557 research outputs found

    Maximizing Revenue With Adaptive Modulation and Multiple FECs in Flexible Optical Networks

    Get PDF
    Flexible optical networks (FONs) are being adopted to accommodate the increasingly heterogeneous traffic in today's Internet. However, in presence of high traffic load, not all offered traffic can be satisfied at all time. As carried traffic load brings revenues to operators, traffic blocking due to limited spectrum resource leads to revenue losses. In this study, given a set of traffic requests to be provisioned, we consider the problem of maximizing operator's revenue, subject to limited spectrum resource and physical layer impairments (PLIs), namely amplified spontaneous emission noise (ASE), self-channel interference (SCI), cross-channel interference (XCI), and node crosstalk. In FONs, adaptive modulation, multiple FEC, and the tuning of power spectrum density (PSD) can be effectively employed to mitigate the impact of PLIs. Hence, in our study, we propose a universal bandwidth-related impairment evaluation model based on channel bandwidth, which allows a performance analysis for different PSD, FEC and modulations. Leveraging this PLI model and a piecewise linear fitting function, we succeed to formulate the revenue maximization problem as a mixed integer linear program. Then, to solve the problem on larger network instances, a fast two-phase heuristic algorithm is also proposed, which is shown to be near-optimal for revenue maximization. Through simulations, we demonstrate that using adaptive modulation enables to significantly increase revenues in the scenario of high signal-to-noise ratio (SNR), where the revenue can even be doubled for high traffic load, while using multiple FECs is more profitable for scenarios with low SNR

    A survey on fiber nonlinearity compensation for 400 Gbps and beyond optical communication systems

    Full text link
    Optical communication systems represent the backbone of modern communication networks. Since their deployment, different fiber technologies have been used to deal with optical fiber impairments such as dispersion-shifted fibers and dispersion-compensation fibers. In recent years, thanks to the introduction of coherent detection based systems, fiber impairments can be mitigated using digital signal processing (DSP) algorithms. Coherent systems are used in the current 100 Gbps wavelength-division multiplexing (WDM) standard technology. They allow the increase of spectral efficiency by using multi-level modulation formats, and are combined with DSP techniques to combat the linear fiber distortions. In addition to linear impairments, the next generation 400 Gbps/1 Tbps WDM systems are also more affected by the fiber nonlinearity due to the Kerr effect. At high input power, the fiber nonlinear effects become more important and their compensation is required to improve the transmission performance. Several approaches have been proposed to deal with the fiber nonlinearity. In this paper, after a brief description of the Kerr-induced nonlinear effects, a survey on the fiber nonlinearity compensation (NLC) techniques is provided. We focus on the well-known NLC techniques and discuss their performance, as well as their implementation and complexity. An extension of the inter-subcarrier nonlinear interference canceler approach is also proposed. A performance evaluation of the well-known NLC techniques and the proposed approach is provided in the context of Nyquist and super-Nyquist superchannel systems.Comment: Accepted in the IEEE Communications Surveys and Tutorial

    Optimal RWA for SDM Optical Network under Dynamic Traffic

    Get PDF
    With the rapid increase in demand for data transmission in our generation where Internet and cloud concepts play an essential role, it has become mandatory that we handle data most efficiently. A promising solution to overcome the capacity crunch problem which is so evident in future is applications of Space Division Multiplexing, where we explore the remaining unused domain that is the spectral and spatial domain. Space Division Multiplexing using multi-core fibers (MCF), and few-mode fibers (FMF) has been studied in our work to enhance the data-carrying capacity of optical fibers while minimizing the transmission cost per bit. The objective is to develop a path protection scheme to handle communication requests in the data center (DC) networks using elastic optical networking and space division multiplexing (SDM). Our approach to this problem is to 1) determining the initial allocation of light path on the topology, 2) possible spectrum allocation using the flex-grid flexible-SDM model, 3) choose the best possible route to minimize the number of subcarriers needed for data transfer. We propose to evaluate the developed Integer Linear Programming (ILP) formulation based on this scheme

    A survey on OFDM-based elastic core optical networking

    Get PDF
    Orthogonal frequency-division multiplexing (OFDM) is a modulation technology that has been widely adopted in many new and emerging broadband wireless and wireline communication systems. Due to its capability to transmit a high-speed data stream using multiple spectral-overlapped lower-speed subcarriers, OFDM technology offers superior advantages of high spectrum efficiency, robustness against inter-carrier and inter-symbol interference, adaptability to server channel conditions, etc. In recent years, there have been intensive studies on optical OFDM (O-OFDM) transmission technologies, and it is considered a promising technology for future ultra-high-speed optical transmission. Based on O-OFDM technology, a novel elastic optical network architecture with immense flexibility and scalability in spectrum allocation and data rate accommodation could be built to support diverse services and the rapid growth of Internet traffic in the future. In this paper, we present a comprehensive survey on OFDM-based elastic optical network technologies, including basic principles of OFDM, O-OFDM technologies, the architectures of OFDM-based elastic core optical networks, and related key enabling technologies. The main advantages and issues of OFDM-based elastic core optical networks that are under research are also discussed

    Reformation of offenders in Nigerian correctional institutions

    Get PDF
    This study examined the correlations between rehabilitation and reformation programmes such as moral instruction and counselling and medical services in Nigerian correctional institutions. A survey design was adopted. The participants were 224 offenders selected from seven correctional institutions in Nigeria. Questionnaire items were administered. Pearson correlation was used to examine the relationships between the variables. The findings reveal a moderate positive significant relationship between moral instruction and rehabilitation; there is a strong positive significant relationship between counselling services and rehabilitation and there is a strong positive relationship between medical care and rehabilitation. It is therefore recommended that Nigerian correctional institutions be in compliance with international best practice. More effort should also be given towards the teaching of moral instruction that has been identified as moderate because the higher the moral instruction given to offenders the higher the offender rehabilitation

    Physical Layer Aware Optical Networks

    Get PDF
    This thesis describes novel contributions in the field of physical layer aware optical networks. IP traffic increase and revenue compression in the Telecom industry is putting a lot of pressure on the optical community to develop novel solutions that must both increase total capacity while being cost effective. This requirement is pushing operators towards network disaggregation, where optical network infrastructure is built by mix and match different physical layer technologies from different vendors. In such a novel context, every equipment and transmission technique at the physical layer impacts the overall network behavior. Hence, methods giving quantitative evaluations of individual merit of physical layer equipment at network level are a firm request during network design phases as well as during network lifetime. Therefore, physical layer awareness in network design and operation is fundamental to fairly assess the potentialities, and exploit the capabilities of different technologies. From this perspective, propagation impairments modeling is essential. In this work propagation impairments in transparent optical networks are summarized, with a special focus on nonlinear effects. The Gaussian Noise model is reviewed, then extended for wideband scenarios. To do so, the impact of polarization mode dispersion on nonlinear interference (NLI) generation is assessed for the first time through simulation, showing its negligible impact on NLI generation. Thanks to this result, the Gaussian Noise model is generalized to assess the impact of space and frequency amplitude variations along the fiber, mainly due to stimulated Raman scattering, on NLI generation. The proposed Generalized GN (GGN) model is experimentally validated on a setup with commercial linecards, compared with other modeling options, and an example of application is shown. Then, network-level power optimization strategies are discussed, and the Locally Optimization Global Optimization (LOGO) approach reviewed. After that, a novel framework of analysis for optical networks that leverages detailed propagation impairment modeling called the Statistical Network Assessment Process (SNAP) is presented. SNAP is motivated by the need of having a general framework to assess the impact of different physical layer technologies on network performance, without relying on rigid optimization approaches, that are not well-suited for technology comparison. Several examples of applications of SNAP are given, including comparisons of transceivers, amplifiers and node technologies. SNAP is also used to highlight topological bottlenecks in progressively loaded network scenarios and to derive possible solutions for them. The final work presented in this thesis is related to the implementation of a vendor agnostic quality of transmission estimator for multi-vendor optical networks developed in the context of the Physical Simulation Environment group of the Telecom Infra Project. The implementation of a module based on the GN model is briefly described, then results of a multi-vendor experimental validation performed in collaboration with Microsoft are shown

    Coexistence of optical systems on a physical layer

    Get PDF
    Tato diplomová práce se zabývá koexistencí optických systémů na společné fyzické vrstvě. Cílem této práce je analýza interakcí mezi různými optickými systémy na fyzické vrstvě, přičemž dílčím cílem je porovnání integrace těchto systémů za různých provozních podmínek. Data pro tuto práci byla získána pomocí simulačního prostředí Optsim. Na základě výsledků koexistence různých systémů za různých provozních podmínek lze vyvodit závěr, zda je možné systémy sloučit či se tato varianta nasazení nedoporučuje.This thesis deals with coexistence of optical systems on a physical layer. The main objective of this thesis is to analyse interactions between multiple optical systems at the physical layer, while partial goal is to compare the integration of these systems under different system conditions. Data for this study were obtained by computer simulation in Optsim environment. On the basis of the resulting models of coexistence of different transmission systems under various system conditions it can be concluded, whether it is recommended to combine certain systems or not
    corecore