85 research outputs found

    An IoT Endpoint System-on-Chip for Secure and Energy-Efficient Near-Sensor Analytics

    Full text link
    Near-sensor data analytics is a promising direction for IoT endpoints, as it minimizes energy spent on communication and reduces network load - but it also poses security concerns, as valuable data is stored or sent over the network at various stages of the analytics pipeline. Using encryption to protect sensitive data at the boundary of the on-chip analytics engine is a way to address data security issues. To cope with the combined workload of analytics and encryption in a tight power envelope, we propose Fulmine, a System-on-Chip based on a tightly-coupled multi-core cluster augmented with specialized blocks for compute-intensive data processing and encryption functions, supporting software programmability for regular computing tasks. The Fulmine SoC, fabricated in 65nm technology, consumes less than 20mW on average at 0.8V achieving an efficiency of up to 70pJ/B in encryption, 50pJ/px in convolution, or up to 25MIPS/mW in software. As a strong argument for real-life flexible application of our platform, we show experimental results for three secure analytics use cases: secure autonomous aerial surveillance with a state-of-the-art deep CNN consuming 3.16pJ per equivalent RISC op; local CNN-based face detection with secured remote recognition in 5.74pJ/op; and seizure detection with encrypted data collection from EEG within 12.7pJ/op.Comment: 15 pages, 12 figures, accepted for publication to the IEEE Transactions on Circuits and Systems - I: Regular Paper

    Post-Quantum Cryptography for Internet of Things: A Survey on Performance and Optimization

    Full text link
    Due to recent development in quantum computing, the invention of a large quantum computer is no longer a distant future. Quantum computing severely threatens modern cryptography, as the hard mathematical problems beneath classic public-key cryptosystems can be solved easily by a sufficiently large quantum computer. As such, researchers have proposed PQC based on problems that even quantum computers cannot efficiently solve. Generally, post-quantum encryption and signatures can be hard to compute. This could potentially be a problem for IoT, which usually consist lightweight devices with limited computational power. In this paper, we survey existing literature on the performance for PQC in resource-constrained devices to understand the severeness of this problem. We also review recent proposals to optimize PQC algorithms for resource-constrained devices. Overall, we find that whilst PQC may be feasible for reasonably lightweight IoT, proposals for their optimization seem to lack standardization. As such, we suggest future research to seek coordination, in order to ensure an efficient and safe migration toward IoT for the post-quantum era.Comment: 13 pages, 3 figures and 7 tables. Formatted version submitted to ACM Computer Survey

    Data Partitioning and Asynchronous Processing to Improve the Embedded Software Performance on Multicore Processors

    Get PDF
    Nowadays, ensuring information security is extremely inevitable and urgent. We are also witnessing the strong development of embedded systems, IoT. As a result, research to ensure information security for embedded software is being focused. However, studies on optimizing embedded software on multi-core processors to ensure information security and increase the performance of embedded software have not received much attention. The paper proposes and develops the embedded software performance improvement method on multi-core processors based on data partitioning and asynchronous processing. Data are used globally to be retrieved by any threads. The data are divided into different partitions, and the program is also installed according to the multi-threaded model. Each thread handles a partition of the divided data. The size of each data portion is proportional to the processing speed and the cache size of the core in the multi-core processor. Threads run in parallel and do not need synchronization, but it is necessary to share a general global variable to check the executing status of the system. Our research on embedded software is based on data security, so we have tested and assessed the method with several block ciphers like AES, DES, etc., on Raspberry PI3. The average performance improvement rate achieved was 59.09%

    IXIAM: ISA EXtension for Integrated Accelerator Management

    Get PDF
    During the last few years, hardware accelerators have been gaining popularity thanks to their ability to achieve higher performance and efficiency than classic general-purpose solutions. They are fundamentally shaping the current generations of Systems-on-Chip (SoCs), which are becoming increasingly heterogeneous. However, despite their widespread use, a standard, general solution to manage them while providing speed and consistency has not yet been found. Common methodologies rely on OS mediation and a mix of user-space and kernel-space drivers, which can be inefficient, especially for fine-grained tasks. This paper addresses these sources of inefficiencies by proposing an ISA eXtension for Integrated Accelerator Management (IXIAM), a cost-effective HW-SW framework to control a wide variety of accelerators in a standard way, and directly from the cores. The proposed instructions include reservation, work offloading, data transfer, and synchronization. They can be wrapped in a high-level software API or even integrated into a compiler. IXIAM features also a user-space interrupt mechanism to signal events directly to the user process. We implement it as a RISC-V extension in the gem5 simulator and demonstrate detailed support for complex accelerators, as well as the ability to specify sequences of memory transfers and computations directly from the ISA and with significantly lower overhead than driver-based schemes. IXIAM provides a performance advantage that is more evident for small and medium workloads, reaching around 90x in the best case. This way, we enlarge the set of workloads that would benefit from hardware acceleration

    A Quantitative Study of Advanced Encryption Standard Performance as it Relates to Cryptographic Attack Feasibility

    Get PDF
    The advanced encryption standard (AES) is the premier symmetric key cryptosystem in use today. Given its prevalence, the security provided by AES is of utmost importance. Technology is advancing at an incredible rate, in both capability and popularity, much faster than its rate of advancement in the late 1990s when AES was selected as the replacement standard for DES. Although the literature surrounding AES is robust, most studies fall into either theoretical or practical yet infeasible. This research takes the unique approach drawn from the performance field and dual nature of AES performance. It uses benchmarks to assess the performance potential of computer systems for both general purpose and AES. Since general performance information is readily available, the ratio may be used as a predictor for AES performance and consequently attack potential. The design involved distributing USB drives to facilitators containing a bootable Linux operating system and the benchmark instruments. Upon boot, these devices conducted the benchmarks, gathered system specifications, and submitted them to a server for regression analysis. Although it is likely to be many years in the future, the results of this study may help better predict when attacks against AES key lengths will become feasible

    HyperFPGA: SoC-FPGA Cluster Architecture for Supercomputing and Scientific applications

    Get PDF
    Since their inception, supercomputers have addressed problems that far exceed those of a single computing device. Modern supercomputers are made up of tens of thousands of CPUs and GPUs in racks that are interconnected via elaborate and most of the time ad hoc networks. These large facilities provide scientists with unprecedented and ever-growing computing power capable of tackling more complex and larger problems. In recent years, the most powerful supercomputers have already reached megawatt power consumption levels, an important issue that challenges sustainability and shows the impossibility of maintaining this trend. With more pressure on energy efficiency, an alternative to traditional architectures is needed. Reconfigurable hardware, such as FPGAs, has repeatedly been shown to offer substantial advantages over the traditional supercomputing approach with respect to performance and power consumption. In fact, several works that advanced the field of heterogeneous supercomputing using FPGAs are described in this thesis \cite{survey-2002}. Each cluster and its architectural characteristics can be studied from three interconnected domains: network, hardware, and software tools, resulting in intertwined challenges that designers must take into account. The classification and study of the architectures illustrate the trade-offs of the solutions and help identify open problems and research lines, which in turn served as inspiration and background for the HyperFPGA. In this thesis, the HyperFPGA cluster is presented as a way to build scalable SoC-FPGA platforms to explore new architectures for improved performance and energy efficiency in high-performance computing, focusing on flexibility and openness. The HyperFPGA is a modular platform based on a SoM that includes power monitoring tools with high-speed general-purpose interconnects to offer a great level of flexibility and introspection. By exploiting the reconfigurability and programmability offered by the HyperFPGA infrastructure, which combines FPGAs and CPUs, with high-speed general-purpose connectors, novel computing paradigms can be implemented. A custom Linux OS and drivers, along with a custom script for hardware definition, provide a uniform interface from application to platform for a programmable framework that integrates existing tools. The development environment is demonstrated using the N-Queens problem, which is a classic benchmark for evaluating the performance of parallel computing systems. Overall, the results of the HyperFPGA using the N-Queens problem highlight the platform's ability to handle computationally intensive tasks and demonstrate its suitability for its use in supercomputing experiments.Since their inception, supercomputers have addressed problems that far exceed those of a single computing device. Modern supercomputers are made up of tens of thousands of CPUs and GPUs in racks that are interconnected via elaborate and most of the time ad hoc networks. These large facilities provide scientists with unprecedented and ever-growing computing power capable of tackling more complex and larger problems. In recent years, the most powerful supercomputers have already reached megawatt power consumption levels, an important issue that challenges sustainability and shows the impossibility of maintaining this trend. With more pressure on energy efficiency, an alternative to traditional architectures is needed. Reconfigurable hardware, such as FPGAs, has repeatedly been shown to offer substantial advantages over the traditional supercomputing approach with respect to performance and power consumption. In fact, several works that advanced the field of heterogeneous supercomputing using FPGAs are described in this thesis \cite{survey-2002}. Each cluster and its architectural characteristics can be studied from three interconnected domains: network, hardware, and software tools, resulting in intertwined challenges that designers must take into account. The classification and study of the architectures illustrate the trade-offs of the solutions and help identify open problems and research lines, which in turn served as inspiration and background for the HyperFPGA. In this thesis, the HyperFPGA cluster is presented as a way to build scalable SoC-FPGA platforms to explore new architectures for improved performance and energy efficiency in high-performance computing, focusing on flexibility and openness. The HyperFPGA is a modular platform based on a SoM that includes power monitoring tools with high-speed general-purpose interconnects to offer a great level of flexibility and introspection. By exploiting the reconfigurability and programmability offered by the HyperFPGA infrastructure, which combines FPGAs and CPUs, with high-speed general-purpose connectors, novel computing paradigms can be implemented. A custom Linux OS and drivers, along with a custom script for hardware definition, provide a uniform interface from application to platform for a programmable framework that integrates existing tools. The development environment is demonstrated using the N-Queens problem, which is a classic benchmark for evaluating the performance of parallel computing systems. Overall, the results of the HyperFPGA using the N-Queens problem highlight the platform's ability to handle computationally intensive tasks and demonstrate its suitability for its use in supercomputing experiments

    Doctor of Philosophy

    Get PDF
    dissertationAs the base of the software stack, system-level software is expected to provide ecient and scalable storage, communication, security and resource management functionalities. However, there are many computationally expensive functionalities at the system level, such as encryption, packet inspection, and error correction. All of these require substantial computing power. What's more, today's application workloads have entered gigabyte and terabyte scales, which demand even more computing power. To solve the rapidly increased computing power demand at the system level, this dissertation proposes using parallel graphics pro- cessing units (GPUs) in system software. GPUs excel at parallel computing, and also have a much faster development trend in parallel performance than central processing units (CPUs). However, system-level software has been originally designed to be latency-oriented. GPUs are designed for long-running computation and large-scale data processing, which are throughput-oriented. Such mismatch makes it dicult to t the system-level software with the GPUs. This dissertation presents generic principles of system-level GPU computing developed during the process of creating our two general frameworks for integrating GPU computing in storage and network packet processing. The principles are generic design techniques and abstractions to deal with common system-level GPU computing challenges. Those principles have been evaluated in concrete cases including storage and network packet processing applications that have been augmented with GPU computing. The signicant performance improvement found in the evaluation shows the eectiveness and eciency of the proposed techniques and abstractions. This dissertation also presents a literature survey of the relatively young system-level GPU computing area, to introduce the state of the art in both applications and techniques, and also their future potentials

    A survey on run-time power monitors at the edge

    Get PDF
    Effectively managing energy and power consumption is crucial to the success of the design of any computing system, helping mitigate the efficiency obstacles given by the downsizing of the systems while also being a valuable step towards achieving green and sustainable computing. The quality of energy and power management is strongly affected by the prompt availability of reliable and accurate information regarding the power consumption for the different parts composing the target monitored system. At the same time, effective energy and power management are even more critical within the field of devices at the edge, which exponentially proliferated within the past decade with the digital revolution brought by the Internet of things. This manuscript aims to provide a comprehensive conceptual framework to classify the different approaches to implementing run-time power monitors for edge devices that appeared in literature, leading the reader toward the solutions that best fit their application needs and the requirements and constraints of their target computing platforms. Run-time power monitors at the edge are analyzed according to both the power modeling and monitoring implementation aspects, identifying specific quality metrics for both in order to create a consistent and detailed taxonomy that encompasses the vast existing literature and provides a sound reference to the interested reader

    Securing Critical Infrastructures

    Get PDF
    1noL'abstract è presente nell'allegato / the abstract is in the attachmentopen677. INGEGNERIA INFORMATInoopenCarelli, Albert
    • …
    corecore