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ABSTRACT 

 

 

 

 

 DWDM technology is known as a kind of technology for coupling and 

transmitting an optical signals of different wavelength over the same fiber. Such 

technology is important in order to expand the capacity of optical fiber 

communication system and to meet the growing demands of bandwidth. However, 

there are some limiting factors related to the data rate and capacity in DWDM 

system. These limiting factors can be linear or nonlinear. Theoretically, the 

nonlinearities in fiber arise as the number of data channel, transmission length, data 

rate and input power level increase. In this project, the objective is focused towards 

analyzing on the nonlinearities effect by compensating the linear effect in the fiber. 

Dispersion Compensation Fiber (DCF) and linear loss EDFA compensation have 

been used in single mode fiber (SMF) channel to ensure the communication quality 

for the design. The proposed DWDM transmission system with 8, 16 and 32 

channels for 10Gbps with a channel spacing of 0.8nm was designed and simulated 

using Optisystem software. The BER performance with various input power levels in 

the range of -10dBm up to 10dBm, and fiber length greater than 50km are analyzed. 

It has been shown that for fixed length of the fiber, the only variable that can be 

manipulated to lower the nonlinear contribution is the input power. The higher the 

input power the higher the nonlinear contribution.  However, if the input power is 

low, the bit rate should be low to maintained transmission at the expected BER (BER 

< 10
-12

).      
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ABSTRAK 

 

 

 

 

 Teknologi DWDM dikenali sebagai satu teknologi gandingan dan 

penghantaran isyarat-isyarat optik pada panjang gelombang yang berbeza dalam 

gentian yang sama. Teknologi sedemikian penting dalam memperluaskan kapasiti 

sistem komunikasi gentian optik dan memenuhi permintaan lebar jalur yang semakin 

meningkat. Walau bagaimanapun, terdapat beberapa faktor yang menghadkan kadar 

data dan kapasiti pada sistem DWDM. Faktor-faktor tersebut boleh jadi lurus atau 

ketaklurusan. Secara teori, ketaklurusan di dalam gentian meningkat apabila bilangan 

saluran data, panjang penghantaran, kadar data dan kuasa masukan meningkat. 

Dalam projek ini, kami memberi fokus dan menganalisis kesan ketaklurusan dengan 

menghilangkan kesan lurus di dalam gentian. Dispersion Compensation Fiber (DCF) 

dan menghilangkan kehilangan lurus EDFA digunakan dalam SMF untuk 

memastikan kualiti penghantaran dalam rekabentuk. Sistem penghantaran DWDM 

yang dicadangkan dengan 8, 16 dan 32 saluran dan 10Gbps dengan jarak saluran 

sebanyak 0.8nm telah direkabentuk dan disimulasikan menggunakan perisian 

Optisystem. Prestasi BER dengan beberapa nilai kuasa masukan dalam julat -10dBm 

ke 10dBm dan panjang gentian melebihi 50km telah dianalisis. Ia menunjukkan pada 

panjang gentian yang ditetapkan, pembolehubah yang boleh dikaji untuk 

merendahkan kesan ketaklurusan dalam fiber ialah hanya kuasa masukan. Semakin 

bertambah kuasa masukan, semakin meningkat kesan ketaklurusan. Walau 

bagaimanapun, jika kuasa masukan direndahkan, kadar data seharusnya direndahkan 

juga untuk memastikan penghantaran dalam julat BER yang diterima (BER < 10
-12

). 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Project Background 

 

 

Over the last decade, fiber optic cables have been installed by carriers as the 

backbone of their interoffice networks, therefore becoming the mainstay of the 

telecommunications infrastructure. Using Time Division Multiplexing (TDM) 

technology , carriers now routinely transmit information at 2.4 Gb/s on a single fiber, 

with some deploying equipment that quadruples that rate to 10 Gbps. [1] The 

revolution in high bandwidth applications and the explosive growth of the Internet, 

however, have created capacity demands that exceed traditional TDM limits. As a 

result, the once seemingly inexhaustible bandwidth promised by the deployment of 

optical fiber in the 1980s is being exhausted. In order to meet growing demands for 

bandwidth, a technology called Dense Wavelength Division Multiplexing (DWDM) 

has been developed that multiplies the capacity of a single fiber. DWDM systems 

being deployed today can increase a single fiber’s capacity sixteen fold, to a 

throughput of 40 Gbps.[6] This cutting edge technology when combined with 

network management systems and add-drop multiplexers enables carriers to adopt 

optically based transmission networks that will meet the next generation of 

bandwidth demand at a significantly lower cost than installing new fiber. 
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DWDM technology can be applied to different areas in the 

telecommunication networks, which includes the backbone networks, the residential 

access networks, and also the Local Area Networks (LANs). Among these three 

areas, developments in the DWDM-based backbone network are leading the way, 

followed by the DWDM-based LANs. The development of this systems take 

advantage of advanced optical technology (e.g., tunable lasers, narrowband optical 

filters, etc.) to generate many wavelengths in the range around 1550 nm. ITU-T 

Recommendation G.692 defines 43 wavelength channels, from 1530 to 1565 nm, 

with a spacing of 1000Hz, each channel carrying an OC192signal at 10 Gbps. 

However, systems with wavelength channels of more than 43wavelengths have been 

introduced, and systems with many more wavelengths are on the experimenter's 

workbench. [2] 

Currently, commercial systems with 16, 40, 80, and 128 channels 

(wavelengths)per fiber have been announced. Those with 40 channels have channel 

spacing of 100 GHz, and those with 80 channels have channel spacing at 50 GHz. 

This channel separation determines the width of the spectral (wavelength) 

narrowness of each channel, or how close (in terms of wavelength) the channels are. 

40 channel DWDM systems can transmit over a single fiber an aggregate bandwidth 

of 400 Obis (10 Gbps per channel). It is estimated that at 400 Gbps, more than 

10,000 volumes of an encyclopedia can be transmitted in 1 second. The number of 

channels also depends on the type of fiber. A single strand of single-mode fiber can 

transmit over 80 km without amplification, but placing eight optical amplifiers in 

cascade, the total distance is extended to over 640 km (this is typical for 80-channel 

systems at 10 Gbps per channel).There is a race among companies and experimenters 

to break new records; longer distances, more channels, and higher bit rates frequently 

make the news. And this trend is expected to continue until all limits of physics for 

this technology have been reached and pushed back. [10],[13] 

Figure 1.1 shows the general DWDM schematic for four channels. Each 

optical channel occupies its own wavelength. The system consists of four main parts 

which are transmitters, combining signals (Multiplexer), transmission on fiber, 

separating signals (Demultiplexer) and receivers. Each part performs different 

function that will be explained in detail in Chapter 3.  
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Figure 1.1:General DWDM Functional Schematic Diagram[3] 

 

 

This thesis presents the analysis of fiber nonlinearity for various power levels 

of individual channels in DWDM system which involved in modeling the proposed 

system using suitable commercial optical system simulator; Optisystem for 

performance characterization.   

 

 

1.2 Problem Statement 

 

 

 The demand for data communication is growing rapidly due to the increasing 

popularity of the internet and other factors. In order to meet the growing demands for 

bandwidth, a technology called Dense Wavelength Division Multiplexing (DWDM) 

has been developed. However, the DWDM systems have a constraint to use because 

of optical fiber nonlinearities. In a long distance transmission of DWDM system, 

power level, channel spacing and optical amplifier are needed to consider. Decrease 

the channel spacing were increase the fiber nonlinearities effect and cause the 

performance degradation of optical system. Understanding the effects of optical fiber 

nonlinearities is crucial in order to optimize system performance. In this project, the 

effects of optical fiber nonlinearities are evaluated in conjunction with various power 

levels of DWDM transmission systems. 
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1.3 Objective 

 

 

1. To investigate the characteristics and performance of DWDM technique. 

 

2. To design a 16 and 32 channel DWDM system using Optisystem software. 

 

3. To analyze the fiber nonlinearity for various power levels in 16 and 32 

channel DWDM system for optimum BER performance. 

 

 

 

1.4 Scope of Work  

 

  

The scope of work in this project is:  

 

 Literature study on fiber nonlinearity 

- Review on nonlinearities effects in fiber optic especially on the 

DWDM system 

 

 Design and analysis; 

- The theoretical analysis of the DWDM technique. 

 

 System characterization; 

- Modeling and simulation of the DWDM system; where the system 

that combines together multiple signals and sends them at the same time 

along a fiber, with transmissions taking place at different wavelengths.  

 

 Result analysis and system optimization; 

-  Fiber nonlinearity analysis and optimization for various power levels 

of individual channels in DWDM system.  
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1.5 Thesis Outline 

 

 

This thesis comprises of five chapters and is organized as follows: 

 

 Chapter 1 discusses the project background, problem statement, objectives, 

scope of project and followed by the thesis outline. Chapter 2 gives an introduction 

on fiber nonlinearity in optical system, some fundamental theories of DWDM 

system, SNR and transmitted power requirements of DWDM systems and its 

applications.  

 The DWDM system design is describe briefly in Chapter 3. A theoretical 

model of DWDM system for nonlinearities analysis with 8, 16 and 32 channels is 

developed using Optisystem and the important parameters that have been used in this 

project are clearly stated in this Chapter 

 The next chapter discusses the analysis results obtained from performing 

DWDM simulations. Chapter 5 gives the conclusions for the whole project. Besides 

that, it also provides suggestion for future recommendation where the proposed 

system can be modify to enable the simulation to be more practical and continuously.  
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CHAPTER 2 

 

 

 

 

LITERATURE REVIEW 

 

 

 

 

2.1 Overview 

 

 

This chapter constituting two parts which briefly covers the fiber nonlinearity of an 

optical system and the basics of DWDM system characteristics. The first part 

describes the types of fiber nonlinearities which are scattering phenomena and 

refractive index phenomena. The second part is dedicated to DWDM system which 

includes the principle of DWDM system, EDFA in DWDM system, SNR and 

transmitted power requirements of DWDM systems and its applications. 

 

 

2.2  Fiber Nonlinearity 

 

 

 Nonlinearities refer to optical phenomena involving a nonlinear response to a 

driving light field. [3]Lasers allow generating light with very high intensities. These 

can give rise to a number of nonlinear effects, the most important of which are: 

 

i. Parametric nonlinearities occur in certain crystal materials with χ
(2)

 

nonlinearity, giving rise to effect light frequency doubling, sum and 
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difference frequency generation, and parametric amplification (nonlinear 

frequency conversion). 

 

ii. The Kerr effect raises the refractive index by an amount which is proportional 

to the intensity, leading to effect light self-focusing, self-phase modulation 

and four-wave mixing. 

 

iii. Spontaneous and Stimulated Brillouin Scattering is the interacting of light 

with "acoustical phonon" and typically involved counter propagating waves. 

 

iv. Two-photons absorption is a process where two photons are simultaneously 

absorbed, leading to an excitation for which a single photon energy would not 

be sufficient. 

 

There are also a number of other effects which are not directly based on 

optical nonlinearities but are nevertheless affecting optical phenomena as follows 

[4]: 

 

i. Saturation of gain occurs particularly in lasers and amplifiers. Similarly, there 

are nonlinear losses in saturable absorbers, e.g. in SESAMs used for passive 

mode locking or Q switching. 

 

ii. Photorefractive effects are observed in certain ferroelectric crystal such as 

LiNbO3. They are used for holographic data storage, and can be detrimental 

in nonlinear frequency conversion. 

 

iii. There are various kinds of effects involving heating, e.g. thermal lancing in 

laser gain media or thermal detuning of optical resonators. 

 

 In optical fibers, there is a particularly long interacting length combined with 

the high intensity resulting from a small area. Therefore, nonlinearities can have 

strong effect in fiber. Particularly, the effects related to the χ
(3)

 nonlinearity; Kerr 

Effect, Raman Sattering, Brillouin Scattering are often important, despite of the 
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relatively weak intrinsic nonlinear coefficient of silica: either they act as essential  

nonlinearities for achieving certain function (e.g. pulse compression, or they 

constituted limiting effect n high power fiber, lasers and amplifiers). 

 Strong nonlinearities also occur at intensities which are high enough to 

caused ionization in the medium. This can lead to optical breakdown, possibly even 

associated with damage of the material. In gases, extremely high optical intensities 

can be applied, which can lead to high harmonic generation. [4] 

 

 

2.3 Types of Fiber Nonlinearities  

 

 

 There are several types of fiber nonlinearities that can further limit the 

performance of any fiber optic transmission system including those that use DWDM. 

These nonlinearities fall into two broad groups: scattering and refractive index 

phenomena.[5] 

 

 

2.3.1 Scattering Phenomena 

 

 

 One subtype of these phenomena is known as Stimulated Brillouin Scattering 

(SBS), which is caused by the interaction between the optical signal and acoustic 

waves in the fiber. The result is that power from theoretical signal can be scattered 

back towards the transmitter. SBS is an arrow band process that affects each channel 

in a DWDM system individually, but which is even more pronounced in 

STM64/OC192systems, due to the greater power levels required for their 

transmission. The SBS effect has a threshold optical power. When the SBS threshold 

is exceeded, a significant fraction of the transmitted light is redirected back toward 

the transmitter. This results in a saturation of optical power that reaches the receiver, 

as well as the problem associated with optical signals being reflected back into the 

laser. [6] Figure 2.1shows that as the launch power is increased above the threshold, 

there is a dramatic increase in the amount of backscattered light. 
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Figure 2.1: SBS Threshold Effects [6] 

 

 

 A second form of scattering is known as Stimulated Raman Scattering (SRS), 

which is prompted by the interaction of the optical signal with silica molecules in the 

fiber. This interaction can lead to the transfer of power from shorter wavelength, 

higher photon energy channels, to longer wavelength, lower photon energy channels. 

SRS is much less of a problem than SBS. It threshold is close to 1 Watt, nearly a 

thousand times higher than SBS. [6] Unlike SBS,SRS is a wideband phenomena that 

affects the entire optical spectrum that is being transmitted. SRS can actually cause a 

spectrum of equal amplitude channels to tilt as it moves through the fiber. Moreover, 

its impact worsens as power is increased and as the total width of the DWDM 

spectrum widens. [11] One way to combat this phenomena is to use moderate 

channel powers as well as a densely packed channel plan that minimizes the overall 

width of the spectrum.[6] Figure 2.2(a) and (b) show what would happen to six 

wavelength that are transmitted through a series of optical amplifiers and long 

intermediate lengths of fiber. 
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(a) 

 

 

(b) 

Figure 2.2: (a) Transmitted Optical Spectrum and (b) SRS Effect Seen at Receiver 

Input [6] 
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2.3.2 Refractive Index Phenomena 

 

 

 The most serious is the fact that the refractive index of glass is dependent on 

the optical power going through the material. [6] The general equation for the 

refractive index of the core in an optical fiber is:  

 

     n = n0 + n2 * P/Aeff   [19] 

 

where n0 is the refractive index of the fiber core at low optical power levels.n2 is the 

nonlinear refractive index coefficient. It is equal to 2.35 x 10
-20 

m
2
/W for silica.   

P is the optical power in Watts and Aeff is the effective area of the fiber core in square 

meters 

 The equation shows that two strategies for minimizing nonlinearities due to 

refractive index power dependence are to minimize the amount of power, P, that is 

launched and maximize the effective area of the fiber, Aeff. Figure 2.3 shows the 

relationship of the refractive index versus optical power. It can be seen the 

magnitude of the change in refractive index is relatively small. It becomes important 

since the interaction length in a real fiber optic system can be hundreds of 

kilometers.[6] 

 

 

 

Figure 2.3: Refractive Index of Silica vs. Optical Power [6] 
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 This group of nonlinearities includes self-phase modulation(SPM), cross-

phase modulation (XPM), and four-wave mixing (FWM).These are caused because 

the index of refraction, and hence the speed of propagation in a fiber, is dependent on 

the intensity of light a dependency that can have particularly significant effects in 

long haul applications. SPM, which refers to the modulation that a light pulse has on 

its own phase, acts on each DWDM channel independently. The phenomena causes 

the signal’s spectrum to widen and can lead to crosstalk or an unexpected dispersion 

penalty.  The spectral broadening caused by SPM produces dispersion like effects 

which can limit transmission rates in some long-haul optical communication system, 

depending on the fiber type and its chromatic dispersion. By contrast, XPM is due to 

intensity fluctuations in another channel and is an effect that is unique to DWDM 

systems. XPM is a similar effect to SPM except that overlapping but distinguishable 

pulses, possessing or polarizations are involved.[8],[9] 

 Finally, four-wave mixing refers to the nonlinear combination of two or more 

optical signals in such a way that they produce new optical frequencies. Generally 

FWM effect occur when if the three light pulses, having different wavelength and 

travelling through single fiber, interact together to generate a new pulse.[7] If the 

three wavelength λ1,λ2 and λ3 are propagating through single fiber, these wavelengths 

will interact  to generate a new pulse λ4 according to equation; 

 

λ4= λ1 + λ2 – λ3 [18] 

 

Figure 2.4 shows an interfering signal to the original signal that produces the new 

wavelength. FWM signal power depends on several factors such as spacing between 

the channels, channel input power, and dispersion of the transmission fiber. FWM 

signals are eliminated by increasing the spacing between the channels, increasing the 

chromatic dispersion of the transmission fiber, decreasing the average input power 

per channel.[18]All three types of refractive index phenomena can be controlled 

either through careful choice of channel power or increases in channel spacing.
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Figure 2.4: Spectrum Before and After The Fiber[18] 

 

 

2.4 DWDM system 

 

 

 Dense Wavelength Division Multiplexing (DWDM) is a technology that 

allows multiple information streams to be transmitted simultaneously over a single 

fiber at data rates as high as the fiber plant will allow (e.g. 2.4 Gbps). The DWDM 

approach multiplies the simple 2.4 Gbps system by up to 16 times, giving an 

immense and immediate increase in capacity using embedded fiber. A sixteen 

channel system (which is available today) supports 40 Gb/s in each direction over a 

fiber pair, while a 40 channel system under development will support 100 Gb/s, the 

equivalent of ten STM64/OC192 transmitters. The benefits of DWDM over the first 

two option adding fiber plant or deploying STM64/OC192 for increasing capacity 

are clear.[1] 

 DWDM technology utilizes a composite optical signal carrying multiple 

information streams, each transmitted on a distinct optical wavelength. Although 

wavelength division multiplexing has been a known technology for several years, its 

early application was restricted to providing two widely separated wideband 

wavelengths, or to manufacturing components that separated up to four channels. 

Only recently has the technology evolved to the point that parallel wavelengths can 

be densely packed and integrated into a transmission system, with multiple, 

simultaneous, extremely high frequency signals in the 192 to 200 THz range. By 
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conforming to the ITU channel plan, such a system ensures interoperability with 

other equipment and allows service providers to be well positioned to deploy optical 

solutions throughout their networks.[2],[10] 

 The most common form of DWDM uses a fiber pair one for transmission and 

one for reception. Systems do exist in which a single fiber is used for bidirectional 

traffic, but these configurations must sacrifice some fiber capacity by setting aside a 

guard band to prevent channel mixing, they also degrade amplifier performance. In 

addition, there is a greater risk that reflections occurring during maintenance or 

repair could damage the amplifiers. In any event, the availability of mature 

supporting technologies, like precise demultiplexers and Erbium Doped Fiber 

Amplifiers (EDFA), has enabled DWDM with eight, sixteen, or even higher channel 

counts to be commercially delivered. [2] 

 

 

 

Figure 2.5:DWDM System of n Channel [1] 

 

 

 With signals as precise and as dense as those used in DWDM, there needed to 

be a way to provide accurate signal separation, or filtration, on the optical receiver. 

Such a solution also needed to be easy to implement and essentially maintenance 

free. Early filtering technology was either too imprecise for DWDM, too sensitive to 

temperature variations and polarization, too vulnerable to crosstalk from neighboring 

channels, or too costly . This restricted the evolution of DWDM. In order to meet the 

requirements for higher performance, a more robust filtering technology was 
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developed that makes DWDM possible on a cost effective basis, the in fiber Bragg 

grating. The new filter component, called a fiber grating, consists of a length of 

optical fiber wherein the refractive index of the core has been permanently modified 

in a periodic fashion, generally by exposure to an ultra- violet interference pattern. 

The result is a component which acts as a wavelength dependent reflector and is 

useful for precise wavelength separation. In other words, the fiber grating creates a 

highly selective, narrow bandwidth filter that functions somewhat like a mirror and 

provides significantly greater wavelength selectivity than any other optical 

technology.[10] The filter wavelength can be controlled during fabrication through 

simple geometric considerations which enable reproducible accuracy . Because this 

is a passive device, fabricated into glass fiber, it is robust and durable. 

 

 

2.4.1 EDFA in DWDM system 

 

 

 The advent of the Erbium Doped Fiber Amplifier (EDFA) enabled 

commercial development of DWDM systems by providing a way to pump lasers are 

then used to transfer high levels of energy to the special fiber, energizing the Erbium 

ions which then boost the optical signals that are passing through. Significantly, the 

atomic structure of Erbium provides amplification to the broad spectral range 

required for densely packed wavelengths operating in the 1550nm region, optically 

boosting the DWDM signals. Instead of multiple electronic regenerators, which 

required that the optical signals be converted to electrical signals then back again to 

optical ones, the EDFA directly amplifies the optical signals.[10] Hence the 

composite optical signals can travel up to 600 km without regeneration and up to 120 

km between amplifiers in a commercially available, terrestrial, DWDM system. 
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Figure 2.6:Principle of EDFA [1] 

 

 

2.4.2 Optical SNR and Transmitted Power Requirements of DWDM Systems 

 

 

 The bit error rate (BER) performance of a DWDM channel is determined by 

the optical SNR that is delivered to the photodetector. In a typical commercial 

system, an optical SNR of approximately 20 dB, measured in a 0.1 nm bandwidth, is 

required for an acceptably low BER of 10–15. This acceptable SNR is delivered 

through a relatively sophisticated analysis of signal strength per channel, amplifier 

distances, and the frequency spacing between channels. [1] For a specific SNR at the 

receiver, the amount of transmit power required in each channel is linearly 

proportional to the number of amplifiers as well as the noise and SNR of each 

amplifier, and is exponentially proportional to the loss between amplifiers. Because 

total transmit power is constrained by present laser technology and fiber 

nonlinearities, the workable key factor is amplifier spacing. This is illustrated in 

Figure 2.7by showing the relationship for a fiber plant with a loss of 0.3 dB/km, a 

receiver with a 0.1nm optical bandwidth, and optical amplifiers with a 5 dB noise 

figure. The system illustrated is expected to cover 600 km and the optical SNR 

required at the receiver is 20 dB measured in the 0.1 nm bandwidth. 
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Figure 2.7:Graph of Power in dBm versus Amplifier Spacing (Kms) [1] 

 

 

2.4.3    Applications for DWDM 

 

 

 As occurs with many new technologies, the potential ways in which DWDM 

can be used are only beginning to be explored. Already, however, the technology has 

proven to be particularly well suited for several vital applications. 

 

• DWDM is ready made for long-distance telecommunications operators that 

use either point–to–point or ring topologies. The sudden availability of 16 new 

transmission channels where there used to be one dramatically improves an 

operator’s ability to expand capacity and simultaneously set aside backup bandwidth 

without installing new fiber. 

 

• This large amount of capacity is critical to the development of self-healing 

rings, which characterize today’s most sophisticated telecom networks. By deploying 

DWDM terminals, an operator can construct a 100% protected, 40 Gbps ring, with 

16 separate communication signals using only two fibers. 
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•  Operators that are building or expanding their networks will also find 

DWDM to be an economical way to incrementally increase capacity, rapidly 

provision new equipment for needed expansion and future proof their infrastructure 

against unforeseen bandwidth demands. 

 

• Network wholesalers can take advantage of DWDM to lease capacity, rather than 

entire fibers, either to existing operators or to new market entrants. DWDM will be 

especially attractive to companies that have low fiber count cables that were installed 

primarily for internal operations but that could now be used to generate 

telecommunications revenue. 

 

•  The transparency of DWDM systems to various bit rates and protocols will 

also allow carriers to tailor and segregate services to various customers along the 

same transmission routes. DWDM allows a carrier to provide STM4/OC12 service to 

one customer and STM16/OC48 service to another all on a shared ring. 

 

•In regions with a fast growing industrial base DWDM is also one way to utilize the 

existing thin fiber plant to quickly meet burgeoning demand. 

 

 

2.5   Previous Work 

 

 

 Abdelhamid, Kouninef Belkacem, Mohammed Beljacem and Kheroua 

Mohamed [13] compares the performances of DWDM system with four channels 

using a conventional single mode fiber (SMF) or non zero dispersion shifted fiber 

(NZDSF). The simulation using OptSim software where the chromatic dispersion 

compensation and non linear phenomenon in the fiber are also included in the 

simulation. In this paper the best result taken into account are linear phenomena that 

was obtained with Corning Leaf fiber is very suitable for long haul distance. Figure 

2.8 shows the the eye diagram for different distances with non linear effects for 

Corning Leaf fiber. 
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Figure 2.8:  The Eye Diagram for Different Distances with Non Linear Effects [13] 

 

 

Gao Yan, Zhang Ruixia, Du Weifeng, and Cui Xiaorong [15] designed optical fiber 

communication system with 32 channels and simulated by Optisystem. Based on 

their simulation, the model which can inhibit dispersion and fiber linear loss has been 

successfully manufactured. Figure 2.9 shows the design of Simulation Model of 32-

Channel DWDM System for this paper and Figure 2.10 shows the output  

 

 

 

Figure 2.9: Simulation Model of 32-Channel DWDM System [15] 
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Figure 2.10:  The Eye Diagram of DWDM System in With Linear 

Loss and Dispersion has been Compensated [15] 

 

 

 Nazmi A.Mohammad, Mahmoud M.Ragab and Moustafa H.Aly [7] 

demonstrate four-wave-mixing (FWM) based on wavelength 1.55μm using four 

different types of optical fibers. The results show that the DCF optical fiber has been 

shown to be a good candidate for wavelength conversion compared to the other 

commercial fibers. The numerical setup for the FWM-based wavelength converter is 

shown in Figure 2.11 below. 

 

 

Figure 2.11: The Numerical Setup or The FWM-based Wavelength Converter [7] 
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 Iftikhar Rasheed, Muhammad Abdullah, Shahid Mehmood, and Mahwish 

Chaudhary [16] analyzed the impact of cross phase modulation (XPM), four wave 

mixing (FWM) and stimulated Raman scattering (SRS) on DWDM communication 

system. The analysis was done on the basis of result obtained from simulation in 

OptiSystem. This paper shows how the non linearity’s increase in optical fiber 

communication system by increasing the input power and number of input channels. 

Figure 2.12 shows the output result for 11 channels , 3dBm input power with channel 

spacing is 110GHz. 

 

 

Figure 2.12: The Eye Diagram for 11 Channels [16] 

 

 Kazumasa Ohsono, Tomoyuki Nishio, Takahiro Yamazaki, Tomomi 

Onose,Kotaro Tan [23] developed a low non-linear non-zero dispersion shifted 

single-mode fiber with an enlarged mode field diameter(MFD) by optimizing the 

design of the fiber profile. Figure 2.13 below shows the developed fiber achieved 

target characteristics of low non-linearity and low dispersion slope. 

 

 

Figure 2.13: Dispersion Slope vs. MFD for Experimental Data. [23] 
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Table 2.1: List of the research 

 

 

No Title of Journal Software 

DWDM 
Length 

of fiber 

Medium 

of 

transmissi

on 

Performance 

measure 

No. of 

channel 
 

  

1 

Used of Fibers in 

Long Distance 

Telecommunication 

DWDM systems 

Abdelhamid, 

Kouninef Belkacem, 

Mohammed 

Beljacem and 

Kheroua Mohamed, 

OptiSim 4 
Up to 

1000km 

SMF + 

Tera 

Light, 

True 

Wave, 

Corning 

Leaf and 

DCF  

BER 

Eye diagram 

2 

Point-to-Point 

DWDM System 

Design and 

Simulation 

Gao Yan, Zhang 
Ruixia, Du Weifeng, 
and Cui Xiaorong 

Optisystem 32 50km 
SMF + 

DCF 
Eye diagram 

3 

Four- Wave-

Mixing Based 

Wavelength 

Conversion Using 

Different Types of 

Fibers 

Nazmi A.Mohammad, 
Mahmoud M.Ragab 
and Moustafa H.Aly 

Optisystem 2 
2.2m to 

22m 
SMF and  

LEAF 
Output 

Power 

4 

Analysis Of Fiber 

Nonlinearity For 

Various Power 

Levels In Dwdm 

System 
 

Optisystem 
8, 16 

and 32 

36km, 

72km 

and 

120km  

SMF + 

DCF 

BER 

Eye diagram 
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CHAPTER 3 

 

 

 

 

METHODOLOGY 

 

 

 

 

3.1 Overview 

 

 

This chapter describes the details explanation of the methodology that has been used 

in this project. Chapter 3 is one of the important parts that act as the guidelines in 

order to accomplish the project. The most important aspect during the methodology 

stage is the design of Dense Wavelength Division Multiplexing (DWDM) system for 

nonlinearities analysis and simulation process at various power levels. A theoretical 

model of DWDM system for nonlinearities analysis with 8, 16 and 32 channels was 

developed. The first part of the development represents the general system block 

diagram of nonlinear DWDM system consists of transmitter and receiver and the 

basic optical communication components. DWDM simulation model using 

Optisystem can be found in the last section of this chapter. The parameters that have 

been used in this project are clearly stated.  
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 In general, the overall methodology for this project comprises of three steps 

as shown in next flow chart and briefly discussed as follow: 

  

i) Literature review 

Generally this section involves the study of previous researches or literature review. 

All the design parameters such as input power levels, wavelengths, channel spacing 

and fiber length have been studied before entering the next stage which is design and 

simulation. 

  

ii) Design and Simulation 

Design of nonlinear DWDM system and simulating the proposed project using 

Optisystem software. 

 

iii) Result and analysis 

Finally each result obtained from the simulation is compared to get the best BER 

performance. 

 

 

3.2 Project Flow Chart 

 

 

The overall project flow is shown in Figure 3.1. 
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