385 research outputs found

    Contribution to resource management in cellular access networks with limited backhaul capacity

    Get PDF
    La interfaz radio de los sistemas de comunicaciones móviles es normalmente considerada como la única limitación de capacidad en la red de acceso radio. Sin embargo, a medida que se van desplegando nuevas y más eficientes interfaces radio, y de que el tráfico de datos y multimedia va en aumento, existe la creciente preocupación de que la infraestructura de transporte (backhaul) de la red celular pueda convertirse en el cuello de botella en algunos escenarios. En este contexto, la tesis se centra en el desarrollo de técnicas de gestión de recursos que consideran de manera conjunta la gestión de recursos en la interfaz radio y el backhaul. Esto conduce a un nuevo paradigma donde los recursos del backhaul se consideran no sólo en la etapa de dimensionamiento, sino que además son incluidos en la problemática de gestión de recursos. Sobre esta base, el primer objetivo de la tesis consiste en evaluar los requerimientos de capacidad en las redes de acceso radio que usan IP como tecnología de transporte, de acuerdo a las recientes tendencias de la arquitectura de red. En particular, se analiza el impacto que tiene una solución de transporte basada en IP sobre la capacidad de transporte necesaria para satisfacer los requisitos de calidad de servicio en la red de acceso. La evaluación se realiza en el contexto de la red de acceso radio de UMTS, donde se proporciona una caracterización detallada de la interfaz Iub. El análisis de requerimientos de capacidad se lleva a cabo para dos diferentes escenarios: canales dedicados y canales de alta velocidad. Posteriormente, con el objetivo de aprovechar totalmente los recursos disponibles en el acceso radio y el backhaul, esta tesis propone un marco de gestión conjunta de recursos donde la idea principal consiste en incorporar las métricas de la red de transporte dentro del problema de gestión de recursos. A fin de evaluar los beneficios del marco de gestión de recursos propuesto, esta tesis se centra en la evaluación del problema de asignación de base, como estrategia para distribuir el tráfico entre las estaciones base en función de los niveles de carga tanto en la interfaz radio como en el backhaul. Este problema se analiza inicialmente considerando una red de acceso radio genérica, mediante la definición de un modelo analítico basado en cadenas de Markov. Dicho modelo permite calcular la ganancia de capacidad que puede alcanzar la estrategia de asignación de base propuesta. Posteriormente, el análisis de la estrategia propuesta se extiende considerando tecnologías específicas de acceso radio. En particular, en el contexto de redes WCDMA se desarrolla un algoritmo de asignación de base basado en simulatedannealing cuyo objetivo es maximizar una función de utilidad que refleja el grado de satisfacción de las asignaciones respecto los recursos radio y transporte. Finalmente, esta tesis aborda el diseño y evaluación de un algoritmo de asignación de base para los futuros sistemas de banda ancha basados en OFDMA. En este caso, el problema de asignación de base se modela como un problema de optimización mediante el uso de un marco de funciones de utilidad y funciones de coste de recursos. El problema planteado, que considera que existen restricciones de recursos tanto en la interfaz radio como en el backhaul, es mapeado a un problema de optimización conocido como Multiple-Choice Multidimensional Knapsack Problem (MMKP). Posteriormente, se desarrolla un algoritmo de asignación de base heurístico, el cual es evaluado y comparado con esquemas de asignación basados exclusivamente en criterios radio. El algoritmo concebido se basa en el uso de los multiplicadores de Lagrange y está diseñado para aprovechar de manera simultánea el balanceo de carga en la intefaz radio y el backhaul.Postprint (published version

    The IST project MATRICE on MC-CDMA transmission techniques for future Cellular Systems

    Get PDF
    This paper presents an overview of the European IST project MATRICE (MC-CDMA Transmission Techniques for Integrated Broadband Cellular Systems, IST-2001-3220), describing its tasks, goals and preliminary achievements. The main focus of the MATRICE project is the definition of a new air-interface for future cellular mobile radio systems based on Multicarrier-CDMA modulation techniques and the study of its key building blocks like receiver algorithms and flexible TX components. The nine European partners participating in this project are CEA-LETI (F), France Telecom (F), Instituto de Telecommonicaçõ (P), Mitsubishi Electric ITE-TCL (F), University of Madrid (E), University of Surrey (UK), STMicroelectronics (CH), INSA-IETR (F) and Nokia (D)

    Radio network planning and optimisation for WCDMA

    Get PDF
    The present thesis introduces the radio network planning process and optimisation for WCDMA (FDD mode), as defined by 3GPP. This thesis consists of three parts: modelling and tools for radio network planning, process for pre-operational network control and optimisation for the operational network. General challenges to face in 3G network control are based on the fact that many issues are interconnected and should be simultaneously considered, such as Planning means not only to meet current status and demands, but the solution should also comply with the future requirements by providing an acceptable development path. Traffic modelling is not only the question about the total amount of traffic growth, but also the question about the future service distribution and performance demands. All CDMA systems have a relation between capacity and coverage. Consequently, the network planning itself is not only based on propagation estimation but also on the interference situation in the network. Ideally, site selection consideration will be done based on the network analysis with planned load and traffic/service portfolio, taking possible co-siting constraints into account. Provision of multiple services and seamless management of at least two multiple access systems require rapid evolution of the management tools and processes. The network performance in terms of capacity, quality, and implementation and operational costs forms a multidimensional space. Operators' task will be to convert the business strategy to an operating point in the performance space in a cost efficient manner. The contribution of this thesis in terms of modelling and tools is as follows: Improvement of the accuracy of radio link budget by introducing power control headroom (also called fast fading margin). Improvement of loading equation by introducing a transmit power increase term. Development of theory and modelling for a planning tool capable of multi-service and multi-carrier interference, capacity and coverage analysis. Development and implementation an interface taking into account the true traffic distribution (not uniform) and terminal speed. In the area of pre-operational planning process the contribution of this thesis is as follows: Development of dimensioning methodology for multi-service network site density estimation, utilising the modelling of power control headroom, transmit power increase, soft handover and Eb/N0. Development of radio network planning process for multi-service environment including capacity and coverage evaluation for a given traffic mixture, quality and area requirements. Analysis of means to improve radio network performance with Mast Head Amplifier (MHA), diversity reception, sectorisation and proper antenna selection. In the area of optimisation of the operational network the contribution of this thesis is as follows: Definition for optimisation target in the case of 3G. The optimisation will be capacity-quality trade-off management instead of plain quality improvement process. Introduction of Self Organizing Map (SOM) in the analysis of cellular networks. Analysis of the applicability of SOM in WCDMA cellular network optimisation. Introduction of SOM based applications to support network capacity-quality trade-off management. It is worth noting that process and methods described in this work are not limited to 3G systems with WCDMA radio access technology, but they are applicable to other CDMA standards as well.reviewe

    TCP over CDMA2000 Networks: A Cross-Layer Measurement Study

    Full text link
    Modern cellular channels in 3G networks incorporate sophisticated power control and dynamic rate adaptation which can have significant impact on adaptive transport layer protocols, such as TCP. Though there exists studies that have evaluated the performance of TCP over such networks, they are based solely on observations at the transport layer and hence have no visibility into the impact of lower layer dynamics, which are a key characteristic of these networks. In this work, we present a detailed characterization of TCP behavior based on cross-layer measurement of transport layer, as well as RF and MAC layer parameters. In particular, through a series of active TCP/UDP experiments and measurement of the relevant variables at all three layers, we characterize both, the wireless scheduler and the radio link protocol in a commercial CDMA2000 network and assess their impact on TCP dynamics. Somewhat surprisingly, our findings indicate that the wireless scheduler is mostly insensitive to channel quality and sector load over short timescales and is mainly affected by the transport layer data rate. Furthermore, with the help of a robust correlation measure, Normalized Mutual Information, we were able to quantify the impact of the wireless scheduler and the radio link protocol on various TCP parameters such as the round trip time, throughput and packet loss rate

    Market impact of SR

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Engineering Systems Division, Technology and Policy Program, 2002.Includes bibliographical references (p. 163-169).This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Software radio (SR) is a new technology where signal-processing software running over general-purpose hardware platforms performs the radio functions. This approach promises to solve the issues that traditional radios face today, enhance competitiveness and accelerate the development of wireless communications. Lots of expectations have been put on SR. Nevertheless, SR is a still developing technology whose capabilities and implications have not been deeply studied. This thesis puts some clarity on the impact of SR through four steps: first, considering the technical constraints of SR and how they may affect its evolution; second, evaluating the SR benefits assuming that there are neither regulatory nor economic hurdles; third, analyzing the impact of SR on the stakeholders; and fourth, discussing the current regulatory framework and proposing changes to reduce barriers to SR development. This thesis finds that SR capabilities may be applied to multiple commercial sectors. A/D converters and semiconductors capacity limit the full implementation of these scenarios. Battery life is a further problem for SR devices. SR disrupts the traditional wireless value chain: general-purpose processors will capture market share from dedicated semiconductors; traditional radio manufacturers will compete against general-purpose platforms vendors, operating system designers and software programmers. Such changes modify the upper layers. In the cellular industry, SR reduces deployment costs in at least 33% per standard and operation costs in at least 47% per standard, promotes VMNOs, modifies the business model of players like site owners and improves roaming. In the short-term, FCC certification rules may damage SR development and adoption. In the long-term, software radio might provide the means to relax the need for standardization and improve spectrum management policies.by Maria Fuencisla Merino Artalejo.S.M

    Mobile and Wireless Communications

    Get PDF
    Mobile and Wireless Communications have been one of the major revolutions of the late twentieth century. We are witnessing a very fast growth in these technologies where mobile and wireless communications have become so ubiquitous in our society and indispensable for our daily lives. The relentless demand for higher data rates with better quality of services to comply with state-of-the art applications has revolutionized the wireless communication field and led to the emergence of new technologies such as Bluetooth, WiFi, Wimax, Ultra wideband, OFDMA. Moreover, the market tendency confirms that this revolution is not ready to stop in the foreseen future. Mobile and wireless communications applications cover diverse areas including entertainment, industrialist, biomedical, medicine, safety and security, and others, which definitely are improving our daily life. Wireless communication network is a multidisciplinary field addressing different aspects raging from theoretical analysis, system architecture design, and hardware and software implementations. While different new applications are requiring higher data rates and better quality of service and prolonging the mobile battery life, new development and advanced research studies and systems and circuits designs are necessary to keep pace with the market requirements. This book covers the most advanced research and development topics in mobile and wireless communication networks. It is divided into two parts with a total of thirty-four stand-alone chapters covering various areas of wireless communications of special topics including: physical layer and network layer, access methods and scheduling, techniques and technologies, antenna and amplifier design, integrated circuit design, applications and systems. These chapters present advanced novel and cutting-edge results and development related to wireless communication offering the readers the opportunity to enrich their knowledge in specific topics as well as to explore the whole field of rapidly emerging mobile and wireless networks. We hope that this book will be useful for students, researchers and practitioners in their research studies

    MODELS FOR GREENFIELD AND INCREMENTAL CELLULAR NETWORK PLANNING

    Get PDF
    Mobility, as provided in cellular networks, is largely affected by the location of the base stations. To a large extent, the location of base stations is determined by the quantity of base stations available to provide coverage. It is therefore not surprising that the quantity and subsequent location of base stations will not only impact service delivery but also have a large associated cost for implementation. Generally, the higher the quantity of base stations required to provide coverage, the greater the cost of implementation and operation of the radio network. This thesis proposes a modified optimization model to aid the cell planning process. This model, unlike those surveyed, is applicable to both green field and incremental network designs. The variation in model design is fundamental in ensuring cost effective growth and expansion of cellular networks. Numerical studies of the modified model applied to both abstract and real system configurations are carried out using MATLAB. Terrain data from Kampala, Uganda, was used to aid the study. Results show that the antenna height significantly determines the solution of the objective function. In addition, it is shown that slight variations in the cost association between the antenna height and the site construction requirements can be decisively used for predefined targeted network planning. A comparison is also made between an actual network installation and the estimates provided by the model. As expected, results from the study show that the difference between the estimated count and the actual count can be adEquately minimized by slight variations in antenna height requirements
    corecore