642 research outputs found

    Heuristically enhanced dynamic neural networks for structurally improving photovoltaic power forecasting

    Get PDF
    Among renewable generators, photovoltaics (PV) is showing an increasing suitability and a lowering cost. However, integration of renewable energy sources possesses many challenges, as the intermittency of these non-conventional sources often requires generation forecast, planning and optimal management. There exists scope to improve present PV yield forecasting models and methods. For example, the popular dynamic neural network modelling method suffers from the lack of a selection mechanism for an optimal network structure. This paper develops an enhanced network for short-term forecasting of PV power yield, termed a `focused time-delay neural network' (FTDNN). The problem of optimizing the FTDNN structure is reduced to optimizing the number of delay steps and the number of neurons in the hidden layer alone and this problem is conveniently solved through heuristics. Two such algorithms, a genetic algorithm and particle swarm optimization (PSO) have been tested and both prove efficient and can improve the forecasting accuracy of the dynamic network. Given the success of the PSO in solving this discontinuous structural optimization problem, it is expected that PSO offers potential in optimizing both the structure and parameters of a forecasting model

    Utilisation of Deep Learning (DL) and Neural Networks (NN) Algorithms for Energy Power Generation: A Social Network and Bibliometric Analysis (2004-2022)

    Get PDF
    The research landscape on the applications of advanced computational tools (ACTs) such as machine/deep learning and neural network algorithms for energy and power generation (EPG) was critically examined through publication trends and bibliometrics data analysis. The Elsevier Scopus database and the PRISMA methodology were employed to identify and screen the published documents, whereas the bibliometric analysis software VOSviewer was used to analyse the co-authorships, citations, and keyword occurrences. The results showed that 152 documents have been published on the topic comprising conference proceedings (58.6%) and articles (41.4%) between 2004 and 2022. Publication trends analysis revealed the number of publications increased from 1 to 31 or by 3,000% over the same period, which was ascribed to the growing scientific interest and research impact of the topic. Stakeholder analysis revealed the top authors/researchers are Anvari M, Ghaderi SF and Saberi M, whereas the most prolific affiliation and nations actively engaged in the topic are the North China Electric Power University, and China, respectively. Conversely, the top funding agency actively backing research on the topic is the National Natural Science Foundation of China (NSFC). Co-authorship analysis revealed high levels of collaboration between researching nations compared to authors and affiliations. Hotspot analysis revealed three major thematic focus areas namely; Energy Grid Forecasting, Power Generation Control, and Intelligent Energy Optimization. In conclusion, the study showed that the application of ACTs in EPG is an active, multidisciplinary, and impact area of research with potential for more impactful contributions to research and society at large

    Computational Intelligence for Modeling, Control, Optimization, Forecasting and Diagnostics in Photovoltaic Applications

    Get PDF
    This book is a Special Issue Reprint edited by Prof. Massimo Vitelli and Dr. Luigi Costanzo. It contains original research articles covering, but not limited to, the following topics: maximum power point tracking techniques; forecasting techniques; sizing and optimization of PV components and systems; PV modeling; reconfiguration algorithms; fault diagnosis; mismatching detection; decision processes for grid operators

    Methods for Optimal Microgrid Management

    Get PDF
    Abstract During the last years, the number of distributed generators has grown significantly and it is expected to become higher in the future. Several new technologies are being de-veloped for this type of generation (including microturbines, photovoltaic plants, wind turbines and electrical storage systems) and have to be integrated in the electrical grid. In this framework, active loads (i.e., shiftable demands like electrical vehicles, intelligent buildings, etc.) and storage systems are crucial to make more flexible and smart the dis-tribution system. This thesis deals with the development and application of system engi-neering methods to solve real-world problems within the specific framework of microgrid control and management. The typical kind of problems that is considered when dealing with the manage-ment and control of Microgrids is generally related to optimal scheduling of the flows of energy among the various components in the systems, within a limited area. The general objective is to schedule the energy consumptions to maximize the expected system utility under energy consumption and energy generation constraints. Three different issues related to microgrid management will be considered in detail in this thesis: 1. The problem of Nowcasting and Forecasting of the photovoltaic power production (PV). This problem has been approached by means of several data-driven techniques. 2. The integration of stations to charge electric vehicles in the smart grids. The impact of this integration on the grid processes and on the demand satisfaction costs have been analysed. In particular, two different models have been developed for the optimal integration of microgrids with renewable sources, smart buildings, and the electrical vehicles (EVs), taking into account two different technologies. The first model is based on a discrete-time representation of the dynamics of the system, whereas the second one adopts a discrete-event representation. 3. The problem of the energy optimization for a set of interconnencted buildings. In ths connection, an architecture, structured as a two-level control scheme has been developed. More precisely, an upper decision maker solves an optimization problem to minimize its own costs and power losses, and provides references (as 3 regars the power flows) to local controllers, associated to buildings. Then, lower level (local) controllers, on the basis of a more detailed representation of each specific subsystem (the building associated to the controller), have the objective of managing local storage systems and devices in order to follow the reference values (provided by the upper level), to contain costs, and to achieve comfort requirements

    Photovoltaic Powe Analysis And Prediction Using Machine Learning Methods

    Get PDF
    Master of ScienceDepartment of Electrical and Computer EngineeringMajor Professor Not ListedThe stochastic nature of Photovoltaic power directly affects the stability of the grid. PV power forecasting allows power stations to know beforehand how much PV power will be available, which ensures that the grid remains in stabilized condition. PV power from India is analyzed and predicted using machine learning method

    Situation Awareness for Smart Distribution Systems

    Get PDF
    In recent years, the global climate has become variable due to intensification of the greenhouse effect, and natural disasters are frequently occurring, which poses challenges to the situation awareness of intelligent distribution networks. Aside from the continuous grid connection of distributed generation, energy storage and new energy generation not only reduces the power supply pressure of distribution network to a certain extent but also brings new consumption pressure and load impact. Situation awareness is a technology based on the overall dynamic insight of environment and covering perception, understanding, and prediction. Such means have been widely used in security, intelligence, justice, intelligent transportation, and other fields and gradually become the research direction of digitization and informatization in the future. We hope this Special Issue represents a useful contribution. We present 10 interesting papers that cover a wide range of topics all focused on problems and solutions related to situation awareness for smart distribution systems. We sincerely hope the papers included in this Special Issue will inspire more researchers to further develop situation awareness for smart distribution systems. We strongly believe that there is a need for more work to be carried out, and we hope this issue provides a useful open-access platform for the dissemination of new ideas

    Photovoltaic power forecast modeling with artificial neural networks

    Get PDF
    Dissertação de Mestrado, Engenharia Eletrónica e Telecomunicações, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2016Com uma crescente preocupação relativamente ao consumo energético global, a energia fotovoltaica surge como uma fonte energia renovável promissora. Esta dissertação é constru ída sob a premissa de que a capacidade de previsão de potência fotovoltaica produzida possibilita o aumento de performance da rede elétrica local através de um controlo eficiente da mesma. O trabalho desenvolvido propõe uma estrutura com a capacidade de previsão de potência produzida por um sistema fotovoltaico ligado a rede elétrica presente na Universidade do Algarve. A estrutura de previsão proposta é composta por dois modelos dinâmicos, não lineares, de previsão e um modelo estático não linear. Redes Neuronais Artificiais foram usadas como modelos. Os modelos de previsão têm como objectivo fazer previsões da temperatura do ar e irradiação solar em passos incrementais de 5 minutos para um horizonte de previsão de 4 horas. O modelo estático é construído para estimar a potência gerada pelo sistema fotovoltaico e é otimizado através de comparação entre vários tipos de redes neuronais como o perceptrão multicamadas e funções de base radial, e modelos com escalas temporais diferentes, aplicados a diferentes estações do ano, bem como um modelo anual.In a growing concern for the world energy consumption, photovoltaic energy sources are a reliable renewable energy alternative. This thesis is built upon the premise that the forecast of photovoltaic power production can increase performance of local electric network through an efficient network management. The work developed proposes a power production forecast structure based on a grid-connected photovoltaic system in the University of Algarve. The proposed forecast structure is composed of two non-linear dynamic forecasting models and one non-linear static model. Artificial Neural Networks were used in the development of these models which are intended to forecast solar irradiance and air temperature using Radial Basis Functions with 5 minutes time steps within a prediction horizon of 4 hours. The static model on the structure was created to estimate the power generated by the photovoltaic system and it was optimized through comparison between several network architectures (MLP and RBF) and several seasonal models, as well as a annual model

    Energy Management of Prosumer Communities

    Get PDF
    The penetration of distributed generation, energy storages and smart loads has resulted in the emergence of prosumers: entities capable of adjusting their electricity production and consumption in order to meet environmental goals and to participate profitably in the available electricity markets. Significant untapped potential remains in the exploitation and coordination of small and medium-sized distributed energy resources. However, such resources usually have a primary purpose, which imposes constraints on the exploitation of the resource; for example, the primary purpose of an electric vehicle battery is for driving, so the battery could be used as temporary storage for excess photovoltaic energy only if the vehicle is available for driving when the owner expects it to be. The aggregation of several distributed energy resources is a solution for coping with the unavailability of one resource. Solutions are needed for managing the electricity production and consumption characteristics of diverse distributed energy resources in order to obtain prosumers with more generic capabilities and services for electricity production, storage, and consumption. This collection of articles studies such prosumers and the emergence of prosumer communities. Demand response-capable smart loads, battery storages and photovoltaic generation resources are forecasted and optimized to ensure energy-efficient and, in some cases, profitable operation of the resources
    corecore