272 research outputs found

    Deep latent-variable models for neural text generation

    Get PDF
    Text generation aims to produce human-like natural language output for down-stream tasks. It covers a wide range of applications like machine translation, document summarization, dialogue generation and so on. Recently deep neural network-based end-to-end architectures are known to be data-hungry, and text generated from them usually suffer from low diversity, interpretability and controllability. As a result, it is difficult to trust the output from them in real-life applications. Deep latent-variable models, by specifying the probabilistic distribution over an intermediate latent process, provide a potential way of addressing these problems while maintaining the expressive power of deep neural networks. This presentation will explain how deep latent-variable models can improve over the standard encoder-decoder model for text generation. We will start from an introduction of encoder-decoder and deep latent-variable models, then go over popular optimization strategies, and finally elaborate on how latent variable models can help improve the diversity, interpretability and data efficiency in different applications of text generation tasks.Textgenerierung zielt darauf ab, eine menschenähnliche Textausgabe in natürlicher Sprache für Anwendungen zu erzeugen. Es deckt eine breite Palette von Anwendungen ab, wie maschinelle Übersetzung, Zusammenfassung von Dokumenten, Generierung von Dialogen usw. In letzter Zeit werden dafür hauptsächlich Endto- End-Architekturen auf der Basis von tiefen neuronalen Netzwerken verwendet. Der End-to-End-Ansatz fasst alle Submodule, die früher nach komplexen handgefertigten Regeln entworfen wurden, zu einer ganzheitlichen Codierungs- Decodierungs-Architektur zusammen. Bei ausreichenden Trainingsdaten kann eine Leistung auf dem neuesten Stand der Technik erzielt werden, ohne dass sprach- und domänenabhängiges Wissen erforderlich ist. Deep-Learning-Modelle sind jedoch als extrem datenhungrig bekannt und daraus generierter Text leidet normalerweise unter geringer Diversität, Interpretierbarkeit und Kontrollierbarkeit. Infolgedessen ist es schwierig, der Ausgabe von ihnen in realen Anwendungen zu vertrauen. Tiefe Modelle mit latenten Variablen bieten durch Angabe der Wahrscheinlichkeitsverteilung über einen latenten Zwischenprozess eine potenzielle Möglichkeit, diese Probleme zu lösen und gleichzeitig die Ausdruckskraft tiefer neuronaler Netze zu erhalten. Diese Dissertation zeigt, wie tiefe Modelle mit latenten Variablen Texterzeugung verbessern gegenüber dem üblichen Encoder-Decoder-Modell. Wir beginnen mit einer Einführung in Encoder-Decoder- und Deep Latent Variable-Modelle und gehen dann auf gängige Optimierungsstrategien wie Variationsinferenz, dynamische Programmierung, Soft Relaxation und Reinforcement Learning ein. Danach präsentieren wir Folgendes: 1. Wie latente Variablen Vielfalt der Texterzeugung verbessern können, indem ganzheitliche, latente Darstellungen auf Satzebene gelernt werden. Auf diese Weise kann zunächst eine latente Darstellung ausgewählt werden, aus der verschiedene Texte generiert werden können. Wir präsentieren effektive Algorithmen, um gleichzeitig das Lernen der Repräsentation und die Texterzeugung durch Variationsinferenz zu trainieren. Um die Einschränkungen der Variationsinferenz bezüglich Uni-Modalität und Inkonsistenz anzugehen, schlagen wir eine Wake-Sleep-Variation und ein auf Transinformation basierendes Trainingsziel vor. Experimente zeigen, dass sie sowohl die übliche Variationsinferenz als auch nicht-latente Variablenmodelle bei der Dialoggenerierung übertreffen. 2. Wie latente Variablen die Steuerbarkeit und Interpretierbarkeit der Texterzeugung verbessern können, indem feinkörnigere latente Spezifikationen zum Zwischengenerierungsprozess hinzugefügt werden. Wir veranschaulichen die Verwendung latenter Variablen für Wortausrichtung, Inhaltsauswahl, Textsegmentierung und Feldsegmentkorrespondenz. Wir leiten für sie effiziente Trainingsalgorithmen ab, damit die Texterzeugung explizit gesteuert werden kann, indem die latente Variable, die durch ihre Definition vom Menschen interpretiert werden kann, manipuliert wird. 3. Überwindung der Seltenheit von Trainingsmustern durch Behandlung von nicht parallelem Text als latente Variablen. Das Training kann wie beim Standard-EM-Algorithmus durchgeführt werden, der stabil konvergiert. Wir zeigen, dass es bei der Dialoggenerierung erfolgreich angewendet werden kann und den Generierungsraum durch die Verwendung von nicht-konversativem Text erheblich bereichert

    Large state spaces and self-supervision in reinforcement learning

    Full text link
    L'apprentissage par renforcement (RL) est un paradigme d'apprentissage orienté agent qui s'intéresse à l'apprentissage en interagissant avec un environnement incertain. Combiné à des réseaux de neurones profonds comme approximateur de fonction, l'apprentissage par renforcement profond (Deep RL) nous a permis récemment de nous attaquer à des tâches très complexes et de permettre à des agents artificiels de maîtriser des jeux classiques comme le Go, de jouer à des jeux vidéo à partir de pixels et de résoudre des tâches de contrôle robotique. Toutefois, un examen plus approfondi de ces remarquables succès empiriques révèle certaines limites fondamentales. Tout d'abord, il a été difficile de combiner les caractéristiques souhaitables des algorithmes RL, telles que l'apprentissage hors politique et en plusieurs étapes, et l'approximation de fonctions, de manière à obtenir des algorithmes stables et efficaces dans de grands espaces d'états. De plus, les algorithmes RL profonds ont tendance à être très inefficaces en raison des stratégies d'exploration-exploitation rudimentaires que ces approches emploient. Enfin, ils nécessitent une énorme quantité de données supervisées et finissent par produire un agent étroit capable de résoudre uniquement la tâche sur laquelle il est entrainé. Dans cette thèse, nous proposons de nouvelles solutions aux problèmes de l'apprentissage hors politique et du dilemme exploration-exploitation dans les grands espaces d'états, ainsi que de l'auto-supervision dans la RL. En ce qui concerne l'apprentissage hors politique, nous apportons deux contributions. Tout d'abord, pour le problème de l'évaluation des politiques, nous montrons que la combinaison des méthodes populaires d'apprentissage hors politique et à plusieurs étapes avec une paramétrisation linéaire de la fonction de valeur pourrait conduire à une instabilité indésirable, et nous dérivons une variante de ces méthodes dont la convergence est prouvée. Deuxièmement, pour l'optimisation des politiques, nous proposons de stabiliser l'étape d'amélioration des politiques par une régularisation de divergence hors politique qui contraint les distributions stationnaires d'états induites par des politiques consécutives à être proches les unes des autres. Ensuite, nous étudions l'apprentissage en ligne dans de grands espaces d'états et nous nous concentrons sur deux hypothèses structurelles pour rendre le problème traitable : les environnements lisses et linéaires. Pour les environnements lisses, nous proposons un algorithme en ligne efficace qui apprend activement un partitionnement adaptatif de l'espace commun en zoomant sur les régions les plus prometteuses et fréquemment visitées. Pour les environnements linéaires, nous étudions un cadre plus réaliste, où l'environnement peut maintenant évoluer dynamiquement et même de façon antagoniste au fil du temps, mais le changement total est toujours limité. Pour traiter ce cadre, nous proposons un algorithme en ligne efficace basé sur l'itération de valeur des moindres carrés pondérés. Il utilise des poids exponentiels pour oublier doucement les données qui sont loin dans le passé, ce qui pousse l'agent à continuer à explorer pour découvrir les changements. Enfin, au-delà du cadre classique du RL, nous considérons un agent qui interagit avec son environnement sans signal de récompense. Nous proposons d'apprendre une paire de représentations qui mettent en correspondance les paires état-action avec un certain espace latent. Pendant la phase non supervisée, ces représentations sont entraînées en utilisant des interactions sans récompense pour encoder les relations à longue portée entre les états et les actions, via une carte d'occupation prédictive. Au moment du test, lorsqu'une fonction de récompense est révélée, nous montrons que la politique optimale pour cette récompense est directement obtenue à partir de ces représentations, sans aucune planification. Il s'agit d'une étape vers la construction d'agents entièrement contrôlables. Un thème commun de la thèse est la conception d'algorithmes RL prouvables et généralisables. Dans la première et la deuxième partie, nous traitons de la généralisation dans les grands espaces d'états, soit par approximation de fonctions linéaires, soit par agrégation d'états. Dans la dernière partie, nous nous concentrons sur la généralisation sur les fonctions de récompense et nous proposons un cadre d'apprentissage non-supervisé de représentation qui est capable d'optimiser toutes les fonctions de récompense.Reinforcement Learning (RL) is an agent-oriented learning paradigm concerned with learning by interacting with an uncertain environment. Combined with deep neural networks as function approximators, deep reinforcement learning (Deep RL) allowed recently to tackle highly complex tasks and enable artificial agents to master classic games like Go, play video games from pixels, and solve robotic control tasks. However, a closer look at these remarkable empirical successes reveals some fundamental limitations. First, it has been challenging to combine desirable features of RL algorithms, such as off-policy and multi-step learning with function approximation in a way that leads to both stable and efficient algorithms in large state spaces. Moreover, Deep RL algorithms tend to be very sample inefficient due to the rudimentary exploration-exploitation strategies these approaches employ. Finally, they require an enormous amount of supervised data and end up producing a narrow agent able to solve only the task that it was trained on. In this thesis, we propose novel solutions to the problems of off-policy learning and exploration-exploitation dilemma in large state spaces, as well as self-supervision in RL. On the topic of off-policy learning, we provide two contributions. First, for the problem of policy evaluation, we show that combining popular off-policy and multi-step learning methods with linear value function parameterization could lead to undesirable instability, and we derive a provably convergent variant of these methods. Second, for policy optimization, we propose to stabilize the policy improvement step through an off-policy divergence regularization that constrains the discounted state-action visitation induced by consecutive policies to be close to one another. Next, we study online learning in large state spaces and we focus on two structural assumptions to make the problem tractable: smooth and linear environments. For smooth environments, we propose an efficient online algorithm that actively learns an adaptive partitioning of the joint space by zooming in on more promising and frequently visited regions. For linear environments, we study a more realistic setting, where the environment is now allowed to evolve dynamically and even adversarially over time, but the total change is still bounded. To address this setting, we propose an efficient online algorithm based on weighted least squares value iteration. It uses exponential weights to smoothly forget data that are far in the past, which drives the agent to keep exploring to discover changes. Finally, beyond the classical RL setting, we consider an agent interacting with its environments without a reward signal. We propose to learn a pair of representations that map state-action pairs to some latent space. During the unsupervised phase, these representations are trained using reward-free interactions to encode long-range relationships between states and actions, via a predictive occupancy map. At test time, once a reward function is revealed, we show that the optimal policy for that reward is directly obtained from these representations, with no planning. This is a step towards building fully controllable agents. A common theme in the thesis is the design of provable RL algorithms that generalize. In the first and the second part, we deal with generalization in large state spaces either by linear function approximation or state aggregation. In the last part, we focus on generalization over reward functions and we propose a task-agnostic representation learning framework that is provably able to solve all reward functions

    Biologically-inspired hierarchical architectures for object recognition

    Get PDF
    PhD ThesisThe existing methods for machine vision translate the three-dimensional objects in the real world into two-dimensional images. These methods have achieved acceptable performances in recognising objects. However, the recognition performance drops dramatically when objects are transformed, for instance, the background, orientation, position in the image, and scale. The human’s visual cortex has evolved to form an efficient invariant representation of objects from within a scene. The superior performance of human can be explained by the feed-forward multi-layer hierarchical structure of human visual cortex, in addition to, the utilisation of different fields of vision depending on the recognition task. Therefore, the research community investigated building systems that mimic the hierarchical architecture of the human visual cortex as an ultimate objective. The aim of this thesis can be summarised as developing hierarchical models of the visual processing that tackle the remaining challenges of object recognition. To enhance the existing models of object recognition and to overcome the above-mentioned issues, three major contributions are made that can be summarised as the followings 1. building a hierarchical model within an abstract architecture that achieves good performances in challenging image object datasets; 2. investigating the contribution for each region of vision for object and scene images in order to increase the recognition performance and decrease the size of the processed data; 3. further enhance the performance of all existing models of object recognition by introducing hierarchical topologies that utilise the context in which the object is found to determine the identity of the object. Statement ofHigher Committee For Education Development in Iraq (HCED

    Adaptation Algorithms for Neural Network-Based Speech Recognition: An Overview

    Get PDF
    We present a structured overview of adaptation algorithms for neural network-based speech recognition, considering both hybrid hidden Markov model / neural network systems and end-to-end neural network systems, with a focus on speaker adaptation, domain adaptation, and accent adaptation. The overview characterizes adaptation algorithms as based on embeddings, model parameter adaptation, or data augmentation. We present a meta-analysis of the performance of speech recognition adaptation algorithms, based on relative error rate reductions as reported in the literature.Comment: Submitted to IEEE Open Journal of Signal Processing. 30 pages, 27 figure

    A Brief Introduction to Machine Learning for Engineers

    Full text link
    This monograph aims at providing an introduction to key concepts, algorithms, and theoretical results in machine learning. The treatment concentrates on probabilistic models for supervised and unsupervised learning problems. It introduces fundamental concepts and algorithms by building on first principles, while also exposing the reader to more advanced topics with extensive pointers to the literature, within a unified notation and mathematical framework. The material is organized according to clearly defined categories, such as discriminative and generative models, frequentist and Bayesian approaches, exact and approximate inference, as well as directed and undirected models. This monograph is meant as an entry point for researchers with a background in probability and linear algebra.Comment: This is an expanded and improved version of the original posting. Feedback is welcom
    • …
    corecore