
University of Louisville University of Louisville

ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

5-2008

Security hardened remote terminal units for SCADA networks. Security hardened remote terminal units for SCADA networks.

Jeff Hieb
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

Recommended Citation Recommended Citation
Hieb, Jeff, "Security hardened remote terminal units for SCADA networks." (2008). Electronic Theses and
Dissertations. Paper 615.
https://doi.org/10.18297/etd/615

This Master's Thesis is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional
Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator
of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the author, who
has retained all other copyrights. For more information, please contact thinkir@louisville.edu.

https://ir.library.louisville.edu/
https://ir.library.louisville.edu/etd
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F615&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/615
mailto:thinkir@louisville.edu

SECURITY HARDENED REMOTE TERMINAL UNITS FOR SCADA NETWORKS

By

Jeffrey Lloyd Hieb
B.S., Furman University, 1992
B.A., Furman University, 1992

M.S., University of Louisville, 2004

A Dissertation
Submitted to the Faculty of the

Graduate School of the University of Louisville
in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

Department of Computer Science and Computer Engineering
J. B. Speed School of Engineering

University of Louisville
Louisville, Kentucky

May 2008

ii

SECURITY HARDENED REMOTE TERMINAL UNITS FOR SCADA NETWORKS

By

Jeffrey Lloyd Hieb
B.S., Furman University, 1992
B.A., Furman University, 1992

M.S., University of Louisville, 2004

A Dissertation Approved on

February 26, 2008

By the following Dissertation Committee members

Dr. James H. Graham, Dissertation Director

Dr. Adel Elmaghraby

Dr. Patricia A. S. Ralston

Dr. Dar-jen Chang

Dr. Rammohan K. Ragade

DEDICATION

To my wife

Jennifer

for all of her support, encouragement and patience.

111

ACKNOWLEDGEMENTS

I would like to express my deep appreciation to Dr. James Graham, my

dissertation director. Collaborating and working with him has been both pleasurable and

educational. His technical guidance, perspective and encouragement were essential to the

completion of this dissertation. I wish to thank the members of my committee, Dr.

Patricia Ralston, Dr. Adel Elmaghraby, Dr. Dar-jen Chang, and Dr. Rammohan K.

Ragade for their time, expertise, and support. A special thanks to Dr. Adel Elmaghraby

for mentoring me in the future faculty program. I learned a lot from our conversations. I

also owe special thanks to my friends and colleagues Sandy Patel, Rob Kelley, Doug

Wampler, and Nathan Johnson for distracting me when I need distracting and assuring

me when I need assuring. Many thanks to Dr. Walden Laukhuf, Mr. Steve Williamson,

and the Chemical Engineering Department. Generous use of their facilities, particularly

the Process Control Laboratory and the Unit Operations Laboratory, as well as their time

and expertise were greatly appreciated. Thanks also to Ron Lile and his staff for

providing technical support.

IV

ABSTRACT

SECURITY HARDENED REMOTE TERMINAL UNITS FOR SCADA NETWORKS

Jeffrey L. Hieb

February 26, 2008

Remote terminal units (RTUs) are perimeter supervisory control and data

acquisition (SCADA) devices that measure and control actual physical devices. Cyber

security was largely ignored in SCADA for many years, and the cyber security issues that

now face SCADA and DCS, specifically RTU security, are investigated in this research.

This dissertation presents a new role based access control model designed specifically for

RTUs and process control. The model is developed around the process control specific

data element called a point, and point operations. The model includes: assignment

constraints that limit the RTU operations that a specific role can be assigned and

activation constraints that allow a security administrator to specify conditions when

specific RTU roles or RTU permissions cannot be used.

RTU enforcement of the new access control model depends on, and is supported

by, the protection provided by an RTU's operating system. This dissertation investigates

two approaches for using minimal kernels to reduce potential vulnerabilities in RTU

protection enforcement and create a security hardened R TU capable of supporting the

new RTU access control model. The first approach is to reduce a commercial OS kernel

v

to only those components needed by the RTU, removing any known or unknown

vulnerabilities contained in the eliminated code and significantly reducing the size of the

kernel. The second approach proposes using a microkernel that supports partitioning as

the basis for an RTU specific operating system which isolates network related RTU

software, the R TU attack surface, from critical R TU operational software such as control

algorithms and analog and digital input and output.

In experimental analysis of a prototype hardened RTU connected to real SCADA

hardware, a reduction of over 50% was obtained in reducing a 2.4 Linux kernel to run on

actual RTU hardware. Functional testing demonstrated that different users were able to

carryout assigned tasks with the limited set of permissions provided by the security

hardened RTU and a series of simulated insider attacks were prevented by the RTU role

based access control system. Analysis of communication times indicated response times

would be acceptable for many SCADA and DCS application areas. Investigation of a

partitioning microkernel for an RTU identified the L4 microkernel as an excellent

candidate. Experimental evaluation of L4 on real hardware found the IPC overhead for

simulated critical RTU operations protected by L4 partitioning to be sufficiently small to

warrant continued investigation of the approach.

VI

TABLE OF CONTENTS

PAGE

ACKNOWLEDGEMENTS ... iv
ABSTRACT .. v
LIST OF TABLES .. xii
LIST OF FIGURES ... xiv

CHAPTER I INTRODUCTION .. 1

1.1 Organization of Dissertation ... 5

CHAPTER II LITERATURE SURVERY .. 7

2.1 SCADA systems ... 7

2.1.1 SCADA Components .. 8

2.1.2 SCADA architectures .. 12

2.1.3 SCADA protocols ... 15

2.2 SCADA cyber security threats and vulnerabilities ... 16

2.3 Securing SCADA systems .. 23

2.3.1 Securing SCADA with standard IT technologies ... 23

2.3.2 Differences between SCADA and Traditional IT environment 28

2.3.3 SCADA research challenges and current research 29

2.4 The Role based access control model ... 36

2.4.1 RBAC constraints ... 38

2.4.2 Specifying constraints on RBAC models ... 42

2.5 Operating system security, reliability and reduced kernels 52

VII

2.5.1 Minimal kernels .. 56

2.5.2 Separation kernel and the MILS architecture ... 58

CHAPTER III SECURITY HARDENING RTUS .. 61

3.1 RTU security vulnerabilities ... 62

3.2 A security hardened R TU ... 66

3.2.1 Secure SCADA protocol ... 66

3.2.2 RTU role based access controL ... 68

3.2.3 Reduced kernel OS ... 71

3.3 A security hardened RTU architecture ... 73

3.4 Conclusions ... 75

CHAPTER IV RTU ACCESS CONTROL MODEL .. 76

4.1 Core elements of the RTU access control modeL .. 76

4.1.1 Sets .. 77

4.1.2 Relations ... 80

4.1.3 Core model definition ... 81

4.2 Additional access control factors .. 81

4.2.1 Location .. 82

4.2.2 Time of day and day of week .. 84

4.2.3 Point type .. 85

4.2.4 System state .. 85

4.3 RTU constraints .. 87

4.3.1 RTU role activation constraints .. 87

4.3.2 RTU Permission activation constraints ... 88

V 111

4.3.3 RTU point type constraints ... 88

4.4 The RTU access control mode!.. ... 89

4.5 Check Permission Algorithm .. 92

4.6 Conclusions ... 93

CHAPTER V RTU PROTECTION AND REDUCED KERNELS 94

5.1 Minimal COTS kernel based RTU ... 97

5.2 Microkernel based RTU .. 99

5.2.1 Alternative microkernel for the security hardened RTU 103

5.2.2 RTU protection architecture using a microkernel... 104

5.3 Conclusions ... 105

CHAPTER VI PROTOTYPE DEVELOPMENT AND TESTING 107

6.1

6.1.1

Prototype development platform ... 107

Hardware ... 108

6.1.2 Software .. 108

6.1.3 Development Environment ... 109

6.2 Hardened RTU prototype development .. 109

6.2.1 Prototype development: Reduced Linux KerneL 110

6.3.2 Prototype development: RTU Role Based Access Control 112

6.3.3. Prototype development: SCADA access via DNP3 protocol 117

6.3 Hardened RTU prototype setup and configuration ... 121

6.3.1 RTU Role based access control policy ... 122

6.3.2 DNP3 configurations .. 122

6.4 Test bed ... 122

IX

6.5 Hardened RTU prototype testing .. 125

6.6 Performance Testing ... 125

6.6.1 Performance testing task descriptions ... 127

6.6.2 Performance Results ... 129

6.7 Security Testing .. 132

6.7.1 NMAP Scan .. 133

6.7.2. Nessus scan ... 133

6.7.3 Fuzzball ... 135

6.7.4. Insider attacks ... 135

6.8 Conclusions ... 139

CHAPTER VII MICROKERNELS FOR HARDENED RTUS 141

7.1 The L4 Microkemel .. 143

7.1.1 L4 implementations .. 147

7.2 Development Platforms .. 149

7.2.1 Platform Analysis .. 149

7.3 Microkemel Based Hardened RTU Platform ... 151

7.3 Points Server Development and IPC performance ... 153

7.3.1 IPC overhead test setup ... 154

7.3.2 IPC overhead results ... 157

7.4 Conclusions ... 158

CHAPTER VIII CONCLUSIONS AND FUTURE DIRECTIONS 160

8.1 Conclusions ... 160

8.2 Future Research Directions ... 163

x

REFERENCES ... 167

GLOSSARY ... 176

APPENDIX A REDUCED LINUX KERNEL CONFIGURATION FILE 180

APPENDIX B DNP3 PROTOCOL .. 192

APPENDIX C NESSUS SCAN REPORT .. 196

APPENDIX D SIXNET mIPM TECHNICAL SPECIFICATIONS 199

CURRICULUM VITAE ... 202

XI

LIST OF TABLES

TABLE PAGE

2.1. Common SCADA Protocols [23] ... 17

2.2. Threats to SCADA systems .. 19

2.3. Power substation vulnerabilities [33] .. 22

2.4. Difference between SCADA and Traditional IT .. 29

2.5. Types of constraint supported in different RBAC models .. 44

4.1. RTU access control operational functions .. 91

6.1. Reduced kernel and standard kernel comparision .. 112

6.2. DNP3 address to location assignment.. ... 116

6.3 RTU users and role assignments ... 123

6.4. Permissions, point types and permission assignments .. 124

6.5. Role activation constraints (RAC) .. 124

6.6. Permission activation constraints (PAC) .. 124

6.7. DNP3 settings ... 125

6.8. Performance statistics for the simple read task ... 130

6.9. Performance statistics for the simple write task ... 130

6.10. Performance statistics for the static data poll task .. 131

6.11. Performance statistics for the closed loop control task. .. 131

6.12. Performance statistics for the complex operation task ... 131

xii

6.13. Summary of response times for each performance task 131

6.14. Insider attack scenarios ... 138

7.1. IPC overhead for hardened RTU protected calls .. 158

xiii

LIST OF FIGURES

FIGURE PAGE

2.1. Typical supervisory systems [11] ... 9

2.2. Sample SCADA HMI from [12] ... 10

2.3. Basic RTU hardware components [13]. .. 11

2.4. First Generation SCADA architecture [15] .. 13

2.5. Third-generation SCADA architecture [15] ... 15

2.6. Typical SCADA protocol message format, adapted from [17]. 16

2.7. Encryption of SCADA serial communications with an SCM [52] 31

2.8. Core RBAC model [67]. ... 37

2.9. Core RBAC definitions [67]. .. 38

2.10. Core RBAC with SSD and DSD constraints defined in [67]. 45

2.11. Summary of the ARBAC 97 Model [79] .. 47

2.12. RCL 2000 syntax .. 49

2.13. Context constraints as defined by Strembeck and Nueman [73] 51

2.14. A graphical constraint specification in [74] ... 52

2.15. Computer architectural layers ... 53

2.16. Monolithic kernel design .. 55

2.17. The basic microkernel design ... 57

2.18. The MILS architecture [100] .. 59

XIV

3.1. RTU architectural layers ... 63

3.2. Challenge response authentication [1 05] .. 68

3.3. RTU access control model. ... 71

3.4. Secure RTU model with a separation kernel. ... 73

3.5. Security enhanced RTU architecture .. 75

4. 1. Core R TU access contro I mode I definiti ons , 81

4.2. The RTU access control model.. .. 90

4.3. Check_access algorithm ... 92

5.1. Typical authorization architecture ... 95

5.2. RTU security architecture using radically reduced RTU kernel... 99

5.3. MILS RTU with isolation of RTU components ... 100

5.4. MILS RTU with PEP .. 102

5.5. Microkernel based RTU security architecture .. 106

6.1. SixNet RTU used for prototype development source [111]. 110

6.2. Prototype security middleware implementation ... 113

6.3. Security middleware request message format.. ... 115

6.4. DNP3 application layer fragments .. 119

6.5. Challenge-response authentication for RTU - MTU communication 120

6.6. Diagram of the level control system in the process control lab 126

6.7 Output from the nmap scans of the prototype hardened RTU 134

7.1. Structure of an L4 based OS system ... 146

7.2. Derived OKL4 based RTU architecture ... 154

7.3. IPC calls in an RTU application request for RTU services 156

xv

7.4. RTU test application code fragment. .. 156

B.l. ONP3 protocol layers ... 194

8.2. ONP3 application layer fragments ... 194

XVI

CHAPTER I

INTRODUCTION

Supervisory control and data acquisition (SCADA) systems became popular in the

1960's for a variety of reasons. SCADA systems allow measurement and control of

physical systems to be carried from a remote location. Initially they were used by

industries and utilities to monitor and control physical devices like valves and switches.

Prior to the use of SCADA systems, opening and closing of valves or the setting of

switches was done manually; this was both costly because it was labor intensive and the

exposure of valves and switches (especially in a distributed system like the electrical

power grid or water supply system) to human control was considered a security and

safety issue. Using SCADA systems, unauthorized access to valves and switches could

be more tightly controlled while keeping a human in the loop; that is, human supervision

and interaction were, and still are, part of SCADA systems. However, technological

advances and the maturation of SCADA systems has pushed more of the supervisory

function onto the computer systems that make up modern SCADA systems.

In the early development of SCADA systems attention was given to physical

security, but virtually no attention was given to electronic or cyber security. The systems

were obscure and the skills and technology needed to interact with the systems were

simply not readily available; security of this type is often referred to as "security through

obscurity". This pattern has continued and today "most dedicated SCADA and PCS

applications have not included built-in security" [1]. Unfortunately, open protocols,

advanced telecommunication networks, cheap computer electronics, and unlimited access

to even the most obscure information through the World Wide Web have made

SCADA's security through obscurity obsolete. The move of SCADA systems to open

standards and new technology has allowed SCADA system managers to realize cost

savings by using commercial-off-the-shelf (COTS) hardware and software. In addition,

as computer networks and information systems have become more commonplace

throughout the corporate enterprise, managers have seen the economic benefits of having

access to SCADA data and have built network connections into the previously isolated

SCADA networks. The connection of porous and less secure corporate networks to once

isolated SCADA networks, now using COTS systems, has unintentionally exposed

SCADA systems to a host of vulnerabilities and threats for which it was ill prepared.

SCADA protocols provide no authentication or authorization capabilities. When

other networks are connected to the SCADA network, intentionally or unintentionally, an

attacker who manages to gain access to the SCADA network can spoof control signals on

the SCADA network. Because SCADA protocols do not provide authentication or

authorization a SCADA system is unable to distinguish between a real and a spoofed

control signal, allowing the attacker to control SCADA devices. If the device were an

electrical breaker and the SCADA operator was an electric utility, then turning that

switch on might overload the power systems, or tuning it off might tum off electricity to

customers. This threat is compounded by the use of COTS software, particularly COTS

operating systems, as it becomes possible for insiders to use almost any PC to run

SCADA software, and thus elevates the insider threat.

2

Concern for the cyber security of industrial control systems has been amplified by

the fact that many, if not all, of our nation's critical infrastructures are heavily reliant on

these control systems for reliable and stable day to day operation. The Patriot Act defines

critical infrastructures to be "systems and assets, whether physical or virtual, so vital to

the United States that the incapacity or destruction of such systems and assets would have

a debilitating impact on security, national economic security, national public health or

safety, of any combination of those matters" [2]. The President's Commission on Critical

Infrastructure Protection found that there was a "growing cyber dimensions associated

with infrastructure ... and ... the defenses that served us so well in the past offer little

protection from the cyber threat" [3].

While the United States has been fortunate that a major cyber attack has not been

successfully carried out against any critical infrastructure SCADA systems, incidents

have occurred. In 2003 the slammer worm penetrated part of the network at a Davis­

Besse nuclear power plant in Ohio and disabled part of the safety monitoring system for

nearly five hours [4]. Fortunately the plant was shut down for repairs at the time. In

another incident, a hacker using a radio transmitter was able to open valves and release

raw sewage from an Australian sewage treatment plant [5]. The reluctance of companies

to release incident information along with the possibility that some or many incidences

go unnoticed makes it difficult to accurately assess the risk. One attempt to track

incidents, the Industrial Security Incident Database maintained by the British Columbia

Institute of Technology (BCIT), has shown a sharp increase in security incidents

beginning in 200 I [6].

3

Addressing cyber security for SCADA is an ongoing task with many challenges.

One challenge is that these systems tend to have a very long deployment life, up to and

even beyond twenty years; consider the difference in computing technology between

today and twenty years ago. Addressing the security needs for next year is challenging,

addressing the security needs two decades into the future is daunting at best. Economics

also plays a role because the cost of updating or replacing SCADA systems is significant,

meaning that security solutions for legacy systems are needed. However, control systems

are gaining in popularity; the global revenue from the sale of control systems is expected

to grow to $13.9 billion by 2009 [1]. As this growth continues and as network

convergence becomes an increasingly un-avoidable reality, it is of utmost importance that

the next generation of SCADA systems be security hardened against all types of cyber­

based attacks.

The SCADA architecture is generally broken down into a master station or MTU

used by human operators to monitor and control remote terminal units, or RTUs. A

communications network provides communication channels between MTUs and RTUs.

Security hardening techniques are needed for the various components as well as for the

SCADA system as a whole. RTUs interact with physical devices like valves and

switches. A primary SCADA security objective is to prevent unauthorized or improper

operation of valves, switches, or other physical devices, since these devices could have

economic consequences for a SCADA operator as well as potentially disrupting normal

operation of U.S. critical infrastructures. The fact that RTUs can, and often are,

physically remote makes securing them that much more important.

4

This dissertation describes research and development of a security hardened RTU.

While protecting and securing existing systems is important, the aim of this dissertation is

to explore the development of next generation RTUs. As existing RTUs are replaced in

existing SCADA deployments and as new SCADA systems are deployed, it is important

that these RTUs be security hardened against cyber based attacks. This dissertation

presents an RTU role based access control model for hardening RTUs. The model is

developed to prevent unauthorized alteration of analog and digital 10 points. In addition

a middleware layer deployment architecture is advocated to allow fine grained and

homogenous application of an RTU access control policy. Operating system (OS)

support for a middleware layer deployment is a critical factor in the assurance of the

security hardened RTU. Two approaches for reduced kernel RTUs are presented. A

reduced commercial-off-the-shelf (COTS) kernel is one approach, and is used in the

development of a prototype for testing. A second approach is to use a microkernel which

supports partitioning and partition RTU software components to improve security.

1.1 Organization of Dissertation

Chapter two provides background information in SCADA and SCADA cyber­

security as well as role based access control models and microkernels. Chapter three

presents a high level description of the hardened RTU approaches which are investigated

in this dissertation. Chapter four described the RTU role based access control model in

detail. Chapter five discussed middleware layer deployment, and the role of an RTU

operating system in security. Chapter five presents two reduced kernel RTU approaches,

a reduced COTS kernel and a microkernel. Chapter six describes the development of a

prototype hardened RTU based on the SIXNET mlPM and a reduced Linux kernel.

5

Performance and security testing results are presented in chapter six as well. Chapter

seven describes additional investigation of microkemels and the results of some

preliminary development and testing using an XScale PXA 255 processor and the OKL4

microkemel. Chapter eight presents the conclusion of this dissertation and elaborates on

directions for future research.

6

Chapter II

LITERATURE SURVERY

This chapter presents background information of several topics relevant to this

dissertation. Section 2.1 gives a historical overview of SCADA systems, their central

components, and uses. The security threats and vulnerabilities that face SCADA systems

are discussed in section 2.2. Section 2.3 presents a survey of SCADA security research

and existing research challenges. Section 2.4 described the role based access control

model (RBAC), and a presents a survey of the work on RBAC and constraints. Section

2.5 discusses the trusted computing base (TCB) of a system, security kernels,

microkernels and separation kernels.

2.1 SCADA systems

Supervisory Control And Data Acquisition (SCADA) came into existence in the

mid 1960's coinciding with the development of the minicomputer. SCADA provides a

means for remotely monitoring and controlling many kinds of industrial systems by

providing users of the system with the ability to remotely control one or more specific

devices and to monitor the performance of those devices from a central and physically

remote location. The IEEE std C37.1-1994 [7] defines SCADA to be:

"A system operating with coded signals over communication channels so as to

provide control of RTU equipment. The supervisory system may be combined with a data

acquisition system by adding the use of coded signals over communication channels to

7

acquire iriformation about the status of the RTU equipment for di~play or for recording

functions." [7].

An excellent example of such a SCADA system is the distribution system used by

electric utilities, which is one of the oldest and most familiar SCADA systems. In

electricity distribution SCADA is used to collect information from remote parts of a

power distribution grid; for example the volts, amps or phase angle of a particular line in

a substation, and provide it to a central control installation. In addition, SCADA allows

an operator at the centralized control station to trip breakers at remote substations in

response to conditions reported by the SCADA system. Other well known industries that

use SCADA are the gas and oil utilities and nuclear power production.

2.1.1 SCADA Components.

There are four main components that make up a SCADA systems: the supervisory

system or master terminal unit (MTU), remote terminal units (RTU), a communications

network, and field instruments or devices [8-10]. The exact nature of the different

components depends greatly on the specific SCADA system and its topology. A typical

supervisory system is shown in figure 2.1 and each subsystem is explained in detail in the

following paragraphs. A small SCADA system might consist of only one MTU and one

RTU, and is referred to as single-master, single-remote [11]. A more common

configuration is the single-master, multiple-remote system with a single MTU connected

to many RTUs. In large SCADA systems it possible to have multiple MTUs and

hundreds of RTUs [II].

8

Master station (MTU)

The master station or master terminal unit (MTU) has traditionally been located in

a control room where human operators interact with the system through a user interface

(UI). The MTU is responsible for polling remote devices for data, processing the data,

providing various representations of the data (including alarms) and sending operator

initiated control signals back to the field devices. In some situations the UI is carried out

by a separate system called a HMI (human machine interface) system. The HMI system

provides an interface between an operator and the MTU, freeing up the MTU from

providing a UI. In this case the MTU continues to carryout polling and control activities,

but the high level representation is left to the HMI machine. A sample operator screen

typical of an HMI or MTU display is shown in figure 2.2.

MASTER
STATION

REMOTE
TERMINAL

UNITS

COMMUNICATIONS

USER
INTERFACE

IJINALOG
~'UTPUTS

DIGITAL
INPUTS

USER
14------1~ INTERFACE

DIGITAL
OUTPUTS

INTELLIGENT
ELECTRONIC

DEVICES

Figure 2.1. Typical supervisory systems [11].

Remote Terminal Units

Remote terminal units (RTUs), also referred to as remote telemetry units, are

standalone systems that can acquire data from devices or equipment at the remote site,

control devices or equipment at the remote site, and transfer acquired data back to a

9

master station. RTUs are typically built to withstand the much harsher operating

environments that can be associated with remote locations like a plant floor, or an electric

utility substation. RTUs provide four basic types of connections for interfacing with field

devices: analog inputs, analog outputs, digital inputs, and digital outputs. Leads from

field devices are directly connected to these interfaces on the RTU. An RTU also

includes some communications capability through a combination of serial ports, built in

modems, and more recently Ethernet ports. Other RTU components include a CPU,

memory, power supply with battery backup, watchdog timer, surge protection, and real-

time clock. A sample RTU specification is given in appendix A and figure 2.3 shows a

generic RTU hardware configuration.

o..tIDO: tl,OO twf.OOI)

~ ~""'" '-r

00

,'''1 "'.'. ~~
'3W 4JM "n~d,j ~.q

- •

Figure 2.2. Sample SCADA HMI from [12].

10

vi!UJlJ'y",

-,l.W'=wJ,j

Communications Network

The communication network of a SCADA system connects RTUs with MTUs.

Remote locations may have a communications network, like a LAN, which can be used

for local inter-device communication, but this is usually not considered to be part of the

SCADA communications network. Communication links take many forms including

leased lines, Public Switched Telephone Networks (PSTNs), Internet Protocol (IP) based

landlines, radio, microwave and even satellite. SCADA communications security has

traditionally referred to error detection and error correction capabilities, and not to

features such as authentication and encryption [7;9].

MlliwUnktSllllon ... rI" f-
ro Lacal CottIoW

t
.. h'~at !Iedtonk: - Dt¥IoH(~

, 1

ConIrol I Data Ccmmunlcatlon I Maintenance J Proc_ng Inlpace PrClC8fiiflg i ~I) . i

~ UI

I Sfllf OIagtlOSb J lopIIonal)
~0IJIj0nat}

I 1

I J
I\natog DlgIt81 ~~~ I ~itai OJtput
lnpu: Input Mcdt.des Output

MOoo165 MoDI.ims (~J I MoWlel
J~ .~ .~ I

l InleflXlslng
Relays

T~ PuIIe C'on1aoIlI From .. ~ C'!ilPTI I".
~ -SWlohet

Figure 2.3. Basic RTU hardware components [13].

11

Field Equipment

At the periphery of SCADA systems are field equipment or field devices. These

are the actual hardware components, which effectively serve as the eyes, ears, and hands

of the SCADA system. Field equipment essentially consists of sensors and actuators.

Sensors directly measure a physical condition at some remote site and actuators open,

close, activate or inactivate a remote physical device. Some examples of field equipment

are: voltage sensor, phase sensor, circuit breaker, relay, temperature sensor, pressure

sensor, and flow control valve.

2.1.2 SCADA architectures

As computer and network technology have evolved and matured, so have SCADA

systems. The evolution of SCADA systems is generally broken down into three separate

successive generations [14;15]: monolithic, distributed, and networked. The changing

architecture of SCADA systems has been a contributing factor to the cyber security

issues faced by modem SCADA systems.

First Generation: Monolithic

At the time that SCADA systems were first developed, the mainframe computer

was the dominant computer technology. Networks were virtually non-existent making

mainframes standalone machines. The SCADA systems of this era reflect this paradigm.

They were special purpose standalone systems that were not intended to be connected to

other systems and tended to be very hierarchical and centralized in nature. Figure 2.4

shows a standard first generation SCADA architecture. The master station in these

SCADA systems was typically a single mainframe computer. A second redundant master

12

station was usually present and shared the communications bus with the active master

station. In the event of a system failure the second system could take over.

The lack of network technology led vendors of SCADA systems to develop

solutions that allowed RTUs to communicate with the MTU mainframe often over long

distances. The communication technology they developed was driven solely by this goal

and in the absence of any of today's WAN protocols. In general the communication

protocols developed by different vendors were lean, supporting only the minimal

functionality needed to achieve scanning and control of points within a remote device

[14]. The transmission medium used to connect RTUs and MTUs lacked a high degree

of fidelity, leading to communication security focused exclusively on error detection and

error correction codes. In addition each vendor tended to view their protocols as

proprietary, preventing other vendors from developing equipment that could

communicate using these protocols [15].

SCADA Master

~DD
c 0 ~4~--------------~.

1

RTUs

Wide-Area
Network

Wide-Area
Network

RTUs

RTUs

Figure 2.4. First Generation SCADA architecture [15].

13

Second Generation: Distributed

Advances in system miniaturization and LAN technology characterize second

generation SCADA systems. The single mainframe master station was replaced by

multiple stations serving different functions all connected by a LAN. The distribution of

system functionality across multiple machines increased the overall processing capability

of the system, but LAN technology was only capable of handling relatively short

distances, typically hundreds of feet, this meant that the systems still had to be housed

within a single room. Off-the-shelf LAN protocols were available, but some vendors still

choose to use propriety protocols. Communication links with RTUs were largely

unchanged relative to first generation systems, and in general vendors maintained control

over what hardware, software, and devices were available for a specific SCADA system.

Third Generation: Networked

Third generation systems are similar in many ways to second generation systems,

but with one important difference, which is the move to an open system architecture

instead of a vendor controlled proprietary environments [15]. Open standards have

removed the limitations that proprietary protocols placed on SCADA systems and

therefore make it much easier to use COTS (commercial-off-the-shelf) components to

build SCADA systems. One consequence of this move has been the use of WAN

protocols like TCP/IP for communication between SCADA components like master

stations, RTUs, field communication equipment, and HMIs [15]. Figure 2.5 shows a

typical third-generation SCADA architecture. Some advantages of internet based

SCADA systems are discussed in [16]; the primary advantage cited is lower costs.

14

SCADA Master

IIPr.:~ I HMI

~OD ~-~-.
[] 0 ... -----+1> J LooaltWi~

(' Area

SCADA Master

Network

omHl
.~-~ ..

/ C-o-m-m-, -u-n-ic-a-t-io..#ns

F'ont End HMI ~ nOla I
Other RTUs Networked RTU

Figure 2.5. Third-generation SCADA architecture [15].

2.1.3 SCADA protocols

At the heart of SCADA networks are SCADA protocols. These provide the

template for communication between SCADA components, typically between the MTU

and the RTU. Early SCADA systems, the first and second generation SCADA

architectures discussed previously, used proprietary protocols, but in more recent years

there has been a move to open standards in SCADA protocols. RTUs are connected to

MTUs by a variety of different communication channels and both the cost and

availability of the communication channels has affected protocol design [17].

The limited bandwidth of early communication channels resulted m a very

compact message format, supporting only the most basic information needed to achieve

RTU to MTU communication. Figure 2.6 shows the structure of the basic SCADA

message format. The four bit RTU address allows multiple RTUs to share a single

communication channel, rather than requiring a separate communication channel for each

15

RTU. The eight bit function code specifies what operation is to be performed by the

RTU. The bits following the function code are an addressing scheme that indicates the

set point, control point, or data on which the operation is to be carried out. This address

has no special meaning to the RTU, and it is up to the MTU and SCADA software to

correctly associate an RTU address with the real world value it represents. According to

the American Gas Association's AGA-12 standard there are about 150-200 SCADA

protocols [18]. Some of the more popular SCADA protocols, as shown in table 2.1, are:

MODBUS, IEC 60870-5-101, and DNP3, but none of these currently contain security

features [19].

.-2 Bits---..-4 Bits·--1~~" --8 Bits-s ---1" __ -12 Bits-----._5 Bits __ -1 bi~

8 millisecond RTU Function
8CH

Pretransition s m
Address Code

Security m
mark Code

..... I--___ =Sy""nc=h=ro=niza=t=io"--n ___ ~ _--Informationl----_~~ .. _---_~

Message
Establishment

Message
Termination

Additional
Messages

Figure 2.6. Typical SCADA protocol message format, adapted from [17].

2.2 SCADA cyber security threats and vulnerabilities

The primary cyber based threat to SCADA systems is that an unauthorized person

or agent will access the SCADA system and interfere with its operation. The IEEE guide

for Electric Power Substation Physical and Electronic Security defines an electronic

intrusion as:

"Entry into the substation [RTUj via telephone lines or other electronic-based

media for the manipulation or disturbance of electronic devices. These devices include

digital relays, fault recorders, equipment diagnostic packages, automation equipment,

computers, PIC, and communication interfaces." [20].

16

Typical attack scenarios like those described in [21 ;22] center around an attacker

making changes to control settings, physical device parameters, or sending control

commands directly to field devices. These attacks would result in a malfunctioning of

the SCADA system which might cause a disruption in service, or possibly environmental

damage or loss of human life. These threats might be carried out by a number of

potential threat agents, including hostile nation states, industrial spies, disgruntled

employees, and malicious hackers. Table 2.2 lists possible threats to SCADA systems.

Table 2.1. Common SCADA Protocols [23].

Protocol Organization Common Features
Industries

DNP3 Developed by GE Electric Object Oriented. Three layer OSI
Harris, Managed Utilities, Gas model. Open non-proprietary
by the DNP distribution, standard.
organization and Water

distribution
Modbus Developed by Gas and Oil Initially developed for modicon's
(Modbus/TCP) Modicon and electric PLCs. Is an open standard and is

substations, royalty free. Simple to
transportation implement. Both serial and TCP

version are available. Simplicity
and wide use make this an
excellent protocol when
int~ratirtg multiQle application.

Ethernet/lP Open DeviceNet Industrial
(Industrial Vendors Automation
Protocol) Association

(ODVA)
Device Net Open DeviceNet Industrial Uses CAN as its backbone,

Vendors Automation originally developed by allen-
Association bradley. Supports master-slave as
(ODVA) well as]Jeer to -.£eer

IEC 60870-5 IEC TC57
IEC 61850 IEC TC57 Substation Ultra fast response times

automation,
distribution
automation

17

One of the most serious vulnerabilities faced by SCADA system is the commonly

held misconception that control networks are isolated and therefore not accessible to

attackers [24;25]. Early control systems used a combination of knobs, lights and dials

mounted on specialized custom-built control panels. Communication with process

machinery and field equipment was achieved using analog control signals carried by

dedicated cables that connected the process control panels to field equipment [26].

Securing these systems was simply a matter of locking the door to the control room. The

first major technological change affecting the cyber security of control systems was the

adoption of digital communication through serial networks and the ubiquitous RS-232,

RS-422 and RS-485 standards. At this point, networks, often proprietary or leased serial

lines, were still relatively isolated. However, the use of digital communication created a

consolidation of both communications channels and communication standards [26]. As

computers and network technology began to become available and used through out the

enterprise, there has been increased demand by industry for connection between the plant

floor and the corporate network. At the same time there has been increased public

availability of network access and computer technology. As a result, there is now almost

always the possibility of an external connection being able to reach the control network,

whether through an intranet, a business partner's networks, or the Internet. In addition to

these standard network paths, many SCADA systems make use of modems to provide

connectivity which can also allow an external connection into the SCADA network. For

example, the use of war-dialers to connect to remote SCADA equipment is described in

[21 ;22]. The assumption that SCADA networks are isolated and therefore protected from

potential attack is simply not true today [25;27;28].

18

Table 2.2. Threats to SCADA systems.

Threat Description
Hackers Hackers break into networks and systems for the thrill and challenge that it

presents. SCADA systems are not exempt, and are now receiving the attention of
hackers (http://www.msnbc.msn.com/id/20128089/).

Hostile Nation States Because they control critical infrastructures on which we are dependent SCADA
systems are an excellent target for cyber warfare.

Foreign Intelligence Intelligence agencies (foreign and domestic) are using cyber tools as part of there
intelligence gathering capabilities. Attacking SCADA systems could provide
intelligence was weIl as feed information into offensive branches.

Botnets Botnets are a collection of compromised computers controIled by single person,
usually referred to as a bot-herder. Botnets are used to carryout coordinated
attacks, send spam, or carryout phishing schemes. Botnets make use of
automated attack software. Botnets present two threat vectors, one they can be
used to carryout an attack on SCADA systems, or two, SCADA systems may
become part of a botnet and have their resources depleted by the botnet activities.

Insiders Disgruntled insiders have been main source of computer crime since they have
knowledge of and access to internal systems. Insiders include employees,
business partners and vendors. Insiders may not necessarily be malicious, but
accidental mistakes can have the same consequences as malicious attacks.

Worms Worms are automated programs that propagate themselves though networks by
exploiting a common vulnerably. Worms can exhaust network and computer
resources, as well as harm files on the victims.

Viruses A Virus is a program that can replicate itself and pass on malicious code to other
non-malicious programs. Viruses can corrupt files and disrupt or interfere with
the normal operation of a computer system.

Terrorists Terrorist seek to destroy or incapacitate critical infrastructure in order to damage
public moral. Cyber attacks on SCADA systems are one way to achieve this and
may be possible from a point of relative obscurity. Cyber attacks on SCADA
systems may also be used to leverage a physical attack, for example by hiding
alerts of a malicious physical attack.

Industrial Spies Seek to acquire trade secrets, or inside knowledge that can give one organization
advantage over another. SCADA systems in manufacturing industries will have
knowledge of trade secrets, or just private status data. Corruption of a
competitor's SCADA system at the appropriate time could have financial
benefits for the competitor.

As mentioned in the previous section, early SCADA installations were

characterized by closed systems and proprietary protocol standards. Most SCADA

systems are privately owned and operated, and operators are driven by economic forces.

For these reasons the economic advantages offered by open standards and open

architectures has strongly motivate the adoption and integration in SCADA. In addition

to assumption the SCADA networks were isolated, was a widely held belief that it was

difficult to acquire information about SCADA system [6;27]. Open standards and open

19

application layer interfaces that make use of available commodity software, such as a

web interface. These additional application layer interfaces in to device introduce

additional vulnerabilities and attack vectors into SCADA systems.

A final SCADA vulnerability comes from the increased data exchanges between

businesses achieved through network connectivity. For example, deregulation in the

power industry has created vulnerabilities for electric power generation, transmission,

and distribution SCADA systems. As a result of deregulation, data exchanges between

single vertically integrated organizations have been replaced by many horizontal

relationships among independent entities [15]. Some of the vulnerabilities that result

from deregulation are described in [32]. The complex interaction among entities not only

increases the network connectivity of SCADA systems but can require multiple master

and multiple remote architectures with many different entities needed varying degrees of

access.

Evidence of the vulnerabilities faced by SCADA systems is well documented in a

recent assessment of the network security of power substations [33]. In this assessment

Oman and colleagues found a number of security vulnerabilities, identified in 1997, still

existed in 2002. These included such basic security vulnerabilities as default passwords

and unsecured modem access. They also found new potential vulnerabilities in the form

of internet connectivity and wireless networks. Table 2.3 summarizes the vulnerabilities

they identified.

21

Table 2.3. Power substation vulnerabilities [33]

Doculne-ute-d 1997~STAC 1002 Yidt;;
Yulut'l'ability

\Vcak Pas'>wo1'ds Csed ",,' ./

De::'mlt PaY",,"or1" Not ./ ./
Chan(2;:d
Pas"word~ Po<,ted "" "" Vi"iblv
5harec Logi1:~ y' V'

Incol1si<..tent 01' ~Oll· ",,'

"" exhteut \Varmug
Bnnne:'s

Per~olllld Ct:aware of ./ ./
HackillO" Threat
Nm-exi"tent Security ./ vi
Policie<;
Umecured :v1odem vi ./
Ace!:",
nXenm:"k "" v'
Inttr;:Ollilccti,"ity

NOll-e:Us.tent 01' ./ v'

fn:lcie'1l!:lte T ntm,ion

DeTection
Internet C01ll1ectivity :Kon-exi<;tent ./

\Vireless :.\"et',vorh :Kon-existent vi

COllllner;:ia:izDtioll of :Kon-existent vi
Ctility TelecolllllB

There is also evidence that actual attacks against SCADA systems are occurring

and that the number of attacks is increasing. A study by the British Columbia Institute of

Technology [6] found a substantial increase in the percentage of attacks coming from

external sources. BCIT maintains an industrial cyber security incident database for the

purpose of tracking cyber security incidents in process control systems. They found a

substantial increase in the number of attacks beginning in 2001. An analysis of incident

type found that between 1982 and 2000 about 31 % of the incidents came from external

sources but that from 2001 to 2003 nearly 70% of the incidents came from external

sources. Further analysis of the external security incidents to identify entry points

concluded that there are many routes into complex SCADA systems,

22

2.3 Securing SCADA systems

Having established and understood the weak security of modem SCADA systems

the question then becomes how to secure them. An obvious first step is to attempt to

apply established network security technologies to SCADA networks. Section 2.3.1

discusses a number of articles that explore applying standard IT security solutions to

SCADA systems. However SCADA systems and traditional IT systems are not the same,

and care must be taken when applying existing security technologies to SCADA since

these technologies, which acceptable in traditional IT environment, may have

unacceptable adverse impacts on SCADA. Section 2.3.2 discusses the difference

between traditional IT environment and SCADA or control networks. In cases where

traditional IT solutions are not feasible, new security technologies need to be developed

to address the specific needs of SCADA. Section 2.3.3 presents the research challenges

facing SCADA and the work that has been conducted.

2.3.1 Securing SCADA with standard IT technologies.

Applying the experience, knowledge, and technologies of IT security to SCADA

and PCS systems has been an essential first step in securing SCADA systems. As we

have seen, the security threat to SCADA systems comes in a large part from the fact that

these were once isolated networks. When they can no longer be isolated, good network

segmentation can help keep SCADA systems secure [22;34;35]. Segmentation can be

provided by firewalls or through the use of a virtual LAN (VLAN) [36;37]. Network

segmentation reduces the exposure of SCADA systems to external networks, improving

security.

23

In [38] Munshi discusses the security considerations for SCADA systems at four

levels of the SCADA architecture. Level one is field equipment like PLCs and RTUs.

The threat identified at this level is access to data or spoofing of commands, and the

recommended solution is to implement encryption. Level two is the telecom level

comprised of the communication channels used to connect RTUs and field equipment to

level three. The threat at this level is that these are generally unsecured communications

that may be traveling over unsecured shared networks. The recommendation at this level

is to consider using IPSEC. Level three is the SCADA level, essentially this is the

control center. Recommendation for systems in this level include operating system

hardening, patch management, network equipment access control, server access controls,

physical security, virus protection strategy, and user authorization. The final level, level

four, is the enterprise level, consisting of remote SCADA clients, ERP systems, corporate

users of SCADA data, web services, and so forth. Recommendations at this level include

network controls like firewalls, proxy servers, and network segmentation.

A layered security approach is advocated by Miller [30]. Layered security

deploys security elements in each of three layers of a computing environment, personnel,

network, and operating system. Each layer includes some form of examination,

detection, and prevention. According to this model, the SCADA computing systems are

segmented and compartmentalized based on functional groups and access control plans.

Access control matrices are developed that provide a detailed security policy, which is

then implemented using security products for examination, detection, prevention, and

encryption at the various layers.

24

As previously mentioned, the use of modems for remote access to SCADA

systems provides an easy target. Abshier and Weiss [34] suggest keeping modems

unplugged when they are not needed. In situations where this is not possible the use of

dial back modems is recommended. Password protected modems and encrypting

modems are another possible solution suggested by Oman, Schweitzer, and Roberts [21].

Vulnerability assessment tools like Nmap, Nessus, and Ethereal have become

standard in the IT security community, Permann and Rohde [39] discuss the use of these

tools for security assessment of control systems. The fact that the behavior of SCADA

devices may be unpredictable when scanned makes them of limited value. For example,

non-aggressive network scanning by Brown [26] caused the failure of PLCs from two

different manufacturers. Recently, Tenable and Digital Bond have worked together to

develop SCADA Nessus plug-ins for control system vulnerability scanning [40].

Oman, Schweitzer and Roberts [21] give an extensive list of mitigation

technologies and tools from password generators and biometric devices to firewalls,

intrusion detection systems and public key infrastructure. They also provide an extensive

list of recommendations and best practices. Some recommendations not already

mentioned include the use of two or even three factor authentication when appropriate,

avoid using the same password for multiple systems, use warning banners to discourage

electronic intrusions, limit the number of failed login attempts allowed for a single

connection. Similar recommendations are also given in [32;41].

An extensive case study of a secure substation information system installation

using standard IT technologies is described by Dolezilek, Carson, Leech, and Streett

[42]. The system provides comprehensive multilayered security integration and

25

combines both the SCADA network and the business network. Another case study, of a

PCS for a pulp mill in Canada, is described by Byres in [43] and focuses mainly on

network segmentation.

In addition to the use of specific security mechanisms and technologies for

securing SCADA systems, improved management strategies and processes are also

needed. Abshier [44] summarizes ten important design and process principles for

securing control systems. The principles are: governance, security awareness and

training, policies and procedures, change management, security architecture, adding

devices and remote access, vulnerability, risk assessment and penetration tools, incident

response, configuration and patch management, and monitoring. The goal of following

these principles is to ensure that due diligence has been followed in securing an

organizations control systems. Some additional strategies for building a security plan are

given in [45].

Comprehensive guidelines for creating secure SCADA and control networks are

also being developed by several industry organizations. These documents provide

guidelines for establishing secure SCADA systems through definitions and best practices;

in some cases specific technologies are discussed, but in others only the desired result is

given. Many of these documents are still under development and review, but public

drafts are available.

Guide to Supervisory Control and Data Acquisition (SCADA) and Industrial Control
Systems Security (SP 800-82) [461

SP 800-82 is one of the products of the National Institute of Standards and

Technology'S (NIST) initiative on critical infrastructure protection called the Process

26

Control Security Requirements Forum (PCSRF) [47]. The forum is a working group of

over 500 members that come from government, academia, and the private sector. The

main goal of the PCSRF is to increase the security of industrial process control systems

through the definition of a common set of standards. The PCSRF has also published the

first draft of its System Protection Profile for Industrial Control Systems (SPP-ICS) [47]

and field device protection profile [48].

ISA-SP99

ISA, a nonprofit organization concerned with standards in industrial automation,

IS in the process of developing ISA-SP99, a standard for manufacturing and control

system security. The goal of ISA-SP99 is to establish standards, practices, technical

reports and related information for implementing electronically secure manufacturing and

control systems.

NERC CIP 002 - CIP 09

The North American Electric Reliability Councilor NERC, is self-regulatory

organization that sets standards for reliable operation of the bulk electric system.

NERC's members come from all segments of the power industry: investor-owned

utilities, federal power agencies, rural electric cooperatives, state municipal utilities, and

independent power producers. NERC is in the process of drafting cyber security

standards to reduce the risk of a cyber compromise of bulk electric systems. The first

draft was known as NERC l300 and was issued in September 2004. In response to

comments on the first draft a second draft was written. The seconds draft, renamed

NERC CIP is organized in eight sections, CIP - 002 through CIP - 009. CIP - 005

27

focuses specifically on electronic security, defining electronic perimeters, and

requirements for logging, password management, access control, and strong

authentication.

2.3.2 Differences between SCADA and Traditional IT environment

Though SCADA systems are increasingly adopting technologies from traditional

IT environments, SCADA and traditional IT systems are very different in several ways.

One of the most important differences is how security is prioritized. In traditional IT

systems, security engineers usually consider confidentiality the most important followed

by integrity and then availability. However, as discussed by Miller in [30], for control

systems availability is most important, followed by integrity and then confidentiality. For

example, when you switch on a light, it needs to come on; when you pick up the phone

there should be a dial tone. This is availability; it is what we expect from the systems and

services that make use of SCADA. Moreover, down time for the services that SCADA

systems operate can run into the millions of dollars per hour [30], making availability of

paramount importance.

SCADA systems and other control system also tend to have very different

performance needs from traditional IT systems. Delaying the delivery of information

even for a relatively brief moment is not acceptable in SCADA systems, though they

often do not require a high degree of throughput. However, IT systems typically do

require a high throughput but are much more tolerant of delays or jitter. In addition many

SCADA systems may have much greater resource constraints than would be found in

traditional IT systems. This lack of computing resources along with performance

constraints can make it difficult or impossible to apply standard security technologies.

28

One of the real challenges presented by SCADA system is the relatively long life

of SCADA components compared to their IT counter parts. It is not uncommon for

SCADA components to be in use for fifteen to twenty years, while the average IT system

as life span of three to five years.

Table 2.4. Difference between SCADA and Traditional IT

Category Information Technology SCADA Systems
Systems

Performance High throughput, can Medium to low throughput
tolerate delay and jitter but cannot tolerate delay or

jitter
Focus of security Protect focus on central Need to protect the edges or
architecture core of the system. So perimeter devices such as

called Hard in the middle RTUs and field devices.
and soft on the outside Also need to protect core

internal systems as well
Priority of security 1. Confidentiality 1. Availability
primitives 2. Integrity 2. Integrity

3. Availability 3. Confidentiality
Component lifetime 3 - 5 years 15 - 20 years
Physical accessibility Easily accessible Isolated and remote, may be

very difficult to access

2.3.3 SCADA research challenges and current research.

Over the past several years industry groups and academics have begun to work

towards addressing the SCADA security issue. This can be seen in the increasing

number of publications related to SCADA security [1; 18;30;49]. Igure [18;27] identifies

three research challenges in the field of SCADA security. The first challenge is to

improve access controls to SCADA networks to make it harder for attackers to gain

access to the SCADA network. The second challenge is to improve security inside

SCADA networks, including developing efficient monitoring tools that make actually

carrying out an attack difficult. Finally he points out the need to improve the security

29

management of the SCADA network. Solutions to these challenges must take into

consideration the unique demands of SCADA systems discussed in section 2.3.2.

One of the primary security tools is encryption, and there are several articles

which present SCADA security solutions that deal with encryption. Leading the way in

SCADA and encryption, particularly for legacy systems is the AGA 12 working group

established in 2001 by the American Gas Association (AGA). The working group was to

recommend solutions to that would help protect gas utility SCADA equipment from

cyber attack. The group determined that unprotected serial based communication

channels posed the greatest threat. In response to this threat AGA 12 has developed a

serial SCADA protection protocol (SSPP) which is implemented by a separate device

called SCADA Cryptographic Modules (SCM); these are installed on either end of a

communication channel [50-52]. Figure 2.7 shows the proposed architecture of using

two SCMs to provide encrypted communications between an MTU (SCADA Host) and

an RTU.

Wright, Kinast and McCarty [52] present a low-latency encryption scheme for

retrofitting serial SCADA communications. This proposed solution attempts to fulfill the

requirements of a SCM specified by AGA -12. Recall that an SCM sits on either side of

a SCADA communication link, invisibly encrypting and decrypting all communications

between an MTU and an RTU. Wright, Kinast, and McCarty describe two unique

requirements for encrypting SCADA communication links. The first is that SCADA

communication messages usually follow very predictable patterns, making plaintext

attacks possible and likely. The second is that the real-time nature of SCADA systems

means they can endure very little communication latency that will result from the

30

encryption and decryption of messages. The protocol prevents injection of unauthentic

ciphertext, modification of ciphel1ext during transmission, reordering of messages, and

replaying of old messages, while introducing a fixed latency of 2 * b/8 where b is the

number of bits in a block. A different approach to meeting the AGA 12 SCM proposal is

described in [19].

Figure 2.7. Encryption of SCADA serial communications with an SCM [52].

A secure SCAOA protocol that addresses message integrity and sender

authentication is presented by Patel in [29]. Several approaches are highlighted, such as

SSLlTLS wrapping, the use of digital certificates, and the use of challenge response with

a pre-shared secret. The ONP3 protocol is extended to include the necessary

authentication objects so that RTUs or MTUs can use the proposed protocol to verify

sender authenticity and detect modifications to messages. A threat analysis and formal

proof techniques support security claims about the communication protocol. The focus

of the protocol is on integrity of message and sender authenticity and is not concerned

with confidentiality.

Some key management issues for a SCAOA networks are investigated by Beaver

and colleagues in [53]. They point out that many critical SCAOA communications have

31

minimum time delays on the order of two to four milliseconds and therefore the

processing time of public key protocols especially when run on the less powerful

processors often found in SCADA devices prohibits the use of public key protocols for

performing authentication unless highly specialized cryptographic accelerators are used.

As an alternative to expensive hardware encryption they propose to let IEDs or field

devices use symmetric encryption via a key exchange algorithm. They provide security

for four communications paths: Master to Certificate Authority, Master to Substation,

Substation to lED, and Substation to Substation. Communications are restricted to only

these communication paths. They then describe a new format for packets within the

SCADA network, and key generation, key storage, and key use associated with each

communication path. Only substation to substation communications use public key

algorithms, and then only for key exchange. They also describe a process for recovering

from a substation penetration.

The use of smartcards to provide encryption and authentication to field area

network nodes is described by Palensky and Sauter in [54]. A field area network (FAN)

is a collection of nodes at some site, similar to a remote location. A FAN gateway

provides remote access to the FAN much like an RTU provides remote access to field

devices. The proposed security architecture is to place a smartcard with one or more

pairs of public-private keys with each node. Data encryption is carried out by the smart

card, and a corresponding smart card on the receiving end. In addition two access control

schemes are described.

A DoS mitigation strategy for SYN flood attacks on SCADA systems is described

by Bowen, Buennemeyer and Thomas in [55]. The approach they propose is based on

32

client puzzles. Client puzzles defend against DoS attacks by forcing clients, including

attackers, to expend computational resources to calculate the solution to a puzzle, usually

a cryptographic puzzle or hash function. Only after a valid solution is returned is a

connection for the client created. Bowen et al. present a modified TCP protocol, called

pTCP, that implements the client puzzle strategy. MTUs are the clients in this system

and RTUs act as servers. When RTUs respond with a SYN+ACK to the MTU

connection requests, a nonce and difficulty level is included in the response. The MTU

uses the nonce to calculate a puzzle solution, with the difficultly level indicating the

computational complexity of puzzle. As a DoS attack build (i.e. the number of

established connections increases) the server increases the difficulty level, making the

connecting stations and attackers commit greater resources to solve the puzzle. The goal

is for attackers to cease committing resources to the attack before the puzzle difficulty

level adversely impacts the delay of SCADA messages. Simulation using ns2 was done

to evaluate the potential impact on the latency of SCADA messages. The focus of their

simulation was on routine SCADA transactions, which they claim must have a delay time

less than 540 milliseconds. The simulation found that for normalized difficulty levels

below -9.5 latency increase was acceptable.

The use of standard intrusion detection systems was recommended by several

articles in section 2.4.1, but Naedele and Biderbost proposed in [56] a human assisted

intrusion detection system designed especially for process control systems. The proposed

idea is to provide system security information in a form that does not require information

security knowledge so that a process control system operator can monitor network

security in the same way she might monitor a process. A prototype process control

33

system HMI for intrusion detection is presented where IDS alerts and alarms are

presented in a combination of graphical and textual data to the operator in terms of the

consequences or dangers they represent to the system. Another IDS framework proposed

by Naess, Frincke, McKinnon, and Bakken [57] is designed for embedded systems in

general, but the authors point out its potential for SCADA systems. Their proposal is a

configurable middleware-based intrusion detection framework for MicroQoSCORBA.

Some methods for assessing the vulnerability of SCADA system are proposed in

[58;59]. Byres, Franz, and Miller [58] describe the use of attack trees in assessing the

MODBUS protocol. While the attack trees that were developed significantly improved

the ability of the researchers in tinding exploits, they were also useful in selecting an

appropriate mitigation strategy. Conte de Leon et al. [59] describes a graph based model

for calculating device vulnerabilities of SCADA systems. Each node in the graph is a

device and device x is visible to y if there is a path from x to y and x and yare able to

communicate through the physical network described by the path. A vulnerability value

is assigned to each potential visibility path and a device vulnerability level can then be

calculated by summing these values. The most vulnerable device has the highest

vulnerability level. Additional research is needed in determining the initial assignment of

vulnerability levels.

A generic SCADA security policy framework to assist in the creation of SCADA

security policies is described by Young, Stamp, Dillinger and Rumsy [60]. The

framework is organized in three hierarchical layers and supports detailed specific sub­

policies that support generic high level policies. The framework was developed out of

the author's experience in SCADA assessments and secure communication system

34

development and implementation. The policy they develop is broken down into eight

main categories at level one, ranging from data security and personnel security to

network security and physical access. The goal of the policy framework is to assist asset

owners in the creation of SCADA security policies. Implementation details for two

example cases are given to demonstrate the model.

Modbus/TCP, like most SCADA protocols has no security features and is unable

to authenticate or authorize individual requests. A device using Modbus/TCP typically

lacks packet filtering capabilities and therefore will carry out any legitimate command

that reaches it. A common network security solution would be to filter the Modbus/TCP

port as it passes through a firewall or router, enforcing an access control policy for device

connection. However, this only allows access control at a source level, while some

organizations' security policy may dictate that some hosts have read access to data, while

other hosts have both read and write access to the device. An application layer filtering

firewall is presented by Franz and Pothamsetty [61] that allows filtering of packets based

on Modbus header values. This makes it possible to grant some hosts the ability to read

from the Modbus slave device while not writing to it, and to other hosts the ability to both

read and write. This work has been released under open source licensing and is available

athttp://modbusfw.sourceforge.net/.

An alternative architecture for the information and communication network of

power systems is proposed by Xie, Manimaran, Vittal, Phadke, and Centeno [62]. The

proposed architecture includes all the traditional elements of SCADA systems. The

primary object of the architecture is to provide greater reliability through redundancy,

though communication security is considered as well. Redundant communication

35

channels are combined with VPN and firewall technology to provide reliable but secure

communications among entities.

Another next generation SCADA communications architecture is proposed by

Hauser, Bakken, and Bose [63]. The proposed architecture, referred to as GridStat, is a

middleware framework with API stubs that correlate with traditional SCADA functions

polling, events status, and control settings. GridStat was designed to support flexible

communications, making new types of controls and better situational awareness possible.

GridStat also provides schemes for trust management, with the ability to approve new

subscription, make routing decisions, and manage access control.

2.4 The Role based access control model

Role Based Access Control (RBAC) is an alternative access control model to the

classical forms of access control that grew out of the access control matrix model [64]

and the Bell LaPadula Model [65]. RBAC was proposed as a means of simplifying

access control and including functional capabilities [66]. RBAC is policy neutral but it

supports three well-known security principles: separation of duty, least privilege, and

data abstraction. Interest in RBAC has continued to increase and lead to a variety of

different models and extensions. In response to the lack of any widely accepted standard

Ferraiolo has proposed a NIST standard for role based access control [67]. This standard

serves as reference model for common dialogue on role based access control. The basic

RBAC model for this dissertation will be the NIST model.

The standard defines three RBAC models, core RBAC and two extensions to core

RBAC, hierarchical RBAC and constrained RBAC. Figure 2.8 shows the core RBAC

model elements and their relationships as defined in [67].

36

USCI,­

session,!;

(PA)

Pcnuissio!l

w;'-)~'ii()n ~"ol('s

Figure 2.8. Core RBAC model [67].

RBAC consists of five sets: users (USERS), roles (ROLES), objects (OBJ),

operations (OPS), and permissions (PRMS). The basic concept of RBAC is that users are

assigned to roles and permissions are assigned to roles, allowing roles to serve as a

mapping between permissions and users. This simplifies the assignment of permissions

to users, more accurately reflects how organizations think about permissions, and greatly

simplifies role revocation. A user is most often a human being, but the notion of user can

be extended to other entities like devices, networks or autonomous agents. Roles attempt

to approximate different job functions within the organizational construct in which the

system is participating. A permission is the right to carryout an operation on one or more

objects. An operation is some type of function to be carried out by the system for a user.

Objects are entities that contain or receive information; their exact type depends on the

system. Some examples of objects are files, directories, and database tables, rows, and

columns. The purpose of applying RBAC to a system is to protect the system resources

represented by objects.

37

-USERS, ROLES, OPB, and OBS rusers, roles, opt'ration&, and objects, rp­
sppctivelYJ

-UA ~ USERS x ROLES, a many-w-many mapping m,er-to-role aSl'>ignment
rPlation,

-assigncd_1Mfl1..>rs: 1!',ROLES, -+ 2FSERS, the mapping of role r onto a bet of
users. Formally: /.1ssigne(Lusl?rs(r) = {u E 'USERS Ilu. 1'! E U~4}.

-PRMS = 2'oPs" OBS!, the Si.'t ofpennission&.

-P.A ~ PRMS x ROLES, a many-to-many mapping permission-to-roli.' assign-
mpnt reiadol1,

-a.~8igncd .permiSslollS1!\· ROLES) --- 21'R.lCS, t,he mapping of role ronto a 5et of
pt~rmisl'>ionlS Formally: (ls8Ignl?(Lpl>rm/ssionslr) = fp E PR~\!S I \ p, r) EPA}.

-Oblp: PRAIS i ---top ::; OPS}. the permis&ion-to-operatlon mapping, which
gives the set (If operations assodatf'd with permission p,

-Ob(p: PRlviS) -- foh ~ OBS}, the permission-to-objt'Ct. mapping, which gives
the bet of objects associated with permission p,

-SESSIONS, the set of S(>SSiOllS.

-user.sI?Sl'liOnfl IU: USERS,) --+ '};SES:SWNS, the mapping ofusnr Ii onto a spt of
8Ps&iOllS,

-Se:lSiol1.n:,zI?{; Is: SESSIONS'! ___ 2ROLES
! t:il(> mapping of be&5ion s onto a 5Pt

of r()lE'5. Formally: session Joles 1St! ~ {r E ROLES I ".'Ie.ssiO!LU.'It'l\'l (~h I, 1"

E U.til
-m'mLscs.<{ioll_pemlsls;SES'SION.S'! -+ ~RM8, the pemlissiol1s available to a

us('r in a sf'sF.ion. U (u.siglll?,Lpcrmissior/sir).
r IE ~s;'Sior ... rnle~1 S J

Figure 2.9. Core RBAC definitions [67].

The flexibility and high degree of granularity of RBAC comes from role relations.

The user assignment relation (UA) assigns different roles to each users. The permission

assignment relation (PA) assigns various permissions to each role. The result of these

two assignment relations simplifies the process of assigning privileges to individual users

and facilitates application of least privilege. The model is also easily extended to

incorporate new operations and objects when, and if they, are added to the system. The

core RBAC definitions from the NIST model are shown in figure 2.9.

2.4.1 RBA C constraints

The generality and flexibility of RBAC make possible an almost endless array of

constraints, and since RBAC is policy neutral, constraints play an important role in

38

allowing the RBAC model to enforce security policies. Simon and Zuko [68] presented

the first discussions of constraints for RBAC in 1997 when they identified three kinds of

constraints possible in RBAC systems:

• Constraints on role membership - overlap in member ship is constrained, usually
to be null

• Constraints on role activation - legitimate users of a role may be prevented from
assuming the role

• Constraints on role use - users who have assumed a role may be restricted in how
that role is used.
Simon and Zuko limited their treatment of role based access control constraints to

Separation of duty constraints (SoD), and much of the subsequent literature has also

focused on separation of duty constraints in RBAC. Separation of duty is one of the eight

design principles described by Saltz and Schroeder [69]. Separation of duty is a security

policy concept based on division of responsibility and is a central component of Clark

and Wilson's commercial security policy [70]. For example, consider the following three

actions within a company: issuing a purchase order for an item, signing for the receipt of

the item, and issuing a check to pay for the received item. Separation of duty would

prevent the same person from carrying out all three actions, and thus potentially

defrauding the company.

Simon and Zuko, in examining the literature in separation of duty identified two

broad categories of separation of duty: strong exclusion or static separation of duty

(SSoD), and weak exclusion or dynamic separation of duty (SSoD). In role based access

control, two roles are strongly exclusive if no one person is ever allowed to perform both

roles. Simon and Zuko pointed out that strong exclusion is simplistic and easily

enforceable using only controls on role membership; however, it is often too ridged when

applied to real world situations. Weak exclusion introduces the concept of time into

39

separation of duty, which is why it is usually referred to as dynamic separation of duty.

Simon and Zuko define the flowing different type dynamic separation of duty with

respect to role based access control:

• Simple Dynamic Separation of duty - restricted roles may be assigned to the same

user, but a user may not use or assume both roles at the same time.

• Object-based separation ofdutv - restricted roles may be assigned to the same user

and a user may assume or use multiple roles at the same time, but a user may not act

on an object or target that the user has previously acted upon.

• Operational separation of duty - Restricted roles may be assigned to the same user

as long as all the union of all permissions in the roles does not contain all the

permissions in a given set of permission (which usually represent completing some

business task).

• History-based separation of duty - extend object and operational separation of duty

to allow for restricted roles to be assigned to the same user, and that user can carryout

all permission in the union of the permissions for those roles but cannot carryout all

the permissions in a given set (again modeling a business task) on the same target or

object. Historical separation of duty constraints can be either order-dependent or

order independent.

Another analysis of the types of possible constraints for role based access control

systems was presented by Ahn [71]. Ahn and Sandhu [72] developed the RCL2000, an

authorization constraint language for role based access control systems. In understanding

the expressiveness of RCL2000, described in the next section, Ahn identified three

classes of constraints that could be expressed in RCL2000.

40

• Prohibition constraints - Prevent an RBAC component from doing or being
something
Example: SOD (user cannot be a purchasing and payable manager)

• Obligation constraints - Force RBAC components to do or be something
Example: Certain roles should be active in the same session or a user should have
some combination of role assignments.

• Cardinality constraints - Limit the number of users, roles, sessions.
Example: limit number of users assigned to a role or limit number of sessions a user
is assigned.

As role based access control model increased in popularity, they began to be used

In wider areas, opening up avenues for new types of constraints. Strembeck and

Neuman [73] present a very comprehensive role based access control taxonomy. They

define three dimensions, which they point out are not completely orthogonal, along which

constraints can be categorized. The focus of their work is on only one type of constraint,

specifically context constraints, which they point out are dynamic exogenous

authorization constraints. Stembeck and Neuman's three dimensions are:

• Static constraints vs. dynamic constraints
Static constraints are constraints that can be evaluated directly at design time of an
RBAC model. Dynamic constraints can only be checked at runtime according to
actual values of specific attributes or with respect to characteristics of current
sessIOns.

• Endogenous constraints vs. exogenous constraints
Endogenous constraints are constraints that are related to intrinsic properties of an
RBAC model and inherently affect the structure and construction of a concrete
instance of an RBAC model. Exogenous constraints apply to attributes that are not
apart of the core RBAC model.

• Authorization constraints vs. assignment constraints
Constraints that place additional controls on access control decisions, such that a
subject may possess the appropriate permission but can be prevented access by one or
more authorization constraints. Assignment constraints are constraints that control
the assignment of permissions and roles.

41

2.4.2 Specifying constraints on RBAC models

The previous section presented a variety of categorical definitions for role based

access control constraints. As pointed out by Jaeger [74] constraints are becoming

increasingly important in role based access control systems since they provide a means to

ensure that role specification actually matches desired access control requirements.

However, to take advantage of role based access control constraints, a role based access

control model must be capable of expressing constraints, and accurately interpreting

them. This section presents a number of role based access control models that include the

ability to express constraints. The results are summarized in table 2.5, which shows the

different types of constraints a given model can express.

Giuri and Iglio [75] present one of the early role based access control models that

included constraints. The model is an extension to the named set of protection domains

(NSPD) model [76] in which a role is defined NSPD. A NSPD specifies a collection of

possible sets of privileges:

(2.1) {{priv],], ... , privl,i}, ... , {privn,], ... , privn,j}} = {Pd], ... ,Pdn}

Only one protection domain can be active at a given time. Girui and Iglio

extended NSPD to include constraints:

(2.2) {<c], {priv],j, ... , priv],j}>, ... , <cn, {privn,], ... , privnj}>} =

{<c],Pd]>, ... <cn,Pdn>}

where c is an expression in first order logic, or possibly an SQL query. A constrained

protection domain is activated only if the corresponding constraint is satisfied. While

the model includes constraints, Guiri and Jglio's model is limited to expressing

exogenous dynamic role activation constraints.

42

As mentioned previously, the variety of different role based access control models

developed during early research on role based access control made comparing different

models very difficult. The NIST standard role based access control model, developed in

2000, was an attempt to address this issue. The NIST RBAC model includes two

important categories of extensions: role hierarchies and constraints. In role hierarchies a

hierarchical relation on roles (i.e. manager - supervisor - clerk) is defined and more

senior roles inherit the permissions associated with junior roles. Of interest here is

constrained RBAC model described in the NIST standard. In the NIST model, there are

two types of constraints: static separation of duty (SSO) and dynamic separation of duty

(OSO) each specified in the model as a collection of pairs of the from {rs,t} where rs is a

set of roles and t is an integer >= 2. SSO is fonnally defined as:

(2.3) '\I(rs,n) E SSD, '\It ~ rs:1 t I;:::: n ~ nrE1assigned_users(r) = 0

And OSO is formally defined as:

'\Irs E 2R()U'S,n E N,(rs,n) E DSD => n;:::: 2/\ 1 rs I~ n,and

(2.4) '\Is E SESSIONS, '\Irs E 2 ROU,S , '\Irole _subset E 2 ROU,S , '\In E N,(rs,n) E DSD,

role _subset ~ rs,role _subset ~ session _roles(s) =>1 role _subset 1< n.

43

.j::..

.j::..

Citation
Giuri and
iglio 1997
Ahn 2000
RCL2000
NIST,2000
Shin, 2003
Crampton,
2003
GTRBAC
2005
Li et.al, 2005
Smer
constraints
Strembeck
~~rl

I ~ij:ann, I

Obligation
yes

Yes

No

No

Y?

No

Y

Table 2.5. Types of constraint supported in different RBAC models.

Prohibition Cardinality Dynamic Static Historical endogenous exogenous Authorization Assignment
Yes Yes yes NO

Yes No

Yes Yes Yes
Yes No Yes No Yes Yes No Yes No
Yes No Yes Yes Yes Yes No Yes Yes

Y N Y

Y N N Y N Y N Y N

N N Y N N N Y Y N

In the NIST model the SSD constraint limits the UA relation by defining sets of roles

such that a user can only be assigned some proper subset of the roles. A DSD constraint

is similar except that they restrict the active roles of a user's session rather than the

assigned roles. Figure 2.10 shows the relationship of SSD and DSD to the standard

RBAC model. The constraints allow RBAC to express separation of duty or contlict of

interest relations [77]. The NIST RBAC reference model constraints are thus limited

exclusively to role assignment and role activation, and are endogenous, but include both

static and dynamic constraints.

SSD

Permission Assignments
(PA)

Users -PA-+- ~rati~ 0bjeCv
Permissions

~ .----C~ DSD :>

Figure 2.10. Core RBAC with SSD and DSD constraints defined in [67].

The use of static and dynamic separation of duty (SSoD & DSoD) however, is

somewhat misleading as pointed out by Li, Bizri, and Tripunitara [78]. They point out

that separation of duty (SSoD) is an objective not a mechanism. The mechanism, which

is what is actually described in the NIST model, are static mutually exclusive roles, or

smer for short. Li et at. define Static Separation of Duty (SSoD) as a set of m

permissions and an integer k < m indicating that a there should not exist a set of less than

k users that together have all m permissions. This differs from a SMER which is a set of

45

m roles and integer t < m forbidding any user from being a member of t or more roles in

{rl ... rm}. Li et al go on to point out that there then exists a verification problem: does a

set of smer constraints achieve a given SSoD goal, and a generation problem: how do we

generate a set of smer constraints that adequately enforce a SSoD policy? Li and

colleagues demonstrated that directly enforcing SSoD polices is coNP complete but that

enforcing smer constraints is efficient, and went on to develop an algorithm to generate a

set of smer constraints given an SSoD policy.

The constraint specification described by Ahn and Sandhu [72] called RCL2000

is based on the ARBAC 97 [79] model. ARBAC 97 is simiilar to the NIST reference

model except that it includes administrative permissions and administrative roles. A

summary of ARBAC 97 is shown in figure 2.11. Rather than lleave administration of the

RBAC to an external "trusted" security administrator, theARBAC97 model includes

administrative elements in the model, allowing administration of the policy to be

distributed among multiple roles and multiple users. RCL2000, developed by Ahn and

Sandhu and based on previous work by Chen and Sandhu [80], provides a constraint

specification language and extends ARBAC97 with the following elements:

• CR: A collection of conflicting role sets {crl ... crn} cri = {r1..ri} ~ Roles

• CP a collection of conflicting permissions sets {cp1..cpn} cpi ={p\..pi} ~ Perms

• CU a collection of conflicting user sets {cu 1 .. cun} cui = {u 1 .. un} ~ Users

• Two non-deterministic operators
• OE(X) = Xi where Xi E X (called the onel~ach operator)
• AO(X) = X - {OE(X)} (called the allother operator)

The model assumes that initially a policy administrator or devdoper defines the sets CR,

CP and CU. Once each of these sets is defined then RCL2000 ,expressions can be used to

define policy based constraints. The syntax of an RCL 2000 expression is given in figure

2.12. An RCL expression can best be understood through an example. The formula (2.5)

46

IS an RCL expression, and its interpretation would be: no user can be assigned to two

conflicting roles.

(2.5) I roles(OE(U)) (\ OE(CR) Is 1

VA

USER
ASSIGNME.'H

811

ROLE

HrERARCHY

s

(/ '_---------- ""

AU,t ~ "\.

~ ->

ASSIGNMENT

ANH

ADMlNISTRA Tl \I E

k()LE

HIERARCHY

I

II

PERMISSION /r---~
ASSIGNMENT (l' ~
--~ PER)'IISS·

"" ,ONS
~-

/AP -0 f ADMIN

.-~.~- \ PERMISS-

Al'A ~!UNS

ADMINISTRATIVE

PERMlSSION

ASSIl.INMB'oIT

--

~'---'--'~-"-'-"'~---~--------------------'
-C!, .1!illt of USPfS; 11 arlll AN. d;sj"flll S~tS of (regular) roles and a.dminjMrll.tive nlleg; I' alld 4,1', disjoint S~IS uf

(regular) p(!rnli!.!';iun~ and adminis.trat,h~ p~rrnisHion~~ 51 a set of sessions

-U:1 C; U X ft, uwr to rol~ ilNiigOIUf'.llt fcia,jol*
..tU A s;: V x .1 n, Uoof to udministr.HiV't' role il&5ignmcllt relation
·l'A C;;; f' x ft, JJermi1lsion to role aruligmnent ndation
APfl C;; Al' K AR, pel'luiJlsioll til a.cIministratin· role lISSignment relatio[J
,RIl G: R x R, partially &TO,m!d role hierarchy
ARII c.: AR)(AR, partially &Meted adminlst.ralive f(lle hierarchy
(both hi.much 1£11 am written a.s ?: in infix notation)

... user: S --jo U. maps each 'l"ssio!l to a single U'*-'r (whid. dm~ not change)
To/t.a : $. 2RuAk mllptl eur.n 3ffll.'I'ion ~, to a, 3Ilt rrne6{8,) S; lr 1 (3r' :?: r)[(~5er(s;),T') E UA;.J All!\]} (whkh
clln dllinge with time)
II<'rminn .', hil.~ permi5!llons Ur{ •• , .. (.,,{p (3t"':5 TE{p. ,_") E PA U AI'AJ}

-(her" is a COlltKLiotl of cOII~tr"';litii- ~tip\l!""'iqll wlli,il ";.,1;1\1$ III ~I1e vmiVl!§ WIllVI/IIJ,'nw \,!1un:~rili~ itJQve if!!
allowed or forlJldden

~"~~~'mNN=W-'·_'

Figure 2.11. Summary of the ARBAC 97 Model [79].

47

RCL2000 is a specification language. Syntax and semantics: are defined along with a

means of converting between RCL2000 and a restricted form of first order predicate

logic. A soundness and completeness proof for the conversion is given. Finally the

expressiveness of RCL2000 is shown to include lattice-based access controls as well as

traditional and new separation of duty constraints, but no discussion of an enforcement

mechanism is given. RCL2000 can express prohibition, obligation, and cardinality

constrains, static constraints, some types of dynamic constraints, and IS strictly

endogenous.

A very different approach to role based access control with constraints was

proposed by Wook et al. [81]. Wook's model, extended role based access control with

procedural constraints, is intended to be used in trusted operating systems. Motivation

for the model comes from preventing classic timing attacks that rei ink letclpasswd to give

an attacker write permission to letclpasswd. Wook adds negative procedural constraints

to the classic RBAC model to prohibit certain sequences of ordinary actions, such as

rei inking letc/passwd. The procedural constraints operate on behaviors, and these

behaviors are interposed between the traditional role permission assignment. Colored

Petri nets are used to model behaviors, and detect when a behavior has become malicious.

This model provides only dynamic historical constraints, but can express order dependent

constraints.

48

,Ilah'ment

'\

'\
\

expression f---,-----<.~(.-~~--J
--------' \1 '<~j !

expressio~

statement]
'\

I
term

/

.. (Df----I '1 -{II
I

term /
1./

op ::-clill u

size; ::= I? I J I ... IN
b'd :::::: U I R.I DP I DBJ I piS I CR. I ::;P I CU

fmu.:tion ;;= user I roles I roles' I sesosioolls I pe:rm.issoiollS I permissions'" I
operati(')ns I object I OE I AO

Figure 2.12. ReL 2000 syntax.

One of the more recent and elegant role based access control constraint models

was developed by Jason Crampton [82], which extends the classic role based access

control model described in section 2.5.1. Crampton points out that constraints informally

define bad sets. He then invents a formal specification scheme to allow formal

49

specification of constraints in the form of a triplet triple (s, c, x) where s is the scope, c is

the constraint set, and x is a temporal context either {static, dynamic, historical}. The

scope and constraint sets are a subsets of U, R, and P. A constraint defines a family of

sets. For example, 2.6 states that neither user u] nor user U2 can be assigned both r] and

r2·

(2.6) ({r],r2},{u],U2},S)

This specification scheme can express both static, dynamic and historical constraints on

role and permissions and is strictly endogenous. Crampton also suggests the use of black

lists to enforce historical constraints, though this proves difficult for cardinalities greater

than two.

In addition to the taxonomy for constraints, Stem beck and Neuman [73;83] also

developed a model to express and enforce context based exogenous authorization

constraints. Their model begins with the classic model and adds the elements shown in

figure 2.13.

Strembeck and Neuman's model is specifically dynamic and exogenous. When

the check permission action is performed on a requested action, the enforcement point

first checks to see if the subject is assigned to a role that has the appropriate permission.

If the subject is assigned to such a role, then, before validating the request, any context

constraints on that permission are evaluated. If a context constraint condition evaluates

to false, then the requested operation is denied. If every cont'ext constraint evaluates to

true, then the operation is allowed. Possible conditions suggested by Strembeck and

Neuman include the IP address of the subject must be a certain value, the time or date

must fall in a certain range, or even specific conditions about a user, their age or gender

50

for example. The model only supports dynamic exogenous: authorization constraints,

though it is easy to see that the NIST SSoD or DSoD constraints could be included to add

support for other types of constraints. Strembeck and Neuman also present an execution

model and approach for discovering context constraints in a specific environment.

-ATTS. tbe aet .)f contc1I.i; 8.ttrihUtC3 ' <:,g" local.J;ill1c, 1ocalJP..addr,:",,,-"I, ~ub­
jNtJ}amf', subj'?ccage',

-DO~lAINS, the ~et of avallablp domain." (e,g, b(''OI£'a11, dati', lntI2W'l', ~'eal,
string'

-CONSTANTS = {x I x is a c<;l1&tant v3.1ue j\, df)mai12(X! E l))MAINS}
-OPERANDS = ATTS u CO!\STANTS
-OPERATORS, the set of dvail.'l.bll'.' (cQmpmison.l operatK1LS, 3:n example, :nfix

OpE'ratlJr6 aD ;:;,2:., >, <,:::;:, #,
-ao.nain(oprtr , OPERA'l'OPu.S) -+ fa ~ DOMAINS}. a ~'nnt:ion to determiIW

th« ;:.et of d:mH1:l1t1 ou operat£.lr if,) opecified for,

-do.'nain1oprnd , OPER"'NDSI -+ {a -= DOl\'{'-\INS}. a :llnction to deb,mninp
the tn-.: of an operand,
CONDITICN8 = 2 OPERANILS ;~ Of'ERATOIU:, ¥c c CONDITIONS c! >

{lcprnd1,.", oprnd~, oprtr)loprnri h' " operndx E OPER..A.NDS, vprtr E

OPEHATOrt.':i},\ {domam'oprndI'U", Uciom:zin\oprndx ! S; dmnain(oprtr!},

-CC = 2 CONDITIONS, the.I;;;ot of Mnt(}rt C61H!traints

-conditi'msli:x: . CC I -+ {eond C; CONDITIONS}, a fiulltjon to dl't('r:nim thE'
conditbns linked to a certain cOl:text cOllStraint

-peL s PRM8 y;C(\.:t nli'lny-to-many pOrll1i»!'licn tocont.(>xt f.Ymgtraint linkagG
relation.

-lirJked..t:Cs(p PRMSI - {constraints C; cq, the linkag.£'! of a :)ermisshm p
to A spt nf~nnt"yt rrm.,Qirf1.11Jt."l Form;ql1y: lill/:.Prt "lpi =: {~ .;:. r'c 'p, r I .;:.

peL)

Figure 2.13. Context constraints as defined by Strembeck and Nueman [73]

Jaeger and Tiswell [74] developed a graphical based constraint specification

scheme. The scheme is actually broader than role based access control, and was aimed at

expressing all the different types of separation of duty. The model is very expressive and

shared some similarities to RCL2000. The model is based on DTAC not RBAC, but they

are similar enough (basically DTAC is RBAC with object type and some other

extensions) to make types of constraints possible. The model is expressed as a graph,

G(X, Y). X is a set of nodes, each node is a set, but of possibly different types. Y is set

51

of edges representing relationships between sets. Constraints are defined as binary

relationships between sets. Figure 2.14 shows an example of a constraint specification

using Jaeger and Tiswell's notation. In the figure pI and p2 are arbitrary permissions and

the double headed arrow marked with ~T indicating that permission p I may not be

assigned any authorization type to which permission p2 is assigned, and vice versa.

~T

Figure 2.14. A graphical constraint specification in [74].

2.5 Operating system security, reliability and reduced kernels

The heart of an operating system is the kernel. The kernel is the part of the

operating system that executes in the processor's privilege mode and provides the lowest

level of abstraction between the physical components and the rest of the system. Thus

the kernel plays a key role in the security of a system since it mediates all or almost all

access to the computer systems physical resources. In today's multiprogrammed

operating systems, the kernel is responsible for providing a means for principals (users or

processes) to share systems resources by providing a common interface to those resources

and controlling access to the shared resources. The security and reliability of an

operating system are determined by how well, or how consistently, the operating system

provides that protection. When the kernel fails to consistently enforce the appropriate

protection, users experience system failures and/or security violations. The

trustworthiness, or the degree that a system can be trusted, reflects the confidence that the

operating system, usually the kernel, provides appropriate and adequate protection. The

52

frequency with which modem commercial operating systems, such as Linux and

Windows, fail to adequately provide protection is all too familiar to users today.

One of the essential ideas in the construction of secure or trusted systems has been

the security kernel. The security kernel is based on the concept of a reference monitor

and a reference validation mechanism as discussed by Bishop in [77]. A reference

monitor is an access control concept of an abstract machine that mediates all access to

objects by subjects. A reference validation mechanism is an implementation of a

reference monitor that can be proven to be tamperproof, always invoked, and small

enough to be subject to verification. A security kernel is then defined to be the

combination of hardware and software that implements a reference monitor. Later the

idea of a security kernel was extended to trusted computing base (TCB), which is the

collection of all protection systems responsible for enforcing a security policy.

Application I

Middleware]

Operating System I

Hardware I

Figure 2.15. Computer architectural layers.

A major contributing factor to the low level of reliability and security provided by

today's commercial operating systems is the fact that they use a monolithic kernel design

53

that has led to large kernels with poor fault isolation [84]. In monolithic kernels all of the

core operating system functionality is implemented in the kernel. This functionality

includes: memory management, file systems, access control, network stacks, device

drivers, and interrupt handling. Therefore the TCB, the entire kernel, is very large and

thus difficult to analyze. A typical monolithic kernel design is shown in figure 2.16, with

the TCB shaded in gray.

In order to support the increase in variety of hardware available, the size of the

kernel in commercial operating systems has become surprisingly large and is continuing

to grow [85]. There are now about 4.1 million lines of code (LOC) that make up the

Linux kernel, and Vista is said to have 20 million LOC [85]. Much of that code runs in

privilege mode of the processor, allowing it unrestricted access to system resources,

including memory and 10 ports. Therefore, software flaws in the kernel code can

potentially do a great deal of damage since these processes are not subject to system

protection mechanisms. Unfortunately software errors or defects cannot be avoided. Due

to the size and complexity of the kernel, finding all the defects before deployment is

simply not feasible, and finding them all, in any given amount of time is unlikely. This

led to a penetrate and patch approach to operating systems security and reliability. As

pointed out by Loscocco and colleagues [86] the assumption that adequate security can

be achieved at the application layer is seriously flawed. Without a secure operating

system, application layer security mechanism cannot succeed.

54

[""'"-'''-~'''~J User
Application

,,=~~w#.w#,~,~~,~

User
Application

User
Application

,-------------------------
I
I
I

CIPC~

Physical Hardware
(Processor, Memory. Keyboard, Monitor. other peripheral devices)

Figure 2.16. Monolithic kernel design.

The size and complexity of commercial operating systems is only continuing to

increase. The problem is further exacerbated by the fact that within a monolithic kernel

there is no fault isolation. If some piece of code in the kernel has a defect, then

exploiting that defect can corrupt the entire kernel (reliability) or give malicious code the

opportunity to bypass the normal access control measures (security vulnerability) that

protect systems objects and other principles.

55

2.5.1 Minimal kernels

A small TCB is more amendable to formal analysis, making possible a much

more trustworthy TCB. To achieve this a minimal kernel is needed. One approach that is

receiving considerable attention recently is the microkernel designs. A microkernel [87],

is a minimal kernel that implements only those services that cannot be implemented in

user space. There are three minimal requirements for microkernels described by Liedtke

[87]: address spaces, inter-process communication, and unique identifiers.

Microkernels have actually been around in some form for quite a while. The first

system that could be considered a microkernel was Brinch Hansen's Nucleus [88].

Hensen's Nucleus supplied only primitives for process control and inter-process

communication, with the operating system policy and strategies implemented outside the

kernel. Hydra [89] extended the Nucleus work, and was instrumental in separating policy

(in user land) from mechanism (in the kernel). Following on Nucleus was Mach [90]

developed at Carnegie Mellon University. It was the Mach team that coined the phrase

microkernel. Interestingly enough, the Mach kernel, while calling itself a microkernel,

contained nearly 150 thousand lines of code and had 200 systems calls. There were many

contemporaries of the Mach kernel such as NextStep [91] (which became Mac OS X),

University of Utah's Mach4 [92], and IBM's Workplace OS [93]. In the 1980's

microkernels received a great deal of attention and focus. However poor performance

characteristics plagued developed systems. The reasons for this, and some alternatives,

are discussed in the following paragraphs.

Central to the microkernel architecture, shown in figure 2.17, is the notion of user

land operating services that replace many of the operating systems services that are

56

included in the monolithic kernel. Moving these services to user land provides better

fault isolation and prevents errors in a specific service from allowing complete

compromise of the system. To allow these services to communicate, the microkernel has

to provide inter processes communication (IPq functionality to all the supported tasks or

threads. Microkernels of that time exhibited IPC costs of about 100 microseconds [85]

and in 1994 Chen and Bershad concluded that performance problems were "inherent in

the as structure" [94]. Many then concluded that the microkernel approach could not

meet the performance demands and interest in them waned.

10 Drivers Net Drivers

r- - - - -:-: - -:-: - -.:-" - - 1

: I . MicroketneW .. J:
: I . Hardware /: /1 _________ . ___ 1

Figure 2.17. The basic microkernel design.

Around 1994 John Ledieke and others began analyzing microkernels and found

that microkernel IPC could be made fast through strict adherence to the minimal kernel

goal and optimization [95]. Leidke developed the L4 kernel to demonstrate the

performance improvement, and demonstrated an order of magnitude improvement over

the Mach microkernel. The bad performance reputation that microkernels had gained

prevented Leidke's work from receiving attention at the time. But today microkernels are

receiving renewed attention due in part to the popularity of virtualization and hypervisors

57

which have a lot in common with microkernels. One of the areas of renewed interest is

the Rushby's idea of a separation kernel, which is explained in the next section.

2.5.2 Separation kernel and the MILS architecture

Recall that the TCB concept grew out of the reference monitor first developed in

the 1970's. There has been substantial work to implement reference monitors but

problems have been encountered in the application and implementation of these

principles [86;96;97]. Rushby argues that the problems encountered in constructing and

verifying security kernels is that they attempt to impose a single security policy over the

entire system. Instead, Rushby proposes leveraging the inherent security benefits of

physically distributed systems. In physically distributed systems, such as a network

printer, network storage, and a PC connected to the network, security is achieved through

a combination of physical separation of individual components, and mediation of trusted

functions within some components [96;98]. To support a distributed system on single

processor, Rushby proposed the idea of a separation kernel.

The Multiple Independent Levels of Security or (MILS) architecture was

developed to provide a high-assurance and high-performance computing architecture

with the ability to enforce strict security and separation policies on data and processes

residing on a single processor [99]. The architecture was designed to make possible

formal verification of application reference monitors and therefore realize high assurance

of security mechanisms. The MILS concept originated with Rushby's work and is based

on his separation kernel. The current MILS architecture is pictured in figure 2.18. A

separation kernel has four security requirements [97]:

58

• Data Isolation: Information is accessible only by that partition, and private data
remains private,

• Control of Information Flow: Information flow from one partition to another is
from an authenticated source to authenticated recipients; the source of the
information is authenticated to the recipient, and information goes only where
intended,

• Periods Processing: The microprocessor and any networking equipment cannot
be used as a covert channel to leak information to listening third parties,

• Fault isolation: Damage is limited by preventing a failure in one partition from
cascading to any other partition. Failures are detected, contained, and recovered
locally.

Partition
1

Middleware

Partition
2

Middleware

Partition
3

Middleware

SEPARATION KERNEL

Partition
4

Middleware

Figure 2.18. The MILS architecture [100].

The security advantages of the MILS architecture is that it provides both process

separation and functional separation. Process separation strictly enforces the flow of

information between user processes, such that information flows only when explicitly

permitted. Through functional separation, MILS moves security functions out of the

kernel and into modular external components. These components can enforce specific

security policies and then can be layered together to provide an overall system security

policy. Because the MILS architecture provides data isolation and information flow

control, an implementer can create an application-level reference monitor in a user

partition that is NEAT (non-bypassable, evaluatable, always invoked, and tamperproof

59

[100]). An additional advantage of these independent modules is that they are small

enough, and simple enough, to be evaluated using formal techniques; thus making it

possible for the entire system to achieve a high level of assurance. An example

implementation of a mediator (or reference monitor) using physical separation and the

MILS architecture is presented by Hanebatte and colleagues [99].

60

CHAPTER III

SECURITY HARDENING RTUS

Chapter two presented the security threats and vulnerabilities that currently face

SCADA systems in general. The traditional IT security approach of soft on the outside

(peripheral systems) and hard in the middle (servers) is not appropriate for SCADA

systems. In SCADA installations the peripheral devices, such as RTU, must be security

hardened as well. The focus of this dissertation is to identify and develop hardening

techniques for RTUs and to develop a security hardened RTU. As discussed in the

previous chapter, in the past, these devices faced primarily physical threats, but today

they are increasingly network enabled and network accessible. Security hardening these

devices is a major challenge facing the development of secure SCADA systems. Two

security hardening approaches are explored in this dissertation, an RTU role based access

control model and a reduced kernel OS. Previous work on both role based access control

constraints and minimal kernels for operating systems was presented in chapter two. This

chapter introduces the architecture for a security hardened RTU. The RTU role based

access control model is presented in detail in chapter four and the minimal kernels for

R TU are presented in chapter five.

Before considering specific RTU threats it is important to define, from a security

perspective, the security perimeter of an RTU. This approach parallels the definition of a

physical security perimeter that is a standard approach in securing physical places.

SCADA systems are large distributed systems, and in developing a layered approach to

61

security for them it is important to identify security boundaries for different components.

For field devices, the security boundary, or electronic perimeter, is defined to be the point

at which the device makes contact with the SCADA network. For example, if the RTU

connects to the SCADA network using Ethernet, then the electronic perimeter is the

Ethernet controller card. It is important to establish such a perimeter; if the perimeter

were too encompassing, the R TU' s security perimeter would include components over

which it has no control.

3.1 RTU security vulnerabilities

Vulnerabilities in RTUs can occur at many different layers. The highest and most

abstract layer is the protocol layer. Protocols are abstract descriptions, and must be

implemented, typically in software. Below the protocol layer is the software application

layer which will implement interfaces to the SCADA network, particularly SCADA

protocols, but this also applies to other protocols that might be used now or in the future.

It is rare today that software applications are written to run at the hardware level. Instead

software usually makes use of libraries, and other applications to achieve its goals. This

creates yet another layer of shared software libraries and binaries, which is often referred

to as middleware. Below the middleware layer is the operating system kernel, the lowest

level of abstraction between the hardware and the software; finally, there is the actual

hardware. Figure 3.1 shows these architectural layers.

As mentioned in chapter two, initial SCADA protocols did not include security

features, which resulted in vulnerabilities to message modification, spoofing, and sniffing

attacks. The protocol vulnerabilities are really outside the RTU security perimeter, at

least in their specification, but it is important to mention them, and keep them in mind in

62

considering lower layers. One reason for keeping these in mind is the principle of easiest

penetration [101]. If an RTU supports an insecure SCADA protocol that can easily be

attacked and used to control or damage the connected physical processes, it will be

impossible for a lower level prevention mechanism to protect the RTU since it has no

way of differentiating between authentic and un-authentic SCADA communications.

Two excellent solutions to address the shortcomings in SCADA protocols have been

presented in the literature review in chapter two [29;52]. Both the AGA's cryptographic

solution, and Patel's authentication octets and challenge response approach adequately

address the vulnerabilities in SCADA protocols.

Protocol Layer

Software application Layer

Shared Libraries and
Middleware Layer

Operating System Kernel

Hardware

Figure 3.1. RTU architectural layers.

Unfortunately, though providing for authentication in the protocol is a significant

improvement, there are still many additional RTU threats and vulnerabilities. One of the

more significant threats is that of insider attacks. In the 2000 CSI computer crime

survey, cited by [6], insider attacks represented 71 % of security breaches. Much of the

perpetrated computer crime is the result of insiders; they represent a big threat since they

have knowledge of systems and networks, and valid authentication credentials. For

63

example, the recent hacking of a waste management system in Australia was carried out

by an insider [5]. An insider might be a disgruntled employee or ex-employee as was the

case in Australia. With respect to RTU security, an insider could have knowledge of the

network location of RTUs, such as their phone number or an IP address, and if the RTU

is protected by some form of authentication then a user might have knowledge of the

password or other form of identification. Not all insiders are necessarily malicious either.

It is possible that a legitimate user might inadvertently cause damage by changing the

value of a set point they were not supposed to change or accidentally issuing a control

command.

Another major vulnerability for RTUs is software vulnerabilities. A protocol may

be secure, but its implementation may contain flaws. These flaws can be exploited by an

attacker to circumvent or by-pass the security provided by the protocol. Software

vulnerabilities can also be found in other COTS software components that might be

included in an RTU. For example, the trends discussed in chapter two, particularly the

increase use of Ethernet, are leading vendors to include pervasive commercial

components such as such as FTP servers, Web servers, or a remote access server. These

COTS systems may also contain vulnerabilities; for example, the well known Wu-ftp

exploit [102], and can be exploited just as easily when they are deployed on RTUs as

they can when deployed on typical desktop systems. When vendors adopt commercial

operating systems, many of these services such as telnet, FTP and others come

preinstalled and possibly activated. These commercial pieces of software may also have

flaws, perhaps even well known ones, which could be exploited.

64

There may also be flaws in shared libraries or other pieces of common code used

by RTU applications. These shared resources can also have exploitable vulnerabilities.

Many RTU applications are written in C or C++ which have limited buffer overflow

prevention capabilities, and make use of vulnerable C libraries.

As discussed in chapter two, the operating system kernel is responsible for

providing protection and allowing sharing within a computer system. Operating systems

themselves can have flaws. Monolithic kernel commercial systems tend to have a lot of

flaws, and hence a lot of software vulnerabilities. For example, it is well known that

commercial operating systems like Windows and Linux contain flaws and require the

application of patches on a regular basis. Recent estimates put the number of flaws in the

Linux kernel at 15000 and for Windows XP nearly 30000 [103]. The penetrate and patch

approach that is familiar to commercial operating systems is often not applicable to RTUs

It is difficult to regularly apply patches to RTUs simply because they are remote and

because they cannot endure the risk that a patch breaks the operation of some critical

R TU components.

Once an attacker has managed to gain access to the R TU, there are the obvious

threats that the attacker will issue control commands to connected actuators and disrupt

operation of the SCADA system. Other threats include deleting or modifying stored data

to hide evidence of the attack and replacing or modifying application code to corrupt

system integrity. In addition, a privilege escalation threat also exists, where an attacker,

having gained some level of access, attempts to increase their rights by attacking the

access control configuration.

65

3.2 A security hardened RTU

To address these vulnerabilities, this dissertation proposes two security hardening

techniques for RTUs and presents these in a security hardened RTU. The security

hardened RTU employs three security enhancements:

1. The use of a security enhanced SCADA protocol

2. Fine grained access control

3. A reduced kernel OS

The secure SCADA protocol used is that developed by Patel [29] and is used to

provide RTU authentication of users. The focus of this dissertation is the access controls

and reduced kernel os. Section 3.2.1 briefly describes the security enhancement

proposed by Patel [29]. Section 3.2.2 introduces the RTU access control model and

section 3.2.3 introduces two reduced kernel approaches for a reduced RTU os kernel.

3.2.1 Secure SCADA protocol

The focus of this dissertation is not on security in the protocol layer or secure

SCADA protocols. However the security hardened RTU must have a secure protocol,

otherwise other security measures can too easily be circumvented. A new security model

for SCADA communications was presented by Patel in [29]. This enhancement uses a

challenge response approach to allow either party to perform spontaneous sender

authentication and message integrity verification of the most recently received message.

Authentication using challenge response allows periodic verification of the identity of the

communicating party and the integrity of the most recent message. The challenge

response mechanism requires that all parties possess a pre-shared secret. Either of the

66

devices (a master or an outstation) can initiate the challenge. The steps are as the

following:

1. After the link is established, the authenticator (a master or a field device) sends a
random "challenge" message to the other party (a field device or a master).

2. The other party sends a response message that includes an HMAC [104] of the
challenge message. The challenge message includes a pre-shared secret that assures only
a valid device can calculate the correct hash.

3. The challenger checks the response against its own calculation of the expected hash
value. If the values match, the normal operation proceeds; otherwise the connection gets
terminated.

4. At random intervals, the authenticator sends a new challenge to the other party, and
repeats steps 1 to 3.

To enhance security, devices issue challenges at the following times:

• initially, to prevent any communications from proceeding without prior
authentication,

• periodically and randomly, to protect against man-in-the-middle attacks,

• and before carrying out specific critical device operations. (The challenger issues the
challenge immediately after receiving the critical operation, and before taking any
action on it.)

To protect against replay attacks, the challenge message contains a nonce value that

changes randomly each time a challenge is issued. The challenger, in the challenge

message, specifies the cryptographic algorithm to be used in calculating the HMAC when

building the response.

The responder performs the cryptographic algorithm specified in the challenge message
to produce a response. The following information is included in the computation:

• Address information from the SCADA protocol (in order to authenticate the
responder as a valid application layer user)

• The challenge data (to protect against replay attacks)

• The requested operation (if the challenger is protecting a specific critical operation)

• A shared secret known to both outstation and master

67

HMAC"
H(S XOR opad,

H\SXOR
ipad Challenge I N)}

HMAC"
H(S XOR opad

H(S XOR
ipad, Crllcal
Opertationl

Challenge IN»)

J
~'

RTU
Pre,shared secrel S

Request Connection (MTUid

14-_--<..halienge(N)----1

Generate nonce
value N

IF HMAC""
esponse (HMACr--_--.JH(S XOR opad H(S XOR

ipad,Chalienge I N))
continue

Non Critical OperatK>n

Standard protocOl fOSponse

i----C'riticaIOpera!ion----to>!

14-__ -vhalienge(N,\----""'1

Response iHMAC), __ ..,

..---8\3ooard omlOr.,i response

Gema-rate
new nonce

va!\Je-N

IF HMAC""
1(S XOR orad, H(S XOR
ipad,Critical Oraration I
Challenge IN)) carryout

operation

Figure 3.2. Challenge response authentication [l05].

3.2.2 RTU role based access control

While it is impossible to eliminate insider threats and the potential failure of

authentication schemes, like the one presented in section 3.2.1, it is possible to greatly

limit the threat and constrain the potential damage of these attacks using access control as

opposed to access restriction. As has been discussed previously, many SCADA systems

employ neither, but those that do favor access restriction, as is fits with the physical

protection model that is more familiar to industry practitioners. In access restriction,

there is a many-to-one mapping of users to an identity, as opposed to access control

where there is a one-to-one mapping of users to identity. In access restriction, any

authenticated user is allowed to carry out any valid operation since the system cannot

distinguish between users. Access control provides improved security by allowing users

access to only certain permissions.

Another vulnerability that can be mediated by access control is the trend toward

open systems and interchangeable SCADA components. Using well defined open

protocols, such as DNP3 and Modbus, led to the case where many RTU devices, share a

68

common stack implementation. For example, Triangle Microworks has a DNP3 stack

which RTU vendors can purchase and integrate into their devices. While there are

advantages to this, the disadvantage is that a vendor's RTU may support functionality of

which they are not aware. For example, a purchased DNP3 or Modbus stack will likely

include all of the functionality described in the protocol specification; a vendor, not

intimately familiar with the protocol, might only pay attention to those functional

elements needed by their device. Also a SCADA operator or implementer may want to

absolutely limit what a particular protocol can do. For example, suppose they need to

provide access to a business partner to parts of the RTU data. Providing that access

through a standard protocol, such as DNP3 or Modbus, the SCADA operator cannot

easily limit the capabilities provided to a business partner. The SCADA operator may

even be unaware that certain capabilities are exposed.

A primary contribution of this dissertation is an access control model for RTUs.

In developing the RTU access control model, different access control models including

the access control matrix model [64], the HRU model [106], lattice models [65;107;108]

and role based access control models [67; I 09] were considered. While all of these

models have strengths and weaknesses, RBAC was chosen for modeling because of its

flexibility and expressiveness. RBAC is policy neutral and can support fine grained

access control enforcement. Another advantage of RBAC is that it more accurately

captures the collection and assignment of permissions to users. It is much more logical to

think of an RTU operation, such as changing an analog dead band value, turning on or off

a breaker, or adjusting an actuator, as belonging to a role, as opposed to belonging to a

person or some unnamed coIlection of people. The RTU model developed in this

69

dissertation has the following roles: Operator, Engineer, Vendor, Administrator, Display,

and Enterprise. The roles are described in detail in chapter four.

Chapter two mentioned the Field Device Protection Profile for SCADA Systems

In Medium Robust Environments published by NIST [48]. The main focus of this

document is enumeration of Authentication, Authorization, and Audit capabilities for

field devices, including RTUs. The NIST specification asserts that the RTU or field

device must be able to enforce access control on protected data based on at least the

following criteria: roles, location (of the subject), and time of day / day of week.

Justification is given in some detail in the NIST document. The protection profile

provides only guidance about what is expected and ignores implementation specifics

completely; nor does it specify how access control constraints are to be specified.

To support these criteria and to further strengthen the RTU, the access control

model includes additional constraints. The NIST PP identified the following constraints:

location, time of day, day of week, and role. To that the RTU role based access control

model adds the notion of state and the notion permission type. Constraints play an

important role in the security of the RTU by facilitating secure operation through the

application of the least privilege, allowing users to have only those permissions needed to

carryout their operations. Roles, rather than the more traditional access control schemes,

makes grouping permissions more logical and constraint on roles allows least privilege to

be logical conceived.

70

Users

Constraints

~"""""'-"'-"---
Roles:

Engineer, Operator, Vendor, Monitor,
Enterprise, Admin

Point Types:
Status, Set, Command

Permissions

Figure 3.3. RTU access control model.

3.2.3 Reduced kernel OS

The second vulnerability that was identified in section 3.1 was commercial off the

shelf (COTS) software, particularly COTS operating systems. A potential option is to

eliminate this level all together by having a single process or program perform all of the

duties of the RTU and essentially return to a runtime executive model. There are several

reasons this is less than desirable. One is that the RTU application will have to handle on

its own those functionalities usually provided by the operating system. It is also

inefficient since a specific RTU application may have to be completely re-written to

change what amounts to superficial changes, such as supported protocol. Most

importantly it makes the task of software development much more difficult since those

operating system abstractions are not available to the software developer. Also, as

changes are made to the RTU program, the entire program must be re-verified, and it is

not possible to re-use parts of an existing verifies solution without re-verifying them.

Recall from chapter two that the TCB is all of the hardware and software that is

involved in enforcing a security policy. For commercial operating systems this is the

entire operating system kernel, as well as the hardware (memory paging). The size of the

code base, millions of line of code, and the incident of software flaws make it difficult to

71

trust the TCB. The key to a more trustworthy TCB is to reduce the size of the TCB. A

smaller TCB is more trustworthy because

1. There is less code, and therefore less chance of flaws.

2. A smaller TCB is easier to understand.

3. A small TCB is potentially amendable to formal verification.

For RTUs, one way to achieve a smaller and potentially more trustworthy TCB, is

to use a reduced kernel OS. Two approaches to creating a reduced kernel OS for RTUs

are presented in chapter five. The first approach is to base the RTU on reduce COTS

operating system. The second option is to use a micro kernel or separation kernel to

isolate multiple COTS operating systems and distribute the RTU components across

them.

In the first option, the secure RTU model uses a reduced COTS kernel to provide

only the minimal amount of functionality needed by the RTU for operation. By

eliminating unneeded elements of the kernel, not only is its size reduced, but a large

amount of code with potential flaws is also eliminated. A particular system like an RTU

does not necessarily need all of the functionality of the typical desktop environment. By

stripping the kernel of its unnecessary code, the threat that this code contains exploitable

flaws is significantly lowered. The reduced kernel then serves as a more secure base on

which SCADA and other RTU applications can be built.

A second option for the secure RTU model is to use a separation kernel [96;98]

and the MILS architecture to isolate components of the RTU from each other. Individual

components of the RTU (see figure 2.3) can be placed in separate partitions as shown in

figure 3.4. There are several advantages of compartmentalizing the RTU in this way.

72

The compartmentalization prevents a software flaw in one system from modifying data,

structures, or code in other modules. Also, if COTS components are used, they can be

placed in their own partition and pose no security threat to other modules.

H Field I
Device

Remote
Client --=--=

Remote
Field

Commun
Other Local Device
RTU Control I/O H Field I

inication DeVice

S module
modules module control

module

H Field I
Device

I I I I

Separation Kernel

Hardware

Figure 3.4. Secure RTU model with a separation kernel.

3.3 A security hardened RTU architecture

The RTU role based access control model must be enforced at some level in the

RTU. The application layer is often the choice for RBAC systems, since they tend to

deal with abstract permissions that are difficult to integrate into the operating system.

Based on the reduced kernel approaches in section 3.2.3, especially the microkernel

approach, enforcement of the RTU access control model at a more primitive level is

possible and desirable.

Building on the microkernel concept of extracting and isolating system

components and security functions in their own partitions, rather than including them in

an application or in the operating system, a security-enhanced SCADA RTU architecture

is derived. The model pictured in figure 3.5 has been developed to provide a high level

description of the security enhanced RTU architecture. In this model only an input

output (10) controller has access to analog and digital 10 ports. Access to status points

73

and command points is mitigated through the access control enforcement and security

functions modules which provide a public interface for RTU services and share a private

(trusted) communication interface for sharing security relevant information. All access to

RTU points is through the access control enforcement layer, where an access control

decision is influenced by both the access control policy and trusted security attributes

obtained from protected and verified security functions. Security functions, particularly

authentication are exported to remote users through the security enhanced ONP3

protocols described in section 3.1.

Besides authentication, an example of a secure function would be the access

control decision function check_access, which takes as an argument a subject, an object

and an operation, and returns true if the subject is allowed to carry out that operation, and

false if not. The decision function check_access is called before attempting to access the

protected RTU points. Check access informs the access control enforcer that

check_access has been called, by which subject, and the result of the function. The

SCAOA communication module can then access the point (provided check_access was

successful). While it would be possible to have the enforcement module provide a single

interface and make calls to the security mechanism internally the proposed method of

separating the security functions should make them simpler, easier to verify, and

interchangeable. In addition, it may be possible that a single call to the appropriate

security functions could result in the enforcer granting multiple accesses to the caller.

74

'-------'--_ _-_• _ _---_

Reduced Kernel RTU

Security Functions
,..,._.+--+, Authentication,

Encryplion, etc

(~t~;':(:II;~
J--,I' \ Status point'}-j 0

',-.-.-.. ,/ 'N

(/'C'om~;a;;Ci- . T
"""-'_ point /)--- R

'-.. - .. --' 0

L
l

,E
'R

Figure 3.5. Security enhanced RTU architecture.

3.4 Conclusions

This chapter defined the security perimeter of the RTU and discussed the specific

threat model for RTUs. In response to the threat model this chapter has introduced the

concepts of the RTU access control model and reduced RTU kernels. These concepts

along with a previously developed SCADA communication scheme are combined to

create a security hardened RTU architecture. Roles and constraints will playa central

role in defining the RTU access control model and micokernels and minimal COTS

kernels have been identified as potential candidates for a reduced RTU kernel. In the

next chapter, the RTU access control is explored in greater detail and the RTU access

control model developed as part of this dissertation is defined. Chapter five explores in

greater detail reduced kernels for RTUs.

75

CHAPTER IV

RTU ACCESS CONTROL MODEL

The lack of authentication in SCADA protocols leaves the RTUs and other field

devices in a position of trusting that all received requests are from a valid and authentic

source and should be dutifully carried out. As seen in chapter two a primary focus of

SCADA security effort has been on authentication. But, as discussed in chapter three,

providing authentication is just part of a comprehensive security architecture for SCADA

systems, including RTUs. Providing robust and layered security requires that the RTU

further protect itself by providing fine grained access control that assures authenticated

users are only allowed to carryout authorized actions. This chapter presents the RTU

access control model which has been developed through this dissertation research.

4.1 Core elements of the RTU access control model

The RTU role based model is based on the conventional role based access control

concepts of users, who are assigned to roles and permissions that are assigned to roles.

Specifically the model includes five core sets: users (U), roles (R), points (P), operations

(0), and permissions (PERM). These sets have the usual meaning with some exceptions,

specifically the replacement of the usual set of object (OBJ) with points (P) to reflect the

RTU domain. These sets are fully defined in section 4.1.1. In addition there are two

significant relations in the standard role based access control model, the user assignment

76

relation (UA) and the permission assignment relation (PA) which, described in section

4.1.2.

4.1.1 Sets

Subject (Users)
Subjects are the active entities of the system and of the associated requested

operation. Subjects are traditionally understood as users, with the understanding that

some agent within the computer system is acting on behalf of the actual user. For RTUs

a subject may certainly be a human user, but we must also consider that the subject might

be another computer system. For example, a HMI display might make requests to an

RTU independent of any human interaction, or an MTU may collect information from an

RTU automatically. In both these situations an external computer system is the subject or

the user. Therefore, the notion of RTU subject includes both human users as well as

remote systems (that are apart of the SCADA network) both of which must be acting

through some local process or agent on the RTU.

Roles provide a logical means of grouping a set permissions, and convenient way

to manage the assignment of permissions to users. Many RBAC models provide for an

unlimited number of roles, which is appropriate for large organizations that can have

many users playing many different roles. For RTUs the goal is different. The

functionality of an RTU is very specific so a limited number of fixed roles will be

acceptable. The RTU access control model provides the following roles:

• Engineer - The role of engineer captures the activities of SCADA engineers, who

design and maintain SCADA system. They do not carry out day to day operations,

77

but analyze data and parameters off line, and update safety and monitor controls.

Engineers need to have the ability to read most status points, including those most

frequently used by operators as well as more obscure status points which engineers

use to carryout safety and protection analysis.

• Operator - The operator role captures the activities of users who carryout day to day

operation of the SCADA system. Operators need access to the status points that

indicate the status of the current system, and any command points that they will use in

response to observations about the entirety of the SCADA system.

• Displav - The display role captures the activities of passive HMI machines. This role

has only read access, and only to status data.

• Vendor - The vendor role captures external entities associated either the RTU or

devices connected to the RTU. Vendors may need to observe certain values in order

to provide technical support to system operators. However they should not be

allowed to observe all points and should be prevented from changing command points

or set points.

• Enterprise - the enterprise role address the current and suspected continuing trend

that some systems or users from the enterprise network may desire access to R TU s.

Users are internal entities to the organization that have an interest in some data values

on the RTU. Or they might be business partners who are provided access to certain

data as part of their arrangement with the owner of the SCADA system. This role

will have limited permissions reflecting the fact that those network are less trusted.

• Admin - The admin role captures the administrative duties of the RTU. This user (or

users) is responsible for defining roles and assigning users to roles. This role should

78

not have any access to R TU process related data points. This provides for separation

of duty so that a user cannot both assign themselves roles and have access to the R TU

system values.

Objects (Points)
The purpose of access control is to protect systems resources. For computer

access control systems these system resources are generically referred to as objects. For

general purpose systems such as PCs files are the most common abstraction to which

access control is enforced. In role based access control, objects are generic and take on

specific meaning only in the context of a target domain. The RTU roles based access

control model is such a target domain. For RTUs and other field devices the primary

abstraction is the data point. Recall from chapter two that RTUs are field devices that are

typically connected to sensors and actuators that measure and control physical systems.

Points are a universal abstraction in control systems, and refer to named or unnamed

variables whose value: (l) directly relates to sensor readings or actuator settings, (2) is

directly derived from one or more sensor reading values, or (3) directly influences the

reading or writing of sensor and actuator values. Points are the digital representation of

the telemetry and control provided by an RTU. Therefore, in the model, the standard

RBAC object (OB1) is replaced with points (P) where a point represents a single data

value.

Operations
The operations with which we are most familiar are read, write and execute.

These correspond to the basic operations for files on standard commercial operating

systems, and for memory on most commercial hardware. Read and writing points is

meaningful however, over the years SCADA protocols have developed their own

79

standard set of operations on points. These operations are read, select, and operate, and

are described in more detail in [17]. These operations came about to compensate for

possible errors in transmissions of early and less reliable serial communications. Read

has its standard meaning; writing a value to a point is a two step operation usually

referred to as select before operate. To write a value to an RTU point a user would first

send a select operation, which identified the point to be written to and the value to be

written. After receiving an acknowledgment, the user would then send the operate

command which included the same point identifier and the value. Only if select and

operate requests matched would the value be written to the actual point. The RTU access

control model adopts the standard SCADA operations of read, select, and operate as its

definition of operations.

Permissions
A permission is the approval to carry out some operation on one or more points.

Permissions group the operations and points into sensible actions. For example select

digital output one, or operate analog output two. Not all combinations of operations and

objects are necessarily valid.

4.1.2 Relations.

Central to the role based access control model are the user assignment relation

(UA) and the permission assignment relation (PA). The user assignment relation is a

many to many relation that maps user to roles, such that a user can be assigned to more

than one role and a role can be assigned to more than one user. The permission

assignment relation is also a many to many relation between roles and permissions. In

the core model these two relations establish the policy that is enforced by the model. For

80

every request r, where r = <subj, point, oper>, r is allowed if the user is assigned to at

least one role ((user, role) is an element of UA) which has the permission (oper, point)

(((oper, point), role) is an element of PA). This is formally defined as the function:

check _ access(u,p,oper).

4.1.3 Core model definition

The previous definitions are summarized in figure 4.1, which gives the core RTU

role based access control model definitions.

Sets:
USERS
ROLES

POINTS
OPER
PERM

Relations:

- The set of RTD users.
- The set of roles defined for the RTU {Engineer, Operator, Display,
Vendor, Administrator, Enterprise, Restricted)
- The set of all points in the RTU
- a set of operations on P, {read, write, select, operate)
- The set of permissions of the form <oper,p>. PER <::;;; OPER X P.

UA - A relation of users to roles UA <::;;; U X R.
PA - A relation of roles to permissions UA <::;;; PERM X R

Functions:
roles(u:USERS) ~ ROLES a function that maps every user to a subset (possible null) of

ROLES.
assigned-J'erm (r:R) ~ 2 /\ PERM mapping of roles onto permissions. assigned-J'erm(r)

returns the permission assigned to role r.

Figure 4.1. Core RTU access control model definitions

4.2 Additional access control factors

In the core model that was just presented, the access control decision is based

solely on the user assignment relation and the permission assignment relation. An

advantage of this simplification versus the access control matrix model is the reduction in

the number of relationships that need to be managed, from O(mn) toO(m + n).

However the real advantage of role based access control is the potential to capture and

81

express constraints. As discussed in chapter two, constraints are one of RBAC's most

important benefits. Constraints allow a model to capture and express accurately, complex

and diverse policies; to better enforce separation of duty; and to achieve least privilege.

In this section we consider possible criteria for constraints.

The NIST Field Device Protection Profile for SCADA Systems in Medium

Robust Environments [48] is a draft document developed by PCSRF to provide a means

for SCADA and industrial control system community to express the security

requirements for the next generation of field devices and RTUs. The document asserts

that the next generation of field device must implement access control, and furthermore

that

"The access control decision shall be based on a variety offactors that are
corifigured by an Administrator. The field device shall support at least the
following access control factors: user role, system location, and time of day / day
of week." [48].

The core elements of the model presented in section 4.1 provides only the role factor. To

allow the additional factors listed in the NIST protection profile, location, time of day,

and day of week can be achieved through the addition of constraints. In addition to the

factors listed in the protection profile, this dissertation identifies two additional access

control factors: point type, and system state. Sections 4.2.1 through 4.2.4 describe and

define how each factor is to be interpreted in relation to the process control domain.

4.2.1 Location

For RTUs the location criteria applies to users (or systems) making requests of the

RTU. The motivation behind the use of the location criteria is to allow the model to

support limiting specific actions (or permissions) from originating from certain locations

82

irrespective of the role assigned to the user. For example, a breaker may only be turned

on from the control room (but it might be turned off from anywhere), or a valve position

may only be operated from the plant floor. The following is a list of locations, and

reflects the locations currently supported in the model. The model can easily be extended

to include other locations.

• Control Room

• Plant Floor

• Enterprise Campus

• Unknown

For the RTU to enforce restrictions based on location it must be able to associate

a given user with a location. There are a number of different possibilities for associating

a user with a given location. It is assumed in the model that structures needed to provide

this association exist and are available. One possible choice is to bind an IP address to a

particular subject at the instance of the request and then to use an established association

of IP addresses to locations to determine the user's location. There are obvious short

comings with this approach. An alternative would be to use GPS data and add location

attribute information into a network communication protocol layer.

Definition 4.1. A set of potential user locations

LOCATION = {PLANT_FLOOR, CONTROL_ROOM,

ENTERPRISE_CAMPUS, UNKNOWN}

Definition 4.2. A user's location is given by the many to one relation

location 0:;;;;; USERS X LOCA nON

The meaning of location(u , I) is that user u is currently in location I.

83

4.2.2 Time of day and day of week

Most RTUs operate 24 hours a day seven days week and 365 days a year. The

primary reason for including time of day and day of week as potential criteria for access

control decision is to limit access of users to correspond with their work schedules. For

example, Alice works only on weekends and she is an engineer. The inclusion of time of

day and day of week allows the security administrator to limit Alice's privileges to the

weekend, when she is on duty; preventing her from accessing the system at an

unexpected time. The security benefits of this are two fold, first this helps support least

privilege and protects against a session hi-jack where an attacker continues to use Alice's

credential after she has finished work.

Definition 4.3. The time of day is determined by the function time_oi_day that returns a

value indicating the current time of day defined by the set TIME_OF _ DA Y the set of

minutes in twenty four hour day denoted as hh:mm. These are discrete times which can

be enumerated. Rather than write each individual time, we also define a short hand ii:jj -

kk:1I to denote the all discrete times between the interval ii:jj and kk:1I inclusive.

time_oLdayO ~ td E TIME_OF _DAY

TIME_OF _DAY = {OO:OO, 00:01, 00:02, ... ,23:58, 23:59}

Definition 4.4. Day of the week is determined by a function day _ oC week that returns a

value indicating the current day of the week as an element from the set DA Y _OF_WEEK

day_oLweekO ~ dWEDAY_OF_WEEK

DA Y OF WEEK = {MONDAY, TUESDAY, WENSDA Y, THURSDAY,

FRIDA Y, SATURDAY, SUNDAY}

84

4.2.3 Point type

This dissertation identifies three possible types of points: status points, control

points and configuration points. Status points represent the value read from a sensor,

such as temperature, or possibly a derived value such as the deviation of a temperature

reading from a static set value or the difference between two temperature sensors

readings. Control points dictate, directly or indirectly, the behavior of connected

actuators. A digital control point turns something on or off; an analog control point

might dictate a valve position. Corifiguration points affect either status points or control

points. For example a configuration point might dictate a dead band value for a sensor

reading, or the frequency of a pulse width modulation control (which could be turned on

or off by a digital control). Each point in the model is mapped to only one point type. In

addition to the above point types there is a special permission type, nil, indicating that a

point has yet to be assigned a type.

Definition 4.5. A set of point types

POINT_TYPE = {STATUS, CONFIGURE, CONTROL, NIL}

Definition 4.6. Each point is associated with only one point type defined by the many to

one relation

point_type c;;;; POINT X POINT_TYPE

The meaning of point _ type(p, pt) is that point p is of point_type pt.

4.2.4 System state

RTUs and other field devices often have a set of states such that at anyone time

they are only in a specific state, and only certain operations should be carried out when in

that state. For example, during start up operating some of the control points should be

85

prohibited. This may be safety related but clearly has security implications. In the

model, the state of the system is global to the RTU, and changes to the state occur both as

the result of internal processes (for example detection of the completion of the startup

routine) and in limited cases as the result of human initiation, such as entering the

maintenance state. The following states are used in the model:

• Maintenance - Indicating that the R TU is undergoing some type of maintenance

activity

• Operate Secure - The RTU is operating, doing its normal activity, but is in an

elevated security posture

• Operating - The normal operating state

• Panic - This state is entered when an error or failure is detected, errors and failures

include security errors and failures (which ideally the RTU will be able to detect).

• Recovering - The R TU has experienced and error and is attempting to recover from

the error.

• Shut down - This is the state entered when the RTU is told to shutdown or reboot.

• Start up - This is the state entered when the RTU is powered on.

Definition 4.7. The set of system states is defined by the following set

SYSTEM _ STATE = {MAINTENANCE, OPERATING_SECURE,

OPERATING, PANIC, RECOVERING, SHUT_DOWN, START_UP}

Definition 4.8. At any given time the system is some state which is given by the function

system _stateO -7 s E SYSTEM _ STATE

86

4.3 RTU constraints

The factors identified in section 4.2 can be incorporated into the RTU access

control model using constraints. Recall from chapter two that there are several different

possible types of constraints that the model might choose to express. Separation of duty

constraints have been among the most popular, but chapter two identified seven different

types or categories of constraints. The RTU access control model can support access

control decisions based on the factors identified in section 4.2 by using exogenous

constraints. Exogenous constraints are constraints whose attributes are not a part of the

core RBAC model, and were defined in chapter two. The constraints will affect the

relations in the model, specifically the UA and PA relations. Since these attributes will

change during the runtime execution of the RTU, they are dynamic constraints. We

incorporate into the model three types of constraints, role activation constraints,

permission activation constraints, and point type constraints.

4.3.1 RTU role activation constraints

RTU role activation constraints place runtime or dynamic constraints on the use

of one or more roles by a user. These are exogenous prohibition constraints, and define

conditions when a user, who would otherwise have access, is prevented from making use

of a role to which he or she has been assigned.

Definition 4.9. The RTU access control model limits the conditions under which a user

may not use a given role to access some permission in the relation

RAC ~ U X R X 2A {LOCATION X TIME_OF_DAY X DAY_OF _WEEK X
SYSTEM_STATE}

87

The meaning ofRACCu, r, cs) is that a user u is prevented from using role r if location(u)

E cs or time _ oC dayO E cs or day _ oC weekO E cs or system stateO E cs.

4.3.2 RTU Permission activation constraints

RTU permission activation constraints place runtime or dynamic constraints on

the permissions that can be accessed through a given role. These are prohibition

constraints in that they define conditions under which a permission cannot be accessed by

a role. As an example, consider this natural language expression of an RTU permission

activation constraint: "an engineer (role) may not change the dead band value of the

pressure sensor stations _12 _section _ 2 from the enterprise network or an unknown

location." We now give a formal definition for permission activation constraints.

Definition 4.10. The RTU access control model limits the conditions under which a

given role cannot access a permission normally assigned to it in the relation

PAC ~ R X P X 2/\{LOCATION X TIME_OF _DAY X DAY_OF _WEEK X
SYSTEM_STATE}

The meaning of PACCr, p, cs) is that any user u is not allowed to access permission p

through role r if location(u) E cs or time_oCdayOE cs or day_oCweekO E cs or

system _ stateO E cs.

4.3.3 RTU point type constraints

The final constraint that is added to the model is the point type constraint. These

constraints are more akin to mandatory constraints, though not identical. The previous

two constraints defined in section 4.3.1 and 4.3.2 can possibly be null, in which case the

model is equivalent to the core model, as the constraints are non-existent. The RTU point

type constraints are more static than the role activation constraints and the permission

88

activation constraints. The point type constraints limit the kinds of operations that can be

assigned to roles. Recall from section 4.2 each point is assigned a type from the set

PO INT _TYPE. The point type constraint is a static obligation assignment constraint that

requires each role be assigned a set of point types. Enforcement of this constraint

prevents roles from being assigned any operation on points of a specific type. We now

formally define the point type constraint as

Definition 4.11. The RTU access control model limits the assignment of permissions to

roles in the relation

The meaning of PTC(rs,pt) is that the roles in rs are assigned to the point types in pt. A

role r may be assigned to an operation on point p if and only if <r,pt> E PTe, where pt is

the point type of point p.

4.4 The RTU access control model

The previous sections have described and identified additional criteria on which

access control decision should be based, and defined three types of constraints to add to

the RTU access control model that reflect these additional access control factors. The

final RTU access control model can be defined. [t incorporates the constraints, and unites

together the different access control factors. The model definitions are summarized in

figure 4.2. The functional operations on the model are defined in table 4.1. For each

function we define arguments, preconditions, and postconditions as they apply to the

model.

89

Sets
USERS - The set of RTU users initially.
ROLES - The set of roles defined for the RTU {Engineer, Operator, Display,

Vendor, Administrator, Enterprise, Restricted}
POINTS - The set of all points in the RTU
POINT_lYPES - A set of point types: {status, control, configuration}
OPER - a set of operations on P, {read, write, select, operate}
PERM - The set of permissions of the form <oper,p>. PER ~ OPER X PERM.

APER - A set of administrative permissions, permissions that operate on the
model {assign_role, add_user, assign_permission,
assign_type_PO, delete_user, add]AC, add_RAC, add]TC}

LOCATION - A set of locations from which users generate RTU requests
{PLANT_FLOOR, CONTROL_ROOM, ENTERPRISE_CAMPUS,
UNKNOWN}.

TIME_OF _DAY - The set of all hour minute combinations for time of day, given as
hhmm, (0001-2400)

DAY_OF_WEEK- The set of days of the week {Mo,Tu,We,Th,Fr,Sa,Su}
SYSTEM_STATE - The set of device states {Reboot, StarCup, Shut_down, operating,

Operate_secure, Maintenance, Recovering, Panic}

Relations
RAC ~ UXRX2A{LOCATION, TIME_OF_DAY, DAY_OLWEEK, SYSTEM_STATE}

PAC ~ RX PERM X 2A{ LOCATION, TIME_OF_DAY, DAY_OF_WEEK,

SYSTEM_STATE}
PTC ~ 2AR X 2ApOINT_lYPES <r,pt> indicating which point types a role may

operate on.
UA ~ U X R. A relation of users to roles

PA ~ R X P. A relation of roles to permissions

PTA ~ P X PT a many to one mapping of P to PT.

Functions:
roZes(u:U) ~ R a function that maps every user to a subset (possible null) of R.
assigned-penn (r:R) ~ 2PERM mapping of roles onto permissions. assigned_perm(r)

returns the permission assigned to role r
Zocation(u) ~ IE L a function mapping a user u to a location.
point_type (p) ~ ptE POINT_lYPE is a function that maps a point p, to a point type.
time_oLdayO ~ todE ToD a function that returns a ToD element representing the current

time of day
day_oLweekO ~ dOWE DoW a function that returns a DoW element representing the

current day of the week
system_stateO ~ ssE D_S a function that returns the current state of the device.
role(rac:RAC) ~ r E ROLES a function that returns the role of given role activation

constraint.
user(rac:RAC) ~ u E USERS a function that returns the role of given role activation

constraint.

Figure 4.2. The RTU access control model.

90

Table 4.1. RTU access control operational functions

Function Arguments Preconditions Postconditions
check access U, op, p, result u E USERS /\ op E OPER /\ P E PERM result = 3 r E roles{u) I (p,r) E PA /\ (u,r) E UA

/\ (\I (cr,cp,cs) E PAC, r *- cr v p *- cp v
(location(u)(l CS /\ time_of dayO(l cs /\
day _ oC weekO(l cs /\ system _stateO(l cs /\) /\ (

\I (cu,cr,cs) E RAC, r *- cr v u *- cu v
(Iocation{ u)(l CS /\ time_of dayO(l cs /\
day of weekO(l cs /\ system stateO(l cs /\)

add user User user (l USERS user E U
delete user User userE USERS user (l U ----,3 r:RI(user,r) E UA
assign user user, role user E V /\ role E ROLES (user,role) EVA;
deassign user user, role user E U /\ role E ROLES /\ (user,role) E VA (user,r) (l UA;
assignJole role, op, obj role E ROLES /\ (op,obj)E PERM /\ (role, point_type(obj» {(op,obj),role) E PA

E PTC
'-0 deassign role role, op, obj role E ROLES /\ (op,obj)E PERM /\ «op,obj),role) E PA «op,obj),role) (l PA

assign _type p, pt P E POINTS /\ pt E PT /\ point _type(p) = nil Point _ type(p) = pt
add RAC roles, perms, roles ~ R /\ perms ~ PERM /\ csE RAC

cs cs ~ 2{LOCATION U TIME_Of_DAYU DAY_Of_WEEK U SYSTEM_STATE}

add]AC users, perms, users ~ U /\ perms ~ PERM /\ cs E PAC
cs cs ~ 2{LOCATION U TIME_Of_DAY U DAY_Of_WEEK U SYSTEM_STATE}

add PTC roles, types roles ~ ROLES /\ types ~ POINT_TYPES /\ (roles, types) (Roles, types) E PTC
ex PTC

remove RAC roles, perms, roles ~ ROLES /\ perms ~ PERM /\ cs (l RAC
cs cs ~ 2{LOCATION U TIME_Of_DAYU DAY_Of_WEEK U SYSTEM_STATE)_

/\ cs E RAC
remove PAC users, perms, users ~ USERS /\ perms ~ PERM /\ cs (l PAC

cs cs ~ 2{LOCATION U TIME_Of_DAY U DAY_Of_WEEK U SYSTEM_STATE)-

/\ csE PAC
remove PTC roles, types roles ~ ROLES /\ types ~ POINT_TYPES /\ (roles, types) (roles, types) ex PTC

E PTC

4.5 Check Permission Algorithm

A central model component IS the function check _ accessO, Check access

determines whether a given subject can carry out a given operation on a given object.

Table 4.1 gives the post conditions for check access. Check_access is modeled as a

function and an algorithm for implementing check access is shown in figure 4.3

Function Check access (subject, operation, point)
Begin

allow_flag = false;
PERM = to_perm (operation, point) II return the permission

II associated with the operation

end

UR = roles (subject)
PR = roles (permission)
UCR = {}
PCR = {}
CS = {location(user) , TOO(), OoW(), State()}
For each rac in RAC

If user(rac) == subject
For each cs in CS

If cs <:;:;; constraints (rac)
UCR = UCR U role (rac);

For each pac in PAC
If PERM == perm(pac)
For each cs in CS

If cs <:;:;; constraints (pac)
PCR = PCR U role (pac)

UR UR nUCR

PR PR nPCR
R = URnPR
IF IRI > 0

Allow_flag true
Return allow_flag

Figure 4.3. Check_access algorithm.

The check_access function first identifies permissions associated with the

requested operation, and then finds the roles assigned to the user, and the roles to which

the specific permission has been assigned. Next the context functions

locations (user), time of day(), Day of_week(), and

system_state () are evaluated as stored as elements of the set CS. Then the

92

check_access function identified each role activation constraint from RAC that applies to

the subject. If a role activation applies to a user, then a test is performed for each element

of the constraint set CS. If an element is a subset of the current RAC's constraint set,

then the RAC's role is added to the set UCR. The same process is repeated for the PAC

using permissions and the set PCR. Finally any role in UR that is also in UCR is

removed from UR and any role in PR that is also in PCR is removed from PRo If the

intersection of UR and PR has at least one role then the subject is allowed to carry out the

operation on that object.

4.6 Conclusions

This chapter has presented a formal model for RTU access control. The model is

based on the core RBAC defined by NIST but without sessions. In the model, the

primary factor for access control is roles, but additional context factors are allowed to

influence the access control decision. These factors are expressed as constraints, and are

given in the sets RAC, PAC, and PTC. The access control decision is provided by the

function check_access and an algorithm for the check_access function is given.

93

CHAPTER V

RTU PROTECTION AND REDUCED KERNELS

The RTU access control model described in chapter four provides a model for

determining authorized RTU actions. Application of the model to an actual RTU requires

an authorization system and protection architecture. A typical authorization architecture

includes a policy enforcement point (PEP), and a policy decision point (PDP) as shown in

figure 5.1. As discussed in chapter two, the operating system plays a central role in

security since it provides the interface to system resources and controls all access to

system resources. Unfortunately, commercial operating systems tend to provide

discretionary access control that is very coarse. Commercial operating systems typically

follow the Unix model, where all system resources are treated as files. Processes

(subjects) and files are assigned to a user id and a set of permission bits attached to each

file determines whether a subject can access the file (resource). Subjects, not the system,

determine who has access to the resources they control. This protection architecture is

insufficient to enforce the RTU access control model from chapter four for two reasons:

first, it is too coarse, because the model requires the ability to restrict access to specific

operations on individual analog and digital 10 points; second, the controls are

discretionary allowing them to be arbitrarily changed. An alternate R TU protection

architecture is needed to allow policies described by the model to be enforced.

94

I
I

I
"-

Policy Enforcement Point Protected Resources - Subjects
PEP (Objects)

,
Policy Decision Point

PDP

CPOIiCY~

Figure 5.1. Typical authorization architecture.

Since the operating system level of abstraction is not sufficiently fine-grained, a

logical choice is to place the PEP in a middleware layer and force all access requests

through the PEP. This middleware layer will provide access to the RTU operations such

as reading and writing digital and analog 10 points, and other operations such as cold and

warm restarts. It is possible to place the PEP within a specific application such as the

ONP3 application layer process. The problem with locating the PEP and PDP within a

single application is that in the case that the RTU supports multiple SCAOA protocols,

the RTU access control model will have to be implemented in each application. This is

wasteful and inefficient, and most importantly can lead to an inconsistent application of a

given policy. A middleware PEP placement is far superior as it allows centralized

administration and enforcement, and assures that all software components are subject to

the access controls.

95

The problem that faces a middleware layer PEP brings us to the second RTU

threat area identified in chapter three - COTS operating system vulnerabilities. The

middleware layer relies on the protection mechanisms in the operating system to ensure

that all subjects must access the protected objects through the PEP. An operating system

vulnerability could allow the PEP to be bypassed, and thus for the security of the RTU to

be circumvented. The ability to circumvent the access controls is not limited to SCADA

applications, such as the DNP3 server. Other RTU applications, even those not intended

to access analog and digital IO points at all, could be allowed to read or make changes if

they are able to exploit a vulnerability in the kernel. Clearly this is an undesirable

situation, and given the poor track record with respect to security that is characteristic of

commercial operating systems, it must be considered a strong possibility.

The two contributing factors to the poor security of commercial operating systems

identified in chapter two included the size of the code base and their monolithic design.

This chapter presents two approaches to creating a reduced kernel based OS for RTUs

that strengthen the protection provided by an R TU middleware PEP. The first approach

acknowledges that there is strong motivation to use commercial operating systems due to

the significant cost savings that can be realized by both the cost savings of the OS itself

and the savings in the time spent on application development. The approach leverages

the fact that a good deal of the code base in commercial operating systems is not needed

by the RTU, by proposing to reduce a COTS kernel to a minimal COTS kernel for RTUs.

The second approach takes a more radical approach and proposes using a microkernel to

isolate RTU components and place an isolated PEP between RTU resources and user

level applications. The two minimal kernel approaches identified in this chapter reduce

96

or potentially eliminate the COTS OS threat faced by RTUs, and provide assurance that a

middleware layer PEP for the R TU access control model is not subverted.

5.1 Minimal COTS kernel based RTU

Recall from chapter two that one of the motivating factors in the adoption of

COTS components in SCADA environments was the need to contain costs. The majority

of SCADA networks are privately owned and operated and in most cases are for profit

companies, such as PG&E, American Water Works, W. R. Grace, and Proctor and

Gamble. Vendors of SCADA components such as RTUs are strongly motivated to keep

the cost of their products down and to keep the cost of ownership down as well. For this

reason COTS operating systems, particularly Linux, are an attractive choice for SCADA

devices, since their cost can be significantly less than the cost of developing a custom OS

for the device (Linux further reduces cost by eliminating licensing cost associated with

devices). However, as was discussed in chapter two, commercial operating systems'

track record with respect to security is less than exemplary.

To address this shortcoming while maintaining the economic benefits of using a

COTS OS, the minimal RTU kernel is achieved through a radical reduction of a standard

COTS kernel. The goal of the radical reduction is to provide only the minimal amount of

functionality needed by the RTU for operation. By eliminating unneeded elements of the

kernel not only is its size reduced, but a large amount of code with potential flaws is also

eliminated. A particular system like an RTU does not necessarily need all of the

functionality of the typical desktop environment. By stripping the kernel of its

unnecessary code, the threat that this code contains exploitable flaws is eliminated. The

97

reduced kernel then serves as a more secure base on which SCADA and other RTU

applications can be built.

One of the primary sources of vulnerabilities in today's commercial kernels are

device drivers. These pieces of code have a higher flaw rate, and in monolithic kernel

design, complete access to the text and data sections of the kernel. To make commercial

operating systems able to function on a large number of environments modem kernels

include many drivers, filling the kernel with unneeded and possibly exploitable code.

Unneeded device drivers are an excellent target for removal in creating a minimal COTS

kernel RTU, as unneeded drivers can be permanently eliminated. It should be possible to

greatly reduce the kernel using this approach as device drivers often represent about 70%

of the operating system [84].

Besides drivers, there are also a number of support structures in a standard COTS

kernel, the main ones being a file system, process model, interrupt handler, memory

allocation, and scheduler. While these main components will need to remain in the

kernel to function properly, it is possible to pare them down by removing unneeded lower

level components. For example, support for many different file systems, such as NTFS

are likely not needed by RTUs since they are characterized as stand alone systems.

The objective of the minimal commercial kernel RTU is to allow RTU vendors to

capitalize on the cost savings that are provided by commercially available operating

systems, while at the same time minimizing the security vulnerabilities. Any COTS OS

is likely to have both known and unknown vulnerabilities. Those vulnerabilities are the

result of software flaws in the OS code. Reducing the kernel reduces the lines of codes in

the kernel and thus possibly eliminates the code containing unknown flaws. A recent

98

study [110] showed that code contains on average between 6 and 16 bugs per 1000 lines

of code (Ioc). Therefore eliminate enough lines of code and you significantly reduce the

occurrence of bugs. A RTU security architecture can then be constructed using the

reduced RTU kernel and a middleware PEP as shown in figure 5.2.

f--

PDP PEP
RTU Applications

DNP3, Modbus, RAS
f--

Policy Analog &
Digital Reduced COTS Kernel

10 Points

Hardware
Network Interface, Analog and Digital 10, Storage, Memory

Figure 5.2. RTU security architecture using radically reduced RTU kernel.

5.2 Microkernel based RTU

The minimal COTS RTU kernel can eliminate many potential vulnerabilities. It

is however still based on the monolithic kernel design, which means that all of the

services provided to the RTU still exist in a single address space with little protection

from each other. Particularly the analog and digital 10 modules are not protected from

other kernel objects or threads. Malicious code can still potentially break into the kernel

by exploiting a vulnerability and gaining root access. Once root access is achieved an

attacker can bypass the PEP and potentially directly manipulate analog and digital 10.

Truly robust RTU protection cannot rely only on the discretionary access controls

enforced by commercial OSs. Instead a different approach is needed. The separation

kernel and the MILS architecture, described in chapter two provide inspiration for a

solution. Using this architecture, critical RTU resources, specifically analog and digital

10 ports and modules can be truly isolated from other RTU components. Individual

99

components of the RTU (see figure 2.3) can be placed in separate partitions as shown in

figure 5.3.

The security advantages of strongly isolated RTU components are numerous.

First, the compartmentalization prevents a software flaw in one system from modifying

data, structures, or code in other modules. This type of isolation helps the RTU achieve

availability; this is essentially the MILS fault isolation goal. Another advantage is that, if

COTS components are used, they can be placed in their own partition and pose no

security threat to other modules. For example, if an RTU vendor chooses to include a

web interface, the server software can be placed in its own isolated partition, and the

system architecture prevents the possibility of the web server being compromised and

used to subvert the RTU.

Network
Interface
Device

I
H Field I

Network Device

Interface (/):0-
Field 1-.9-

Device OE Remote Local Device

H SCADA t).
Field I Q)

Access Control 110 "'0 .-' Device
Application Q)~

Server module control - Q) (/)
::::s rn module !=;3:
c¢:: H Field J :::>0

(/) DeVice

I I I I I

Separation kernel

Hardware

Figure 5.3. MILS RTU with isolation of RTU components.

Complete isolation of each component is not possible, there must be some

cooperation among the isolated component for the RTU to function. For example, the

100

communication module, which sends and receives SCADA messages, will need to

retrieve actual 10 data from the analog and digital 10 modules, and possibly pass values

back to these modules. The complement to isolation is cooperation or sharing. The

security achieved by isolating RTU components can easily be undone when the various

components are allowed to interact. Consider the analog and digital 10 components.

These are drivers that access the RTU's 10 ports. Isolation allows the ports and memory

to be dedicated to an analog input module, or digital output module. The dedication of

10 ports to 10 modules prevents other potentially misbehaving modules from accessing

10 ports, or modifying the programs of 10 modules. However, for the RTU to carry out

its function, some other isolated components will need to have access to the input and

output values from the 10 modules.

Recall that the separation kernel is a microkernel and that a microkernel provides

three primary abstractions: address space, execution, and inter process communication

(IPC). The isolation presented so far is represented by address spaces. The execution

abstraction is achieved through tasks, which represent a unit of execution. Finally IPC

allows tasks, which are isolated in one or more address spaces, the ability to cooperate

and share information. Tasks communicate with each other through a set of IPC

primitives provided by the kernel. Moreover the kernel, as the arbiter of task IPC, can

determine if two tasks are allowed to send and receive messages. In MILS there is an

additional layer called the partition communication system, which extends the IPC

functionality with security primitives.

While some systems may choose to prevent any partition from communicating

with any other partition, it is through secure cooperation that robust, secure, and useful

101

systems can be built. The advantage of MILS and the structure of the I PC or PCS is that

the system architect can designate which partitions or tasks are allowed to communicate

with each other, and the separation kernel enforces this absolutely. This allows

application layer reference monitors to be placed between different partitions, and assure

that these reference monitors are not bypassed. Thus, rather than relying on the kernel to

make all access control decisions, the MILS architecture allows access control to be

layered. User land applications that provide security are inserted between isolated

application components, and the separation kernel guarantees that these components

cannot be bypassed. Applying this principle to the security hardened RTU allows for the

creation of one or more PEP to protect different isolated R TU components. Furthermore

the PDP can be isolated as well, making it impossible for other RTU components to

modify the policy. Figure 5.4 shows how the RTU PEP is inserted between various

isolated RTU components. This allows the RTU to unequivocally apply its security

policy to all executing entities on the system.

Network
Interface
Device

Network
Interface
Device

Remote SCADA
Application Access

Server

Local
Control
module

Processor

RTU RTU
PEP PDP

(access
control)

~

Figure 5.4. MILS RTU with PEP.

102

Field

control

There are some disadvantages to applying the MILS architecture and a separation

kernel to RTUs. The MILS architecture is targeted for high-assurance systems, in

particular those that need to support multi-level security (MLS). While MLS is needed

for many military systems, for SCADA systems, specificaIly for RTUs, it is not

representative of the desired security objectives. MLS is a based on the Bell LaPadula

model, which is a confidentiality security model. As mentioned in chapter two, for

SCADA systems, availability and integrity are of primary importance, not confidentiality.

Two other significant disadvantages to the separation kernels and the MILS architecture

are cost and availability. A true separation kernel, which was first proposed in 1982, has

yet to be developed. Recent advances in microprocessors are making the performance

cost associated with a separation kernel more acceptable. As discussed in detail in

chapter two, research and development of the MILS architecture and a separation kernel

are currently active. Lynxworks and Greehhills software are both working on separation

kernels that can achieve EAL seven certification, which is a key milestone to realizing

the MILS architecture. However, to this author's knowledge no EAL seven certified

separation kernel is yet available. Moreover, if a separation kernel is to become

available, it will surely have a high cost associated with it, at least initially. Since

SCADA operators face economic pressure to contain costs, the expense of a full

separation kernel is likely to be out of their reach for the foreseeable future.

5.2.1 Alternative microkernelfor the security hardened RTU

While clearly a certified EAL seven separation kernel provides the best

microkernel for an RTU from a security perspective, microkenels in general can enable

the development of more robust security, and provide partitioning and encapsulation that

103

are core to the MILS approach. A key difference being that they lack formal verification

and the MILS architecture in which to be integrated. There are a number of microkernels

available, several of which are open source and could be used in developing a

microkernel based RTU. These are discussed in chapter seven where development of a

microkernel based RTU prototype platform is presented.

5.2.2 RTU protection architecture using a microkernel

Given the obstacles to a MILS / separation kernel based R TU and availability of

open source microkernels, a viable and promising alternative to a MILS based RTU is a

microkernel based RTU. Although this alternative cannot provide the same high

assurance as MILS, it can provide a superior RTU security architecture, and one that can

potentially eliminate or mitigate the vulnerabilities in COTS operating systems and

software in the RTU. It is this approach that is advocated here. The availability of open

source microkernels IS ideal for the development of secure RTUs. The three

microkernels mentioned in the previous section, Fiasco, Pistachio, OKL4, are all

sufficiently mature to support investigation of a microkernel based security hardened

RTU.

The microkernel based RTU security architecture isolates RTU components by

assigning each to its own address space. Each individual component then provides one,

or more, interfaces for receiving IPe messages. The contents of the messages are

dependent on the particular component. For example, the analog input component might

accept a read message indicating the analog input point value that is desired. The

component would then put the value in a response message. Another example might be

the communication interface accepting an open connection message, or a send or a

104

receive message. The model includes a number of RTU components, such as local

control, which might not necessarily be present in every RTU. It should be easy to

accommodate this, as these can just become null address spaces, and give null responses

to errant requests.

The microkernel provides for isolation of these components, providing the first

layer of security. Next, security components, especially a PEP and PDP that capture the

application of the RTU access control model described in chapter four, are woven into

the components. The main security component is the R TU security service component.

This component maintains the security related information, policy, and state information

relevant to RTU security. Isolated components can send messages to the RTU security

service. Rather than a single PEP, the microkernel based RTU has multiple PEPs in the

form of guards that intercept communication between different components, and enforce

the RTU security policy on these requests and replies. The security architecture is shown

in figure 5.5.

5.3 Conclusions

This chapter has discussed protection architectures for the RTU that support the

RTU access control model described in chapter four. The access control model is fine­

grained and cannot be natively supported in most commercial kernels. Therefore some

middleware protection scheme is needed. This highlights the threat posed to RTUs by

COTS operating systems, since flaws in the OS can allow middleware protection

mechanisms to be circumvented. Two approaches to reducing this threat were described

in this chapter - a minimal COTS RTU kernel, and a microkernel. The minimal COTS

kernel is proposed as a way to reduce the threat of vulnerabilities, but still allow SCADA

105

vendors and SCADA operators to capitalize on economic benefits that make COTS

desirable. The MILS architecture and separation kernel serve as the inspiration for the

microkernel approach. But rather than actually advocate the use of the MILS architecture

and separation kernel, which are not readily available and are expected to be cost

prohibitive for SCADA operators, the use of an open source microkernel is advocated, as

it provides the benefits of MILS and separation kernel, though lacking formal

verification, without the costs.

If)
c
o
';:;<1>
'" 0 .~ co
c't:
:::J <I>
EE
E­
o
o

J
I
I

Remote
Access
Service

Process
Variable

Database

Microkernel

o Physical Resource D Isolated Subsystem

Analog
Input

Module

Allowed IPC

Figure 5.5. Microkernel based RTU security architecture.

106

CHAPTER VI

PROTOTYPE DEVELOPMENT AND TESTING

A new access control model for RTUs was presented in chapter four, and chapter

five described two reduced kernel approaches for strengthening RTU security. This

chapter describes the development and testing of a prototype hardened R TU. The

prototype implements the developed RTU role based access control model as a

middleware layer available to other RTU processes, and uses a reduced COTS kernel as

described in chapter five. A security enhanced DNP3 protocol similar to that described

by Patel in [29] was included to provide SCADA access to the prototype. RTUs and

other industrial controllers usually have less available memory and processing power

than traditional computing systems and have different performance requirements as well.

The prototype was developed on actual RTU hardware from Sixnet and evaluated in a

test bed environment including actual SCADA hardware. Both performance analysis and

security testing were conducted in the prototype evaluation.

6.1 Prototype development platform

An mlPM form Sixnet was used as the prototype development platform. SixNet

10 is a US based company that manufactures and distributes hardware for the industrial

automation industries including: oil and gas production and distribution, water and

wastewater treatment, and transportation. Their product list includes DCS controllers,

10 modules, Dataloggers, and RTUs that support Ethernet, RS232 and RS485

107

communication standards. Their products are designed for harsh industrial environments

and are Deutsches Institut fUr Normung (DIN) rail mountable. Sixnet also caters to

OEMs, providing them with private labeling of controllers and RTUs. Sixnet's Linux

based IPm controllers are open systems, allowing OEMs to create customized RTUs

using open source tools, making them an excellent choice for prototype development.

6.1.1 Hardware

Sixnet RTUs and DCS controllers are actually embedded computers based on a

PowerPC CPU with a 32 bit data bus operating at 50 Mhz. Besides the processor, RTUs

and DCS controllers also have flash memory, dynamic RAM, and persistent (battery

backed) RAM and come with a mix of 1011 00 Ethernet ports, RS232 and RS485 ports as

well as on board digital and analog 10. Battery backed RAM is common in industrial

devices and is used for logging purposes since the contents persist through power cycles.

Access to dynamic RAM on Sixnet devices is made available through an emulated disk.

6.1.2 Software

Sixnet offers RTUs and DCS controllers with either Winows CE or Linux

operating system (OS). The IPm series ofRTUs by Sixnet uses the Linux 2.4 kernel, and

the Sixnet Linux installation includes a TCP/IP stack, common Internet daemons

including telnet, echo, ftp, and daytime. Since the Linux OS is open source, the kernel

source used by Sixnet is available. Basic OS utilities such as cat, more, ls, and ps are

provided by busybox. The standard installation also includes gdbserver to allow

remote debugging of applications.

108

6.1.3 Development Environment

To encourage OEMs to use their product, Sixnet provides a development package

called IADK (lPm Application Development Kit). The kit includes a gcc cross compiler

toolchain for compiling code that can be executed on an IPm based RTU. The kit also

includes a client side GUT based debugger (insight) that connects to a running instance of

the gdbserver on an IPm. In addition the kit includes static and dynamic versions of

commonly used libraries. Finally the kit includes Sixnet's proprietary library used to

access local digital and analog 10 on the IPm. Using the library a program can read or

write to local analog and digital 10 by calling one of two functions: IODBRead (.

) and IODBWrite(...).

6.2 Hardened RTU prototype development

The most basic open IPm based RTUs from Sixnet was chosen as the platform on

which to develop the hardened RTU prototype. Since the mlPM is a commercially

available RTU, computing resource available to the prototype RTU such as dynamic

memory, flash memory, and processor speed, were considered comparable to current

commercial units. Sixnet's support for OEMs and OEM customization of mlPM

products makes development and testing possible and provides a potential path towards

future commercial deployment. The chosen RTU, designated by Sixnet as mlPM VT-

241 D was the least expensive RTU which had a nice complement of on board 10. The

mlPM RTU has 16MB of flash, 16MB of dynamic memory, one auto detection 10/100

Ethernet port, and four serial ports. The on board TO consists of twelve binary inputs,

four binary outputs, six analog inputs and two analog outputs. The binary inputs are

109

based on the mlPM's power supply which for the prototype was fifteen volts. The binary

outputs can draw on the power supply as well, up to two amps. The technical

specifications sheet for the mlPM are included in appendix D .

•••••

•• • , ... _:_ •• 1 ••• 1." .. ~ .• we

Figure 6.1. SixNet RTU used for prototype development source [111].

The prototype consists of three primary software components: first, a reduced

COTS kernel, as described in chapter five, second, an implementation of the new RTU

role based access control model described in chapter four which provides access to RTU

10 points to all other RTU software, and third, an implementation of DNP3 enhanced

with security measures, particularly authentication, to allow other SCADA devices to

access the R TU.

6.2.1 Prototype development: Reduced Linux Kernel

The first component of the hardened R TU to be developed was the reduced

kernel. Two approaches were identified in chapter five, a reduced COTS kernel and a

microkernel. The reduced COTS kernel approach was chosen for this prototype. The use

of a microkernel is explored in chapter seven. Some initial experimentation with reduced

110

kernels was carried out using the LynxOS [112]. LynxOS is a real-time operating system

based on Linux and designed for embedded systems development. The environment

supports the POSIX® standard and provides cross-compilation platform and kernel

customization. A reduced kernel image was created using LynxOS's kernel

customization features and the creation of KDI's or kernel downloadable images. The

main feature of the kernel customization is the inclusion and exclusion of different

drivers and supporting libraries. Other elements of kernel reduction were focused on

setting variable values that affect performance such as the maximum number of

processes, the size of the disk cache, or the maximum number of mounted file systems.

To further reduce the size of the kernel, the libraries for IPv6 and the NFS were also

excluded.

LynksOS support for the PowerPC was limited, and was not available for the

mIPM. The Linux 2.4 Kernel is supported for the mIPM hardware, with a patch available

from Sixnet. The source code for the 2.4 kernel was downloaded from kernel.org. The

Sixnet mlPM is built around a Power PC based single board computer (SBC). In order

for the kernel to run on the mIPM a patch to the kernel source must be applied. The

patch is freely available from Sixnet.

After patching the kernel a reduced kernel image was created. This was achieved

by eliminating a host of drivers and supporting software. Support for the following file

systems was eliminated: REISER, HFS, BFS, EXT3, FAT, MSDOS, UMSDOS, VFAT,

NTFS, EFS, NFS, and MINIX. Parts of the network libraries were eliminated including

support for IPv6 and netfilter support in the kernel's TCP/IP stack. The final kernel

configuration file is listed in appendix A. The final size of the reduced kernel was 1.3

111

megabytes. For comparison purposes a default installation of Redhat 7.3 which uses the

2.4 kernel was evaluated. The default Redhat 7.3 Linux kernel was 2.9 megabytes. The

hardened RTU's reduced Linux kernel is less than half the size of a comparable standard

Linux kernel. Assuming that software vulnerabilities are evenly distributed, this reduced

kernel RTU has reduced by about one half, the number of kernel vulnerabilities that

result from kernel code flaws, and which could present RTU attack vectors. Table 6.1

shows the sizes of the compressed and uncompressed kernel images and breaks down

their size into text, data, and bss segments. Once the custom reduced kernel was

compiled it was loaded onto the mIPM RTU.

Table 6.1. Reduced kernel and standard kernel comparision.

Kernel Size
Uncompressed compressed text segment Data Bss

Hardened 1.3 M bytes 553943 byes 1285640 bytes 59592 13827
RTU 1350116 bytes 541 K bytes
Prototype
Reduced
Kernel
Standard 2.9 Mbytes 1.2 Mbytes 1969848 bytes 431652 383452
Linux kernel 3072843 1262048 bytes
(Red Hat 7.4)

6.3.2 Prototype development: RTU Role Based Access Control

After the new reduced kernel was loaded, the next hardened RTU component

needed was an implementation of the RTU role based access control model described in

chapter four. The RTU role based access control component was created for the mIPM

RTU using Sixnet's IADK. The IADK library routines provide access to the prototype's

hardware circuitry for analog and digital input and output. The access control scheme

was implemented as a middleware security layer between the IADK library calls and a

112

new inter process communication (lPC) defined interface. Figure 6.2 shows the basic

architecture of the implementation. The defined interface is available to any RTU user

process or application through IPe calls described below. A permission was created for

each primitive in the IDAK library.

Custom IPC
interface

RTU Role Based I
I Access Control Security IODBRead(...)

Middleware SIXNET

IODBWrite(...)
IADK

RTU User Applications
LIBRARY DNP3, RAS, . -

- ~ V

Figure 6.2. Prototype security middleware implementation.

The access control scheme was implemented as a middleware security layer using

named and unnamed pipes. The module provides access to the protected RTU 10 points

by exposing an interface through which user programs can request processes 10

operations. The interface is provided through the named pipe

/tmp/var/tmp/rtuIOserver. The privileges of this pipe are set such that anyone

can write to the named pipe but only its owner, the RTU middleware security layer can

read from the pipe. The IADK calls 10DBRead and IODBWrite require root privileges,

which is given to the middleware security layer. Regular user processes can call IADK

library functions, but they have no effect and the returned values are undefined. All

hardened RTU user processes are executed without privileges, preventing them from

making 10 point changes except through the provided security middleware layer which

implements the RTU role based access control.

113

The policy is stored in several permanent files in the flash memory of the

prototype. The name of these files are: "USERS", "PERMS", "POINTS", "PAC", and

"RAC". There are three fields in the USERS file: user id, user name, and user roles.

Multiple roles are separated by a comma, and allow users to be assigned multiple roles.

The POINTS file has three fields: logical id, logical index, and point type. The logical id

and logical index uniquely name each point; for example, binary input one or analog

output two. The point type is an element from point_type from the model described in

chapter four, definition 4.5. The file PERMS has four fields, the operation, the logical id,

the logical index, and the set of roles. This file creates the mapping between the IADK

library routines, which represent all the possible permissions the prototype can execute,

and the roles in the model. Multiple roles are separated by a comma. The constraints are

stored in the two files: RAC and PAC, for role activation constraints and permission

activation constraints respectively. There are four fields in RAC: a user id, a logical id

and logical index (indicating the actual RTU point), a role, and a constraint set. Multiple

elements in the constraint set are separated by a comma.

In each file, fields are separated by white space. New constraints can be added

and existing constraints can be removed from the prototype by manually editing the files

"RAC" and "PAC". The permissions for these files are set to require root privileges. For

the prototype no additional interface to the constraint set was developed. It would be

possible to create a custom remote and authenticated application to allow updating of

constraints. However, DNP3 provides the ability to read and update files, and could be

used to make policy changing. A more sophisticated constraint update interface could be

built with some effort and should have little impact on the performance of the RTU.

114

A process makes a processes 10 request by writing to the named pipe. The bytes

are structured into a request message. Figure 6.3a shows the format of the request

message and figure 6.3b shows the format of the response message. Before sending a

request message a user program creates its own pipe, through which it will receive a

response. The R TU access control enforcement module will open the pipe designated by

pipename and write the response message back to the caller. The RTU access control

enforcement module always sends a response message, even if the operation was not

allowed, as not sending a response could potentially deadlock the user application. In the

event that access is denied, this will be indicated in the return message's status flag. All

this functionality could easily be wrapped into a library and hidden in a simple library

call. But for initial implementation and testing it was left exposed.

PIPENAME (40 bytes) OPERATION (1 byte) User 10 (2 bytes) LOCATION (2 bytes)

a) request message

I VALUE (2 bytes) Status Flag

b) response message

Figure 6.3. Security middleware request message format.

The request message includes an operation, a point type and an index. These

indicate the operation to be carried out (read or write), the point type (analog input,

analog output, digital input, digital output), and the point index (beginning at index 0)

respectively. These fields are sufficient for the middleware layer to translate the request

into an appropriate IADK. Upon receipt of a request the RTU Security Middleware

(RMS) first consults the RTU access control policy to determine whether the operation is

allowed or not by calling the check_access function, based on the algorithm defined in

section four of chapter four.

115

Recall from chapter four that the authorization decision is based on the following:

a users role, the permissions assigned to the users role, a set of context information, and

the sets RAC and PAC. The focus of this dissertation has been authorization, not

authentication, therefore in the prototype each message includes a user id that identifies

the user associated with the request. This user id is provided by the security enhanced

DNP3 described in the next section. Context functions provide the context information.

Time of day and day of the week are easily provided by accessing the system clock. Time

is always given in UTC [113] since RTUs might be located anywhere in the world, and

accessed from a different time zone.

The location context function returns the location associated with a specific user,

particularly the user associated with the current request. Since the user id information is

supplied as field in the request, the location information is supplied as well. The request

message format defines four locations based on definition 4.1. The network location or

host id of the originating request is a logical approach to tying a user to a location. In the

prototype, DNP3 link layer address is used by the DNP3 module to map a user to a

location. DNP3 addresses are required to be unique, and though they are spoofable, the

protocol layer security enhancements provided protection against such spoofing. The

mapping used assigned DNP3 address is given in table 6.2

Table 6.2. DNP3 address to location assignment.

DNP3 Address LOCATION
10 CONTROL CENTER
11 PLANT FLOOR
12 ENTERPRISE CAMPUS
AI1 other dnp3 address UNKNOWN

116

The system state is the fourth and final context function. The internal

representation of system state is based on definition 4.7. System state is determined by

the internal state of the RTU, and is stored in a location accessible to the security

middleware layer. The prototype begins in the start up state then transitions to the

operating state. The system state could be changed by other processes (if they have

permission). For testing purposes the system state can be manually manipulated by

changing the current system state stored in the file / etc/ SYSTEM_STATE.

6.3.3. Prototype development: SCADA access via DNP3 protocol

The final component of the security hardened RTU is the use of a security

enhanced SCADA protocol. The security enhanced protocol described by Patel in his

doctoral dissertation [29] was used as the basis for this portion of the hardened RTU

prototype. The security enhancements were applied to the DNP3 protocol. A more

detailed description of the DNP3 protocol is described in appendix B, and Patel's

enhancements are fully explained in [29]. This section provides a brief description of the

modifications related to the prototype implementation.

DNP3 is a SCADA protocol designed to allow devices to communicate and

transfer data and control commands from one point to another. It supports both serial and

TCP/IP communications with IP communications generally being achieved by tunneling

the serial version inside TCP or UDP packets. In DNP3 the term outstation refers to

devices or computers that are in the field and the term master refers to computers in the

control center. The term slave is also used to refer to an outstation. DNP3 is a non­

proprietary protocol and a full specification is available from www.dnp.org for a nominal

fee.

117

Every DNP3 device has a database of different data types, analog inputs, analog

outputs, binary inputs and binary outputs. They are organized as an array of values. Data

items are identified by their data type and index, called a point index. The MTU or

master uses the data values to display the state or condition of the physical system to

which one or more outstations or RTU s are connected. The objective of the master is to

keep its database updated and accomplishes this by sending requests (polling) to

outstations. Outstations then provide the master with the value of data item or items that

were requested. (Outstations may also send unsolicited data to masters in the form of an

unsolicited response). Master may also send data to outstations, causing outstations to

update local values, which will intern effect connected field equipment.

The DNP3 protocol is organized into layers that are similar to the standard OSI

model. The top layer, or user layer, maps DNP3 data objects to local data. On master

stations, the user layer initiates requests to outstations for data. On outstations, the user

layer retrieves data from the outstation database in response to a master's request. The

requested operations, the item or items on which the request is made, and any data need

to complete the request are specified in the application layer message. The transport

layer breaks up long application layer messages into smaller packets for the link layer and

re-assembles them on the other side. The link layer makes the physical connection

reliable. For the purpose of this discussion only the application layer is of concern since

the developed security enhancements are applied at the application layer.

DNP3 application layer messages have three main components: an application

header, a function code, and one or more DNP3 objects each of which consists of an

object header followed by one or more object values. Figure 6.4 shows the general

118

structure of the DNP3 application layer fragments; masters send request fragments and

outstations send response fragments. The application control octet contains an

application layer sequence number and some status flags. The function code indicates the

operation being performed, and the object header identifies the data point or points (range

of indexes) on which the operation is to be carried out. The lIN in the application

response fragment is used to communicate the internal status of the RTU or outstation to

the master.

Request Fragment

Application Request
First Object Header

Header DNP3
Last Object Header

Application [Function
Group [Variation [Range

Objects
Control Code Group [variation [Range

Response Fragment

Application Response Header First Object Header
DNP3

Last Object Header

Application [liN [Function
Group [variation [Range

Objects
Control Code Group [variation [Range

Figure 6.4. DNP3 application layer fragments.

DNP3
Objects

DNP3
Objects

In the challenge-response authentication security enhancement to DNP3 [29], a

pre-shared secret is used to verify the authenticity of a communicating party and the

integrity of a received message. It is assumed that the MTU and RTU have already

established a pre-shared secret and the method for exchange is not specified here.

Communicating parties, either the master or the slave (MTU or R TU) can, at any time

initiate a challenge by sending a challenge message (a new DNP3 function). Upon

receipt of a challenge message the outstation or master must reply with an appropriately

constructed response message. Operation of either the slave or the master is suspended

until an appropriate response message is received. After a predetermined and

configurable number of consecutive failed responses, a master or slave terminates the

connection. The challenge message includes a nonce value that is integral to the response

119

message and prevents replay attacks. The challenge message also specifies the

cryptographic hash algorithm for the responder to use when building the response. The

response message includes an HMAC [104;114] value. An HMAC is a keyed hash used

for authentication. The HMAC value is computed over the nonce value and other

predetermined data from the application layer fragment using the pre-shared secret as the

HMAC key. A response is considered authentic if the received HMAC value matches

the calculated HMAC value, as shown in figure 6.5. Typically the RTU would send a

challenge when a connection request is received to prevent any further communication

from proceeding without prior authorization.

MTU
Pre-shared secret S

RTU
Pre-shared secret S

t---Request Connection (MTUid

IT HMAC = 1-.._---Challenge(N
H(S XOR opad, !­

H(S XOR
ipad,Chalienge I N» Response (HM AC\.

~

t----Non Critical Operatioln-----i~

.-.. __ standard protocol responst:"
!-

I----Critical Operatio,n------i~
HMAC=

H(S XOR opad, L.. __ ----Challenge(Nr

Response (HMAC,---'l. __ .-. --

Generate n once
value N

IFHM AC ==
H(S XOR op ad, H(S XOR

Ipad,Chalienge I N»
continue

Generate
new nonce

value N H(S XOR
ipad,Crtical
Opertationl

Challenge IN» IF HMAC ==
<>--_--.--.I-I(S XOR opad, H(S XOR

~ __ Standard protocol responst:' ipad,Critical Operation I
r--

Challenge IN» carryout
operation

Figure 6.5. Challenge-response authentication for RTU - MTU
communication.

120

During normal operation, an RTU (or MTU) receives requests for a variety of

different operations, some of which may be considered more critical than others.

Individual critical messages or operations can be explicitly authenticated using the

challenge response scheme and including the application layer fragment containing the

critical operation in the hash calculation. If an RTU (or MTU) receives a critical

operation it issues a critical operation challenge that includes a nonce value and indicates

to the sender the receiver is challenging the most recently received application layer

message. The responder's HMAC calculation includes the nonce and the last application

layer fragment sent to the challenger. Potential critical operations include: RTU output

operations such as controls, set-point adjustments, and parameter settings and MTU

receipt of atypical data or alarms.

The scheme as described by Patel is based on a single key and lacks the notion of

a user. For the hardened RTU prototype implementation the scheme was extended to

include the notion of a user. This was done by adding a user field to challenge-response

messages, identifying the user providing the response. This requires each RTU, in this

case the prototype to know each users key. HMAC calculation is done using the

appropriate user key identified in the response message. Key distribution was beyond the

scope of this work and was part of the initial setup of the RTU.

6.3 Hardened RTU prototype setup and configuration

Various components require parameters to fully describe their behavior, and these

must be filled in during a setup phase. The following sections provide the instance

specific assignments that relate to the deployed hardened RTU prototype. Where

possible this information is given in tabular format for easier access.

121

6.3.1 RTU Role based access control policy

For RTU operation and testing to proceed an actual RTU access control policy

had to be loaded in to the prototype RTU. The policy is simple but sufficient to exercise

the model and carryout testing. The RTU access control policy is described by the

following relations: UA, PA, PTC, PTA, RAC, PAC. In addition to these relations the

set USERS needed to be populated. As mentioned in section 6.3.2, the specific RTU

policy is stored in file form in the RTU's flash memory. Policy elements were added to

the RTU using a standard editor to modify these files. The policy for the prototype is

described in tables 6.3 through 6.6.

6.3.2 DNP3 configurations

There are several components of the DNP3 module that are configurable; the

settings are given in table 6.7.

6.4 Test bed

To create a realistic testing environment the prototype RTU has been connected to

a level control system in the process control lab of the chemical engineering department.

The level control system is a simple process control setup and is ideal for the initial

prototype tf~sting since the failures can at worst overflow water onto the floor.

The level control system, shown in figure 6.6, consists of the following

components:

• three bowl glass column
• a valve that controls the flow of water into the column based on air pressure input
• a manual screw valve at the bottom of the column that allows water to flow out of

the column at varying rates
• a level control sensor that indicates the water level in the column

122

• an actuator that controls the air pressure applied to the water feed valve based on
an applied voltage

• a flow sensor that indicates the amount of water flowing through the valve and
into the column at a given time

The level sensor of the column is connected to analog input zero and the flow

sensor output is connected to the analog input one. The valve position controller takes

voltage between zero and nine volts, where zero volts closes the valve and nine volts

opens the valve completely. The RTU analog outputs are 4-20 milliamps, so the digital

outputs are used to generate the desired voltage. Binary outputs zero, one, and two,

control the voltage level that is applied to the valve position actuator. If all three are off

then zero volts are output and the valve is closed. If only one output is on then the

generated voltage is approximately three volts, leading to a valve position of about 33%.

If two outputs are on, then approximately six volts are generated leading to a valve being

open about 66%. If all three digital outputs are on then the approximately nine volts are

applied to the actuator and the valve is fully open.

Table 6.3 RTU users and role assignments

User Name UserID Roles
BOB 1 ENGINEER, OPERA TOR
ALICE 2 OPERATOR
CHUCK 3 OPERA TOR, ENGINEER
DORTHY 4 ADMINSTRA TOR
EVAN 5 VENDOR
CC DISPLAY 6 DISPLAY
CLOSED LOOP CONTROLLER 7 OPERATOR

123

Table 6.4. Permissions, point types and permission assignments.

Permissions (PERM)
Operation Point Point Type Roles
READ ANALOGINPUT 0 STATUS DISPLA Y,OPERATOR,ENGINEER
READ ANALOGINPUT 1 STATUS OPERA TOR,ENGINEER
READ ANALOG INPUT 2 STATUS ENTERPRISE
READ ANALOGINPUT 3 STATUS ENGINEER
READ ANALOGINPUT 4 STATUS ENGINEER
READ ANALOGINPUT 5 STATUS VENDOR
READ ANALOGOUTPUT 0 CONTROL DISPLA Y,OPERA TOR,ENGINEER
READ ANALOGOUTPUT 1 CONFIG OPERATOR,ENGINEER
WRITE ANALOGOUTPUT 0 CONTROL OPERATOR,ENGINEER
WRITE ANALOGOUTPUT 1 CONFIG ENGINEER
READ BINARYINPUT 0 STATUS OPERA TOR,DISPLA Y,ENGINEER
READ BINARYINPUT 1 STATUS OPERA TOR,DISPLA Y,ENGINEER
READ BINARYINPUT 2 STATUS OPERA TOR,DISPLA Y ,ENGINEER
READ BINARYINPUT 3 STATUS OPERA TOR,ENGINEER
READ BlNARYINPUT 4 STATUS OPERA TOR,ENGINEER
READ BINARYINPUT 5 STATUS VENDOR
READ BINARYINPUT 6 STATUS VENDOR
READ BINARYINPUT 7 STATUS VENDOR
READ BINARYINPUT 8 STATUS ENGINEER
READ BINARYINPUT 9 STATUS ENGINEER
READ BINARYINPUT 10 STATUS ENGINEER
READ BINARYINPUT 11 STATUS ENGINEER
READ BINARYOUTPUT 0 CONTROL ENGINEER,OPERA TOR,DISPLA Y
READ BINARYOUTPUT 1 CONTROL ENGINEER,OPERA TOR,DISPLA Y
READ BINARYOUTPUT 2 CONTROL ENGINEER,OPERA TOR,DISPLA Y
READ BINARYOUTPUT 3 CONFIG ENGINEER,OPERA TOR,DISPLA Y
WRITE BINARYOUTPUT 0 CONTROL ENGINEER,OPERA TOR
WRITE BINARYOUTPUT 1 CONTROL ENGINEER,OPERA TOR
WRITE BINARYOUTPUT 2 CONTROL ENGINEER,OPERA TOR
WRITE BINARYOUTPUT 3 CONFIG ENGINEER
COLD RESET DEVICE CONTROL ENGINEER,OPERA TOR

Table 6.5. Role activation constraints (RAC)

UserID Role Constraints
1 ENGINEER OPERTATE SECURE
5 VENDOR 00:00-10:00,22:00-23:59
3 ENGINEER UNKNOWN, ENTERPRISE
7 OPERATOR UNKNOWN,ENTERPRISE,PLANT FLOOR

Table 6.6. Permission activation constraints (PAC)

Role Permission Constraints
OPERATOR WRITE BINARYOUT 0 UNKNOWN
OPERATOR WRITE BINARY OUT 1 UNKNOWN
OPERATOR WRITE BINARYOUT 2 UNKNOWN
ENGINEER WRITE ANALOGOOUT 1 OPERA TE SECURE

124

Table 6.7. DNP3 settings

Setting Value Description
Periodic Challenge timeout 2 minutes The time between random challenge messages
Response time out 5 seconds The time an outstation or MTU will wait for a

response before assuming it is lost.
Critical functions WRITE, SELECT, Use of these functions causes the RTU to send a

OPERATE, challenged even if the authentication period has
COLD RESTART not expired.

HMAC hash SHA-J The hash algorithm used in calculating the HMAC
IP Address xxx.xxx.49.249 Internal LAN IP address of RTU
ONP UOP Port 20000 UOP port ONP3 server listens on

6.S Hardened RTU prototype testing

Testing of the hardened RTU prototype was divided into two different categories;

performance and security. Both performance testing and security testing were conducted

using the test bed previously described. To interrogate the hardened RTU prototype,

several MTU and HMI programs were used. These programs supported the security

enhanced protocol used by the prototype, and provided a simple interface that allows a

user to issue commands to the RTU, and see the results displayed on the screen. Section

6.6 describes the performance testing and results, and section 6.7 described the security

testing and results.

6.6 Performance Testing

As discussed in chapter two, SCADA systems have different performance

requirements than do traditional IT systems. Though not all SCADA systems and

process control systems have hard real time requirements, it is important that the SCADA

system (in this case the RTU) have reasonably short response times. Since different

systems have different requirements, there is no established targeted response time.

125

Furthermore, in evaluating the performance of impact of the AGA encryption scheme for

serial communications [115] found that while operators perceived polling as continuous,

there are generally small delays built into SCADA systems that can absorb some

additional response overhead resulting from the addition of security. Some performance

testing of the prototype was conducted to access the impact of security measures on the

prototypes response to SCADA message requests.

Flow Meter

Pump

Top Valve
SCADA Controlled

Glass
Column

Bottom Valve
Manual

Level Indicator

Figure 6.6. Diagram of the level control system in the process control lab.

As DNP3 was the chosen SCADA interface to the RTU, performance measured

the prototype RTU's response to DNP3 requests. While response times ofa single DNP3

request are important, more complicated actions are also of interest. Therefore several

different tasks or workloads were used during performance testing. Each task was

126

conducted using an appropriate user from the list of users in table 6.2. Response time is

defined in equation (6.1).

(6.1) R = tresponse - trequest.

Where tresponse is the time at which the final ONP3 response was received (or in the event

that there was a loss of communication, that the final response timer timed out) and trequest

is the time at which the first ONP3 request was initiated by the control program.

The response time R, includes any latencies introduced by security measures as

well as latencies introduced by the amount of network traffic. To reduce the impact of

specific network traffic conditions, each task was continuously repeated for one hour.

The overh~:ad of control calculations in the closed loop control task were measured

independently and found to be between zero and three microseconds. This overhead is

left in the performance results, since it is several orders of magnitude smaller than the

response times. The MTU program, which supports the master ONP3 protocol, was

instrumented to record time elapsed in milliseconds while spent in one loop iteration.

Each task was then implemented inside the loop, and timing gathered by the program

indicate the amount of time it took to complete one round of a specific task. A brief

description of each task is given in section 6.6.1.

6.6.1 Performance testing task descriptions

Simple Read
Reading individual points from the RTU is a basic SCAOA task. This task

consists of reading an individual outstation point, specifically analog input one which is

the flow reading. Reads make up a significant portion of SCAOA activities, and so this

127

task serves a unit operation base line for reads. The task is conducted as the user BOB,

who is assigned to the engineering role.

Simple Write
Making changes to interval points is another basic SCADA task. The simple write

task writes a value to the prototype, specifically it writes a value to analog output one.

Analog output one represents a virtual [0 point influencing how the system reports the

column level. This task is also carried out by the user BOB.

Static Data Poll
This task sends the RTU a READ function code followed by a special DNP3

object that indicates to the RTU to send the value of every outstation point. These values

are sent in single DNP3 response. For each point the RTU role based access control layer

must decide whether the user has permission to read the point. Confidentiality is not a

primary RTU concern, but the RTU access control model supports defined access in such

a way that there could exist outstation points, that are not readable by all users. In fact

the policy developed for testing includes this situation. If access is denied, the RTU

access control layer returns a status indicator to a calling module indicating this. The

DNP3 module treats this as an offline condition. This task is conducted by the

CC _Display user. This user has limited privileges and is intended to be used by display

consoles, that provide status information, but not process control.

Closed Loop Control
This task represents a PID control loop block that might be found in a process

control setting. The task consists of reading the level of the water in the column from

analog input zero, making simple PID control calculation, and then writing the control

calculation result to analog output O. Analog output zero is a 4-20 rnA output that could

be used to control the valve position, though in the test setup this was not possible since

128

the valve position control uses voltage as the control signal and not current. This task is

carried out by the user CLOSED_LOOP _CONTROLLER. This user is intended to

represent a host in the control center dedicated to carrying out closed loop process

control. The user is assigned to the operator role, and further restricted by a RAC that

prevents that user id (which may have weaker authentication, being a machine account),

from activating the role from any location other than the control center.

Complex Operation
This task represents a complex, multi-step, operation, such as might be carried out

by an operator, engineer or vendor. It involves reading values, and then making some

adjustment to the binary outputs using a control block and select before operate. This

task serves to evaluate a human in the loop control, which is typical of many SCADA

systems. The task consists of reading the water level in the column, by reading analog

input zero, and then use select and operate on binary output zero then binary output one

then binary output two to effectively set the actual valve position. The task is carried out

by the user Alice, who is assigned to the operator role.

6.6.2 Performance Results

Each task was allowed to run in a continuous loop for one hour. Then log files of

the timing data and DNP3 statistics were collected and analyzed. Tables 6.8 - 6.12

present the results from each test, and table 6.13 summarizes the response time results of

all tests. The mode of the recorded response times for each test was chosen to represent

the average response time. Since each test experienced some response time outs, in

which for some reason a response to a request was never received, some response times

for each task were actually the response timeout times. Reporting mode as opposed to

129

mean prevents these times from inappropriately influencing the results. The simple read

had the shortest response time of 49 milliseconds and the complex operation had the

longest response time, over two seconds. This is what should be expected, given the

number of critical operations included in each complex operation. The static data poll

was the only other task besides simple read that included no critical functions. Its higher

response time reflects the extra work done by the access control layer in determining

access for each outstation point. However the found response time is better than reading

all points individually as the total number of outstation points is twenty six. Twenty six

reads at 50 milliseconds each, would result in a total response time of 1300 milliseconds,

substantially longer than the reported 379 miIliseconds.

Table 6.S. Performance statistics for the simple read task.

Sim-.J!le Read
A verage Response time 49 mi1liseconds
Transmitted Read Reguests 41494
Transmitted Write Reguests 0
Transmitted Selects 0
Transmitted 02erates 0
Number ofres2onse time outs 58
Challenges Sent 30
Challenged Received 30

Table 6.9. Performance statistics for the simple write task.

Simple write
Average time to receive a response 399 milliseconds
Transmitted Read Requests 0
Transmitted Write Requests 7691
Transmitted Selects 0
Transmitted Q~erates 0
Number of response time outs 51
Challenges Sent 30
Challenged Received 7658

130

Table 6.10. Performance statistics for the static data poll task.

Static Data Poll
A vera~e time to complete one poll 379 milliseconds
Transmitted Read Requests 597
Transmitted Write Requests 0
Transmitted Selects 0
Transmitted Operates 0
Number ofreSQonse time outs 48
Challenges Sent 29
Challeng_ed Received 30

Table 6.11. Performance statistics for the closed loop control task.

Closed loop control
A verage time to complete one loop 499 milliseconds
Transmitted Read Requests 6589
Transmitted Write Requests 6589
Transmitted Selects 0
Transmitted Operates 0
Number of response time outs 68
Challenges Sent 30
Challenged Received 6581

Table 6.12. Performance statistics for the complex operation task.

Complex operation
Response time to comQIete the entire o~eration 2506 milliseconds
Transmitted Read Requests 1267
Transmitted Write Requests 0
Transmitted Selects 3801

Transmitted Operates 3762

Number of response time outs 75

Challenges Sent 30

Challenged Received 7532

Table 6.13. Summary of response times for each performance task.

Task Response time in milliseconds
Simple Read (read one analog input point) 49
Simple Write (write one analog output point) 399
Static Data Poll (read all RTU points) 379
Closed Loop (read 1 point write 1 point) 499
Complex Operation (read 1 point, select / operate 3 points) 2506

131

6.7 Security Testing

The second component of prototype testing focused on security. The goal of the

hardened RTU is to increase security for RTUs. Both the reduced Linux kernel and the

RTU role based access control layer were developed for the hardened RTU to enhance

security. The reduced Linux kernel was intended to reduce security threats resulting from

vulnerabilities in COTS operating systems by reducing the size of the TCB and the

number of lines of code compiled in the kernel. Evaluation of this approach was

discussed in the development of the prototype in section 6.3. It was shown there that the

kernel was significantly reduced in size and it was argued that an inference could be

made that an equivalent reduction in vulnerabilities was achieved. Further evaluation of

testing of this mechanism was achieved using the standard IT penetration testing tools:

NMAP, NESSUS, and fuzzball. These tools were used against the prototype RTU while

it was connected to the level control system and providing an interface to a human

controller operating a console based control application.

The RTU role based access control layer was intended primarily to mitigate

insider threat attacks, and to a lesser degree place limits on other software components.

Security testing of this hardened RTU prototype component was conducted by carrying

out simulated insider attacks against the hardened RTU prototype while it was operating

and connected to the level control system and providing SCADA to a human operator

operating the level control system from a console based SCADA application. Sections

6.7.1 through 6.7.4 describe the security tests conducted, the results and any related

discussion.

132

6.7.1 NMAP Scan

Two nmap scans were done, a TCP scan and a UDP scan. The output of the two

scans is shown in figure 6.7. The nmap scan identified ftp and telent ports as open. The

prototype does not have a serial console interface, therefore these services were needed

on the prototype to allow development access during testing. However a custom script

was tied to Internet daemon inetd to activate these services. That script reads the value of

binary input eleven. If the input is one then telent or ftp is started by the script. If the

value of binary input eleven (which is tied to physical switch in the development

platform), is zero then ftp or telnet are not started. So while nmap identified these as

open, actually using the services was reserved for development aspects, not deployment,

and is controlled by a physical switch.

6.7.2. Nessus scan

Following the nmap scan a nessus vulnerability scan was directed at the hardened

RTU. The result of this scan correlates with the nmap scan. The complete nessus report

is listed in appendix D. Nessus identified ftp and telnet as open, but protected with

tcpwrapper. As mentioned in section 6.7.3, telnet and ftp were disabled using a custom

script to allow a hardware switch to enable them if needed. This setup allows inetd to

answer requests for which it is configured, and this is the reason Nessus identified them

as protected by tcpwrapper. Nessus also correctly identified the prototype as running the

Linux 2.4 kernel.

133

Starting Nmap 4.11 (http://www.insecure.org/nmap/) at 2007-10-30
10:43 EDT
Interesting ports on private049249.private.louisville.edu
(10.165.49.249) :
Not shown: 3165 closed ports
PORT STATE SERVICE VERSION
21/tcp open tcpwrapped
23/tcp open tcpwrapped
Device type: general purpose
Running: Linux 2.4.XI2.5.X
OS details: Linux 2.4.0 - 2.5.20
Uptime 2.900 days (since Sat Oct 27 13:32:48 2007)

Nmap finished: 1 IP address (1 host up) scanned in 1515.371 seconds

(a) nmap -sT -sV -0 xxx.xxx.49.249

Starting Nmap 4.11 (http://www.insecure.org/nmap/) at 2007-10-30
13:08 EDT
Interesting ports on private049249.private.louisville.edu
(10.165.49.249) :
Not shown: 510 closed ports
PORT STATE SERVICE
20000/udp openlfiltered unknown

Nmap finished: 1 IP address (1 host up) scanned in 511.571 seconds

(b) nmap -sU -p 1-500, 19995-20005 xxx.xxx.49.249

Figure 6.7 Output from the nmap scans of the prototype hardened RTU.

Nessus also identified the hardened RTU as vulnerable to the 'nestea' attack,

CVE: CAN-1999-0257, and claimed it was possible to make the server crash using this

attack. The 'nestea' attack is a type of Denial of Service (DoS) similar to a teardrop

attack. The 'nestea' attack is an off by one IP header bug. Recovery from the attack

usually consists of rebooting the server. However, for RTUs, without a functioning

network interface, rebooting may not be a practical solution. According to Nessus, the

hardened RTU could be crashed using this remote DoS exploit. Exploit code that carries

out a nestea attack was downloaded from the web, and compiled on the attack machine.

The command

nestea xxx.xxx.67.47 xxx.xxx.49.249 -n 1000

134

was executed from the attack machine to launch 1000 'nestea' attacks against the

hardened RTU prototype. The hardened RTU prototype remained running and continued

to provide level control readings, and allowed the operator to make changes to the valve

position. It was then concluded that the hardened RTU was in fact not vulnerable to the

'nestea' attack. Nessus did not identify any other vulnerabilities, though it did point out

that packets with the syn flag set were not dropped.

6. 7.3 Fuzzball

As a final general security test, the open source fuzzier fuzzball was used. The

hardened RTU prototype exposes on the DNP3 network service, but parts of the TCP/IP

stack are exercised as well. Fuzzball was used to send packets to the hardened RTU

prototype with non standard IP and TCP settings. These packets can activate flaws in the

TCP/IP stack that might not otherwise be activated by more normal packets. Fuzzball

was run against the prototype while it was operating and providing status and control to a

human operator. During and following the fuzzball test the prototype hardened RTU

continued to function normally.

6.7.4. Insider attacks

A primary focus of the RTU's novel security, the new RTU role based access

control model, was to enable fine grained access control while still mitigating potential

insider attacks. Therefore a major component of the security testing focused on

simulating a variety of insider based attacks and confirming that the RTU role based

access control system and enforcement algorithm did indeed provide protection. For this

testing component, it was important users be associated with a location. The mapping

135

between location and DNP3 address was given in section 6.2.1. The following insider

based attacks were carried out against the prototype hardened R TU.

Insider attack scenario one: The user ALICE, from the control room writes the

value 30 to analog ANALOGOUTPUT_l. ANALOGOUTPUT _1 is a dead band value

that indicated the percent change in the column level required to cause the RTU to

generate an unsolicited response. Increasing this value would mean that a greater change

in the column level was required before the RTU would issue an unsolicited response.

Since ALICE is assigned to the OPERA TOR role and permission to WRITE

ANALOGOUTPUT _1 is not assigned to the role OPERA TOR, ALICE is prevented from

carrying out this attack by the role assignment relation. The prototype correctly blocked

this action.

Insider attack scenario two: The user ALICE SELECTS and then OPERATES

BINARYOUPUT_l on from an unknown host. This will increase the openness of the

valve allowing water into the column at a greater rate. Operators are only allowed to

control the valve position from the control room. ALICE is granted permission to

operate BINARYOUPUT_l by her membership in the OPERA TOR role, but is

prevented from activating the permission by a the permission activation constraint

<OPERATOR, WRITE BINARYOUTPUT_l, {UNKNOWN}>.

successfully blocked this operation.

The prototype

Insider attack scenario three: EVAN sends SELECT and OPEATE

BINARYOUTPUT_O on, SELECT and OPERATE BINARYOUTPUT_l on, and

SELECT and OPERATE BINARYOUTPUT_2 on. This will fully open the valve that

controls the flow of water into the column. Vendors, who are essentially external

136

engineers, need access to the RTU from time to time, but are not permitted to control

physical processes. EVEN as a member of the VENDOR role is not granted permission

to write values to BINARYOUPUT_O, BINARYOUTPUT_I, and BINARYOUTPUT_2.

The prototype successfully blocked this operation.

Insider attack scenario four: EVAN sends READ ANALOGINPUT _5, READ

BINARYINPUT_5, READ BINARYINPUT_6, READ BINARYINPUT_7 at 8:00 UTe.

ANALOGINPUT_5, BINARYINPUT_5, BINARYINPUT_6, and BINARYINPUT_7

are some type of status value. Vendors are allowed to read these values, and the

necessary permissions are available to the user EVAN through the assignment to the

VENDOR role. However EVAN's work schedule is known and established to be from

10:00 - 22:00 UTC. Therefore EVAN is prevented from activating his VENDOR role

assignment by the RAC <5, VENDOR, {00:00-10:00,22:00-23:59}>, and therefore

cannot access the permissions assigned to VENDOR. The prototype successfully

blocked this operation.

Insider attack scenario five: The hardened R TU prototype state was first set to

OPERATE_SECURE. The secure operating mode might be triggered by external

intrusion detection system (roS) event or a local event. After the RTU state had

changed, BOB writes the value five to ANALOGOUTPUT _1. ANALOGOUT _1 is an

engineering dead band value that configured when the RTU sends unsolicited responses

concerning the column level. BOB has been granted this permission through the

ENGINEERING role. However, the PAC <ENGINEER, WRITE

ANALOGOUTPUT_J, {OPERATE_SECURE}> prevents the permission from being

137

activated through the ENGINEERING role when the RTU is in secure operating mode.

The prototype successfully blocked this operation.

Table 6.14. Insider attack scenarios

Attack Conditions Attack stopped because

Scenario 1 ALICE E USERS «write, ANALOGOUTPUT_l>,OPERATOR
roles(ALICE) = OPERA TOR > \l RA
location(ALICE) = CONTROL_ROOM
op = write
point = ANALOGOUTPUT 1

Scenario 2 ALICE E USERS 3 (cr,cp,cs) E PAq OPERATOR = cr A (write
Roles(ALICE) = OPERATOR BINARYOUTPUT_l)= cp A UNKNOWN E

Location(ALICE) = UNKNOWN cs
op = write
point = BINARYOUTPUT 1

Scenario 3 EVAN E USERS «write, BINARYOUTPUT_l>,VENDOR >\l
roles(EVAN) = VENDOR RA, «write, BINARYOUTPUT_2>,VENDOR
op = write > \l RA, «write,
point = BINARYOUTPUT_I, BINARYOUTPUT_3>,VENDOR>\l RA,
BINARYOUTPUTj,
BINARYOUTPUT 3

Scenario 4 EVAN E USERS 3 (cu,cr,cs) E RAq EVAN = cu A VENDOR =
roles(EVAN) = VENDOR
time _ oL day=08:00

cp A 08:00 E cs

op = read
point = ANALOGINPUT_5,
BINARYINPUT_5,
BINARYINPUT_ 6,
BINARYINPUT 7

Scenario 5 system_stateO = OPERATE SECURE 3 (cr,cp,cs) E PAq ENGINEER ,= cr A (write
BOB E USERS; op = write; point = ANALOGOUTPUT_l)= cp A

ANALOGOUTPUT I OPERATE SECURE Ecs

Another key security testing result was affirmation that for COTS systems, high

assurance middleware layer security can be difficult to achieve. In implementing the

prototype RTU, interprocess communication was used to achieve cooperation among

R TU components and form the basis for the middleware layer security component, not an

unusual or uncommon approach. A serious problem with this approach, at least in the

Linux IPe functionality, is the lack of identification of the calling process. Ideally the

138

security layer would perfonn authentication, but the anonymity of IPC in the Linux

kernel make that difficult and in the prototype, authentication was achieve using the

security enhanced DNP3 protocol. A means of transferring authentication from one

entity to another is needed. This could be achieved by third party authentication server

process, which could then serve as the authentication authority for all processes.

However, this functionality is difficult to provide in Linux because there is no simple,

high-assurance, way for the receiver of a message to know the true identity of a sender.

This is one area where microkemels show their benefits, as their IPC is not anonymous;

this is explored and explained in more detail in chapter seven.

6.8 Conclusions

This chapter has presented the development, implementation, and testing of a

security hardened RTU prototype. The prototype was developed using the open mIPM

from SIXNET, an actual RTU platform that support OEMs. The hardened RTU

prototype included a custom compiled reduced Linux kernel, security enhanced SCADA

communications running over UDP, and the RTU role based access control developed in

chapter four. A test environment was created for the RTU using a level control system

made available by the Department of Chemical Engineering at the University of

Louisville. Performance and security testing of the security hardened RTU was then

performed. Performance testing included simulating various tasks involved in

monitoring or operating the level control system using the prototype hardened RTU. All

but one task was completed by the prototype RTU in less than 500 milliseconds. Security

testing including: basic scanning using nmap and nessus, launching the 'nestea' remote

exploit (identified by nessus) against the RTU, and simulating five insider attacks. The

139

hardened RTU continued to operate during and after the scans and the remote exploit

attack, and the insider attacks were successfully blocked by the RTU role based access

control security middleware. The attacks carried out for this testing were limited to

trying to change only one or a handful of points, due in part to the limited complexity of

the test bed. While more complex attacks that try to change many RTU points are

possible, the current test bed is not sufficient to fully test such attacks. However,

vulnerability to such tasks would more likely result from a misconfiguration issue than

from a failure of the model to provide sufficient protection.

140

CHAPTER VII

MICROKERNELS FOR HARDENED RTUS

Chapter six discussed a hardened RTU prototype using a reduced Linux kernel

and the RTU role based access control scheme described in chapter four. Chapter five

presented two approaches for minimal kernel RTUs, the reduced COTS kernel approach

used in the prototype development in chapter six, and microkernels. The reduced COTS

kernel approach was used in the initial prototype development to allow quicker

development of a functioning prototype and use of the RTU role based access control

security middleware. This chapter further investigates the use of a microkernel in

developing a hardened RTU.

As discussed in chapter two, the microkernel idea originated with Brian Hansen's

Nucleus [88] and gained popularity with MACH [92]. Initial poor IPC performance and

the assertion that the poor performance was inherent to micro kernels led to this approach

falling out of favor for many years. However, thanks mostly to Leidke [87; 116], there

has been resurgence in microkernel research and development as well as increased

interest in their commercial use. The MILS architecture [99; 1 00] is a developing

standard for high-assurance systems, and is based on a type of microkernel called a

separation kernel. While a MILS system, suggested as potential platform for security

hardened RTU in chapter five, was not available for evaluation at time of this

dissertation, there were some microkernels available for investigation. The following

141

microkemels were considered as possible candidates for use in a security hardened RTU:

QNX, VxWorks, Mach, Minix, and L4.

Two criteria were considered in determining a potential microkemel

implementation for investigation. The first criterion was that the microkemel be open

source. There are several reasons for the open source requirement. First, as discussed in

chapter two, SCADA vendors and operators are strongly motivated to contain costs.

Open source systems alleviate the licensing cost associated proprietary operating

systems. Of equal value is the availability of source code. Since SCADA devices can

potentially have a long life time (fifteen to twenty years) the availability of source code

assures that the product can be supported throughout its lifetime. An open source

microkemel also assures vendors or product developers that the source code will be

available throughout a project, and avoids the potential problems that can occur when

commercial systems are acquired by another company or become unavailable due to

bankruptcy. Finally, an open source microkemel allows continued development of this

project and the possibility of sharing results with industry practitioners. The second

criterion for consideration was that the microkemel provide partitioning, in both space

and time, and support some type ofRT scheduler. This is needed to allow the isolation of

RTU components described in chapter five, and allow the RTU to achieve real-time

requirements.

Of the identified potential microkemels, QNXI and VxWorks were eliminated

because they are not open source. Mach was eliminated because it is a first generation

I QNX has very recently released part of their system under an open source licencing agreement. However,
there was not time to sufficiently investigate this recent addition to the open source microkemel
community. QNX is a real-time operating system the focus of which has therefore been performance and
not security.

142

microkernel known to have poor performance characteristics, and a large code base.

Minix was eliminated because it lacks a real-time scheduler and supports only IA32

processors. This leaves the L4 microkernel as the choice for further investigation.

Fortunately there are several open source L4 implementations available that could be

used in a security hardened RTU. A hardware platform and L4 implementation were

selected for prototype development and evaluation. The hardware platform and L4

implementation were obtained and the final section of this chapter presents the results of

some initial experimental work to investigate using OKL4 microkernel as the basis for a

security hardened RTU, and to determine the IPe overhead inflicted on the hardened

RTU.

7.1 The L4 Microkernel

The L4 microkernel, originally developed by Liedtke, adheres to Liedtke's

microkernel design criteria of allowing only those features into the kernel, which cannot

be exported out of the kernel. L4 is not an operating system, but is rather a minimal base

on which a complete operating system can be built. The most fundamental task of an

operating system, and therefore of a microkernel, is to provide abstractions for sharing

resources securely. Towards this end, and in maintaining minimality with respect to the

kernel, L4 provides only a few basic abstractions and mechanisms.

Address spaces

Data, other than hardware registers, which are accessible to a thread are contained

in the threads address space. Address spaces are L4's basis for protection .. An address

space in L4 is a partial mapping from virtual memory to physical memory. Threads can

share data by mapping parts of their address space to other address spaces. The mapping

143

can be revoked by the mapper at any time. In addition to mapping, a thread can grant

parts of address space to another address space. In this case the grantor gives up control

of the data and can no longer access that part of the virtual address space. The grantee

receives full control of that data and may subsequently map or grant it to other address

spaces. Through the use of mapping and granting described above, L4 address spaces

can be recursively constructed. The concept of a task is basically synonymous with

address space, where a task is a set of threads that share an address space.

Threads

Threads are the basic unit of execution in L4. Every thread is "attached" to an

address space, which it may share with other threads. A thread has a unique identifier

(UIO) and a register set that includes an instruction pointer and a stack pointer. Threads

communicate with each other through interprocess communication (IPC) primitives

provided by L4. Threads can also communicate with each other using shared memory.

Threads within an address space can access shared memory, and a thread can also map

memory into other thread's address space and share memory that way.

The heart of L4 is the message-passing interprocess communication (IPC) that it

supports. L4 IPe is synchronous and unbuffered. L4 IPe can be used to pass data by

value or by reference (using mapping or granting). Since IPe is synchronous L4 IPe can

also be used for thread synchronization. L4 supports the following basic IPe primitives:

• receive - wait for a message from a specific thread
• reply_wait - send a reply message to a client thread, and wait for the next request
• send - send a message to a thread
• wait - wait for a message from any thread

144

UID

A UID is a unique identifier for threads in an L4 system. A thread's UID is

composed of the task number of the thread's address space and the thread's local thread

number within that task. The UID is used by kernel IPC calls.

An L4 system is then composed of address spaces populated by threads executing

code in their address space. Figure 7.1 depicts an L4 based system. Individual threads,

indicated by a thread UID, operate on data stored within their address space. The L4

kernel assures that threads are not able to execute instructions in other address spaces or

access data in other address spaces. However, in L4 memory is not managed by the

kernel. Instead, L4 supports what are called external pagers, which are user level threads

that manage memory. An initial task, referred to in L4 as SigmaO, is privileged in that it

is run first by the kernel, and claims all the physical memory of the system. SigmaO can

then map or grant that memory to other tasks. Other tasks can then map or grant that

memory to a succession of other tasks, allowing for the recursive construction of address

spaces. PagefauIts in L4 are translated by the L4 kernel into an IPC message to a tasks

pager. Initially SigmaO would be the pager for all tasks, but through the construction of

recursive address spaces, there can then be multiple pagers in a given system.

Threads are scheduled by L4 according to three parameters: time: slice length,

thread priority, and maximum controlled priority. Each L4 thread has a time slice value

that indicates the amount of time for which that thread will be scheduled, and is stored as

part of the threads control block. Different threads can have different time slice values.

When a running thread uses up its allotted time slice the scheduler selects and starts the

next run-able thread. The L4 kernel supports 256 different priority levels, 0 - 255, with

145

255 having the highest priority. L4's scheduler has a, possibly empty, queue for each

priority level. All the queues together form the ready queue, and a thread's priority level

indicates to which queue the thread is assigned. A thread's priority can be changed, and

will affect the queue to which it is assigned. The maximum controlled priority is a task

level value that prevents the threads within a task from being assigned a priority higher

than the maximum controlled priority for that task. This limitation is also applied to

newly created threads as well.

Privileged
Mode

Task A Task B)

Thread 1 .. ' Thread j
Thread 1 ... Thread n

OS API

SigmaO
L4 based OS Root-T.", J

L4API

{-I L _______ L_4_m_i_cr_o_ke_rn_e_I ______ J Hamwa",

------------------- architecture

I
Hardware J

L---__ _

Figure 7.1. Structure of an L4 based as system.

With respect to the security objectives for the hardened RTU, specifically the

space and time partitioning, L4 provides both space and time partitioning. L4's address

space abstraction provides a mechanism to achieve space partitioning. In addition L4

scheduling, through time slices and priorities, supports real-time scheduling. Along with

time and space partitioning the microkernel must support a way for isolated components

to cooperate. L4 supports thread cooperation through a well defined and supposedly fast

IPe system call interface mentioned previously. These attributes together make L4 an

146

excellent choice as the platform for a security hardened microkemel based RTU. They

allow the primary goals identified in chapter five: strong isolation of RTU components

and controlled interaction along a well defined interface.

7.1.1 L4 implementations

There have been a number of L4 implementations over the years. 10chen

Liedtke's initial implementation of L4 called L4/x86 was written for x86 machines, and

is no longer supported. It served as the basis for performance evaluations that

demonstrated L4 could achieve reasonable IPC performance needed to build a system

with overall acceptable performance. However that implementation is no longer

supported or developed. Since then several groups have developed their own L4

implementations and the L4 API has evolved. The early L4 API is referred to as version

2 (V2) and the more recent API is referred to as version 4 (V4). Three L4

implementations were considered as potential candidates for investigation: Pistachio,

Fiasco, and OKL4. A brief description of each is given in the foIlowing paragraphs.

Pistachio [117]: Pistachio is the most recent microkemel developed by the

System Architecture Group at the University of Karlsruhe. Pistachio implements the L4

version 4 API and is written in C++. Pistachio includes SigmaO and Sigmal which

server as pagers for the entire L4 system. Pistachio is fully 32 and 64 bit clean and

provide support for multiprocessors. Pistachio supports Alpha, AMD64, ARM, IA32,

IA64, MIPS and PowerPC processors. Pistachio is actively maintained and is licensed

under a BSD license.

Fiasco [118]: Fiasco was developed at Technical University Dresden (TUD).

Fiasco is licensed under GPL, and is freely redistributable. Fiasco implements the L4v2

147

ABI which was the original L4 specification defined by Liedtke. Fiasco is part of the

TUD DROPS operating system. Fiasco is implemented in C++ and is currently

supported on i486 and later Intel architectures, ARM processors SA-II 00 and XScale

PXA 25x. Fiasco is still under active development.

OKL4 [119]: OKL4 descends from a Pistachio-embedded system which was

developed by National Information and Communication Technology Australia (NICTA).

OKL4 is now developed and maintained by OK-labs [120]. The kernel supports the L4

version 2 API and is written in C++. The OKL4 release supports ARM, x86, and MIPS

processors, and is targeted toward embedded systems. OKL4 is released under the BSD

license. There is also a commercial licensing available, and OKL4 has actually been used

in a least one commercial device, the OpenMoko phone [121].

Each of these implementations was downloaded and the basic system built using

the provided build system. Pistachio uses the Scans build system, Fiasco uses GNU

Make, and OKL4 uses its own python based system that is provided in the download and

is completely self-contained. This initial build was used to assure that the

implementation was reasonably stable for carrying out additional evaluation. Each of

these systems supports at least one kind of simulation. Fiasco has a user mode fiasco,

FiascoUX, that enable the kernel and other components to be loaded and run as a

standard Linux process, in much the same way that user mode Linux (UML) works.

Pistachio uses Qemu and OkL4 uses Skyeye or Qemu to emulate hardware. The standard

build of each of the systems was successfully loaded and executed in the appropriate

simulator. However, though the availability of simulators makes it possible to develop

and test prototype implementation code, for the hardened RTU, performance on real

148

hardware is a key issue of this evaluation. Therefore, before making a final decision on

an L4 implementation a hardware platform was selected. The selection criteria and

section process are described in the following section.

7.2 Development Platforms

There are many available development platforms from which to choose. The list

below describes the basic requirements that the development platform needed to meet:

I. Small embeddable computer with sufficient resources to store and load the
microkernel and eventually support network communications, and analog and
digital 10,

2. Ability to attach external digital and/or analog 10 circuitry,
3. Support potential future commercialization activities,
4. Full console access to a flexible boot loader, preferably Uboot,
5. Supported by a GNU tool chain,
6. Use a processor supported by at least one of the L4 implementations listed in

section 7.1.1.

7.2.1 Pla(form Analysis

This section presents a brief overview of the development platforms considered.

SIXNET mIPM

The SIXNET mIPM, used for prototype development in chapter six, was

considered as potential and desirable development platform. To load the microkemel,

root-task, and any other tasks requires a flexible boot loader. The mIPM uses Uboot, but

a command line interface to the boot loader is not accessible. The mIPM Uboot

bootloader is configured to boot a Linux kernel, located in a specific location within the

flash file system, and with a specific name. Without this ability the microkemel can't be

loaded into the system, and therefore this system could not be used for microkernel

testing.

149

PC/I04 based systems

PC/1 04 is a public specification for embedding the familiar PC architecture,

starting with the i386, into a small form factor (3.6" x 3.8"). The specification details the

location and type of connectors used so that components can be combined or inter

changed. The advantage of the PCI1 04 platforms that were surveyed was that many were

rugged and geared to industrial applications. However, most systems seemed to include a

lot of unnecessary peripherals and with the exception of buying PCI1 04 data acquisition

modules, provided little easy interfacing to 10 customization. The PC/I04 platforms

considered were provided by Arcon, Win Systems, and Diamond Point International

Electronics.

Rabbit Semiconductor

Rabbit makes a number of nice development kits, in a variety of ranges and type.

There are some very nice platforms with 10 and Ethernet. However Rabbit uses its own

proprietary microprocessor. While they provide a C compiler, Rabbit systems are not

supported by a GNU tool chain.

Gumstix

Gurnstix provides a range of embeddable computers powered by an ARM XScale

processor. The boards are low in power consumption, but provide good performance.

They are small, 80mm x 20mm, and are very affordable. The gumstix boards expose

about 80 TTL GPIO lines that can be used to interface to custom devices, such as analog

and digital 10 for the RTU, and also include on board connectors that allow gurnstix

accessories to be easily attached. Gumstix accessories include an Ethernet controller,

serial UARTs, compact flash and WiFi. Gumstix uses the Buildroot environment, and

150

the on-board Uboot boot loader can load from built in flash, compact flash cards, a serial

connection, or Ethernet connection. The boot loaders command interface is exposed, and

the boot loader can even be recompiled and reloaded. The XScale PXA 255 processor is

supported by the GNU tool chain, which is used by the build root environment.

7.3 Microkernel Based Hardened RTU Platform

Bec:ause of the advantages described above, the Gumstix platform was selected

for microkernel evaluation. The Gumstix architecture is relatively affordable and

includes native access to TTL GPIO lines that make it possible to add the additional

components that will be required in the future for a fully functional RTU prototype.

Though a fully functional mircrokernel based RTU is not developed at this point, it is

planned that future work will progress in that direction. Gumstix also supports OEM and

has been used for a number of commercial devices [122] providing a path for

commercialization. Of the many Gumstix boards, the connex 400 was chosen. It is a

middle of the road Gumstix board, and is competitively priced at $129. The connex 400

is an XScalle PXA 255 processor running at 400 MHz. The XScale processor is a 32 bit

processor and the connex 400 has 64 MB ram and 16MB of flash. In addition to the

Gumstix motherboard, a Netstix and console ST boards were also purchased. Both of

these boards were connected to the connex 400. The Netstix provides an Ethernet

controller, which can be used by the boot loader to load images via tftp. The console ST

board provides two UART serial interfaces, one of which serves as a console interface to

the board.

For the microkernel, the OKL4 implementation was selected as the L4

implementation to use in the microkernel based RTU evaluation. OKL4 is the most

151

advanced of the implementations, and the implementation is targeted at both researchers

and comffil~rcial activities. OKL4 is also geared towards embedded systems and RTUs

can be considered a type of embedded system. OKL4 supports the XScale processor and

the Gumstix platform. In addition to OKL4's L4 implementation, OKL4 includes

Iguana. Iguana was developed by NICTA along with their L4 implementation Pistachio­

embedded. Iguana is not a complete operating system either, and is intended to work

with the underlying L4 implementation to support the development of different L4 based

operating systems. Iguana complements, rather than hides, the underlying L4 kernel.

Iguana includes an IDL compiler that allows the definition of servers, which provide an

interface for Iguana "applications." Access of servers is achieved through L4 IPC, with

the IDL just marshalling and un-marshalling parameters.

A Linux 2.6 kernel PC was used as a development platform. The Gumstix

development unit was connected to the host development platform using a serial

connection and the terminal emulator Kermit. The normal boot processes was interrupted

when the Gumstix was powered on, and reconfigured to use tftp to retrieve images from

the development host. The OKL4 source code was downloaded and extracted. OKL4

uses a precompiled toolchain, available from NICTA. This tool chain was obtained from

[123], and installed on the development system. A test image was then built using the

command

Tools/build.py machine=gumstix project=iguana test libs=all

The resulting elf image, image. boot, was loaded in the gumstix's memory and

executed using the bootelf command. All tests completed successfully, indicating that

the microkernel and iguana were operating correctly on the platform. The next section

152

describes the development of some RTU software components and IPe performance

evaluation of those software components.

7.3 Points Server Development and IPC performance.

With the test platform constructed, the next part of the evaluation was to begin

developing RTU components for the test platform. The overall goal of using the L4

microkernel in a hardened RTU is to allow RTU components to be isolated and enable a

protection architecture to determine access control. Core RTU components will therefore

be implemented as "servers", running as user processes (not in privileged mode). RTU

user applications will then call on these services using L4 IPe which passes through a

security layer. Figure 7.2 provides a high level view of this architecture.

This architecture creates a hardened platform in several ways. Only the

microkernel runs in privileges mode, so the TeB of the RTU is small. RTU services are

protected by a non-bypassable security layer. Finally, leveraging the microkernel

flexibility, the network drivers and protocol stack used by the application, which in a

monolithic kernel must run in the kernel, are mapped into the application address space,

where they can at most damage the application instead of the entire kernel.

The L4 IPe provides the path along which the R TU component servers, the

security layer and actual R TU programs exchange information and cooperate. A key

factor in the RTU's performance will then be the IPe overhead. In particular, the IPe

performance of a call from an RTU application to a RTU server. As was discussed in

chapter two, IPe is a central component of microkernel based systems that has in the past

led to poor system performance. As a central component of an L4 hardened RTU, IPe

overhead needs to be low in order to guarantee acceptable RTU performance. An initial

153

evaluation ofIPC overhead was carried out by implementing one of the servers shown in

figure 7.2, a limited RTU security layer,. and a simple test application program.

Network Driver and
SCADA application

(DNP3)

Other RTU
Applications

Digital
Ouputs

RTU Security Layer
Authentication and Access Control

Digital
Inputs

Analog
Outputs

Analog
Inputs

OKL4 micro kernel

Xscale PXA 255 (Gumstix)

Iguana
Server

Figure 7.2. Derived OKL4 based RTU architecture.

7.3.1 fPC overhead test setup

To evaluate the IPC performance a server was implemented using Iguana's IDL.

The server was called points, since it was intended to represent one of the analog or

digital 10 servers. The server provided an interface to read and write a single analog

input, analog input one. Obtaining actual values was not done at this time; instead the

analog input value was just stored as a persistent variable. Eventually 10 threads that are

apart of the analog or digital 10 server will update input and output values. The interest

at this point was just to measure the IPC overhead.

A security layer and test application were written as an iguana program. The

security layer has access to all the underlying RTU servers. The security layer creates the

154

address space for the RTU applications, and maps into them any needed resources. RTU

applications threads are then started and the security then layer listens for IPC requests

from the RTU application thread for the low level services provided by the servers.

In the example case, it listens for a request to read analog input one. If the request

is allowed,. then the operation is performed and the result passed back to the user level

thread that made the call. From an IPC perspective this entails several IPC operations as

shown in figure 7.3. InitiaIly the RTU security layer thread and the RTU service call

IPC _Wait, (1) and (2), which is a blocking IPC that waits for an incoming IPC message.

IPC activity is initiated by the application thread's IPC_Send to the RTU security layer

thread (3). When the send succeeds, the RTU application thread caIls IPC _Receive to

wait for the response IPC (4). The RTU security layer then issues an IPC_send to the

appropriate RTU server thread (5). The RTU Security layer then has to calliPC _Receive

to wait for a response from the server (6). The server responds with an IPC _Send back to

the RTU Security layer (7). Finally the RTU security layer calls IPC_Send to the send

the response back to the RTU application thread that initiated the IPC sequence (8).

A code fragment from the test application is shown in figure 7.4. A test loop

iterates 300 times. Each loop iteration, records the start time and finish time of a loop

instance using the timer current time () call, which is available in Iguana.

Iguana's time tick is one microsecond, and the timer_current _ time () returns the

current tick count. Subtracting the final time from the start time gives the number of

microseconds that elapsed between (3) and (7). To make sure that IPC operations were

indeed reaching the point server and being correctly returned, different values were

written to and read from the point server. Observing the results of these read and writes

155

verified that the RTU application thread was indeed retrieving values from the point

server.

RTU Application
Thread

3

(4) IPC - Receive

7

RTU Security Layer
Thread

(1) I P C_Wa itO

IPC Send

5

(6) I PC_Receive

7

IPC Send

RTU Server
Thread

(2) I PC_Wait

IPC Send

IPC Send

Figure 7.3. IPe calls in an RTU application request for RTU services.

#define READ ANALOG INPUT 1 Ox01
- - -

for (i = 0; i < 300; i++)
{

stime = timer_current_time();
L4_MsgClear(&msg);
L4_Set_MsqLabel(&msg,READ_ANALOG_INPUT_1);
L4_MsgLoad(&msq);
tag = L4_Send(thread_14tid(listener));
assert (L4_IpcSucceeded(tag));
L4_MsgClear(&msq);
tag = L4_Receive(thread 14tid(listener));
ftime = timer_current_time();
val = L4_Label(tag);
prlntf ("RTU test app read __ analog input _1 call took %" PRIu64 "
milliseconds, or %" PRIu64
" microseconds\n", ((ftime - stime) /1000ULL), (ftime - stime));

Figure 7.4. RTU test application code fragment.

156

7.3.2 [PC overhead results

The elapsed time reported by the code fragment in figure 7.4 also includes the

overhead of the timer_current _time () call. A separate test program was used

where the intermittent L4_IPC calls were removed, leaving just the two calls to

timer _ current _ time (). This was used to obtain a measure of the timer overhead,

which was determined to be 59.63 microsecond. This was rounded down to 59

microseconds when calculating the actual IPC overhead, so that any error is kept in the

IPC overhead.

The above program fragment was executed when the test application was loaded

and run on the RTU development test platform. The print statements generate console

output, which is output to the development systems screen by Kermit. The test program

was run a total of four times. The first value reported each time was several milliseconds,

but the remaining sample times were closely grouped around 123 microseconds. This

first recorded elapsed time was high because the kernel some one time initialization to do

for each thread IPC. Once this is done, it does not have to be done again. Therefore the

first recorded time interval was excluded from further calculations. From the remaining

times, a total of 500 samples were selected. The mean value was 123.19 microseconds

with a standard deviation of .78 and a 95% confidence interval of .002.

Recall that this value still includes the 59 microseconds of the calls to timer

overhead. After subtracting this out of the previous result, the actual IPC overhead is for

the timer overhead the actual IPC overhead was 64.19 microseconds, for the entire

sequence depicted in figure 7.3. Assuming that overhead is evenly distributed, then a

single IPC call, which would include a send-to and a receive-from, has an overhead of

157

approximately 32 microseconds, with a single IPC operation taking about 15

microseconds. These times are indeed much better than the 100 microseconds reported

for MACH IPC calls.

Table 7.1. IPC overhead for hardened RTU protected calls.

Description Value
A verage Reported elapsed time 123.19 microseconds
Standard Deviation .784908
95% confidence interval .002
Timer overhead 59 microseconds
Actual Average overhead of IPe overhead 64.19 microseconds
for hardened R TU protected operation call

7.4 Conclusions

This chapter has presented the results of further investigation of microkernels and

their use in developing a hardened R TU. The L4 kernel was selected as a suitable

microkernel for RTU development. The address space and thread abstractions provided

by L4 make possible the functional and process separation that were identified in chapter

five as key objectives in the MILS separation kernel approach. Another advantage of L4

is that it supports real time scheduling. There are several possible L4 implementations.

OKL4 was identified as the best L4 implementation for hardened RTU development

since it is open source, and supporting both research endeavors and commercial

endeavors. The gumstix XScale PXA 255 platform was identified as a good candidate

for L4 based hardened RTU development. Gumstix supports OEM activities and is

already in use in some commercial activities. Gumstix's architecture is open and

accessible, and is supported by an open source build system including GNU tool chain.

The microkernel based RTU will include a security layer that protects low-level

RTU services implemented as L4 or Iguana servers. Hardened RTU application will use

158

L4 IPC to access these servers, through IPC to the security layer. Some initial

development on an ARM XScale platform, loaded with the OKL4 kernel, was done to

determine what the IPC overhead would be for the hardened RTU. Platform evaluation

found the IPC overhead to be 64.19 microseconds.

159

CHAPTER VIII

CONCLUSIONS AND FUTURE DIRECTIONS

SCADA and DCS are used in a wide variety of utility and industrial operations.

Complete isolation of these control networks is no longer a possible or plausible means of

providing cyber security for these systems. Instead, security must be built into SCADA

systems. However, control systems differ from traditional IT systems in a number of

ways. One of those differences is the importance of securing perimeter devices, such as

RTUs, in control networks. This dissertation has developed a new role based access

control model for RTUs, and investigated two approaches for using minimal kernels, all

of which can be used to create a security hardened R TU. This chapter presents the

overall conclusions from this dissertation research and possible directions for future

research.

8.1 Conclusions

A major focus of current SCADA security efforts has been authentication. This

research has argued that RTUs need to provide access control as well. The insider threat

and increased commercial R TU software components, such as web servers, are two

important threats that RTU access control can help reduce. This dissertation has

presented a new role based access control model designed specifically for RTUs and

process control. The model includes assignment constraints based on RTU operation

type which limit the RTU operations that a specific role can be assigned. The model also

160

includes activation constraints that allow a security administrator to specify conditions

when specific roles or permissions cannot be used. Constraints are activated by context

information, including process control specific state information as well as the process

control relevant information of location and time.

The RTU access control model helps to mitigate the insider threat by allowing

those who must have access to the RTU, to be limited to only those RTU operations that

their duties require. Contractors and business partners, or new employees can easily be

given reduced privileges. Organizing RTU permissions around roles also makes it much

easier to manage the assignment and revocation of permissions to users, and decrease the

probability of a misconfiguration or forgotten privilege. The assignment constraints,

based on R TU operation type of control, status, and configuration allow a security

administrator to establish separation of duty policies that the model then makes sure are

not violated, further reducing the chance of a misconfiguration or inappropriate

assignment of permissions. Context based constraints, such as "Bill cannot activate his

engineering role on weekends, or at night", allow fined grained control of permissions

organized around logical contexts.

Additional RTU hardening can be achieved through development of a minimal

kernel RTU and this dissertation has investigated two possible approaches. The first

approach is to reduce a commercial OS kernel to only those components needed by the

RTU, eliminating known and unknown vulnerabilities and significantly reducing the size

of the kernel. The second approach proposes using a microkernel that supports

partitioning as the basis for an RTU specific operating system which isolates network

related RTU software, from critical RTU operation software such as local control and

161

analog and digital input and output. This isolation provides an additional, and nearly

impenetrable layer of separation between software that can be attacked and critical RTU

software. Allowed channels of communication are achieved and enforced using kernel

IPC. The use of IPC allows security critical RTU code to be protected, and makes

circumvention of security less likely.

A prototype hardened RTU was constructed using the reduced COTS kernel

approach and implementing the newly developed RTU role based access control model.

The over 50% reduction in the size of the commercial kernel confirms that significant

amounts of code in commercial kernels can be eliminated. This eliminated code can

contain both known and unknown vulnerabilities, increasing the RTU's security. The

prototype was connected to real SCADA hardware in the Chemical Engineering

Department's Process Control Laboratory. Functional testing of users, roles and

constraints confirmed that users were able to carryout assigned tasks with the limited set

of permissions provided by the security hardened RTU. Security tests, ranging from

scanning and network based attacks to simulated insider stacks were all positive,

demonstrating the RTUs increased resistance to cyber based attacks. Analysis of the

communication times found the prototype RTU response time to be within 500

milliseconds, acceptable for many SCADA and DCS application areas. This indicates

that the RTU access controls and reduced kernel did not negatively impact performance.

Potential commercialization of this prototype is possible after additional testing and

refinement.

Investigation of a partitioning microkernel for an RTU identified the L4

microkernel as a potential candidate since L4 provides partitioning and real time

162

scheduling. To evaluate L4, the OKL4 implementation was used on an embedded ARM

XScale processor. Using a Gumstix development platform, the microkemel approach

was demonstrated by creating simulated critical RTU operations that were isolated from

network facing software using L4 address spaces. The approach makes extensive use of

IPC and could be negatively impacted by high IPC overhead. Experimental analysis

found the IPC overhead for protected RTUs operations to be slightly less than 65

microseconds, sufficiently small to warrant continued investigation of an OKL4/ARM

based hardened R TU.

8.2 Future Research Directions

The RTU role based access control model chose to use negative constraints. The

decision was made to strike a balance between allowing, through role assignment, and

denying, through constraints. A different approach, one that focuses entirely on

instantaneous enabling of permissions could be explored. In such an approach, RTU

permission assignment would be completely event driven. Such an approach would

result in an even better approximation of least privilege, allowing only those permissions

needed at any moment to be granted to a subject. Just as important, the approach makes

sure that the access control is continuous, allowing an attack to be prevented even if

initial condition under which the attack occurred would have allowed it to succeed.

A second direction of research related to the RTU access control policy is to

translate the policy into constraint logic programming (CLP). The use of CLP is gaining

interest in access control research due to the ability to apply AI reasoning research to the

domain. A CLP based model should be equally expressive, and could encourage the

development of policy tools. The development of tools to help SCADA operators

163

configure and reason about policies would be of great value. SCADA systems are

complex systems, and as they grow in size and intricacy, it will be very difficult to

develop and analyze policies. Development of tools for policy development and policy

checking, especially CLP, is an area of exploration that might yield results that could

directly benefit the SCADA community and possibly be translated to other commercial

sectors.

The ability to express constraints is one major advantage of role based access

control models over the traditional access control matrix model. Another strength of role

based access control that could be exploited by this model is role hierarchies. In role

hierarchies, more privileges roles inherit the permissions of more junior roles, forming a

lattice of roles. This allows roles to be layered and permissions to be grouped not only by

role but by their dominance or subordination to other permissions. The application of

role hierarchies to the RTU role based access control model could provide even more

logical permission grouping and is worthy of further investigation, though it might entail

the addition of more roles to the model.

Another direction for future research is related to handling access denials. The

current prototype returns a flag to the application that the access was denied. The

application then has to handle the error. In DNP3 this could be done using the internal

indicator status bytes to indicate the point is offline. A more elegant and potentially

much more secure approach is to explore having the RTU provide something like poly­

instantiation of RTU points and services. By applying a type of poly-instantiation, a

connected user or device would only see those points (eventually other R TU services as

well) to which they had access. It would be as if users with different roles or

164

authorization were connected to different RTUs. This would discourage attackers by

making less privilege scans of the system show little of interest. Poly-instantiation could

also assist in assuring availability by helping clearly define how the RTU should be

partitioned to maximize the ease of implementing the RTU poly-instantiation.

The potential security benefits of microkernel based systems are just now

beginning to be seriously considered. The key challenge in furthering this agenda is

developing systems that provide specific security architectures. While an L4 based RTU

has a smaller TCB, and can isolate components, the need for component interaction

mandates more elaborate security support. For the hardened RTU based microkernel, the

next area of exploration is to demonstrate that the RTU role based access control model

can be implemented on L4, and that it can be done so with in a more secure way than on

a COTS system. A static policy can easily be implemented by the security middleware

layer, but what will eventually be desirable is for objects to protect themselves using the

security server. This kind of protection allows program developers to include security

during the entire software development lifecycle. This is a goal for most software

development activities, but is doubly critical for RTUs and other field devices, and the

potential consequences of security violations can be dire.

The harsh environment in which RTUs operate and the importance of availability

provide motivation for a final future research direction. The measures presented in this

dissertation focus on protection, and did not include any performance monitoring

features. However, the incorporation of performance monitoring into the security harden

RTU would enhance security, especially availability. With the performance monitoring,

the RTU may be able to self report problems before they become big problems.

165

Performance features could give additional indication of a security violation, or may just

indicate a physical problem. Possible performance monitoring features would be

processor temperature, the number of packet reassembly failures, the longest and average

time for a request to be received, the number of processes currently active and/or

inactive. Performance monitoring comes at a cost, both for the extra cycles needed to

calculate and store performance data, and the bandwidth needed to transmit the extra

data. Further investigation is needed to determine the most appropriate performance

measures, and how to assure that they do not themselves create vulnerabilities.

166

REFERENCES

[1] D. Geer, "Security of Critical Control Systems Sparks Concern," Computer, vol. 39,
no. I, pp. 20-23, 2006.

[2] "Uniting and Strengthening America by Providing Appropriate Tools Required to
Intercept and Obstruct Terrorism (USA PATRIOT ACT) Act of2001 ,", H.R.
3 162 ed 2001.

[3] President's Commission on Critical Infrastructure Protection, "Critical
Foundations: Protecting America's Infrastructures," United States Government
Printing Office (GPO),No. 040-000-00699-1, Oct.1997.

[4] Poulsen, Kevin, "Slammer worm crashed Ohio nuke plant net", The Register.
http://www.theregisteLco.ukl2003108/20/slammer worm crashed ohio nuke/.
(accessed on 5-6-2006).

[5] Smith, Tony, "Hacker Jailed for Revenge sewage attacks",
http://www.theregister.co.uk/2001/1 O/31/hacker jailed for revenge sewage/.
(accessed on 3-15-2006).

[6] E. Byres and 1. Lowe, "The Myths and Facts behind Cyber Security Risks for
Industrial Control Systems," VDE Kongress, Berlin, Germany, 2004.

[7] IEEE Std.C37.1-1994, "IEEE Standard Definition, Specification, and Analysis of
Systems Used for Supervisory Control, Data Acquisition, and Automatic
Control," 1994.

[8] "SCADA RTU's", http://members.iinet.net.au/~ianw/rtu.html. (accessed on 12-
15-2007).

[9] R. Carlson, "Sandia SCADA Program High-Security SCADA LORD Final
Report," Sandia National Labs, Alburquerque, New Mexico, SANDIA Technical
Report SAND2002-0729, 2002.

[10] D. J. Gaushell and H. T. Darlington, "Supervisory control and data acquisition,"
Proceedings of the IEEE, vol. 75, no. 12, pp. 1645-1658, 1987.

[II] W. 1. Ackerman and W. R. Block, "Understanding supervisory systems,"
Computer Applications in Power, IEEE, vol. 5, no. 4, pp. 37-40, 1992.

167

[40] Peterson, D., "Important New Nessus Plugin for ICCP Users",
http://www.digitalbond.com/index .php/2007/031O l/important -nessus-plugin-for­
iccp-users/.

[41] P. Oman, E. Schweitzer, and D. Frincke, "Concerns About Intrusions into
Remotely Accessible Substation Controllers and SCADA Systems," 27th Annual
Western Protective Relay Conference, Paper, vol. 4, pp. 23-26.

[42] D. Dolezilek, K. Carson, K. Leech, K. Streett, and O. P. D. No, "SECURE
SCADA AND ENGINEERING ACCESS COMMUNICATIONS: A CASE
STUDY OF PRIVATE AND PUBLIC COMMUNICATION LINK
SECURITY,".

[43] E. J. Byres, "Designing Secure Networks for Process Control," Conference
Record of 1999 Annual Pulp and Paper Industry Technical Conference, pp. 63-
67, June1999.

[44] J. Abshier, "10 Principles for securing control systems," Control, vol. 18, no. 10,
pp. 77-81,2005.

[45] 1. D. Fernandez and A. E. Fernandez, "SCADA systems: vulnerabilities and
remediation," Journal of Computing Sciences in Colleges, vol. 20, no. 4, pp. 160-
168,2005.

[46] K. Stouffer, 1. Falco, and K. Kent, "Guide to Supervisory Control and Data
Acquisition (SCADA) and Industrial Control Systems Security," NIST,Special
Publication 800-82 INITIAL PUBLIC DRAFT, Sept.2006.

[47] "Process Control Security Requirements Forum (PCSRF)",
http://www.isd.mel.nist.gov/projects/processcontro1/.

[48] "Field Device Protection Profile For SCADA Systems In Meduim Robust
Environments",
http://www.isd.mel.nist.gov/projects/processcontrol/FieldDevicePP/Field Device

PP 0 71.pdC

[49] M. Majdalawieh, F. Parisi-Presicce, and D. Wijesekera, "DNPsec: A Secure
Framework for DNP3 in SCADA systems," in International Joint Conference on
Computer Information and Systems Sciences and Engineering 2005.

[50] "Cryptographic Protection of SCADA Communications Part 1: Background,
Policies and Test Plan",
http://www.gtiservices.org/security/AGA%2012%20Part%201%20Final%2()Vers
ion.pdf.

[51] "Concept of Operations," American Gas Association,AGA 12-2, Mar.2006.

170

[52] A. K. Wright, J. A. Kinast, and J. McCarty, "Low-Latency Cryptographic
Protection for SCADA Communications," in Applied Cryptography and Network
Security, 3089 ed Springer Berlin, 2004, pp. 263-277.

[53] C. L. Beaver, D. R. Gallup, W. D. NeuMann, and M. D. Torgerson, "Key
Management for SCADA," Cryptog. Information Sys. Security Dept. , Sandia
Nat. Labs, Tech. Rep. SAND2001-3252, Mar, 2002.

[54] P. Palensky and T. Sauter, "Security considerations for FAN-Internet
connections," Factory Communication Systems, 2000. Proceedings. 2000 IEEE
International Workshop on, pp. 27-35, 2000.

[55] C. L. Bowen III, T. K. Buennemeyer, and R. W. Thomas, "Next generation
SCADA security: best practices and client puzzles," Systems, Man and
Cybernetics (SMC) Information Assurance Workshop, 2005. Proceedings from
the Sixth Annual IEEE, pp. 426-427, 2005.

[56] M. Naedele and O. Biderbost, "Human-assisted intrusion detection for process
control systems," Proc. 2nd Int. Coif. Applied Cryptography and Network
Security, pp. 216-225, 2004.

[57] E. Naess, D. A. Frincke, A. D. McKinnon, and D. E. Bakken, "Configurable
Middleware-Level Intrusion Detection for Embedded Systems," Distributed
Computing Systems Workshops, 2005. 25th IEEE International Conference on,
pp. 144-151,2005.

[58] E. J. Byres, M. Franz, and D. Miller, "The Use of Attack Trees in Assessing
Vulnerabilities in SCADA Systems," International Infrastructure Survivability
Workshop (IISW'04), IEEE, Lisbon, Portugal, December, vol. 42004.

[59] D. Conte de Leon, J. Alves-Foss, A. Krings, and P. Oman, "Modeling Complex
Control Systems to Identify Remotely Accessible Devices Vulnerable to Cyber
Attack," ACM Workshop on Scientific Aspects ofCyber Terrorism,(SACT), 2002.

[60] W. F. Young, J. E. Stamp, J. D. Dillinger, and M. A. Rumsey, "Communication
Vulnerabilities And Mitigations In Wind Power SCADA Systems," in American
Wind Energy Association WINDPOWER 2003 Conference 2003.

[61] M. Franz and V. Pothamsetty, "ModbusFW Deep Packet inspection for industrial
Ethernet,".

[62] Z. Xie, G. Manimaran, V. Vittal, A. G. Phadke, and V. Centeno, "An information
architecture for future power systems and its reliability analysis," Power Systems,
IEEE Transactions on, vol. 17, no. 3, pp. 857-863, 2002.

[63] C. H. Hauser, D. E. Bakken, and A. Bose, "A failure to communicate: next
generation communication requirements, technologies, and architecture for the

171

electric power grid," Power and Energy Magazine, IEEE, vol. 3, no. 2, pp. 47-55,
2005.

[64] P. J. DENNING, "Third Generation Computer Systems," Computing Surveys, vol.
3,no.4,pp.175-216,1971.

[65] D. E. BELL and L. J. LAPADULA, "Secure computer system: Unified exposition
and multics interpretation," Mitre Corportation, Bedford MA,MTR-2997, 1976.

[66] E. Bertino, "RBAC models- concepts and trends," Computers & Security, vol. 22,
no.6,pp.511-514,2003.

[67] D. F. FERRAIOLO, R. SANDHU, S. GAVRILA, D. R. KUHN, and R.
CHANDRAMOULI, "Proposed NIST Standard for Role-Based Access Control,"
ACM Transactions on Information and System Security, vol. 4, no. 3, pp. 224-
274,2001.

[68] R. Simon and M. E. Zurko, "Separation of duty in role-based environments,"
Proceedings of the 10th Computer Security Foundations Workshop (CSFW'97),
1997.

[69] J. H. Saltzer and M. D. Schroeder, "The Protection ofInformation in Computer
Systems," Communincation of the ACM, vol. 17, no. 7 1975.

[70] D. Clark and David Wilson, "Comparison of commercial and military computer
security," 1987, pp. 184-194.

[71] G. J. Ahn, "Specification and classification of role-based authorization policies,"
2003, pp. 202-207.

[72] G. J. Ahn and R. SANDHU, "Role-based authorization constraints specification,"
ACM Transactions on Information and System Security (TISSEC), vol. 3, no. 4,
pp. 207-226, 2000.

[73] M. Strembeck and G. Neumann, "An Integrated Approach to Engineer and
Enforce Context Constraints in RBAC Environments," ACM Transactions on
Information and System Security, vol. 7, no. 3, pp. 392-427, 2004.

[74] T. Jaeger, "On the increasing importance of constraints," Proceedings of the
fourth ACM workshop on Role-based access control, pp. 33-42, 1999.

[75] L. Giuri and P. Iglio, "A formal model for role-based access control with
constraints," 1996, pp. 136-145.

[76] L. Giuri and P. Iglio, "A New Model for Role Based Access Control," 1995.

[77] M. A. Bishop, Computer Security: Art and Science. New York: Addison-Wesley,
2003.

172

[78] N. Li, Z. Bizri, and M. V. Tripunitara, "On mutually-exclusive roles and
separation of duty," Proceedings of the 11th A CM conference on Computer and
communications security, pp. 42-51, 2004.

[79] R. SANDHU, V. Bhamidipati, and Q. MUNA WER, "The ARBAC97 model for
role-based administration of roles," ACMTransactions on Information and
System Security (TISSEC), vol. 2, no. 1, pp. 105-135, 1999.

[80] F. Chen and R. S. Sandhu, "Constraints for role-based access control,"
Proceedings of the first ACM Workshop on Role-based access control, 1996.

[81] S. Wook, J. Y. Park, and L. E. E. Dong-Ik, "Extended Role Based Access Control
with Procedural Constraints for Trusted Operating Systems," IEICE Transactions
on Iriformation and Systems.

[82] J. Crampton, "Specifying and enforcing constraints in role-based access control,"
Proceedings of the eighth ACM symposium on Access control models and
technologies, pp. 43-50, 2003.

[83] G. Neumann and M. Strembeck, "An Approach to Engineer and Enforce Context
Constraints in an RBAC Environment," Proceedings of the eighth ACM
symposium on Access control models and technologies, pp. 65-79, 2003.

[84] A. S. Tanenbaum, J. N. Herder, and H. Bos, "Can we make operating systems
reliable," Computer, vol. 39, no. 5, pp. 44-51, May2006.

[85] G. Heiser, K. Elphinstone, I. Kuz, G. Klein, and S. M. Petters, "Towards
Trustworthy Computing Systems: Taking Microkernels to the Next Level,"
Operating Systems Review, vol. 41, no. 3 2007.

[86] P. A. Loscocco, S. D. Smalley, P. A. Muckelbauer, R. C. Taylor, S. J. Turner, and
J. F. Farrell, "The Inevitability of Failure: The Flawed Assumption of Security in
Modern Computing Environments," Proceedings of the 21st National Iriformation
Systems Security Conference, vol. 314 1998.

[87] 1. Liedtke, "On micro-kernel construction," ACM SIGOPS Operating Systems
Review, vol. 29, no. 5, pp. 237-250, 1995.

[88] P. B. HANSEN, "The Nucleus of a Multiprogramming System," Operating
Systems, 1970.

[89] W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson, and F. Pollack,
"HYDRA: The Kernel of a Multiprocessor Operating System," Communications,
1974.

[90] R. Rashid, A. Tevanian, Jr., M. Young, D. Golub, R. Baron, D. Black, W. 1.
Bolosky, and 1. Chew, "Machine-independent virtual memory management for

173

paged uniprocessor and multiprocessor architectures," Transactions on
Computers, vol. 37, no. 8, pp. 896-908, 1988.

[91] ''http://en.wikipedia.org/wikiINEXTSTEP,'' 2007.

[92] .. http://www.cs.lltah.edlllflux/mach4/htmIlMach4-proj.htm!. " 2007.

[93] ''http://en.wikipedia.org/wiki/Workplace OS," 2007.

[94] J. B. Chen and B. N. Bershad, "The impact of operating system structure on
memory system performance," Proceedings of the fourteenth A CM symposium on
Operating systems principles, pp. 120-133, 1994.

[95] J. Liedtke, "Improving IPC by kernel design," Proceedings of the fourteenth ACM
symposium on Operating systems principles, pp. 175-188, 1994.

[96] J. M. Rushby, "Design and verification of secure systems," Proceedings of the
eighth ACM symposium on Operating systems principles, pp. 12-21, 198 I.

[97] W. M. Vanfleet, J. A. Luke, R. W. Beckwith, C. Taylor, B. Calloni, and G.
Uchenick, "MILS:Architecture for High-Assurance Embedded Computing,"
CrossTalk The Journal of Defense Software Engieering, Aug.5 A.D.

[98] J. Rushby, "Kernels for safety," Safe and Secure Computing Systems, pp. 2 I 0-
220, 1989.

[99] N. Hanebutte, P. Oman, M. Loosbrock, A. Holland, W. S. Harrison, and J. ves­
Foss, "Software mediators for transparent channel control in unbounded
environments," Systems, Man and Cybernetics (SMC) Information Assurance
Workshop, 2005. Proceedingsfrom the Sixth Annual IEEE, pp. 201 -206,2005.

[100] Uchenick, Gordon, "MILS: Architecture for High-Assurance Systems", Objective
Interface Systems. http://www.rtcmagazine.com/home/printthis.php?id=1 00319.

[101] E. Bertino, C. Bettini, E. Ferrari, and P. Samarati, "An access control model
supporting periodicity constraints and temporal reasoning," ACM Transactions on
Database Systems (TODS), vol. 23, no. 3, pp. 23 I -285, 1998.

[102] "Cert Advisory CA 2001-33", http://www.cert.org/advisories/CA-2001-33.html.
http://www.cert.org/advisories/CA-2001-33.html.

[103] A. S. Tanenbaum, J. N. Herder, and H. Bos, "Can we make operating systems
reilable," Computer, vol. 39, no. 5, pp. 44-51, May2006.

[104] "The Keyed-Hash Message Authentication Code (HMAC)," NIST,FIPS PUB
198, Mar.2002.

174

[105] J. L. Hieb, S. C. Patel, and J. 1-1. Graham, "Security Enhancements for Distributed
Control Systems," in Critical Infrastructure Protection: Issues and Soutions. S.
Shenoi and E. Goetz, Eds. Boston: Springer, 2007.

[106] M. A. Bishop, Computer Security: Art and Science Addison-Wesley Professional,
2002.

[107] D. E. Denning, "A Lattice Model of Secure Information Flow," Communications,
1976.

[108] R. S. Sandhu, "Lattice-based access control models," Computer, vol. 26, no. 11,
pp. 9-19, 1993.

[109] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman, "Role-based access
control models," Computer, vol. 29, no. 2, pp. 38-47, 1996.

[110] V. R. Basili and B. T. Perricone, "Software errors and complexity: an empirical
investigation 0," Communications of the ACM, vol. 27, no. 1, pp. 42-52, 1984.

[111] .. http://www.sixnetio.com/htmlfiles/productsandgroups/mipmvt.htm ... 2007.

[112] "LynuxWorks", http://www.lvnuxworks.com/. http://www.lynuxworks.com/.

[113] ''http://en.wikipedia.org/wiki/Coordinated Universal 'rime," 2007.

[114] H. Krawczyk, M. Bellare, and R. Canetti, "HMAC: Keyed Hashing for Message
Authentication," Network Working Group,RFC 2104, Feb.1997.

[115] W. F. Rush and A. Shah, "Impact ofInformation Security Systems on Real-Time
Process Control," Gas Technology Institute,NIST Project SB 1341-02-C-081,
Apr.2005.

[116] J. Liedtke, "Toward real microkernels," Communications of the ACM, vol. 39, no.
9, pp. 70-77,1996.

[117] ''http://14ka.org/projects/pistachio/,'' 2007.

[118] ''http://os.inf.tu-dresden.de/fiascol:' 2007.

[119] .. http://www.ok-labs.com/ ... 2007.

[120] "Open Kernel Labs", http://www.ok-labs.com/. (accessed on 12-15-2007).

[121] .. http://www.ok-labs.com/company/press releases/ok 10 09 07," 2007.

[122] ''http://docwiki.gumstix.org/Customer projects commercial 2," 2007.

[123] .. http://www.crtos.nicta.com.au/downloads/tools/arm-lil1ux-3.4.4.tar.gz," 2007.

175

GLOSSARY

Certificate Authority (CA) - Entity that creates and issues digital certificates used by
other parties in a PKI.

Commercial Off The Self (COTS) -- Described ready made products that are easily
obtainable. Products include both hardware and software, and the use of open
standards is an important component. An excellent example of COTS hardware
would be standard Ethernet cards. Examples of COTS software products include
operating systems like Windows, Linux, and MAC OS as well as server products
such as liS or Apache, and user application like word processors or compilers.
COTS components are typically inexpensive compared to the cost of custom
developed products.

Common Object Request Broker Architecture (CORBA) - A standard created and
controlled by OMG that defines APls and communications protocols that allow
heterogeneous software components to interoperate.

Denial of Service (DoS) - Inhibition of a service or resource for an extended period of
time. A type of attack which usually does not result in the loss of information or
corruption of information, but which prevents valid users from accessing a service
or resource

Distributed Control System (DCS) - A distributed PCS where one or more sub­
controllers at different geographic location within the plant are monitored and
controlled from a singe remote location.

Distributed Network Protocol (DNP3) - A SCADA communication protocol for
delivering the status offield equipment from RTUs to MTUs and control
commands from MTUs to RTUs. The primary abstraction used in the DNP3
protocol is that of points where a point indicated a specific value associated with a
specific piece of field equipment. The protocol is broken into two components
the client and the server. Typically RTUs implement the DNP3 server protocol
and MTUs implement DNP3 client protocol.

Field Equipment - In SCADA and process control systems field equipment refers to
devices measure or operate physical system. Temperature sensors and value
controllers are excellent examples offield equipment. Field equipment may have
a communication interface, in which case it might be referred to as a lED. Other
field equipment may have only analog and digital leads.

176

Fieldbus - The network that links sensors, actuators, and other devices to a PC or PLC
based controller eliminating the need for point to point wiring of device to
controller.

File Transfer Protocol (FTP) - A network protocol for exchanging files over a network.

Firewall - A combination of hardware and software components that inhibit network
traftic flows based on security policy.

Human Machine Interface (HMI) - The hardware or software through which the an
operator interacts with a controller. HMls range in complexity from a physical
panel with buttons and lights to an industrial PC with color graphics running HMI
software.

Independent Application Development Kit (IADK) - A set of tools and libraries from
SIXNET for custom software development for mIMP based RTUs.

Intelligent Electronic Device (lED) - Any device that incorporates one or more
processors capable of sending or receiving data or control to or from an external
source.

Inter Process Communication (IPC) - A set of techniques for exchanging data between
two or more processes running on the same or different computers.

Internet Protocol (IP) - An open network layer protocol used for communication data
across packet-switched network.

Internet Protocol Security (IPsec) - A set of protocol developed to support secure
exchange of packets at the IP layer. Especially useful in implementing VPNs.

Local Area Network (LAN) - A group of computers that share a common
communicatins line and occupy a relatively small geographic area (such as a build
or control room). A LAN can consist of a couple of computers to several
thousand. Ethernet is by far the most common LAN network technology.

Master Terminal Unit (MTU) - A SCADA component whose primary responsibility is
to maintain a real-time data about the status of the system through regular polling
of RTUs. MTUs are also responsible for sending operator control signal back to
RTUs. Some MTUs provide a user interface and in other situations the user
interface is provided by a separate machine usually referred to as a HMI.

Modbus - A open standard SCADA protocol for RTU - MTU communication.

Multiple Independent Layers of Security (MILS) - A high-assurance high­
performance computing architecture that can enforce strict security and separation
policies on data and processes residing on a single microprocessor.

177

Partition Communication System (PCS) - Part of the MILS standard that is under
development. Partitions are the unit of separation in MILS and the PCS is a
middleware layer that enforces a security policy on communication between
partitions on one or more processors.

Policy Decision Point (PDP) - An access control entity that receives requests from the
policy enforcement point in the form of (subject, object, operations) and returns
either true or false indicating whether a given request is allowed by the policy.

Policy Enforcement Point (PEP) - An access control entity that is logically located
between subjects and systems resources, and enforces the systems access control
policy.

Process Control System (PCS) - A computer system that processes sensor inputs,
executes control algorithms, and computes actuator outputs. In a PCS control
decisions are made by the computer system based on control algorithms.

Programmable Logic Controller (PLC) - A small industrial computer used in factories
originally designed to replace relay logic of a process control system and has
evolved into a controller having the functionality of a process controller.

Public Key Infrastructure (PKI) - A cryptographic arrangement that provides for third
party validation of user identities by tying public keys to a user identity.

Public Switched Telephone Network (PSTN) - The international telephone system that
uses copper wire to transmit analog data, usually voice communication.

Remote Terminal Unit (RTU) - Also known as remote telemetry unit. SCADA system
component that acquires data from sensors, delivers control signals to field
equipment, and communicates with the master station.

Role Based Access Control (RBAC) - An access control scheme in which the
permission to carryout various operations are assigned to roles. A user of the
system is then assigned to one or more roles and is allowed to carryout only those
operations which are associated with the users roles.

SCADA Cryptographic Module (SCM) - A hardware device that provides secure serial
SCADA communication between MTUs and RTUs. The SCM has two ports a
plaintext port and a ciphertext port. SCADA messages from either an RTU or
MTU are received on the SCM's plaintext port and protected messages are sent
out the cipher text port and vice versa. Secure communication requires a SCM at
each end of the communications channel.

Secure Shell (SSH) - A protocol that provides for the establishment of a secure channel
between a local and remote computer using public-key cryptography and
symmetric encryption.

178

Serial SCADA Protection Protocol (SSPP) - A cryptographic protocol developed by
the AGA as part of its effort to secure SCADA systems. The protocol is designed
for serial communications and the ability to support many SCADA protocols.

Supervisory Control And Data Acquisition System (SCADA) - Provides the ability to
monitor and control the operation of a distributed physical system, such as
electrical power distribution, from a single remote location. In general control
commands are delivered by the SCADA system but control decision are made by
a human operator in response to alarms generated by the SCADA system.

Transmission Control Protocol (TCP) - A transport layer protocol that provides
applications with a reliable stream for in order data flow.

Trusted Computing Base (TCB) - The collection of hardware and software components
that are involved in enforcing security for a given computing system.

Universal Coordinated Time (UTC) - Greenwich mean time.

Virtual Local Area Network (VLAN) - A network of computers that behave as if they
were connected to the same physical network segment of a LAN. VLANs are
configured through software.

Virtual Private Network (VPN) - A private communications network used by one or
more organizations to communicate over a public network.

War-dialer - a computer program that uses a modem connected to the computer to dial
hundreds or thousands of phone numbers and identifies numbers to which a
corresponding modem and computer are connected.

Wide Area Network (WAN) - A computer network that spans a large geographical area,
such as multiple states or cities. Computer connected to the WAN are often
connected through public networks like the telephone system.

179

APPENDIX A

REDUCED LINUX KERNEL CONFIGURATION FILE

Automatically generated by make menuconfig: don't edit

CONFIG UID16 is not set
CONFIG RWSEM GENERIC SPINLOCK is not set

- -
CONFIG_RWSEM_XCHGADD_ALGORITHM=y
CONFIG_HAVE_DEC LOCK=y

Code maturity level options

CONFIG_EXPERIMENTAL=y

Loadable module support

CONFIG_MODULES=y
CONFIG MODVERSIONS is not set
CONFIG KMOD=y

Platform support

CONFIG_PPC=y
CONFIG_PPC32=y
CONFIG 6xx is not set
CONFIG 4xx is not set
CONFIG POWER3 is not set

-

CONFIG POWER4 is not set
CONFIG 8xx=y

-
CONFIG PPC STD MMU is not

- - -

CONFIG SERIAL_CONSOLE=y
CONFIG RPXLITE is not set
CONFIG RPXCLASSIC is not
CONFIG BSEIP is not set
CONFIG FADS is not set
CONFIG_SXNI855T=y
CONFIG_TQM823L is not set
CONFIG_TQM850L is not set
CONFIG_TQM855L is not set
CONFIG_TQM860L is not set
CONFIG FPS850L is not set
CONFIG_TQM860 is not set

set

set

CONFIG SPD823TS is not set
CONFIG IVMS8 is not set
CONFIG IVML24 is not set
CONFIG SM850 is not set

-

CONFIG MBX is not set
CONFIG WINCEPT is not set

180

CONFIG ALL PPC is not set
CONFIG SMP is not set
CONFIG_MATH EMULATION=y

General setup

CONFIG HIGHMEM is not set
CONFIG ISA is not set
CONFIG EISA is not set
CONFIG SBUS is not set
CONFIG MCA is not set
CONFIG_PCI_QSPAN is not set
CONFIG PCI is not set
CONFIG HZ=100
CONFIG_NET=y
CONFIG_SYSCTL=y
CONFIG_SYSVIPC=y
CONFIG BSD PROCESS ACCT is not set
CONFIG_KCORE_ELF=y
CONFIG_BINFMT_ELF=y
CONFIG_KERNEL_ELF=y
CONFIG BINFMT MISC is not set
CONFIG HOT PLUG is not set
CONFIG PCMCIA is not set

Parallel port support

CONFIG PARPORT is not set
CONFIG_PPC_RTC=y
CONFIG_CMDLINE_BOOL=y
CONFIG CMDLINE="console=ttySO,9600 console=ttyO root=/dev/sda2"

Memory Technology Devices (MTD)

CONFIG_MTD=y
CONFIG MTD DEBUG is not set
CONFIG_MTD_PARTITIONS=y
CONFIG MTD CONCAT is not set
CONFIG MTD REDBOOT PARTS is not set
CONFIG MTD CMDLINE PARTS is not set
CONFIG_MTD_CHAR=y
CONFIG_MTD_BLOCK=y
CONFIG FTL is not set
CONFIG NFTL is not set

RAM/ROM/Flash chip drivers

CONFIG_MTD_CFI=y
CONFIG_MTD_JEDECPROBE=y
CONFIG_MTD_GEN_PROBE=y
CONFIG MTD CFI ADV OPTIONS is not set

- - - -

CONFIG_MTD_CFI_INTELEXT=y
CONFIG MTD CFI_AMDSTD=y

181

CONFIG MTD CFI STAA is not set
CONFIG MTD RAM is not set
CONFIG MTD ROM is not set
CONFIG MTD ABSENT is not set
CONFIG MTD OBSOLETE CHIPS is not set
CONFIG MTD AMDSTD is not set
CONFIG MTD SHARP is not set
CONFIG MTD JEDEC is not set

Mapping drivers for chip access

CONFIG MTD PHYSMAP is not set
CONFIG_MTD_SXNI855T=y
CONFIG_MTD_TQM8XXL is not set
CONFIG MTD RPXLITE is not set
CONFIG MTD MBX860 is not set
CONFIG MTD DBOX2 is not set
CONFIG MTD CFI FLAGADM is not set
CONFIG MTD REDWOOD is not set
CONFIG MTD PCI is not set
CONFIG MTD PCMCIA is not set

Self-contained MTD device drivers

CONFIG MTD PMC551 is not set
CONFIG_MTD_SLRAM=y
CONFIG MTD MTDRAM is not set
CONFIG MTD BLKMTD is not set
CONFIG MTD DOCIOOO is not set
CONFIG MTD DOC2000 is not set
CONFIG MTD DOC2001 is not set
CONFIG MTD DOCPROBE is not set

NAND Flash Device Drivers

CONFIG MTD_NAND=y
CONFIG MTD NAND VERIFY_WRITE=y
CONFI G_MT D_NAND_SXN I =y
CONFIG MTD_NAND IDS=y

Plug and Play configuration

CONFIG PNP is not set
CONFIG ISAPNP is not set

Block devices

CONFIG BLK DEV FD is not set
CONFIG BLK DEV XD is not set
CONFIG PARIDE is not set
CONFIG_BLK_CPQ_DA is not set
CONFIG BLK_CPQ CISS DA is not set

182

CONFIG BLK DEV DAC960 is not set
CONFIG BLK DEV LOOP is not set

~ ~ ~

CONFIG BLK DEV NBD is not set
~ ~ ~

CONFIG~BLK~DEV~RAM=y

CONFIG BLK DEV RAM SIZE=4096
CONFIG BLK~DEV INITRD=y

Multi-device support (RAID and LVM)

CONFIG MD is not set
CONFIG BLK DEV MD is not set
CONFIG MD LINEAR is not set
CONFIG MD RAIDO is not set
CONFIG MD RAIDl is not set
CONFIG MD RAID5 is not set
CONFIG MD MULTIPATH is not set
CONFIG BLK DEV LVM is not set

Networking options

CONFIG PACKET is not set
CONFIG NETLINK DEV is not set

~ ~

CONFIG NETFILTER is not set
CONFIG FILTER is not set
CONFIG~UNIX=y

CONFIG~INET=y

CONFIG IP MULTICAST is not set
CONFIG IP ADVANCED ROUTER is not set
CONFIG IP PNP is not set
CONFIG NET IPIP is not set
CONFIG NET IPGRE is not set
CONFIG ARPD is not set
CONFIG~INET~ECN is not set
CONFIG SYN COOKIES is not set
CONFIG IPV6 is not set
CONFIG KHTTPD is not set
CONFIG ATM is not set
CONFIG~VLAN 8021Q is not set
CONFIG IPX is not set
CONFIG ATALK is not set
CONFIG DECNET is not set
CONFIG BRIDGE is not set
CONFIG X25 is not set
CONFIG LAPB is not set
CONFIG LLC is not set
CONFIG NET DIVERT is not set
CONFIG ECONET is not set
CONFIG WAN ROUTER is not set
CONFIG NET FASTROUTE is not set
CONFIG NET HW FLOWCONTROL is not set

QoS and/or fair queueing

CONFIG NET SCHED is not set

183

ATA/IDE/MFM/RLL support

CONFIG IDE is not set #

CON FIG BLK DEV IDE MODES is ~ot set
~ ~ --

CONFIG BLK DEV HD is not set

SCSI support

CONFIG SCSI is not set

Network device support

CONFIG NETDEVICES=y

ARCnet devices

CONFIG ARCNET is not set
CONFIG DUMMY is not set
CONFIG BONDING is not set
CONFIG EQUALIZER is not set
CONFIG TUN is not set
CONFIG ETHERTAP is not set

Ethernet (10 or 100Mbit)

CONFIG_NET ETHERNET=y
CONFIG MACE is not set
CONFIG BMAC is not set
CONFIG GMAC is not set
CONFIG SUNLANCE is not set
CONFIG SUNBMAC is not set
CONFIG_SUNQE is not set
CONFIG SUNGEM is not set
CONFIG NET VENDOR 3COM is not set
CONFIG LANCE is not set
CONFIG NET VENDOR SMC is not set

- - -

CONFIG NET VENDOR RACAL is not set
CONFIG NET ISA is not set
CONFIG NET PCI is not set
CONFIG NET POCKET is not set

Ethernet (1000 Mbit)

CONFIG ACENIC is not set
CONFIG DL2K is not set
CONFIG MYRI SBUS is not set
CONFIG NS83820 is not set
CONFIG HAMACHI is not set
CONFIG YELLOWFIN is not set
CONFIG SK98LIN is not set

184

CONFIG FOOl is not set
CONFIG HIPPI is not set
CONFIG PLIP is not set
CONFIG PPP=m
CONFIG~PPP~MULTILINK=y

CONFIG PPP FILTER is not set
CONFIG PPP ASYNC=m
CONFIG PPP SYNC TTY=m
CONFIG PPP DEFLATE=m
CONFIG PPP BSDCOMP=m
CONFIG PPPOE=m
CONFIG SLIP is not set

Wireless LAN (non-hamradio)

CONFIG NET RADIO is not set

Token Ring devices

CONFIG TR is not set
CONFIG NET FC is not set
CONFIG RCPCI is not set
CONFIG SHAPER is not set

Wan interfaces

CONFIG WAN is not set

Amateur Radio support

CONFIG HAMRADIO is not set

IrDA (infrared) support

CONFIG IRDA is not set

ISDN subsystem

CONFIG ISDN is not set

Old CD-ROM drivers (not SCSI, not IDE)

CONFIG CD NO IDESCSI is not set

Console drivers

Frame-buffer support

185

CONFIG FB is not set

Input core support

CONFIG INPUT is not set
CONFIG INPUT KEYBDEV is not set
CONFIG INPUT MOUSEDEV is not set

- -
CONFIG INPUT JOYDEV is not set
CONFIG INPUT EVDEV is not set

Macintosh device drivers

Character devices

CONFIG VT is not set
CONFIG_SERIAL=y
CONFIG_SERIAL_CONSOLE=y
CONFIG SERIAL EXTENDED is not set

- -

CONFIG SERIAL NONSTANDARD is not set
CONFIG_UNIX98_PTYS=y
CONFIG UNIX98 PTY COUNT=32

I2C support

CONFIG_I2C=y
CONFIG I2C ALGOBIT is not set
CONFIG I2C ALGOPCF is not set
CONFIG_I2C_SIMPLE_BIT=y
CONFIG I2C ALG08XX is not set
CONFIG I2C CHARDEV is not set
CONFIG I2C PROC is not set

Mice

CONFIG BUSMOUSE is not set
CONFIG MOUSE is not set

Joysticks

CONFIG INPUT GAME PORT is not set
CONFIG QIC02 TAPE is not set

Watchdog Cards

CON FIG WATCHDOG is not set
CONFIG INTEL RNG is not set
CONFIG NVRAM is not set
CONFIG RTC is not set

186

CONFIG~DS1306~RTC=y

CONFIG DTLK is not set
CONFIG R3964 is not set
CONFIG APPLICOM is not set

Ftape, the floppy tape device driver

CONFIG FTAPE is not set
CONFIG AGP is not set
CONFIG DRM is not set

Multimedia devices

CONFIG VIDEO DEV is not set

File systems

CONFIG~QUOTA is not set
CONFIG AUTOFS FS is not set
CONFIG AUTOFS4 FS is not set

~ ~

CONFIG REI SERFS FS is not set
CONFIG REI SERFS CHECK is not set

~ ~

CONFIG REI SERFS PROC INFO is not set
CONFIG ADFS FS is not set
CONFIG ADFS FS RW is not set
CONFIG AFFS FS is not set

~ ~

CONFIG HFS FS is not set
CONFIG BFS FS is not set
CONFIG EXT3 FS is not set
CONFIG JBD is not set
CONFIG JBD DEBUG is not set
CONFIG FAT FS is not set
CONFIG MSDOS FS is not set
CONFIG UMSDOS FS is not set
CONFIG VFAT FS is not set
CONFIG EFS FS is not set
CONFIG JFFS FS is not set

~ ~

CONFIG~JFFS2~FS=y

CONFIG JFFS2 FS DEBUG=O
CONFIG JFFS2 FS~NAND=y

~

CONFIG CRAMFS is not set
CONFIG TMPFS is not set
CONFIG RAMFS is not set
CONFIG IS09660 FS is not
CONFIG JOLIET is not set
CONFIG ZISOFS is not set

set

CONFIG MINIX FS is not set
CONFIG VXFS FS is not set
CONFIG NTFS FS is not set
CON FIG NTFS RW is not set

~ ~

CONFIG HPFS FS is not set
CONFIG~PROC~FS=y

CONFIG DEVFS FS is not set
CONFIG DEVFS MOUNT is not set

187

CONFIG DEVFS DEBUG is not se~
~ ~

CONFIG~DEVPTS~FS=y

CONFIG~QNX4FS~FS is not set
CONFIG~QNX4FS~RW is not set
CONFIG ROMFS FS is not set

~ ~

CONFIG~EXT2~FS=y

CONFIG SYSV FS is not set
~ ~

CONFIG UDF FS is not set
CONFIG UDF RW is not set
CONFIG UFS FS is not set
CONFIG UFS FS WRITE is not set

Network File Systems

CONFIG CODA FS is not set

~ ~

CONFIG INTERMEZZO FS is not set
CONFIG~NFS~FS=y

CONFIG~NFS~V3=y

CONFIG ROOT NFS is not set
CONFIG~NFSD=y

CONFIG~NFSD~V3=y

CONFIG~SUNRPC=y

CONFIG~LOCKD=y

CONFIG~LOCKD~V4=y

CONFIG~SMB~FS=y

CONFIG 5MB NLS DEFAULT is not set
CONFIG NCP FS is not set
CONFIG NCPFS PACKET SIGNING is not set
CONFIG NCPFS IOCTL LOCKING is not set
CONFIG NCPFS STRONG is not set
CONFIG NCPFS NFS NS is not set
CONFIG NCPFS OS2 NS is not set
CONFIG NCPFS SMALLDOS is not set

~ ~

CONFIG NCPFS NLS is not set
~ ~

CONFIG NCPFS EXTRAS is not set
CONFIG ZISOFS FS is not set

Partition Types

CONFIG PARTITION ADVANCED is not set
CONFIG~MSDOS~PARTITION=y

CONFIG~SMB~NLS=y

CONFIG~NLS=y

Native Language Support

CONFIG NLS DEFAULT="iso8859-1"
CONFIG NLS CODEPAGE 437 is not
CONFIG NLS CODEPAGE 737 is not
CONFIG NLS CODEPAGE 775 is not

~ ~ ~

CONFIG NLS CODEPAGE 850 is not
CONFIG NLS CODEPAGE 852 is not
CONFIG NLS CODEPAGE 855 is not
CONFIG NLS CODEPAGE 857 is not

set
set
set
set
set
set
set

188

CONF1G NLS CODEPAGE 860 is not set

CONF1G NLS CODEPAGE 861 is not set
- - -

CONF1G NLS CODEPAGE 862 is not set
CONF1G NLS CODEPAGE 863 is not set
CONF1G NLS CODEPAGE 864 is not set
CONF1G NLS CODEPAGE 865 is not set
CONF1G NLS CODEPAGE 866 is not set
CONF1G NLS CODEPAGE 869 is not set

- - -
CONF1G NLS CODEPAGE 936 is not set
CONF1G NLS CODEPAGE 950 is not set
CONF1G NLS CODEPAGE 932 is not set
CONF1G NLS CODEPAGE 949 is not set

- - -

CONF1G NLS CODEPAGE 874 is not set
CONF1G NLS 1S08859 8 is not set

- - -

CONF1G NLS CODEPAGE 1250 is not set
CONF1G NLS CODEPAGE 1251 is not set

CONF1G NLS 1S08859 l=m
CONF1G NLS 1S08859 2 is not set
CONF1G NLS 1S08859 3 is not set

- - -
CONFIG NLS 1S08859 4 is not set
CONF1G NLS 1S08859 5 is not set
CONF1G NLS 1S08859 6 is not set
CONF1G NLS 1S08859 7 is not set
CONF1G NLS 1S08859 9 is not set
CONF1G NLS 1S08859 13 is not set
CONF1G NLS 1S08859 14 is not set
CONF1G NLS 1S08859 15 is not set
CONF1G NLS K018 R is not set
CONF1G NLS K018 U is not set
CONF1G NLS UTF8 is not set

Sound

CONF1G SOUND is not set

MPC8xx CPM Options

CONFIG SCC ENET is not set
CONF1G_FEC_ENET=y
CONF1G_USE_MD10=y
CONF1G FEC AMD79C874 is not set
CONF1G FEC LXT970 is not set
CONF1G_FEC_LXT971=y
CONF1G_FEC_QS6612 is not set
CONF1G_FEC_KS8737=y
CONF1G_FEC_BCM5221=y
CONF1G_ENET_B1G_BUFFERS=y
CONF1G_SMCl_UART=y
CONF1G_CONS_SMCl=y
CONF1G UART MAX1DL SMCl=1
CONF1G SMCI UART RX BDNUM=2
CONF1G SMCI UART RX BDS1ZE=8
CONF1G SMCI UART TX BDNUM=2
CONF1G SMCI UART TX BDS1ZE=8
CONF1G SMC2 UART is not set

189

CONFIG_USE_SCC_IO=y
CONFIG_SeCl UART=y
eONFIG PORT CTSl NONE=y
CONFIG UART CTS CONTROL SeCl is not set
CONFIG PORT RTSl NONE=y
CONFIG PORT RTSl B is not set
CONFIG_PORT_RTS1_c is not set
CONFIG PORT COl NONE=y
CONFIG UART CD CONTROL SCCl is not set

-" --
CONFIG PORT OTRl NONE=y
CONFIG PORT OTRl A is not set
CONFIG-PORT-OTRI-B is not set
eONFIG-PORT OTRl C is not set
CONFIG PORT OTRl 0 is not set
CONFIG UART MAXIOL SCC1=4
CONFIG SCCl UART RX BONUM=2
CONFIG SCCl UART RX BOSIZE=8
CONFIG SCCl UART TX BONUM=2
CONFIG SCCl UART TX BOSIZE=8
CONFIG SCC2 UART is not set
CONFIG SCC3 UART is not set
CONFIG SCC4 UART is not set
CONFIG_8xx_COPYBACK=y
CONFIG 8xx CPU6 is not set
eONFIG UCOOE PATCR is not set

USB support

CONFIG USB is not set
CONFIG USB URCI is not set
CONFIG USB URCI ALT is not set
CONFIG USB OHCI is not set
eONFIG USB AUDIO is not set
CONFIG USB BLUE TOOTH is not set
CONFIG USB STORAGE is not set

eONFIG USB STORAGE DEBUG is not set
- - -

CONFIG USB STORAGE OATAFAB is not set
CONFIG USB STORAGE FREECOM is not set
CONFIG USB STORAGE IS0200 is not set
CONFIG USB STORAGE OPCM is not set
CONFIG USB STORAGE HP8200e is not set

- - -

CONFIG USB STORAGE SOOR09 is not set
CONFIG USB STORAGE JUMPSHOT is not set
CONFIG USB ACM is not set
CONFIG USB PRINTER is not set
CONFIG USB OC2XX is not set
CONFIG USB MOC800 is not set
CONFIG USB SCANNER is not set
CONFIG USB MICROTEK is not set
CONFIG USB HPUSBSCSI is not set
CONFIG USB PEGASUS is not set
CONFIG USB KAWETH is not set
CONFIG USB CATC is not set
CONFIG USB COCETHER is not set
CONFIG USB USBNET is not set
CONFIG USB USS720 is not set

190

USB Serial Converter support

CONFIG USB SERIAL is not set
CONFIG USB SERIAL GENERIC is not set

- -
CONFIG USB SERIAL BELKIN is not set

- - -
CONFIG USB SERIAL WHITEHEAT is not set
CONFIG USB SERIAL DIGI ACCElEPORT is not set

- - - -
CONFIG USB SERIAL EMPEG is not set
CONFIG USB SERIAL FTDI SIO is not set
CONFIG USB SERIAL VISOR is not set
CONFIG_USB_SERIAL_IPAQ is not set
CONFIG USB SERIAL IR is not set
CONFIG USB SERIAL EDGEPORT is not set
CONFIG USB SERIAL KEYSPAN PDA is not set

- - - -

CONFIG USB SERIAL KEYSPAN is not set
CONFIG USB SERIAL KEYSPAN USA28 is not set
CONFIG USB SERIAL KEYSPAN USA28X is not set

- - - -

CONFIG USB SERIAL KEYSPAN USA28XA is not set
CONFIG USB SERIAL KEYSPAN USA28XB is not set
CONFIG USB SERIAL KEYSPAN US.A19 is not set

- - - -

CONFIG USB SERIAL KEYSPAN USA18X is not set
CONFIG USB SERIAL KEYSPAN USA19W is not set
CONFIG USB SERIAL KEYSPAN USA49W is not set
CONFIG USB SERIAL MCT U232 is not set
CONFIG USB SERIAL KLSI is not set

- - -

CONFIG USB SERIAL PL2303 is not set
CONFIG USB SERIAL CYBERJACK is not set

- - -
CONFIG USB SERIAL XIRCOM is not set
CONFIG USB SERIAL OMNINET is not set

- - -

CONFIG USB RI0500 is not set

Bluetooth support

CONFIG BLUEZ is not set

Kernel hacking

CONFIG MAGIC SYSRQ is not set
CONFIG KGDB is not set
CONFIG XMON is not set

Library routines

CONFIG_ZLIB_INFLATE=y
CONFIG ZLIB DEFLATE=y

191

APPENDIXB

DNP3PROTOCOL

DNP3 is a SCADA protocol designed to allow SCADA devices to communicate

and transfer data and control commands from one point to another. It supports both serial

and TCP/IP communications with IP communications generally being achieved by

tunneling the serial version inside TCP or UDP packets. In DNP3 the term outstation

refers to devices or computers that are in the field and the term master refers to

computers in the control center. The terms slave is also used to refer to an outstation.

DNP3 is a non-proprietary protocol and a full specification is available from

www.dnp.org for a nominal fee.

Every DNP3 device has a database of different data types; each organized as an

array of values. Data items are identified by their data type and index, called a point

index, as shown in figure B.l. The MTU, or master, uses the data values to display the

state or condition of the physical system to which one or more outstations or RTUs are

connected. The objective of the master is to keep its database updated and accomplishes

this by sending requests (polling) to outstations. Outstations then provide the master with

the value of data item or items that were requested. (Outstations may also send

unsolicited data to masters in the form of an unsolicited response).

The DNP3 protocol is organized into layers that are similar to the standard OSI

model. The top layer, or user layer, maps DNP3 data objects to local data or a local

192

database. On master stations the user layer initiates requests to outstations for data and

on outstations the user layer retrieves data from the outstation database in response to a

master's request. The requested operations, the item or items on which the request is

made, and any data need to complete the request are specified in the application layer

message. The transport layer breaks up long application layer messages into smaller

packets for the link layer and reassembles them on the other side. And the link layer

makes the physical connection reliable. For the purpose of this disertation only the

application layer is of concern since the developed security enhancements are applied at

the application layer.

DNP3 application layer messages have three main components: an application

header, a function code, and one or more ONP3 objects each of which consists of an

object header followed by one or more object values. Figure B.2 shows the general

structure of the ONP3 application layer fragments; masters send request fragments and

outstations send response fragments. The application control octet contains application

layer sequence number and some status flags. The function code indicates the operations

being performed, and the object header identifies the data point or points (range of

indexes) on which the operation is to be carried out. The lIN in the application response

is used to communicate the internal status of the RTU or outstation to the master.

193

,-----------------------,
i 8iml1Y Master i
i Inplf. i
I B I

I 7 I
i 5 Analog
i COunter
, 4 4
133
, 2 2
I 1 1
I
I
i ,

I ,

I ,
I
I
I ,
I
i ,
I
I

i ,
I

ONP} Users Cede

DNP3
4opjication Layer

Pseudo Transport Layer

DNP)
Link Layer

L__________ _ __________ _

,-----------------------,
i Billa!'1 Outstation i
'I I~ ,
, Coo~ I
I 8 OutrM I
,7 Analog I
I Analog 6 Output

COUnter S

ONP3 Users Cede

ONP)
AppiK:atim layBr

Pseudo Transport layer

I DNP3
I Uni<.Layer
I ,

I I L___________ _ __________ ~

----~----~----------- -----------~-j /------------------~-----

Ph)'!,lcal Media

• Jser Responses

Figure B.l. DNP3 protocol layers.

Request Fragment

Application Request
First Object Header

Header DNP3
last Object Header

Application , Function Group , Variation , Range
Objects

Control Code
Group 'variation , Range

Response Fragment

Application Response Header First Object Header
DNP3

Last Object Header

Application 'liN , Function
Group I Variation I Range

Objects

Control Code
Group , Variation , Range

Figure B.2. DNP3 application layer fragments.

DNP3
Objects

DNP3
Objects

Security in DNP3 is limited to transmission errors which are detected by the link

layer using CRC checksums. As is common in many SCADA protocols the identity of

the sender is not authenticated nor is the integrity of the message verified. More

importantly, like other SCADA protocols DNP3 has embraced TCP/IP and the use of

TCP and UDP are now apart of the DNP3 specification. The lack of security features in

194

DNP3 makes SCADA and DCS devices vulnerable to spoofing and replay attacks

discussed in chapter two.

195

APPENDIXC

NESSUS SCAN REPORT

Nessus Scan Report

SUMMARY

- Number of hosts which were alive during the test 1
- Number of security holes found: 1
- Number of security warnings found : 2
- Number of security notes found : 5

TESTED HOSTS

10.165.49.249 (Security holes found)

DETAILS

+ 10.165.49.249
List of open ports
o ftp (21/tcp) (Security notes found)
o telnet (23/tcp) (Security notes found)
o general/tcp (Security warnings found)
o general/udp (Security hole found)
o general/icmp (Security warnings found)

Information found on port ftp (21/tcp)

The service closed the connection after 0 seconds without sending
any data

It might be protected by some TCP wrapper

. Information found on port telnet (23/tcp)

The service closed the connection after 0 seconds without sending
any data

It might be protected by some TCP wrapper

196

· Warning found on port general/tcp

The remote host does not discard TCP SYN packets which
have the FIN flag set.

Depending on the kind of firewall you are using, an
attacker may use this flaw to bypass its rules.

See also
10/0266.html

http://archives.neohapsis.com/archives/bugtraq/2002-

http://www.kb.cert.org/vuls/id/464113

Solution : Contact your vendor for a patch
Risk factor : Medium
BID : 7487

Information found on port general/tcp

The remote host is running one of these operating systems
Linux Kernel 2.4
NetGear Router

Information found on port general/tcp

10.165.49.249 resolves as private049249.private.louisville.edu.

Vulnerability found on port genera1/udp :

It was possible
to make the remote server crash
using the 'nestea' attack.

An attacker may use this flaw to
shut down this server, thus
preventing your network from
working properly

Solution : contact your operating
system vendor for a patch.

Risk factor : High
CVE CAN-1999-0257
BID : 7219

Information found on port general/udp

For your information, here is the traceroute to 10.165.49.249
136.165.67.244
136.165.67.254

197

10.165.49.249

. Warning found on port general/icmp

The remote host answers to an ICMP timestamp request. This allows
an

attacker
to know the date which is set on your machine.

This may help him to defeat all your time based authentication
protocols.

Solution
outgoing

ICMP

filter out the ICMP timestamp requests (13), and the

timestamp replies (14).

Risk factor : Low
CVE : CAN-1999-0524

This file was generated by the Nessus Security Scanner

198

APPENDIXD

SIXNET mIPM TECHNICAL SPECIFICATIONS

Section 5 Technical Specifications

Technical
Specifications

I He'I<' Jre tlle ll'Cfm,,'nl ~pt'clfl('allon, for the Vcr~;;TRAK mIPm RTLT Controller

General

L{wal H) ton l>mrd I

D:~ natnit ml'HWJ) (RAf\1 t
I for program exr..."l. ... utiofl, tJynami .. ~ 1, an~"'h."~. dYllilmi,,~ fill,."

Pro,¥nll11 m(,l1l()r~ I Fla~h t

I kl!' LlJll1x ()5, rf0g.raHl ~t-t~rag'\.· • .:..nd file sy~t~ml
Datalt'lg.gmg Ilk"mOt)' {RAM j

I. for data logging ~llld r(,,~l~tJlh,,"iJ \~lrjabI(·.'i\)

Bath"rv-bal.'kup tunc. 11ft'"

J/() (':\prulHon

f\bXllllutll dlStnbuted 1 '0

[Jatalogj!lIlg support

Programming

NumOl'r ",r applh,,'atwn'!> alh~\\:t.·'\t

JEe('ll)l PL«>I1,'n£rograllln~"!;
Langua~(·s SUPfK1fh.xl

<. OmmUf1ll.1tlIHl ml,.~dla :-'Uf}rH~rtt:d

199

IOO\5tlial f'owerPC 132 bit data bu~)
Fully Ct'",pallbk willi JIl a~s<"tment or on bOaJd 1'0

It>.t)(X!' I SrXNfT} or 2~7 (Modb",)
32bit, II wml s('a',"
1(, M<'guhyt<"

Ba'kry-hacked R,-.:h'''geahle I (thlUm
512Kbytes
1 Ycar 1 0+ vcar~

+--:"-15 s~cond~ P(,I month
ElherTRAK. ReIlM"TR.\K

256 pc, J {,l lYre
Yes SIXNET ~"Jo'
Tr\'ndlHg:~ .:liarm fogging. ",\'~qUtJlfl,~ i.tl' t'"\ \."nls, ~'~'~fll InUi:-lh~d, (:11('nl
tnm~fer.-.. and vthers
Pw,:uoally uniullileu
High 1e",1 C dnd olll<:-r,
As matlY ~lS th~fl~ I~ mt'nwr\' for
Pradtcallv utlhlluted
Y".s SIXNET IS.GRAF
L!dJt.'f log.l(, fUlll'lfOIl ...:h~lrt. tun~tlon bkx:K. ln~trUl,.'110n IJst,
~tf1Jdurcd h.~Xt. and ll~"I\v t.'luut
H) illS minullum (u:v:.'r sdtabk ~

MiJ~tl."'r. ~I.:tH" I)&;."t,,'"" to IweT, I\,~~'"!\trt on l~\""t.·rtIOll. ,,,.1' ~md for"qnd

and rnore
Fth\.'nlt.~t. t~'lcmt"try, tl'k-'pholl(, {dlalur ~lt1d kil~I,.. 1Iin"'I, Hh.11oidumh
and stnart~. oth('r wlreks-.., Jill ... 'f 2r!1i.', i">h(~rt h,lUI tlnd mol\.'

Wlltehd()~s and Monitors

("('Jmmtfnleatlfms Witl~hdo J

tUl<)fnet Port(51

hobtmu

Network pmt

Scria! Ports

R'>232 PNt H

R"4H5 Pnll A. ('

R 54S5 tw!'.vork

Flow (on! rol
Discrete [npuls

Uuatantwd OF!

Fljl<'r~d ONOFr ddJY
fas[ON urr !Ida\'

Oiwete Outputs
Mm;imultl Output per ~halllld

1\·b,II11UltI Output I'a moduk

Inrush ('umon!

Anat(lg Inputs
An fc<cAutJ>lll

Input iml"~dat1c,'

DrvtRR «liiferenti.1 1110(k '''joctiQn)
Anuwg OU\t'U1s

f\bx. OUll'ut '<'Illmg lUll"

For nm-timc dil!gnostk\~
CPU 'lUlnrnati.;:lIly r<:sc\" If ~rmr I, \jN~Ch;(!; ~l<JtII, LED !lm,h,',
error code

Sellabk timeout & output Jctwn I fon'c (.[f or fre<z~;

RJ45 (:lillO-CfG'-soV<'r I
15m Volh RMS Iminu\<' (M) liz J

5mS
It\d ieak's spC\.'d and actly!t'!
TCP.If', ARP, UDP, ICMP, DHCP, ModbIlVTCP, SIXNFT, "ml
more

J shidded R145 counectnl"
300 to 1IS,2()O baud
RJ45ITD. RD, CTS, RIS. CD, DTR. DSR'RI . (iND!
RJ45 (TD. RD, RTS. GNDI
Scrc\\'slGND. 48~+. 4X5-. termination) (2-wlrc IUllf-duple:u (P(tfl
C (,ND common with port [I)

Up to),2 rfuli-Inud) stallons
lip to 05 mik'5 (I km)
SIXNET & Modl:>us tRTU atld ASCIJ); Mall\' otl1,'rs Jvailable lU

UNtX

Hardwar,'. 'lollwarc, RTS-party (tor raJi,,, and RS4X5j

12 Channels
t) V[lC

30YDC
).f)VDC & I.SmA DC
ItlKOhnb
3mA
25m,; (21lHz max (Ounimgl
.. ms I" J(UlHz tlIa~ ,,,,unting)

4 or 8 chamwls (lO.WVDC)
tAmp
f(Amps
l)05 mA
JIl1A
5 Amps (J(J(l ms surtl;,o,

rUVDC

1:_ 50 ppmrenkgr~" (
1000hll1

66 dB at 5(I,hO Hz
Upt02 channels..t4·20mAI
16 hilS' kss than l.wA t

+i. 50 ppm pel"'(' typlc'al

0-750 Ohms
Current limiting

200

lIO Tool Kit W iooows Soiiwar('

Option 3 I DahlloggllHU

Ol'tinll 4IUNUX)

1I11'I.It Hfltage

Input power "",24 VOC uuks. otb~rwis.? uoted) (+·-to?'.)

(Note Th,' ['mer "OtlSlI1llptiOIl varmliolb mostly depend on
the numh,,! of Eth"l11cl and.·nr s,'rial ~ot1l1ectjoJls)

lhlll1tdity

Flammability

EMC illulluJlit~·
"lUX'; withstand
VihrJtioD
H4lnl rdnu~ lOt\ltWll:'-i

I(Ia'h I. Di, ~, (mJup, A, B. C. Dl

Packagmg
Mounlrn"

SIZe

1)5,98,1\11', NT. 2(XIO, and XP
Pentjl11ll or ('<jlljvak'nt, }1 Mb RAM, lOt) Mb hard dl,k sl'ac'e'
Configuration. calibration. djagrlOsll"~, 01/1<1 11Inl1ell '~XpOl1jl1g of 1'0
defillitiom.
Full impOitillg. and "XpOltlllg of 1'0 definillol1s, pt"'!' to pc,,'! lin
tmn,fNs. JmJ...91,jek load t~atuf<' "LcK.J All".
DatalolPin!l capability and dataiolt ,('rvcr

LlNUX fUII~lionalit\ and support
DIN rail or tlat "panel mount
10-30 VDC fintegrilted ,witching supply I.
I External ACDC or DC/DC 'llpI'IK'oi 'Jptlon.lll
VT-Wm'

1.4 W (I (WlmA I IYPI"'11 (no cnmmUI1ICaliOllS)

5'\, to <.)5'!·" RH (noll-~ond~nsll1g1
!Optional ,'onf()nn~d coallngl
l.'l. 94\'-1) materlah
UL 508. ('SA C22.2iI4; EN61010-1 !IEClOlill. (,E
fCC IXlrt 15, ICES·t»U, Cius, A: EN~51)2:'; ENf>l326·1. n'

I.E(61\-2.6
UL IN)4. (SA C11112l.1,
('elide, EN51)()21 Zone:2

DIN fJil ,EN5(022) or dlre,,1 kUlanci

4,75"L x 3,83"\V x 4.1 3"H
(12.07cm L x l).73cm W x WASem HI

201

CURRICULUM VITAE

Jeffrey Lloyd Hieb
497 Sacree Rd, Shelbyville, KY 40065

jIhieb01@insightbb.com

(502) 418 - 6106

Education

Ph.D., Computer Science and Engineering, expected spring 2008.
University of Louisville

Louisville, KY
Dissertation advisor: Professor James H. Graham
Dissertation: Security-Enhanced Remote Terminal Units for SCADA Networks

M.S., Computer Engineering and Computer Science, December 2004
GPA: 3.8/4.0

University of Louisville
Louisville, KY

Thesis advisor: Professor James H. Graham
Thesis: Anomaly Based Intrusion Detection for Intrusion Monitoring Using a Dynamic
Honeypot.

B.S. Computer Science / B.A. Philosophy June 1992
Cum Laude

Furman University
Greenville, SC

Experience

Graduate Research Assistant
January 2005 - present
Intelligent Systems Research Lab, University of Louisville
Plant Manager / Plant Supervisor
June 1992 - July 2004
Hieb Concrete Products Inc.
Lighting and Sound Technician
October, 1988- June 1992
McAlistar Auditorium, Furman University

Honors

Phi Beta Kappa,
Furman University, 1992
Upsilon Pi Epsilon,
University of Louisville, Fall 2004
CECS Master of Science, highest cumulative scholastic standing
University of Louisville, April 2005

202

Louisville, KY

Shelbyville, KY

Greenville, SC

Professional Organizations

Member, Association for Computing Machinery (ACM).
Member, Institute of Electrical and Electronics Engineers (IEEE).

Publications

P. A. Ralston, 1. H. Graham, and 1. L. Hieb, "Cyber Security Risk assessment for SCADA and
DCS Networks" ISA Transactions, vol. 46, no. 4, pp. 583-594, 2007.

1. L. Hieb, S. C. Patel, and 1. H. Graham, "Security Hardened Remote Terminal Units," in
Critical Infrastructure Protection: Issues and solutions, S. Shenoi and E. Goetz, Eds. Boston:
Springer, 2007.

1. L. Hieb, P. A. Ralston, and 1. H. Graham, "Testing Security Enhanced DNP3 on Actual
SCADA System," in Proceedings of the International Telecommunications Education Research
Association (ITERA 2007), Louisville, KY, March 2007 pp. 354-378.

1. H. Graham, M. S. Mostafa, B. Arazi, A. Tantawy, 1. L. Hieb, P. A. Ralston, and S. C. Patel,
"Improvements in SCADA and DCS Systems Security," in Proceedings q(the ISCA 22nd

International Conference on Computers And Their Applications (CATA 2007), Honolulu, HI,
March 2007.

1. L. Hieb and 1. H. Graham, "Security Enhanced Remote Terminal Units for SCADA
Networks," in Proceedings ofISCA 19th International Coriference on Computers Applications in
Industry and Engineering (CAINE 2006) Las Vegas, NV, November 2006, pp. 271-276.

1. L. Hieb and 1. H. Graham, "Dynamic Authentication Using Keystroke Biometrics," in
Proceedings of the 21't International Conference on Computers and Their Applications (CATA
2006), Seattle, W A, March 2006, pp. 337-342.

1. L. Hieb and 1. H. Graham, "Anomaly-based Intrusion Monitoring Using A Dynamic
Honeypot," in Proceedings q[the 2rfh International Conference on Computers and Their
Applications (CATA 2005), March 16-18, New Orleans, 2005.

1. L. Hieb, "Improving the SmallTalk Browser: A Case Study in Small Talk Development," in
Proceedings of 28th Annual Southeast Regional Conference of ACM. Greenville, SC, April 18-
20, 1990, pp. 242-247.

Presentations

"Security Hardening Remote Terminal Units", First IFfP WG 11.10 International Coriference
on Critical Infrastructure Protection, Dartmouth College, Hanover New Hampshire, March 18-
21,2007.

203

	Security hardened remote terminal units for SCADA networks.
	Recommended Citation

	tmp.1423685735.pdf.A4UWq

