1,663 research outputs found

    Hybrids and Fragments: Music, Genre, Culture and Technology

    Get PDF
    Technologies are fundamental to music and its marketing and dissemination, as is the categorisation of music by genre. In this research we examine the relationship between musical genre and technology by examining genre proliferation, fragmentation and hybridity. We compare the movement of musical artists between genres in various technological eras, and evaluate the connections between the dissemination of music and its categorisation. Cultural hybridity and fragmentation is thought to be the norm in the globalised era by many scholars, and the online music environment appears to be populated by hybrid genres and micro-genres. To examine this we study the representation of musical genre on the Internet. We acquire data from three main sources: The Echo Nest, a music-intelligence system, and two collectively constructed knowledge-bases, Wikidata and MusicBrainz. We discover geographical and commercial biases. We calculate genre inception dates in order to examine category proliferation, and construct networks from these data, using the relationships between artists and genres to establish structure. Using network analyses to quantify genre hybridity we find increasing hybridisation, peaking at various periods in different datasets. Statistical analyses, comparing hybridity within our various data, validates our method and reveals a relationship between the activity of editing music information and the movement of musical artists between musical genres. We also find evidence for the fragmentation of genre and the appearance of micro- genres. We consider artists that are invisible in mainstream systems using data from three alternative platforms, Bandcamp, CD Baby and SoundCloud, and examine rapid genre proliferation in Spotify. We then discuss hybridity and fragmentation in relation to postmodernity, hypermodernity and unimodernity, music and genre within society, and the ways genre intersects with technology

    Social software for music

    Get PDF
    Tese de mestrado integrado. Engenharia Informática e Computação. Faculdade de Engenharia. Universidade do Porto. 200

    Exploiting tag information for search and personalization

    Get PDF
    [no abstract

    Text-based Sentiment Analysis and Music Emotion Recognition

    Get PDF
    Nowadays, with the expansion of social media, large amounts of user-generated texts like tweets, blog posts or product reviews are shared online. Sentiment polarity analysis of such texts has become highly attractive and is utilized in recommender systems, market predictions, business intelligence and more. We also witness deep learning techniques becoming top performers on those types of tasks. There are however several problems that need to be solved for efficient use of deep neural networks on text mining and text polarity analysis. First of all, deep neural networks are data hungry. They need to be fed with datasets that are big in size, cleaned and preprocessed as well as properly labeled. Second, the modern natural language processing concept of word embeddings as a dense and distributed text feature representation solves sparsity and dimensionality problems of the traditional bag-of-words model. Still, there are various uncertainties regarding the use of word vectors: should they be generated from the same dataset that is used to train the model or it is better to source them from big and popular collections that work as generic text feature representations? Third, it is not easy for practitioners to find a simple and highly effective deep learning setup for various document lengths and types. Recurrent neural networks are weak with longer texts and optimal convolution-pooling combinations are not easily conceived. It is thus convenient to have generic neural network architectures that are effective and can adapt to various texts, encapsulating much of design complexity. This thesis addresses the above problems to provide methodological and practical insights for utilizing neural networks on sentiment analysis of texts and achieving state of the art results. Regarding the first problem, the effectiveness of various crowdsourcing alternatives is explored and two medium-sized and emotion-labeled song datasets are created utilizing social tags. One of the research interests of Telecom Italia was the exploration of relations between music emotional stimulation and driving style. Consequently, a context-aware music recommender system that aims to enhance driving comfort and safety was also designed. To address the second problem, a series of experiments with large text collections of various contents and domains were conducted. Word embeddings of different parameters were exercised and results revealed that their quality is influenced (mostly but not only) by the size of texts they were created from. When working with small text datasets, it is thus important to source word features from popular and generic word embedding collections. Regarding the third problem, a series of experiments involving convolutional and max-pooling neural layers were conducted. Various patterns relating text properties and network parameters with optimal classification accuracy were observed. Combining convolutions of words, bigrams, and trigrams with regional max-pooling layers in a couple of stacks produced the best results. The derived architecture achieves competitive performance on sentiment polarity analysis of movie, business and product reviews. Given that labeled data are becoming the bottleneck of the current deep learning systems, a future research direction could be the exploration of various data programming possibilities for constructing even bigger labeled datasets. Investigation of feature-level or decision-level ensemble techniques in the context of deep neural networks could also be fruitful. Different feature types do usually represent complementary characteristics of data. Combining word embedding and traditional text features or utilizing recurrent networks on document splits and then aggregating the predictions could further increase prediction accuracy of such models

    Context based multimedia information retrieval

    Get PDF

    HyperLearn: A Distributed Approach for Representation Learning in Datasets With Many Modalities

    Get PDF
    Multimodal datasets contain an enormous amount of relational information, which grows exponentially with the introduction of new modalities. Learning representations in such a scenario is inherently complex due to the presence of multiple heterogeneous information channels. These channels can encode both (a) inter-relations between the items of different modalities and (b) intra-relations between the items of the same modality. Encoding multimedia items into a continuous low-dimensional semantic space such that both types of relations are captured and preserved is extremely challenging, especially if the goal is a unified end-to-end learning framework. The two key challenges that need to be addressed are: 1) the framework must be able to merge complex intra and inter relations without losing any valuable information and 2) the learning model should be invariant to the addition of new and potentially very different modalities. In this paper, we propose a flexible framework which can scale to data streams from many modalities. To that end we introduce a hypergraph-based model for data representation and deploy Graph Convolutional Networks to fuse relational information within and across modalities. Our approach provides an efficient solution for distributing otherwise extremely computationally expensive or even unfeasible training processes across multiple-GPUs, without any sacrifices in accuracy. Moreover, adding new modalities to our model requires only an additional GPU unit keeping the computational time unchanged, which brings representation learning to truly multimodal datasets. We demonstrate the feasibility of our approach in the experiments on multimedia datasets featuring second, third and fourth order relations

    Visualization for Recommendation Explainability: A Survey and New Perspectives

    Full text link
    Providing system-generated explanations for recommendations represents an important step towards transparent and trustworthy recommender systems. Explainable recommender systems provide a human-understandable rationale for their outputs. Over the last two decades, explainable recommendation has attracted much attention in the recommender systems research community. This paper aims to provide a comprehensive review of research efforts on visual explanation in recommender systems. More concretely, we systematically review the literature on explanations in recommender systems based on four dimensions, namely explanation goal, explanation scope, explanation style, and explanation format. Recognizing the importance of visualization, we approach the recommender system literature from the angle of explanatory visualizations, that is using visualizations as a display style of explanation. As a result, we derive a set of guidelines that might be constructive for designing explanatory visualizations in recommender systems and identify perspectives for future work in this field. The aim of this review is to help recommendation researchers and practitioners better understand the potential of visually explainable recommendation research and to support them in the systematic design of visual explanations in current and future recommender systems.Comment: Updated version Nov. 2023, 36 page

    A hybrid approach for item collection recommendations : an application to automatic playlist continuation

    Get PDF
    Current recommender systems aim mainly to generate accurate item recommendations, without properly evaluating the multiple dimensions of the recommendation problem. However, in many domains, like in music, where items are rarely consumed in isolation, users would rather need a set of items, designed to work well together, while having some cognitive properties as a whole, related to their perception of quality and satisfaction. In this thesis, a hybrid case-based recommendation approach for item collections is proposed. In particular, an application to automatic playlist continuation, addressing similar cognitive concepts, rather than similar users, is presented. Playlists, that are sets of music items designed to be consumed as a sequence, with a specific purpose and within a specific context, are treated as cases. The proposed recommender system is based on a meta-level hybridization. First, Latent Dirichlet Allocation is applied to the set of past playlists, described as distributions over music styles, to identify their underlying concepts. Then, for a started playlist, its semantic characteristics, like its latent concept and the styles of the included items, are inferred, and Case-Based Reasoning is applied to the set of past playlists addressing the same concept, to construct and recommend a relevant playlist continuation. A graph-based item model is used to overcome the semantic gap between songs’ signal-based descriptions and users’ high-level preferences, efficiently capture the playlists’ structures and the similarity of the music items in those. As the proposed method bases its reasoning on previous playlists, it does not require the construction of complex user profiles to generate accurate recommendations. Furthermore, apart from relevance, support to parameters beyond accuracy, like increased coherence or support to diverse items is provided to deliver a more complete user experience. Experiments on real music datasets have revealed improved results, compared to other state of the art techniques, while achieving a “good trade-off” between recommendations’ relevance, diversity and coherence. Finally, although actually focusing on playlist continuations, the designed approach could be easily adapted to serve other recommendation domains with similar characteristics.Los sistemas de recomendación actuales tienen como objetivo principal generar recomendaciones precisas de artículos, sin evaluar propiamente las múltiples dimensiones del problema de recomendación. Sin embargo, en dominios como la música, donde los artículos rara vez se consumen en forma aislada, los usuarios más bien necesitarían recibir recomendaciones de conjuntos de elementos, diseñados para que se complementaran bien juntos, mientras se cubran algunas propiedades cognitivas, relacionadas con su percepción de calidad y satisfacción. En esta tesis, se propone un sistema híbrido de recomendación meta-nivel, que genera recomendaciones de colecciones de artículos. En particular, el sistema se centra en la generación automática de continuaciones de listas de música, tratando conceptos cognitivos similares, en lugar de usuarios similares. Las listas de reproducción son conjuntos de elementos musicales diseñados para ser consumidos en secuencia, con un propósito específico y dentro de un contexto específico. El sistema propuesto primero aplica el método de Latent Dirichlet Allocation a las listas de reproducción, que se describen como distribuciones sobre estilos musicales, para identificar sus conceptos. Cuando se ha iniciado una nueva lista, se deducen sus características semánticas, como su concepto y los estilos de los elementos incluidos en ella. A continuación, el sistema aplica razonamiento basado en casos, utilizando las listas del mismo concepto, para construir y recomendar una continuación relevante. Se utiliza un grafo que modeliza las relaciones de los elementos, para superar el ?salto semántico? existente entre las descripciones de las canciones, normalmente basadas en características sonoras, y las preferencias de los usuarios, expresadas en características de alto nivel. También se utiliza para calcular la similitud de los elementos musicales y para capturar la estructura de las listas de dichos elementos. Como el método propuesto basa su razonamiento en las listas de reproducción y no en usuarios que las construyeron, no se requiere la construcción de perfiles de usuarios complejos para poder generar recomendaciones precisas. Aparte de la relevancia de las recomendaciones, el sistema tiene en cuenta parámetros más allá de la precisión, como mayor coherencia o soporte a la diversidad de los elementos para enriquecer la experiencia del usuario. Los experimentos realizados en bases de datos reales, han revelado mejores resultados, en comparación con las técnicas utilizadas normalmente. Al mismo tiempo, el algoritmo propuesto logra un "buen equilibrio" entre la relevancia, la diversidad y la coherencia de las recomendaciones generadas. Finalmente, aunque la metodología presentada se centra en la recomendación de continuaciones de listas de reproducción musical, el sistema se puede adaptar fácilmente a otros dominios con características similares.Postprint (published version
    corecore