet_in

Trustnet_out

Crypto
Sign

Verify

Modchk Modchk

Signtx
Untrustnet_in

Untrustnet_out

6.2.1 Modtx: The Trusted Network Interface

The trusted network is the control system intranet, or process network. In the

control center this means the HMI, the PLC, the engineers and operators, the data

historian, and any control equipment required within the confines of the building. In a

substation, the trusted network includes the remote terminal unit and any cyber-physical

instrumentation required for the mission. The trusted network utilizes SCADA network

protocols, in this case Modbus. The purpose of the trusted network interface is to read

bytes from the serial port and pass well-formed messages to the inner components with a

generated ID. Note that well-formed does not mean valid. Modtx simply looks for the “:”

character that indicates the start of a Modbus message and the “/r/n” sequence that

147

indicates a finished message and ensures that the message is an appropriate length.

Message validation is left to the inner components.

Modtx is also responsible for sending well-formed, valid Modbus messages out of

the serial port onto the trusted network. This functionality is a bit more complex as the

validation of a Modbus message requires agreement from two other components working

asynchronously. When a message is received from an inner component, it is stored until

its counterpart (indicated by a message ID) is received from the other component. If both

components agree that the message is valid, it is sent byte-by-byte through the serial port.

If one or both inner components indicate the message is invalid, Modtx drops the

message. This design facilitates proofs that only well-formed, valid Modbus can be sent

to the trusted network. Figure 33 illustrates the flow of messages through the Modtx

component.

The code in Figure 34 shows the definition for the Modtx component. As it is

responsible for polling the serial interface, line 9 designates this as an active component.

It provides a single interface called ModtxIface that provides the message compiling and

sending service. It consumes two interfaces, one for each inner component, that allow

Modtx to forward a message through the system. The code in Figure 35 shows the

definition for Modtx’s interface. The lone function, print, is meant to be consumed by the

inner components. It takes as parameters the contents of the Modbus message, the

component from which the RPC originated, the ID of the message, and finally the

decision of the inner component on whether the message is valid.

148

Figure 33: Flow of messages through Modtx

6.2.2 Signtx: The Untrusted Network Interface

The untrusted network is anything outside the control network. In this specific

case, it is the connection from the control center to the substation. This medium can vary

from installation to installation, and might use network infrastructure that is not within

149

the operator’s control such as a telephone lines. The protocols used over the untrusted

network will also vary depending on the installation. The system described in this section

will send and receive an encapsulated Modbus packet over a serial line to and from a

modem. In a similar fashion to Modtx described in section 6.2.1, the Signtx component is

responsible for reading well-formed (not necessarily valid) encapsulated messages from

the serial port, assigning an ID, and forwarding the message to the inner components. A

well-formed message starts with a “!” character, ends with a “/r/n” sequence of

characters, and is between 78 and 578 bytes long. Message validation is left to the inner

components.

1 /* Modtx.camkes */
2
3 import "../../interfaces/ModchkIface.idl4";
4 import "../../interfaces/ModtxIface.idl4";
5 import "../../interfaces/CryptoIface.idl4";
6
7 component Modtx {
8
9 control;
10
11 provides ModtxIface modtx_iface;
12 uses ModchkIface modchk_iface;
13 uses CryptoIface crypto_iface;
14

15 }

Figure 34: The Modtx component definition

1 /* ModtxIface.idl4 */
2 /* Simple RPC interface */
3
4 procedure ModtxIface {
5 void print(in string text, in string source,

 in int id, in int isValid);
6 };

Figure 35: The ModtxIface interface definition

150

The Signtx component is also responsible for sending well-formed, valid, signed

encapsulated messages out of the serial port onto the untrusted network. This

functionality is a bit more complex as the signing and validation of the Modbus message

requires actions from two other components working asynchronously. When a message is

received from an inner component, it is stored until its counterpart (indicated by a

message ID) is received from the other component. If the protocol checker identifies the

Modbus as valid and the signature has been received from the inner components, the final

encapsulated message is sent byte-by-byte through the serial port. If the protocol checker

decides the Modbus message is invalid, Signtx drops the message. This design facilitates

proofs that only well-formed, valid, and signed encapsulated Modbus can be sent to the

untrusted network. Figure 36 illustrates the message flow through Signtx.

The code in Figure 37 shows the definition for the Signtx component. As it is

responsible for polling the serial interface, line 9 designates this as an active component.

It provides a single interface called SigntxIface that initiates the message compiling and

sending service. It consumes two interfaces, one for each inner component, that allow

Signtx to forward a message and signature through the system. The code in Figure 38

shows the definition for Signtx’s interface. There is a function within the interface for

each of the inner components. The first, print_sign, is meant to be used by the

cryptographic component to pass the cryptographic hashes of messages. It accepts as

parameters the contents of the message, the source from which this RPC originated, the

ID of the message, and the calculated HMAC. The second function of the interface,

print_mod, is meant to be used by the protocol checker. It accepts as parameters the

151

contents of the message, the source from which the RPC originated, the ID of the

message, and the protocol checker’s decision on whether the Modbus message is valid.

Figure 36: Flow of messages through Signtx

152

1 /* Signtx.camkes */
2
3 import "../../interfaces/ModchkIface.idl4";
4 import "../../interfaces/CryptoIface.idl4";
5 import "../../interfaces/SigntxIface.idl4";
6
7 component Signtx {
8
9 control;
10 provides SigntxIface signtx_iface;
11
12 uses CryptoIface crypto_iface;
13 uses ModchkIface modchk_iface;
14
15 }

Figure 37: The Signtx component definition

1 /* SigntxIface.idl4 */
2
3 procedure SigntxIface {
4
5 void print_sign(in string text, in string source,

 in int id, in string hmac);
6 void print_mod(in string text, in string source,

 in int id, in int isValid);

7 };

Figure 38: The SigntxIface interface definition

6.2.3 Modchk: The Protocol Checker

Modbus is an open standard communication protocol developed by Modicon in

1979. It is a simple and connectionless call-and-response protocol that allows straight-

forward modeling. This research deals specifically with Modbus ASCII, a version that

uses a leading “:” to signal a new packet, contains two bytes to indicate the recipient's

address, contains two bytes describing the function code, contains a payload of data, and

finally a Longitudinal Redundancy Check (LRC) to detect transmission errors and an

ending character sequence. It contains a simple addressing scheme allowing for up to 247

devices on a common bus, a field for a function code that tells the target devices which

procedure to run, and a data field that can contain up to 252 bytes of information for the

153

target device to act on. The layout of a Modbus packet can be seen in Table 29. Modbus

ASCII in particular requires two bytes to represent one byte of information, thus the data

field for Modbus ASCII has a maximum length of 504 instead of 252. Further reference

about Modbus can be found in [29], while discussion of its use and security can be found

in [21], [105].

Table 29: A Modbus ASCII message

Start Address
Function

Code

Sub code
Data LRC End

“:” 2 bytes 2 bytes
2 bytes

(optional)

Up to

504 bytes
2 bytes “\r\n”

Modchk is an inner component responsible for checking the validity of Modbus

messages it receives from either networking component. Messages it receives should

already be well-formed, as the networking components only allow well-formed messages

to pass. A valid Modbus message is a message in which every field conforms to the

Modbus standard as described in [29]. This means the address field should contain a valid

address from 0 (broadcast) to 247, the LRC matches a calculated LRC, and so forth. Once

the message has been analyzed, it is forwarded to the opposite networking component

with the critical decision attached.

The code in Figure 39 shows the definition for the Modchk component. This

component merely provides a service and does not initiate any actions on its own, so it is

passive. Modchk provides the same service regardless of the direction a message is

passing through the system, so it can offer a single interface called ModchkIface. It

consumes two interfaces, one from each networking component. When a message is

received from Modtx, it is eventually forwarded using the Signtx interface and vice-

154

versa. The ModchkIface is defined in Figure 40. It implements a single service: verify.

Verify accepts as parameters the message text to be checked, the source component from

which the RPC originated, and the ID of the message. The source allows Modchk to keep

track of which component sent which message so the message can be forwarded

appropriately.

1 /* Modchk.camkes */
2
3 import "../../interfaces/ModchkIface.idl4";
4 import "../../interfaces/ModtxIface.idl4";
5 import "../../interfaces/SigntxIface.idl4";
6
7 component Modchk {
8
9 provides ModchkIface modchk_iface;
10 uses ModtxIface modtx_iface;
11 uses SigntxIface signtx_iface;
12

13 }

Figure 39: The Modchk component definition

1 /* ModchkIface.idl4 */
2
3 procedure ModchkIface {
4 void verify(in string text, in string source, in int id);
5 };

Figure 40: The ModchkIface interface definition

6.2.4 Crypto: The Cryptographic Service

The cryptographic component provides the signing and verifying services for the

system. The goal of the system is to add authentication and integrity to an existing

SCADA installation. To achieve that goal Crypto houses a secret key, a nonce generator,

the cryptographic primitive SHA-256 cryptographic hashing function, and the

cryptographic construction HMAC. Proper use of an HMAC can allow the system to

detect if a message has been tampered with, as even the slightest change in the message

155

will alter the resulting HMAC calculation. Additionally, because the secret key is

included in the input to the HMAC, a message with a valid HMAC calculation can

trusted to be from the opposite security device and not a forgery from an attacker.

The specific implementations of both SHA-256 and HMAC used in Crypto are

verified to meet their respective FIPS specifications in [89] and [92]. The HMAC

specification has been further verified to hold the security properties it claims in [143].

The verification work for these pieces of code can be seen in [144] and [88]. The

properties have been proven to hold from the specification down to the C code that is

found within Crypto. Currently, the default compiler for CAmkES and seL4 is the

unverified gcc, so the binary that is produced from compilation of the C code must be

trusted. Appel notes in [88] that gcc and the verified CompCert generally agree on

language semantics, so the effort to verify the C code still adds value to the binary

compiled by gcc.

The code in Figure 41 shows the definition for the Crypto component. This

component merely provides a service and does not initiate any actions on its own, so it is

passive. Crypto provides a single interface called CryptoIface that handles both the

signing and verifying capabilities. It consumes two interfaces, one from each networking

component. When a message is received from Modtx, it is eventually forwarded using the

Signtx interface and vice-versa. The Crypto interface CryptoIface is defined in Figure 42.

It implements two services: sign and verify. Sign is intended for consumption by the

trusted network component, receiving raw Modbus messages and generating a

cryptographic HMAC before forwarding the message and HMAC to the untrusted

network component. It accepts as parameters the contents of a message and the message

156

ID. Verify is intended for consumption by the untrusted network component, receiving a

Modbus message and HMAC then calculating the HMAC itself and checking if the two

HMACs match. It accepts as parameters the message contents, the ID of the message, and

the HMAC that accompanied the message from the untrusted network. Once the

cryptographic work has been done, both functions forward the results to the opposite

network component.

1 /* Crypto.camkes */
2
3 import "../../interfaces/CryptoIface.idl4";
4 import "../../interfaces/ModtxIface.idl4";
5 import "../../interfaces/SigntxIface.idl4";
6
7 component Crypto {
8
9 provides CryptoIface crypto_iface;
10 uses ModtxIface modtx_iface;
11 uses SigntxIface signtx_iface;
12
13 }

Figure 41: The Crypto component definition

1 /* CryptoIface.idl4 */
2
3 procedure CryptoIface {
4 void sign(in string text, in int id);
5 void verify(in string text, in int id, in string hmac);
6 };

Figure 42: The CryptoIface interface definition

6.2.5 Pre-defined RPC Connections

With the components and interfaces defined, the last piece within CAmkES is to

define the RPC paths that components can use to communicate with each other. These

paths static and defined in the design before boot so they cannot be changed without

157

recompiling the CAmkES application. The code snippet in Figure 43 defines the RPC

calls from component interface to component interface, and create the lines and circles

between components seen in Figure 32. An important feature of this design is the lack of

allowed connections directly between the two networking components. Messages cannot

flow through the system without going through the two inner components to be validated.

1 ...*snip*...
2 /* Things coming out of the modtx component */
3 connection seL4RPCCall conn1(from modtx.modchk_iface,

to modchk.modchk_iface);
4 connection seL4RPCCall conn2(from modtx.crypto_iface,

 to crypto.crypto_iface);
5
6 /* Things coming out of the crypto component*/
7 connection seL4RPCCall conn3(from crypto.modtx_iface,

 to modtx.modtx_iface);
8 connection seL4RPCCall conn4(from crypto.signtx_iface,

 to signtx.signtx_iface);
9
10 /* Things coming out of the signtx component */
11 connection seL4RPCCall conn5(from signtx.crypto_iface,

 to crypto.crypto_iface);
12 connection seL4RPCCall conn6(from signtx.modchk_iface,

 to modchk.modchk_iface);
13
14 /* Things coming out of the modchk component */
15 connection seL4RPCCall conn7(from modchk.modtx_iface,

 to modtx.modtx_iface);
16 connection seL4RPCCall conn8(from modchk.signtx_iface,

 to signtx.signtx_iface);

Figure 43: The system composition definition

6.3 Summary

This chapter detailed each CAmkES component for the native seL4 security

preprocessor device. There are two passive inner components that handle critical

decisions and two active outer components that interact with the network. The interfaces

provided by each component are detailed, with the networking components providing

interfaces with functions to print to the network and the inner components providing

158

interfaces for the cryptographic and protocol checking services they provide. Finally, the

seL4 RPC connections are detailed. The network components can communicate with the

inner components but not with each other, no component can directly access functionality

of another, and no sections of memory are shared between components.

159

CHAPTER VII

CONCLUSIONS AND FUTURE WORK

The contributions presented in this dissertation fill a gap in the current state of the

art research in securing industrial control and SCADA systems. This document describes

the method for increasing the assurance and security level of a legacy control system

though formal specification and model checking a bump-in-the-wire security

preprocessor that adds much needed security mechanisms where none previously exists.

Further, this dissertation serves as a proof of concept for the method of producing high-

assurance industrial devices by targeting the seL4 microprocessor with TLA+ designs.

TLA+ can be structured to intuitively flow from formally specified design to embedded

CAmkES architecture running on seL4.

Adding security to an existing control systems network requires careful

considerations to reduce downtime, reduce added latency, and reduce added failure

points. A bump-in-the-wire security preprocessor built atop a high-assurance microkernel

like seL4 might reduce the impact of added security enough to be palatable to asset

owners. This thesis proposed a development cycle for engineering high-assurance

embedded systems with formally described and verified security and safety properties.

An informal design of an embedded system can be formalized and verified using TLA+.

The TLA+ specification can be used to define an architecture in CAmkES. Finally, the

160

components in the CAmkES architecture can be populated with the C implementations of

their algorithms.

Building trustworthy systems is a key component in both safety and security. The

previous chapters have described a model of a bolt-on security device split into its

integral pieces. Each state that each component can reach is described and automatically

checked, demonstrating proof of relevant security properties. Building this system atop

seL4 ensure that even though these components are proven to be isolated from each

other, they are proven to be able to communicate with each other through highly

specified channels. Thus this paper describes a system modeled and checked from end to

end.

This work stops short of formally verifying an implementation of each cell

specified in this paper. The described system takes advantage of seL4's distributed

component architecture to show how a correct system should behave but does not

describe its implementation. The initial steps of the next stage of research have been

started to include a verified implementation, using Microsoft and INRIA's F* proof

language[145][146][147] for the verification efforts then translating to C for use in each

individual component. Verification of the implementation has not been attempted, but the

pipeline of TLA+ to F* to C source to compiled C within the CAmkES components has

been shown to work with an implementation of a basic 4-component message passing

system.

Another interesting avenue of research is a translation tool to automatically move

from a TLA+ specification to a CAmkES architecture. This thesis performed the

translation manually, but it might be possible to encode a subset of TLA+ semantics to

161

generate the necessary directory structure, interface definitions, and CAmkES component

definitions in an seL4 project. Processes in TLA+ might extract to components and

message queues might extract to interface definitions. Such a tool will allow an engineer

to specify, check, and reason about an seL4 architecture directly in TLA+.

162

REFERENCES

[1] K. Stouffer, V. Pillitteri, M. Abrams, and A. Hahn, “Guide to Industrial Control

Systems (ICS) Security.” US Department of Commerce, 2015.

[2] H. Mackenzie, “SCADA Security Basics: Why Industrial Networks are Different

than IT Networks.” Oct-2012.

[3] M. Abrams and J. Weiss, “Malicious Control System Cyber Security Attack Case

Study – Maroochy Water Services, Australia,” 2008.

[4] H. Kim, “Security and Vulnerability of SCADA Systems over IP-Based Wireless

Sensor Networks,” Int. J. Distrib. Sens. Networks, vol. 8, no. 11, p. 268478, 2012.

[5] V. M. Igure, S. A. Laughter, and R. D. Williams, “Security issues in SCADA

networks,” Comput. Secur., vol. 25, no. 7, pp. 498–506, 2006.

[6] N. Falliere, L. O. Murchu, and E. Chien, “W32.Stuxnet Dossier,” 2011.

[7] I. N. Fovino, A. Carcano, M. Masera, and A. Trombetta, “Design and

Implementation of a Secure Modbus Protocol,” in Critical Infrastructure

Protection III: Third Annual IFIP WG 11.10 International Conference on Critical

Infrastructure Protection, Hanover, New Hampshire, USA, March 23-25, 2009,

Revised Selected Papers, C. Palmer and S. Shenoi, Eds. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2009, pp. 83–96.

[8] “Network Infrastructure for EtherNet/IP: Introduction and Considerations.” Open

DeviceNet Vendor Association, Inc. (ODVA), 2007.

[9] B. Smith, “DNP3 Secure Authentication - What’s all the Buzz about?” .

[10] G. Klein et al., “seL4: Formal Verification of an OS Kernel.” NICTA, 2009.

[11] R. Chapman, “Going Large with Formal Methods on iFACTS.” 2014.

[12] E. M. Clarke and J. M. Wing, “Formal Methods: State of the Art and Future

Directions,” ACM Comput. Surv., vol. 28, no. 4, pp. 626–643, Dec. 1996.

[13] M. Rolfe, “How technology is transforming air traffic management,” nats.aero,

2013. [Online]. Available: http://nats.aero/blog/2013/07/how-technology-is-

transforming-air-traffic-management/. [Accessed: 11-Dec-2016].

[14] A. Hall and R. Chapman, “Correctness by construction: developing a commercial

secure system,” IEEE Softw., vol. 19, no. 1, pp. 18–25, 2002.

[15] D. Bailey and E. Wright, Practical SCADA for industry. Elsevier, 2003.

163

[16] B. Galloway, G. P. Hancke, and others, “Introduction to industrial control

networks.,” IEEE Commun. Surv. Tutorials, vol. 15, no. 2, pp. 860–880, 2013.

[17] T. Brown, “Security in SCADA systems: how to handle the growing menace to

process automation,” Computing & Control Engineering Journal, vol. 16, no. 3.

pp. 42–47, 2005.

[18] R. M. Lee, SCADA And Me: A Book for Children and Management. IT-Harvest

Press, 2013.

[19] J.-P. Thomesse, “Fieldbus technology in industrial automation,” Proc. IEEE, vol.

93, no. 6, pp. 1073–1101, 2005.

[20] “Modbus.” [Online]. Available: http://www.modbus.org/. [Accessed: 28-May-

2014].

[21] I. N. Fovino, A. Carcano, M. Masera, and A. Trombetta, “Design and

Implementation of a Secure Modbus Protocol,” in Critical Infrastructure

Protection III: Third Annual IFIP WG 11.10 International Conference on Critical

Infrastructure Protection, Hanover, New Hampshire, USA, March 23-25, 2009,

Revised Selected Papers, C. Palmer and S. Shenoi, Eds. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2009, pp. 83–96.

[22] “MODBUS over Serial Line Specification & Implementation guide V1.0,”

modbus.org, 2002. [Online]. Available:

http://www.modbus.org/docs/Modbus_over_serial_line_V1.pdf. [Accessed: 05-

Aug-2018].

[23] G. R. Clarke, D. Reynders, and E. Wright, Practical modern SCADA protocols:

DNP3, 60870.5 and related systems. Newnes, 2004.

[24] CONTROL MICROSYSTEMS, “DNP3 User and Reference Manual.” Control

Microsystems, 2007.

[25] P. Gibson, “Open and secure SCADA with DNP3.” Jun-2008.

[26] DNP Users Group, “A DNP3 Protocol Primer.” 2005.

[27] V. R. Schiffer Vangompel, “The common industrial protocol (CIP) and the family

of CIP networks,” ODVA, 2016.

[28] “Network Infrastructure for EtherNet/IP: Introduction and Considerations.” Open

DeviceNet Vendor Association, Inc. (ODVA), 2007.

[29] Modbus.org, “MODBUS over Serial Line Specification & Implementation guide.”

Modbus.org, 2002.

[30] A. Miller, “Trends in Process Control Systems Security,” IEEE Secur. Priv. Mag.,

vol. 3, no. 5, pp. 57–60, Sep. 2005.

[31] M. Brandle and M. Naedele, “Security for Process Control Systems an Overview,”

IEEE Security and Privacy, vol. 6, no. 6. IEEE, pp. 24–29, 2008.

164

[32] S. Tom, D. Christiansen, and D. Berrett, “Recommended practice for patch

management of control systems,” 2008.

[33] K. Brocklehurst, “Cyberterrorists Seek to Cause Physical Harm.” Feb-2015.

[34] M. S. Branicky, S. M. Phillips, and W. Zhang, “Stability of networked control

systems: Explicit analysis of delay,” in American Control Conference, 2000.

Proceedings of the 2000, 2000, vol. 4, pp. 2352–2357.

[35] F.-L. Lian, J. Moyne, and D. Tilbury, “Network design consideration for

distributed control systems,” IEEE Trans. Control Syst. Technol., vol. 10, no. 2,

pp. 297–307, 2002.

[36] W. Johnson, R. R. Dunn, and V. J. Maggioli, “Understanding ISA84,” Intech with

Ind. Comput., vol. 59, no. 3, p. 12, 2012.

[37] J. H. Saltzer and M. D. Schroeder, “The protection of information in computer

systems.,” Proc. IEEE, vol. 63, no. 9, pp. 1278–1308, 1975.

[38] R. M. Lee, M. J. Assante, and T. Conway, “Analysis of the Cyber Attack on the

Ukrainian Power Grid,” 2016.

[39] “Assessing Security and Privacy Controls in Federal Information Systems and

Organizations,” 2014.

[40] W. McGrew, “Rising to the Challenge of Pen Testing ICS,” hornecyber.com,

2016. [Online]. Available: http://blog.hornecyber.com/attack-surface/rising-to-the-

challenge-of-pen-testing-ics. [Accessed: 04-Dec-2018].

[41] D. Duggan, “Penetration Testing of Industrial Control Systems,” 2005.

[42] R. Amoah, S. Camtepe, and E. Foo, “Formal modelling and analysis of DNP3

secure authentication,” J. Netw. Comput. Appl., vol. 59, pp. 345–360, 2016.

[43] United Nations Office of Counter-Terrorism and CTED, “The protection of critical

infrastructure against terrorist attacks: Compendium of good practices.”

INTERPOL, 2018.

[44] R. J. Anderson, Security engineering: a guide to building dependable distributed

systems. John Wiley & Sons, 2010.

[45] J. H. Saltzer, “Protection and the control of information sharing in Multics,”

Commun. ACM, vol. 17, no. 7, pp. 388–402, 1974.

[46] J. Wetzels, “Ghost in the Machine: Challenges in Embedded Binary Security,”

2017.

[47] A. Wadsworth and B. Parker, “Implementing Application Whitelisting - A Case

Study,” in Noth American SANS SCADA & Process Control System Security

Summit, 2012.

[48] “Blue Coat ICS Protection Scanner Station Version,” 2014.

[49] “UNIDIRECTIONAL SECURITY GATEWAYS,” Waterfall-security.com.

165

[Online]. Available: https://waterfall-security.com/unidirectional-security-

gateways.

[50] Tofino Security, “Cyber Security for SCADA and Industrial Control Systems.”

[Online]. Available: http://www.tofinosecurity.com/. [Accessed: 08-Jun-2014].

[51] D. McMillen, “Security attacks on industrial control systems,” 2017.

[52] N. Falliere, “Stuxnet Introduces the First Known Rootkit for Industrial Control

System.” Aug-2010.

[53] N. Anderson, “Confirmed: US and Israel created Stuxnet, lost control of it.” Jun-

2012.

[54] R. Langner, “Stuxnet: Dissecting a Cyberwarfare Weapon,” IEEE Secur. Priv.

Mag., vol. 9, no. 3, pp. 49–51, May 2011.

[55] D. Wagner, “infrastructure under attack,” Risk Manag., vol. 63, no. 8, p. 28, 2016.

[56] J. E. Sullivan and D. Kamensky, “How cyber-attacks in Ukraine show the

vulnerability of the U.S. power grid,” Electr. J., vol. 30, no. 3, pp. 30–35, 2017.

[57] U. Shamir, “Analyzing a New Variant of BlackEnergy 3.” SentinelOne, 2016.

[58] J. P. Anderson, “Computer Security Technology Planning Study,” ESDTR. 1972.

[59] D. E. Bell, “Looking back at the bell-La padula model,” in Proceedings - Annual

Computer Security Applications Conference, ACSAC, 2005.

[60] Department of Defense, “Trusted computer system evaluation criteria ["Orange

Book"],” Dep. Def., 1985.

[61] B. Rudis, “CVE 100K: By The Numbers,” Rapid7 Blog, 2018. [Online].

Available: https://blog.rapid7.com/2018/04/30/cve-100k-by-the-numbers/.

[Accessed: 07-Oct-2019].

[62] L. Lamport, LATEX: a document preparation system: user’s guide and reference

manual. Addison-wesley, 1994.

[63] L. Lamport, “The temporal logic of actions,” ACM Trans. Program. Lang. Syst.,

vol. 16, no. 3, pp. 872–923, 1994.

[64] L. Lamport, Specifying systems: the TLA+ language and tools for hardware and

software engineers. Addison-Wesley Longman Publishing Co., Inc., 2002.

[65] T. Nipkow and G. Klein, “Concrete Semantics,” A Proof Assist. Approach, 2014.

[66] P. Cousot, “Abstract interpretation based formal methods and future challenges,”

in Informatics, 2001, pp. 138–156.

[67] R. Milner, “A theory of type polymorphism in programming,” J. Comput. Syst.

Sci., vol. 17, no. 3, pp. 348–375, 1978.

[68] J. Spolsky, “Painless Functional Specifications,” Joel on Software, 2000. [Online].

166

Available: http://www.joelonsoftware.com/articles/fog0000000036.html.

[Accessed: 10-Oct-2016].

[69] E. M. Clarke, O. Grumberg, and D. Peled, Model checking. MIT press, 1999.

[70] K. L. McMillan, “Symbolic model checking,” in Symbolic Model Checking,

Springer, 1993, pp. 25–60.

[71] S. A. Kripke, “Semantical analysis of modal logic i normal modal propositional

calculi,” Math. Log. Q., vol. 9, no. 5–6, pp. 67–96, 1963.

[72] A. Pnueli, “The temporal logic of programs,” in Foundations of Computer Science,

1977., 18th Annual Symposium on, 1977, pp. 46–57.

[73] O. Maler and D. Nickovic, “Monitoring Temporal Properties of Continuous

Signals,” 2011.

[74] M. Leuschel, “The ProB Animator and Model Checker,” Heinrich-Heine-

University, Institut für Software und Programmiersprachen, 2018. [Online].

Available: https://www3.hhu.de/stups/prob/index.php/Team. [Accessed: 07-Feb-

2018].

[75] R. E. Bryant, “Graph-based algorithms for boolean function manipulation,”

Comput. IEEE Trans., vol. 100, no. 8, pp. 677–691, 1986.

[76] A. Valmari, “Stubborn sets for reduced state space generation,” in International

Conference on Application and Theory of Petri Nets, 1989, pp. 491–515.

[77] G. J. Holzmann and D. Peled, “An improvement in formal verification,” in Formal

Description Techniques VII, Springer, 1995, pp. 197–211.

[78] P. Godefroid and P. Wolper, “A partial approach to model checking,” Inf.

Comput., vol. 110, no. 2, pp. 305–326, 1994.

[79] E. Clarke, A. Biere, R. Raimi, and Y. Zhu, “Bounded model checking using

satisfiability solving,” Form. methods Syst. Des., vol. 19, no. 1, pp. 7–34, 2001.

[80] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Progress on the state

explosion problem in model checking,” in Informatics, 2001, pp. 176–194.

[81] USGAO, “National Partnership Offers Benefits, but Faces Considerable

Challenges,” 2006.

[82] “CommonCriteria,” commoncriteriaportal.org, 2018. [Online]. Available:

https://www.commoncriteriaportal.org/. [Accessed: 04-Dec-2018].

[83] Common Criteria, “Common Criteria,” 2017. .

[84] Common Criteria, “Certified Products,” 2017. [Online]. Available:

https://www.commoncriteriaportal.org/products/.

[85] L. A. Johnson and others, “DO-178B, Software considerations in airborne systems

and equipment certification,” Crosstalk, Oct., vol. 199, 1998.

167

[86] M. Bellare, “New Proofs for NMAC and HMAC: Security without Collision

Resistance,” J. Cryptol., 2015.

[87] L. Beringer, A. Petcher, K. Q. Ye, and A. W. Appel, “Verified correctness and

security of OpenSSL HMAC [Complex!],” Usenix Sec, 2015.

[88] A. W. Appel, “Verification of a Cryptographic Primitive,” ACM Trans. Program.

Lang. Syst., 2015.

[89] Q. H. Dang, “FIPS 180-4 Secure Hash Standard,” 2015.

[90] X. Leroy, “Formal verification of a realistic compiler,” Commun. ACM, vol. 52,

no. 7, pp. 107–115, 2009.

[91] Y. Bertot and P. Castéran, Interactive Theorem Proving and Program

Development: Coq’Art: The Calculus of Inductive Constructions. 2004.

[92] J. M. Turner, “The keyed-hash message authentication code (hmac),” Fed. Inf.

Process. Stand. Publ., 2008.

[93] H. Krawczyk, R. Canetti, and M. Bellare, “HMAC: Keyed-hashing for message

authentication,” 1997.

[94] J.-K. Zinzindohoué, K. Bhargavan, J. Protzenko, and B. Beurdouche, “HACL∗: A

Verified Modern Cryptographic Library,” CCS, 2017.

[95] D. J. Bernstein, T. Lange, and P. Schwabe, “The security impact of a new

cryptographic library,” in Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2012.

[96] D. J. Bernstein, “Cryptography in NaCl,” Netw. Cryptogr. Libr., vol. 3, p. 385,

2009.

[97] D. J. Bernstein, B. van Gastel, W. Janssen, T. Lange, P. Schwabe, and S. Smetsers,

“TweetNaCl: A crypto library in 100 tweets,” in Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics), 2015.

[98] G. Lowe, “Breaking and fixing the Needham-Schroeder public-key protocol using

FDR,” in Lecture Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics), 1996.

[99] J. Steiner, B. Neuman, and J. Schiller, “Kerberos: An Authentication Service for

Open Network Systems.,” USENIX Winter, 1988.

[100] K. Bhargavan, C. Fournet, M. Kohlweiss, A. Pironti, and P. Y. Strub,

“Implementing TLS with Verified Cryptographic Security,” in 2013 IEEE

Symposium on Security and Privacy, 2013, pp. 445–459.

[101] L. Lamport, “The TLA Home Page,” 2018. [Online]. Available:

http://lamport.azurewebsites.net/tla/tla.html. [Accessed: 05-Jul-2018].

[102] C. Newcombe, “Why amazon chose TLA+,” in International Conference on

168

Abstract State Machines, Alloy, B, TLA, VDM, and Z, 2014, pp. 25–39.

[103] C. Newcombe, T. Rath, F. Zhang, B. Munteanu, M. Brooker, and M. Deardeuff,

“Use of formal methods at Amazon Web Services,” 2014.

[104] V. M. Igure, S. A. Laughter, and R. D. Williams, “Security issues in SCADA

networks,” Comput. Secur., vol. 25, no. 7, pp. 498–506, 2006.

[105] P. Huitsing, R. Chandia, M. Papa, and S. Shenoi, “Attack taxonomies for the

Modbus protocols,” Int. J. Crit. Infrastruct. Prot., 2008.

[106] S. East, J. Butts, M. Papa, and S. Shenoi, “A Taxonomy of Attacks on the DNP3

Protocol,” in International Conference on Critical Infrastructure Protection, 2009,

pp. 67–81.

[107] R. J. Lipton and L. Snyder, “A Linear Time Algorithm for Deciding Subject

Security,” J. ACM, 1977.

[108] M. Bishop and L. Snyder, “The Transfer of Information and Authority in a

Protection System,” in Proceedings of the Seventh ACM Symposium on Operating

Systems Principles, 1979, pp. 45–54.

[109] T. Murray et al., “seL4: from general purpose to a proof of information flow

enforcement,” in Security and Privacy (SP), 2013 IEEE Symposium on, 2013, pp.

415–429.

[110] D. Elkaduwe, G. Klein, and K. Elphinstone, “Verified protection model of the

seL4 microkernel,” in Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2008.

[111] L. C. Paulson, “Isabelle: The Next 700 Theorem Provers,” in Logic and Computer

Science, 1990.

[112] K. Fisher, J. Launchbury, and R. Richards, “The HACMS program: using formal

methods to eliminate exploitable bugs,” Phil. Trans. R. Soc. A, vol. 375, no. 2104,

p. 20150401, 2017.

[113] “THREAT LANDSCAPE FOR INDUSTRIAL AUTOMATION SYSTEMS IN

H2 2017,” 2017. [Online]. Available: https://ics-

cert.kaspersky.com/reports/2018/03/26/threat-landscape-for-industrial-automation-

systems-in-h2-2017/. [Accessed: 04-Dec-2018].

[114] Kaspersky Lab ICS CERT, “THREAT LANDSCAPE FOR INDUSTRIAL

AUTOMATION SYSTEMS IN THE SECOND HALF OF 2016.” Kaspersky Lab,

2017.

[115] M. Mimoso, “EQUATION APT GROUP ATTACK PLATFORM A STUDY IN

STEALTH,” threatpost, 2015. [Online]. Available:

https://threatpost.com/equation-apt-group-attack-platform-a-study-in-

stealth/111550/. [Accessed: 04-Dec-2018].

[116] M. Cheminod, A. Pironti, and R. Sisto, “Formal vulnerability analysis of a security

169

system for remote fieldbus access,” IEEE Trans. Ind. Informatics, 2011.

[117] B. Blanchet, “An Efficient Cryptographic Protocol Verifier Based on Prolog

Rules,” in 14th IEEE Computer Security Foundations Workshop (CSFW-14),

2001, pp. 82–96.

[118] M. Rocchetto and N. O. Tippenhauer, “Towards Formal Security Analysis of

Industrial Control Systems,” 2017.

[119] D. Dolev and A. C. Yao, “On the Security of Public Key Protocols,” IEEE Trans.

Inf. Theory, 1983.

[120] A. Jones, Z. Kong, and C. Belta, “Anomaly detection in cyber-physical systems: A

formal methods approach,” in Proceedings of the IEEE Conference on Decision

and Control, 2014.

[121] “IEEE Standard for Electric Power Systems Communications-Distributed Network

Protocol (DNP3) - Redline,” IEEE Std 1815-2012 (Revision IEEE Std 1815-2010)

- Redline, pp. 1–821, Oct. 2012.

[122] K. Jensen, “Coloured petri nets,” in Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 1987.

[123] M. A. P. S. Modbus-IDA, “V. 1.1 b,” Hopkinton, Massachusetts (www. modbus.

org/docs/Modbus Appl. Proto col V1 1b. pdf), 2006.

[124] M. Sabraoui, J. L. Hieb, and J. H. Graham, “MODBUS protocol fuzzing for cyber-

security evaluation of industrial control systems,” in 27th International Conference

on Computer Applications in Industry and Engineering, CAINE 2014, 2014.

[125] J. Edmonds, M. Papa, and S. Shenoi, “Security analysis of multilayer SCADA

protocols,” in International Conference on Critical Infrastructure Protection,

2007, pp. 205–221.

[126] D. Potts, R. Bourquin, L. Andresen, J. Andronick, G. Klein, and G. Heiser,

“Mathematically verified software kernels: raising the bar for high assurance

implementations,” 2014.

[127] E. Byres, “PLC Security Risk: Controller Operating Systems,” Tofino Security

Blog, 2011. [Online]. Available: https://www.tofinosecurity.com/blog/plc-security-

risk-controller-operating-systems.

[128] M. Sabraoui, “Sixnet Tools: for poking at Sixnet Things.” DerbyCon, 2013.

[129] J. M. Rushby, Design and verification of secure systems, vol. 15, no. 5. ACM,

1981.

[130] J. Hieb, J. Graham, J. Schreiver, and K. Moss, “Security Preprocessor for

Industrial Control Networks,” in Proceedings of the 7th International Conference

on Information Warfare and Security: ICIW, 2012, p. 130.

[131] L. Lamport, “Specifying Concurrent Systems with TLA^+,” NATO ASI Ser. F

170

Comput. Syst. Sci., vol. 173, pp. 183–250, 1999.

[132] J. Gray and L. Lamport, “Consensus on transaction commit,” ACM Trans.

Database Syst., vol. 31, no. 1, pp. 133–160, 2006.

[133] J. Andronick, “The formal verification of seL4,” no. November, 2018.

[134] G. Klein, P. Derrin, and K. Elphinstone, “Experience report: seL4: formally

verifying a high-performance microkernel,” in ACM Sigplan Notices, 2009, vol.

44, no. 9, pp. 91–96.

[135] M. Fernandez, G. Klein, I. Kuz, and T. Murray, “CAmkES formalisation of a

component platform,” NICTA UNSW, 2013.

[136] I. Kuz, Y. Liu, I. Gorton, and G. Heiser, “CAmkES: A component model for

secure microkernel-based embedded systems,” J. Syst. Softw., vol. 80, no. 5, pp.

687–699, 2007.

[137] M. Fernandez, J. Andronick, G. Klein, and I. Kuz, “Automated verification of RPC

stub code,” in International Symposium on Formal Methods, 2015, pp. 273–290.

[138] S. Merz and H. Vanzetto, “Refinement Types for tla + ,” 2014.

[139] J. H. Hieb, J. H. Graham, and B. Luyster, “A Prototype Security Hardened Field

Device for Industrial Control Systems,” in Proceedings of the International

Conference on Advanced Computing and Communications, 2010, pp. 95–100.

[140] M. Sabraoui, J. Hieb, A. Lauf, and J. H. Graham, “Using TLA+ to model and

check bump-in-the-wire security for Industrial Control Systems,” in Thirteenth

IFIP WG 11.10 Conference on Critical Infrastructure Protection, 2019, pp. 167–

184.

[141] A. Helwer, “tla-experiments.” Github, 2018.

[142] Y. Yu, P. Manolios, and L. Lamport, “Model checking TLA + specifications,” in

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), 1999.

[143] H. Krawczyk, M. Bellare, and R. Canetti, “HMAC: Keyed-Hashing for Message

Authentication,” 1997.

[144] L. Beringer, A. Petcher, K. Q. Ye, and A. W. Appel, “Verified correctness and

security of OpenSSL HMAC,” in Usenix Security Symposium, 2015.

[145] N. Swamy, J. Chen, C. Fournet, P.-Y. Strub, K. Bhargavan, and J. Yang, “Secure

distributed programming with value-dependent types,” in ACM SIGPLAN Notices,

2011, vol. 46, no. 9, pp. 266–278.

[146] Microsoft Research; INRIA, “FStarLang,” 2018. [Online]. Available:

https://www.fstar-lang.org/.

[147] K. Bhargavan et al., “Verified Low-Level Programming Embedded in F,” arXiv

Prepr. arXiv1703.00053, 2017.

171

APPENDICIES

This appendix presents the ASCII table and TLA+ specification for the models

used in chapter Chapter IV and Chapter V.

The ASCII Table.

For TLA+ and CAmkES code, as well as the seL4 prototype for the security

preprocessor, see https://github.com/mssabr01/Dissertation-Work

172

CURRICULUM VITA

NAME: Mehdi Sabraoui

ADDRESS: Department of Computer Science and Engineering

 222 Eastern Pkwy.

 University of Louisville

 Louisville, KY 40208

DOB: Louisville, Kentucky - February 19, 1990

EDUCATION

& TRAINING: B.S., Computer Engineering and Computer Science

 University of Louisville

 2008-2013

 M.Eng., Computer Engineering and Computer Science

 University of Louisville

 2012-2013

 Ph.D., Computer Science and Engineering

 University of Louisville

 2014-2019

PUBLICATIONS:

Using TLA+ to model and check bump-in-the-wire security for

Industrial Control Systems Thirteenth IFIP

WG 11.10 Conference on Critical Infrastructure Protection

2019

 Verifying SCADA Security in Industrial Control Systems

29th International Conference on Computer Applications in Industry

and Engineering

2016

MODBUS protocol fuzzing for cyber-security evaluation of industrial

control systems 27th International Conference on Computer

Applications in Industry and Engineering

2014

	University of Louisville
	ThinkIR: The University of Louisville's Institutional Repository
	8-2019

	Formally designing and implementing cyber security mechanisms in industrial control networks.
	Mehdi Sabraoui
	Recommended Citation

	tmp.1565131530.pdf.51q39

