14,989 research outputs found

    Power Boosts for Cluster Tests

    Full text link
    Abstract. Gene cluster significance tests that are based on the num-ber of genes in a cluster in two genomes, and how compactly they are distributed, but not their order, may be made more powerful by the ad-dition of a test component that focuses solely on the similarity of the ordering of the common genes in the clusters in the two genomes. Here we suggest four such tests, compare them, and investigate one of them, the maximum adjacency disruption criterion, in some detail, analytically and through simulation.

    Defining the frame of minimum nonlinear Hubble expansion variation

    Get PDF
    We characterize a cosmic rest frame in which the monopole variation of the spherically averaged nonlinear Hubble expansion is most uniform, under arbitrary local Lorentz boosts of the central observer. Using the COMPOSITE sample of 4534 galaxies, we identify a degenerate set of candidate minimum nonlinear variation frames, which includes the rest frame of the Local Group (LG) of galaxies, but excludes the standard Cosmic Microwave Background (CMB) frame. Candidate rest frames defined by a boost from the LG frame close to the plane of the galaxy have a statistical likelihood similar to the LG frame. This may result from a lack of constraining data in the Zone of Avoidance. We extend our analysis to the Cosmicflows-2 (CF2) sample of 8162 galaxies. While the signature of a systematic boost offset between the CMB and LG frame averages is still detected, the spherically averaged nonlinear expansion variation in all rest frames is significantly larger in the CF2 sample than would be reasonably expected. We trace this to the CF2 distances being reported without a correction for inhomogeneous distribution Malmquist bias. Systematic differences in the inclusion of the large SFI++ subsample into the COMPOSITE and CF2 catalogues are analysed. Our results highlight the importance of a careful treatment of Malmquist biases for future peculiar velocities studies, including tests of the hypothesis of Wiltshire et al [Phys. Rev. D 88 (2013) 083529; arXiv:1201.5371] that a significant fraction of the CMB temperature dipole may be nonkinematic in origin.Comment: 25 pages, 19 figures; v4 erratum added: small corrections, no change in conclusion

    The Impact of Cluster Structure and Dynamical State on Scatter in the Sunyaev-Zel'dovich Flux-Mass Relation

    Full text link
    Cosmological constraints from cluster surveys rely on accurate mass estimates from the mass-observable relations. In order to avoid systematic biases and reduce uncertainties, we study the form and physical origin of the intrinsic scatter about the mean Sunyaev-Zel'dovich (SZ) flux-mass relation using a hydrodynamical simulation of galaxy cluster formation. We examine the assumption of lognormal scatter and detect non-negligible positive skewness and kurtosis (> 0.5) for a wide range of limiting masses and redshifts. These higher-order moments should be included in the parametrization of scatter in order not to bias cosmological constraints. We investigate the sources of the scatter by correlating it with measures of cluster morphology, halo concentration, and dynamical state, and we quantify the individual contribution from each source. We find that statistically the impact of dynamical state is weak, so the selection bias due to mergers is negligible. On the other hand, there is a strong correlation between the scatter and halo concentration, which can be used to reduce the scatter significantly (from 12.07% to 7.34% or by ~40% for clusters at z = 0). We also show that a cross-calibration by combining information from X-ray followups can be used to reduce the scatter in the flux-mass relation and also identify outliers in both X-ray and SZ cluster surveys.Comment: 14 pages, 12 figures; accepted for publication in Ap

    Effect of Our Galaxy's Motion on Weak Lensing Measurements of Shear and Convergence

    Full text link
    In this work we investigate the effect on weak-lensing shear and convergence measurements due to distortions from the Lorentz boost induced by our Galaxy's motion. While no ellipticity is induced in an image from the Lorentz boost to first order in beta = v/c, the image is magnified. This affects the inferred convergence at a 10 per cent level, and is most notable for low multipoles in the convergence power spectrum C {\kappa}{\kappa} and for surveys with large sky coverage like LSST and DES. Experiments which image only small fractions of the sky and convergence power spectrum determinations at l > 5 can safely neglect the boost effect to first order in beta.Comment: 4 pages, replaced to reflect changes made for publication to MNRA

    Observational Challenges for the Standard FLRW Model

    Get PDF
    We summarise some of the main observational challenges for the standard Friedmann-Lemaitre-Robertson-Walker cosmological model and describe how results recently presented in the parallel session `Large--scale Structure and Statistics' (DE3) at the `Fourteenth Marcel Grossman Meeting on General Relativity' are related to these challenges.Comment: 17 pages; references added. Matches published version in Int. J. Mod. Phys. D; Report on Parallel Session DE3 of MG1

    Separating intrinsic alignment and galaxy-galaxy lensing

    Full text link
    The coherent physical alignment of galaxies is an important systematic for gravitational lensing studies as well as a probe of the physical mechanisms involved in galaxy formation and evolution. We develop a formalism for treating this intrinsic alignment (IA) in the context of galaxy-galaxy lensing and present an improved method for measuring IA contamination, which can arise when sources physically associated with the lens are placed behind the lens due to photometric redshift scatter. We apply the technique to recent Sloan Digital Sky Survey (SDSS) measurements of Luminous Red Galaxy lenses and typical (L*) source galaxies with photometric redshifts selected from the SDSS imaging data. Compared to previous measurements, this method has the advantage of being fully self-consistent in its treatment of the IA and lensing signals, solving for the two simultaneously. We find an IA signal consistent with zero, placing tight constraints on both the magnitude of the IA effect and its potential contamination to the lensing signal. While these constraints depend on source selection and redshift quality, the method can be applied to any measurement that uses photometric redshifts. We obtain a model-independent upper-limit of roughly 10% IA contamination for projected separations of approximately 0.1-100 Mpc/h. With more stringent photo-z cuts and reasonable assumptions about the physics of intrinsic alignments, this upper limit is reduced to 1-2%. These limits are well below the statistical error of the current lensing measurements. Our results suggest that IA will not present intractable challenges to the next generation of galaxy-galaxy lensing experiments, and the methods presented here should continue to aid in our understanding of alignment processes and in the removal of IA from the lensing signal.Comment: 31 pages, 8 Figures. Minor changes to reflect published versio

    Disentangling cosmic-ray and dark-matter induced gamma-rays in galaxy clusters?

    Full text link
    Galaxy clusters are among the best targets for indirect dark matter detection in gamma-rays, despite the large astrophysical background expected from these objects. Detection is now within reach of current observatories (Fermi-LAT or Cerenkov telescopes); however, assessing the origin of this signal might be difficult. We investigate whether the behaviour of the number of objects per `flux' bin (logN-logF) and that of the stacked signal could be used as a signature of the dominant process at stake.We use the CLUMPY code to integrate the signal from decaying or annihilating dark matter and cosmic rays along the line of sight. We assume the standard NFW profile for the dark matter density and rely on a parametrised emissivity for the cosmic-ray component. In this context, the consequences of stacking are explored using the MCXC meta-catalogue of galaxy clusters. We find the value of the slope of the logN-logF power law (or the increase of the signal with the number of stacked objects) to be a clear diagnosis to disentangle decaying dark matter from cosmic-ray induced gamma-rays. For dark matter annihilation, depending on the signal boost from the substructures, it is either similar to the cosmic-ray signal (no boost) or similar to the decay case (large boosts). The shift between the brightest object and its followers also depends on the signal origin. For annihilation, this shift and the stacked signal are poorly constrained because of the large uncertainty affecting the boost. We also underline that the angular dependence of the annihilation signal is not universal because of the substructure contribution.Comment: 7 pages, 3 figures, minor corrections (to match the A&A accepted version
    corecore