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ABSTRACT

SOCIAL MEASUREMENT AND CAUSAL INFERENCE
WITH TEXT

SEPTEMBER 2021

KATHERINE A. KEITH

B.A., LEWIS & CLARK COLLEGE

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Brendan O’Connor

The digital age has dramatically increased access to large-scale collections of

digitized text documents. These corpora include, for example, digital traces from

social media, decades of archived news reports, and transcripts of spoken interactions

in political, legal, and economic spheres. For social scientists, this new widespread

data availability has potential for improved quantitative analysis of relationships be-

tween language use and human thought, actions, and societal structure. However,

the large-scale nature of these collections means that traditional manual approaches

to analyzing content are extremely costly and do not scale. Furthermore, incor-

porating unstructured text data into quantitative analysis is difficult due to texts’

high-dimensional nature and linguistic complexity.

This thesis blends (a) the computational strengths of natural language processing

(NLP) and machine learning to automate and scale-up quantitative text analysis with

vi



(b) two themes central to social scientific studies but often under-addressed in NLP:

measurement—creating quantifiable summaries of empirical phenomena—and causal

inference—estimating the effects of interventions. First, we address measuring class

prevalence in document collections; we contribute a generative probabilistic modeling

approach to prevalence estimation and show empirically that our model is more robust

to shifts in class priors between training and inference. Second, we examine cross-

document entity-event measurement; we contribute an empirical pipeline and a novel

latent disjunction model to identify the names of civilians killed by police from our

corpus of web-scraped news reports. Third, we gather and categorize applications

that use text to reduce confounding from causal estimates and contribute a list of

open problems as well as guidance about data processing and evaluation decisions

in this area. Finally, we contribute a new causal research design to estimate the

natural indirect and direct effects of social group signals (e.g. race or gender) on

conversational outcomes with separate aspects of language as causal mediators; this

chapter is motivated by a theoretical case study of U.S. Supreme Court oral arguments

and the effect of an advocate’s gender on interruptions from justices. We conclude

by discussing the relationship between measurement and causal inference with text

and future work at this intersection.

vii
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CHAPTER 1

INTRODUCTION

Language is an inherently social process that underlies most human interactions.

As such, analysis of written language can provide insight into relationships between

language use and human thought, actions, and societal structure. For instance, pol-

itics relies on language—candidates debate policy, representatives write legislation,

nations negotiate peace treaties, and media outlets report on international relations

[Grimmer and Stewart, 2013]. In economics, product reviews can provide insight

into consumer decision making, public company filings insight into asset price move-

ments, and media sentiment insight into the stock market [Gentzkow et al., 2019].

In sociology, communication within and between groups underlies collective action,

social relationships, and social roles [Evans and Aceves, 2016]. This importance of

language in unpacking human thought, behavior, and society has led to decades of

manual analysis of text by social scientists and numerous academic guidebooks on

the subject, e.g. Neuendorf [2017], Krippendorff [2018].

Digital collections of text and other social data have dramatically increased in

the last few decades. Social data now includes large-scale business and government

records of digital traces—byproducts of humans’ everyday actions that are stored

digitally [Sandvig and Hargittai, 2015, Salganik, 2017, Olteanu et al., 2019]. Advances

in technology such as the digitization of historical documents via optical character

recognition [Mori et al., 1999] and digital systems (e.g. social media) that record user-

generated language [Sandvig and Hargittai, 2015] have greatly increased the amount

of text to which researchers have access. This explosion of data has been one of the
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catalysts of the academic field of computational social science [Lazer et al., 2009], and

as Watts [2011] speculates,

Rather, just as the invention of the telescope revolutionized the study
of the heavens, so too by rendering the unmeasurable measurable, the
technological revolution in mobile, Web, and Internet communications
has the potential to revolutionize our understanding of ourselves and how
we interact.

Yet, in the study of the portion of “the heavens” that is language, a “telescope”

of manual content analysis simply does not scale. Instead, many have turned to com-

putational methods from natural language processing (NLP) [Jurafsky and Martin,

2019, Eisenstein, 2019] to automate and scale-up analysis of text. For this set of “text-

as-data” methods, statistical models of language are built and deployed, typically via

computer programs [Grimmer and Stewart, 2013, Grimmer et al., 2021]. In one of the

earliest text-as-data applications, Mosteller and Wallace [1963] apply statistical text

analysis to infer the unknown authorship of certain Federalist Papers. Since then, au-

tomated text-as-data methods have swept across the social sciences [O’Connor et al.,

2011, Grimmer and Stewart, 2013, Evans and Aceves, 2016, Gentzkow et al., 2019,

Nguyen et al., 2020]. These methods have been crucial in studies of large-scale col-

lections of text including: studying the nature of online censorship in China with 11

million social media posts [King et al., 2013], studying racial disparities in police offi-

cers language with roughly 37,000 spoken utterances [Voigt et al., 2017], and studying

drivers of newspapers’ political slant with one year’s worth of articles from over 400

newspapers [Gentzkow and Shapiro, 2010].

Despite this growing interest in text-as-data methods as the “telescope” that could

provide insight into human behavior and society, text-as-data methods are often de-

signed for a different purpose than they are used for by social scientists. As Antoniak

and Mimno [2018] describe, many methods in NLP are “downsteam-centered” in

which the end goal is improving predictive performance on a more complicated down-

stream task. In contrast, many social science applications are “corpus-centered” in
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which the end goal is to use NLP methods to provide evidence about the nature of

the author’s thought, culture, or linguistic tendencies.

This thesis aims to help close this gap between how the text-as-data “telescope”

is designed and used. In particular, this thesis focuses on two themes central to

social scientific studies but often under-addressed in NLP—measurement (§1.1) and

casual inference (§1.2). In the remainder of this introduction, we provide definitions

and several challenges of measurement and causal inference with text. While these

are themes that could span entire book chapters (e.g. Grimmer et al. [2021]), we de-

scribe this thesis’s particular conceptual, methodological, and empirical contributions

along these two themes. We wrap-up the introduction with a thesis statement that

synthesizes these ideas (§1.3).

1.1 Measurement with text

Definition. Central to analysis of text data is measurement—creating quantifi-

able summaries of empirical phenomena. Measurement has a long history, dating back

to Stevens [1946]: “measurement, in the broadest sense, is defined as assignment of nu-

merals to objects or events according to rules.” Dimensionality reduction is essential

to measurement in the social sciences. Patty and Penn [2015] discuss how empirical

analysis of social constructs require a “data reduction” of higher-dimensional data

into lower-dimensional measures; and Grimmer et al. [2021] emphasize that for text

specifically “measurement is fundamentally about compression” in which one throws

away specific information to focus on a generalizable property.1

Accurate and valid measurement at scale is key in text-as-data studies. Revisiting

the studies we previously highlighted, King et al. [2013] aim to understand the nature

1Measurement is a concept closely related to the measurement modeling literature in the social
sciences. Measurement modeling consists of mapping observable data to theoretical constructs and
emphasizes the importance of validity (is it right?) and reliability (can it be repeated?) [Loevinger,
1957, Messick, 1987, Quinn et al., 2010, Jacobs and Wallach, 2021].
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of the content censored by the Chinese government and thus develop measures for the

censorship magnitude of specific topic areas (e.g. call for collective action or critique

of the state). Voigt et al. [2017] aim to understand how police officers speak differ-

ently to citizens of different races and thus develop linguistic measures of respect.

Gentzkow and Shapiro [2010] aim to understand how economic market forces deter-

mine the political ideology of news outlets and thus develop a measure of ideological

slant. Across these three examples, the measures in question—censorship topic areas,

respect, and ideological slant—are complicated social constructs that require a rich

knowledge of how language is created and social theory for why these measures are

important.

We formally define measurement of these types of social constructs from text as

U = g(X) (1.1)

where g is the measurement function that maps text, X, to the concept of interest,

U . Egami et al. [2018] call this g-function the “codebook function” and describe

how it can generically map text to any lower-dimensional representation. Using NLP

methods, g could take many forms including rule-based dictionary look-ups, super-

vised classifiers, unsupervised learners (e.g. topic models or word embeddings), or a

combination of these methods.

Challenges. To preface the contributions of this thesis, we highlight several

settings in which it is challenging to adapt existing NLP methods to measurement

for text:

1. Aggregate corpus-level measurement. Many tasks in NLP—especially recent

popular benchmarks for general-purpose “natural language understanding,” e.g. Wang

et al. [2018, 2019]—focus on settings for which X is a single sentence. Other

work in NLP addresses X as a document (e.g. Iyyer et al. [2015], Yang et al.
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[2016]). Yet, it is rare to see NLP tasks for which X is an entire corpus. How-

ever, in the social sciences, corpus-level measurement is abundant: some aim

to measure a corpus’s proportion of categories—for example, the proportion of

constituent mail in specific policy areas [Hopkins and King, 2010]—or corpus-

level counts of events induced by particular actors—for example, counts of the

different kinds of police intervention in ethnic conflict [Wilkinson, 2006]. Yet,

simple aggregations of NLP predictions at the sentence or document level do

not necessarily result in corpus-level accuracy.

2. Distributional shifts. Challenge #1 is further exacerbated if social scientists aim

to characterize temporal or domain changes. For instance, g (from Equation 1.1)

could be a trained classifier that is used to infer the construct of interest for a

collection of documents at each time step: Ut = g(Xt) for t = 1, 2, . . . , n. How-

ever, most ML and NLP models assume the data is independent and identically

distributed (i.i.d.) in which the training and test sets are drawn from the same

distribution. However, in most settings the data is not i.i.d., in which case g can

often biased towards the class prevalence at training time. While distribution

shifts are a longstanding research area in ML and NLP [Hand, 2006, Blitzer

et al., 2007, Daumé III, 2007] and recent efforts have gathered and character-

ized empirical examples of these distribution shifts [Koh et al., 2021], this is

still a difficult and open problem in porting “off-the-shelf” methods from NLP

to social-science measurement.

3. Linguistic complexity, ambiguity, and diversity. Compared to other mediums

of data, g is often difficult to construct because language has complex struc-

ture which sometimes leads to inherent ambiguity and often results in multiple

constructions having the same semantic meaning [Bender, 2013, Bender and

Lascarides, 2019]. Language is more than just a “bag-of-words.” Semantics,

the meaning of language, is built from syntax, the structure of language. For
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instance, “Mary likes John” takes a different semantic meaning than “John likes

Mary” even though both examples contain the same words. Language can also

be ambiguous; in the example “She saw the man with the telescope” the prepo-

sitional phrase “with the telescope” could attach to either “saw” or “man,”

giving the sentence two distinct but plausible meanings. While these linguistic

challenges are a fundamental focus of NLP research, they are particularly impor-

tant in the gap between NLP methods and social scientific measurement because

the cultural concepts central to social science studies often have a very com-

plex linguistic structure—e.g. the measures of censorship topic areas, respect,

and ideological slant we previously mentioned. Furthermore, social scientists

may also want to quantify uncertainty resulting from any inherent ambiguity

in language.

4. Small annotation budgets. For supervised learning settings, it is typically as-

sumed that the more data one has, the better the accuracy of one’s model

[Halevy et al., 2009]. Many NLP benchmark datasets require enormous amounts

of time and money to construct—for example, the creation of the Penn Treebank

took eight years and thousands of annotation hours [Marcus et al., 1993]. Yet,

for many social science applications, the annotations of interest are complex

social constructs that often require domain experts to annotate, which could

result in high costs. Thus, it is of particular importance to text-based social

measurement to focus on regimes with small amounts of labeled data.

Thesis contributions. In Chapter 2, we address challenges #1 and #2 within

the context of prevalence estimation—the task of inferring the relative frequency of

classes of unlabeled examples in a group; for example, the proportion of a document

collection with positive sentiment. We contribute (1) a generative probabilistic mod-

eling approach to prevalence estimation and (2) the construction and evaluation of

prevalence confidence intervals in order to reflect uncertainty over the predicted preva-
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lence from imperfect classifiers. We show that an off-the-shelf discriminitive classifier

can be given a generative re-interpretation by backing out an implicit individual-level

likleihood function. Empirically, we demonstrate our approach provides better con-

fidence interval coverage than alternatives, and is more robust to shifts in the class

prior between training and inference (challenge #2).

In Chapter 3, we address challenges #3 and #4 within the context of entity-event

measurement—measuring entities who are actors or recipients of certain events—

and the specific application of extracting names of persons who have been killed by

police from a corpus of news documents. We propose police fatalities are a useful

test case for text measurement and event extraction research because fatalities are a

well defined event type with clear semantics. Overall, we contribute a novel police

fatality corpus and present a model to solve this application with no annotated data

(challenge #4) by using EM-based distant supervision—inducing labels by aligning

relation-entity entries from a gold standard database to their mentions in a corpus—

with logistic regression and convolutional neural network classifiers. Our model out-

performs two off-the-shelf event extractor systems, and it can suggest candidate victim

names in some cases faster than one of the major manually-collected police fatality

databases. We address linguistic ambiguity in difficult sentences (challenge #3) by

using a method that samples from the full joint distribution of dependency parse

trees to communicate ambiguity in language syntax and demonstrate this approach

has improved empirical results for our police fatality pipeline.

1.2 Causal inference with text

Definition. Beyond measurement, social scientists are often interested in causal

questions [Morgan and Winship, 2015, Grimmer, 2015]. In contrast to descriptive or

predictive tasks, causal inference aims to understand how intervening on one variable

affects another variable [Holland, 1986, Morgan and Winship, 2015, Pearl, 2009b].
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Morgan and Winship [2015] describe various modes of causal inquiry in the social

sciences: associational analysis between observed treatments and outcomes, targeted

analysis of the effect of one or more focal causes, and finally all-cause structural

analysis. Similarly, Pearl [2019] proposes a three-level causal hierarchy: association—

purely statistical relationships defined by the naked data; intervention—researchers’

manipulations of the data; and counterfactuals—retrospective reasoning.

In this thesis, we focus on estimating causal effects for questions that take the

general form, “What is the effect of a treatment variable on an outcome variable?”

For example,

1. What is the effect of alcohol use (treatment) on academic success (outcome)

[Kiciman et al., 2018] (Chapter 4)?

2. What is the effect of lawyers’ signalled gender (treatment) on whether U.S. Supreme

Court justices interrupt them during oral arguments (outcome) (Chapter 5)?

Let T be the treatment variable and Y be the outcome variable. Formally, the

causal questions presented above are inquiries of the (binary) treatment effect,

Pr(Y |do(T = 1))− Pr(Y |do(T = 0)) (1.2)

in which do(X = x) represents a researcher’s intervention that sets variable X to the

value x [Pearl, 2009b], and T ∈ {0, 1} are specific values of treatment (e.g. male and

female lawyers for Example 2).

However, researcher intervention on treatment variables is often infeasible or un-

ethical in the social sciences. In Example 1 above, it would be unethical to assign

participants to abuse alcohol due to potential health consequences. In Example 2,

researchers cannot disrupt the proceedings of high-stakes U.S. Supreme Court oral

arguments with controlled interventions. In these cases, researchers often turn to

observational (non-experimental) data. In the observational setting, researchers will
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often need to account for confounders (C)—variables that cause both T and Y—

and mediators (M)—variables on the causal path T → M → Y—in order to have

unbiased estimates of the causal effects of interest.

In this thesis, we focus on the settings for which text is a proxy for confounders

(Chapter 4) and mediators (Chapter 5) when estimating causal effects from observa-

tional data. In Example 1, researchers can use text from particpants’ social media

posts (e.g. Twitter messages) as a proxy for demographic variables to which they do

not have access. In Example 2, researchers can use the language of U.S. Supreme

Court lawyers as a mediating variable between gender signal and interruption.

We formally define a structural causal model (SCM) [Pearl, 2009b] for these set-

tings of text as a proxy for confounders or mediators. Let V be a set of endogenous

variables and F be a set of nonparametric functions that assigns each variable in V

a value based on the values of other variables in the model.2 Then our SCM is

V = {T, Y, C,M,X1, X2} (1.3)

F = {fC , fM , fY } (1.4)

C = fC(X1) (1.5)

M = fM(X2) (1.6)

Y = fY (T,C,M) (1.7)

where T, Y,M , and C are the treatment, outcome, mediator, and confounder variables

respectively; X1 is the text that encodes the confounders; and X2 is the text that

encodes the mediators. This model is accompanied by the causal graph in Figure 1.1.

Note, the nonparmetric functions for the confounder and mediator, C = fC(X1) and

M = fM(X2), are equivalent to the text measurement functions in Equation 1.1.

2For simplicity, we exclude the set of exogenous variables here.
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Figure 1.1: Causal diagram in which nodes are causal variables and arrows represent
causal dependencies. Here, we include the causal variables for treatment (T ), outcome
(Y ), confounder (C), mediator (M), and text (X1 and X2).

Challenges. Unlike text measurement—which has been explored extensively

in the past few decades—causal inference with text is still a relatively new research

area. As such, this thesis highlights several epistemological challenges with text-based

casual inference:

1. Methods and applications are scattered across different communities. Causal

inference methods have been reinvented and iterated on within the fields of

statistics [Holland, 1986], epidemiology [Hernán and Robins, 2020], economics

[Angrist and Pischke, 2008], computer science [Pearl, 2009b] and the broader

social sciences [Morgan and Winship, 2015]. Yet, researchers have not reached

consensus on causal formalisms, terminology, methods, and tasks. Furthermore,

in the emerging subfield of text-based causal inference, applications are scat-

tered across many different academic disciplines and publication venues, making

it difficult to see gaps between desired applications and existing methods.

2. Text-specific causal identification assumptions. One of the major difficulties

of causal inference is that estimation is contingent on often untestable causal

identification assumptions. For instance, a researcher often must assume un-
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confoundedness—that all latent confounders are accounted for—and overlap

(also known as positivity)—that any unit has a non-zero probability of assign-

ment to each treatment condition for all possible values of the confounder set

[Morgan and Winship, 2015]. A major challenge of text-based causal inference

is determining when these assumptions hold for causal estimates that include

high-dimensional text data and when additional assumptions must be made.

3. Lack of ground-truth for causal evaluation. Unlike prediction, in which we can

evaluate methods via predictive performance (e.g. accuracy or mean-squared

error) on a held-out test set, causal evaluation is difficult because the true causal

effects for real-world problems are typically unknown. Thus, incorporating text-

specific causal assumptions (challenge #2) into a causal system that is already

difficult to evaluate presents an even greater challenge.

4. Causal estimates with multiple text measurements or measurement error. There

are often multiple, valid options of how to measure text and these options will

often have varying levels of accuracy. Incorporating these noisy measurements

into causal inference is a potential problem, and characterizing the extent of the

problem is even more difficult without ground-truth causal evaluations (chal-

lenge #3). These issues are further complicated when text simultaneously en-

codes multiple causal variables (e.g. confounders and colliders) and one must

separate measures of these variables.

5. Relatively few causal designs specific to text-as-data. Many text-as-data social

science applications are asking causal questions, but either the causal question or

causal assumptions are undeclared. Although this is slowly changing, we posit

that developing more causal designs explicitly focused on text-as-data could

help expand the subfield and number of potential causal applications with text

in the social sciences.
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Thesis contributions. Because text-based causal inference is a newly emerging

subfield, Chapters 4 and 5 of this thesis focus on establishing the conceptual founda-

tions (as opposed to empirical methods and results) for text-based causal inference

while addressing the challenges presented above.

In Chapter 4, we focus on the specific setting in which text data encodes latent con-

founders and one wants to use this text to reduce confounding from causal estimates

with observational data. Since methods and applications are scattered across differ-

ent communities (challenge #1), we systematically gather and categorize examples of

text as a proxy for confounders and contribute a guide to data processing decisions.

We discuss text-specific causal assumptions (challenge #2), potential sensitivity of

causal estimates to different representations and choices of imperfect measurements

of text (challenge #4), and potential avenues forward for causal evaluation with text

(challenge #3).

In Chapter 5, we focus explicitly on challenge #5 and contribute a new causal

research design for observational (non-experimental) data to estimate the natural in-

direct and direct effects of social group signals (e.g. race or gender) on conversational

outcomes with separate aspects of language as causal mediators. We illustrate the

promises and challenges of this framework via a theoretical case study of the effect

of an advocate’s gender on interruptions from justices in U.S. Supreme Court oral

arguments. We also discuss challenges conceptualizing and operationalizing causal

variables such as gender and language that comprise of many components, and high-

light issues when there are multiple potential operationalizations of causal variables

using NLP methods (challenge #4). We also articulate potential open challenges

in this research design including temporal dependence between mediators in conver-

sations, causal dependence between multiple language mediators, and dependence

between social group perception and language perception.
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1.3 Thesis statement

This thesis contributes conceptual and empirical advances in quantitative analysis

of text for the social sciences by blending: (a) the computational strengths of natural

language processing (NLP) and machine learning to automate and scale-up text anal-

ysis with (b) two themes central to social scientific studies but often underaddressed in

NLP: measurement—creating quantifiable summaries of empirical phenomena—and

causal inference—estimating the effects of interventions.

In Chapter 6, we conclude with reflections on the relationship between text-based

measurement and causal inference and future research directions along these two

themes and at their intersection.
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CHAPTER 2

MEASURING CLASS PREVALENCE IN DOCUMENTS

This chapter was originally published as Keith and O’Connor [2018].

2.1 Introduction

The goal of prevalence estimation is to infer the relative frequency of classes yi

associated with unlabeled examples (e.g. documents) from a group, xi ∈ D. For

example, one might want to estimate the proportion of blogs with a positive sentiment

towards a political candidate [Hopkins and King, 2010], sentiment of responses to

natural disasters on social media [Mandel et al., 2012], or prevalence of car types

in street photos to infer neighborhood demographics [Gebru et al., 2017]. Often,

an analyst wants to compare prevalence between multiple groups, such as inferring

prevalence variation over time (e.g., changes to online abuse content [Bissias et al.,

2016]), or across other covariates (e.g., changes in police officers’ “respect” when

speaking to minorities [Voigt et al., 2017]). This problem has been re-introduced

in many different fields: as “quantification” in data mining [Forman, 2005, 2008],

“prevalence estimation” in statistics and epidemiology [Gart and Buck, 1966], and

“class prior estimation” in machine learning [Vucetic and Obradovic, 2001, Saerens

et al., 2002]. In NLP, SemEval 2016 and 2017 included Twitter sentiment class

prevalence tasks [Nakov et al., 2016, Rosenthal et al., 2017].

Prevalence estimation assumes access to a (potentially small) set of labeled ex-

amples to train a classifier; but unlike the task of individual classification, the goal is

to estimate the proportion of a class among examples in a group. If a perfectly ac-
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curate classifier is available, it is trivial to construct a perfect prevalence estimate by

counting the classification decisions (§2.3.1). In fact, most application papers in the

previous paragraph use this or a similar aggregation rule to conduct their prevalence

estimates. However, classifiers often exhibit errors from different sources, including:

• Shifts in the class distribution from training to testing (Ptrain(y) 6= Ptest(y)). A

classifier may be biased toward predicting Ptrain(y).

• Difficult classification tasks (such as predicting sentiment or sarcasm) that result

in low accuracy classifiers; this can be exacerbated by limited training data, as

is common in social science or industry settings that require manual human

annotation for labels.

It is typically assumed (and sometimes confirmed) that when an individual classi-

fier has less than 100% accuracy, it can still give reasonable prevalence estimates.1

However, there is relatively little understanding to what extent the quality of the

document-level model impacts prevalence estimates. Imperfect classifier accuracy

ought to be reflected in uncertainty over the predicted prevalence.

In this work, we tackle both of these challenges simultaneously, using a generative

probabilistic modeling approach to prevalence estimation. This model directly param-

eterizes and conducts inference for the unknown prevalence, naturally accommodating

shifts between training and testing, and also allows us to infer confidence intervals

for the prevalence. We show that our best model can be seen as an implicit likelihood

generative re-interpretation of an off-the-shelf discriminative classifier (§2.4.2); this

unifies it with previous work, and also is easy for a practitioner to apply.

We additionally review several types of class prevalence estimators from the lit-

erature (§2.3), and conduct a robust empirical evaluation on sentiment analysis over

1For example, Bissias et al. find a relative mean absolute error of less than 0.01 when the individual
classifier has ROC AUC of 0.91.

15



hundreds of document groups, illustrating the methods’ biases and robustness to class

prior shift between training and testing. Our method provides better confidence in-

terval coverage and is more robust to class prior shift than previous methods, and is

substantially more accurate than an algorithm in widespread use in political science.

2.2 Problem definition

We consider two prevalence estimation problems: (1) point prediction and (2)

confidence interval prediction. In this work, we are most interested in supervised

learning for discrete-valued document labels, with access to a small to moderate

number (e.g. around 1000) of labeled documents with text x and label y: (xi, yi) ∈

Dtrain. We restrict attention to binary-valued labels y ∈ {0, 1}. At test time, there

are one or more groups of unlabeled test documents, D(1), · · · ,D(G); for example, one

group might be a set of tweets sent during a certain month, or a set of online reviews

associated with a particular product. For each group D, let θ∗ ≡ (1/n)
∑n

i yi be the

true proportion of positive labels (where n = |D|).

The prevalence point prediction problem is to take an unlabeled document group

D as input and infer an estimated θ̂ ∈ [0, 1]. Ideally, this point estimate should be

close to the true prevalence θ∗; we evaluate this by mean absolute error.

In this work, we are the first (that we know of) to introduce the question of

uncertainty in prevalence estimation. Since document classifiers are typically far

from perfectly accurate, we should expect substantial error in prevalence prediction,

and inference methods should quantify such uncertainty. We formalize this as a

prevalence confidence interval (CI) inference, which takes as input a desired nominal

coverage level (1 − α), and predicts a real-valued interval [θ̂lo, θ̂hi] ⊆ [0, 1]. Ideally,

a CI prediction algorithm should have frequentist coverage semantics: over a large
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Figure 2.1: Example posterior distributions with MAP prevalence estimates, θ̂ (solid
line) and the true prevalence, θ∗ (dashed line). A desirable property is that confidence
intervals, technically Bayesian credible intervals, (shaded regions) will be wider for
more uncertain models. For example, the wider CI on the right (green) contains θ∗

whereas the narrower CI interval on the left (red) does not.

number of test groups,2 (1−α)% of the predicted intervals ought to contain the true

value θ∗. If the problem is hard—for example, the relationship between document

features and the label is not captured well by the model—the CI should be wide. We

empirically evaluate coverage of CI-aware prevalence inference models. See Fig. 2.1

for an intuitive example.

2.3 Review and baselines: Discriminative individual classifi-

cation aggregation

The most straightforward baseline approach to prevalence estimation is to build

on discriminative, supervised learning for individual-level labels, such as binary lo-

gistic regression with bag-of-words features, randomized feature hashing [Weinberger

et al., 2009], or neural networks [Goldberg, 2016]. Such a model defines an individ-

ual document’s label probability pi ≡ pβ(yi = 1 | xi) where parameters β are fit by

maximizing regularized likelihood on the labeled training data.

2Or in fact, across many experiments in which the model or algorithm is applied [Wasserman,
2011].
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2.3.1 Classify and count (CC)

For prevalence point estimation, Forman [2005] defines the “classify and count”

(CC) method as simply averaging the most-likely individual label predictions,

θ̂CC =
1

n

∑
i

1{pi > 0.5}. (2.1)

This is the most obvious approach for practitioners, but it has at least two weak-

nesses, which have been addressed in different groups of prior work. First, the class

proportions may change between training and test groups, which the Adjusted CC

and ReadMe algorithms attempt to fix (§2.3.2–2.3.3). Second, it discards probabilis-

tic information, which is remedied by the Probabilistic CC method, and an extension

we propose (§2.3.4–2.3.5).

2.3.2 Adjusted classify and count (ACC)

CC may encounter problems if the test class distribution is different than the

training’s. The “adjusted classify-and-count” method [Gart and Buck, 1966, For-

man, 2005] treats the classifier output as a proxy variable, and estimates a separate

confusion model of classifier output ŷi ≡ 1{pi > 0.5} conditional on the true label,

p(ŷ | y), from cross-validation within the training set. Assuming the confusion model

extends to the test data, a moment-matching approach is then used to infer the true

label proportions, by first observing ptest(ŷ) =
∑

y p(ŷ | y)ptest(y) and solving the

linear system for ptest(y), the test-time expected class prevalence. Using empirical

estimates for the true positive rate TPR = p(ŷ = 1 | y = 1), and false positive rate

FPR = p(ŷ = 1 | y = 0), and θ̂CC = p(ŷ = 1), it has the closed form

θ̂ACC =
θ̂CC − FPR

TPR− FPR
. (2.2)
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By design, ACC is more robust to a new test-time prevalence, but it relies on the

accuracy of its TPR and FPR estimates, and its lack of probabilistic semantics makes

it unclear how to infer confidence intervals.

2.3.3 ReadMe algorithm

An interesting extension to ACC is to remove the need for a discriminative clas-

sifier, by directly modeling text conditional on the latent document class. The

ReadMe algorithm, developed in political science [Hopkins and King, 2010], extends

ACC’s linear system for every term type in a (subsampled and augmented) term

vocabulary V , and calculates their class-conditional probabilities from the training

data. Assuming these conditional models also hold in the test data, that implies

ptest(w) =
∑

y p̂(w | y)ptest(y); the algorithm infers ptest(y) by minimizing the squared

error of predicted versus empirical term frequencies in the test set. The open-source

ReadMe software package3 has been used in numerous political science studies, includ-

ing inferring proportions of types of censored Chinese news [King et al., 2013], credit

claiming in Congressional press releases [Grimmer et al., 2012], and voter intentions

among Twitter messages [Ceron et al., 2015].

ReadMe is theoretically appealing in that it infers latent class prevalences to ex-

plain the test group’s textual evidence; but as a non-probabilistic model, it does not

directly imply a method for confidence intervals (Hopkins and King use the boot-

strap). Furthermore, our experiments (§2.5), contra the original paper, show its

implementation exhibits poor performance.

2.3.4 Probabilistic classify and count (PCC)

Both the CC and ACC methods discard uncertainty information from the classifi-

cation model. In a difficult classification setting, for example, we might expect many

3https://gking.harvard.edu/readme
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probabilities to be near, say, 0.6, in which case the CC method may undercount the

negative class. This suggests an alternative method, “probabilistic classify and count”

(PCC):

θ̂PCC =
1

n

∑
i

pi (2.3)

which is the expected prevalence, (1/n)
∑

i yi, assuming each yi is distributed accord-

ing to the original probabilistic classifier.

2.3.5 PCC Poisson-Binomial distribution (PB-PCC)

If we assume each yi is conditionally independent given text xi and model pa-

rameters β, this defines a fully probabilistic model for the class prevalence. Let the

latent variable S =
∑

i yi; its distribution is thus Poisson-Binomial [Chen and Liu,

1997]. The modeled prevalence distribution p(S
n
| D) can be exactly inferred by

Monte Carlo inference: each iteration samples every yi and sums for an S sample.

The S/n distribution over many iterations can be used to construct a Monte Carlo

CDF F̂ , from which any [F̂ (t), F̂ (t+1−α)] is an (1−α)-sized credible interval (where

0 ≤ t ≤ t + 1 − α ≤ 1). This model has prevalence expectation E[S
n

] = θ̂PCC , and

variance

Var

[
S

n

]
=

1

n2

∑
i

pi(1− pi). (2.4)

To a certain degree, this model captures uncertainty in the classifier since per-

document variance, pi(1 − pi), is high when pi = 0.5 and low when near 0 or 1.

However, it also has a major weakness—the variance concentrates with a large test

group size n, which is the wrong behavior when a classifier is truly noisy, for example,

when a classifier is genuinely uncertain and predicts the same constant pi = q for

each document. In this case, the correct behavior would be to maintain a flat, wide
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posterior belief about θ, which is better accomplished by the generative model we

introduce in the subsequent section.

2.4 Our approach: generative probabilistic modeling

We turn to generative modeling, that seeks to to jointly model the probability of

labels and text in both the training and test groups, by assuming a document’s text

is generated conditional on the document label. Language models have widespread

use in natural language processing, and class-conditional models have been used for

document classification (e.g. multinomial Naive Bayes; [McCallum and Nigam, 1998]).

We use a similar generative setup to explicitly model a class prevalence for test group

g, with a generative story for each (bag-of-words) document i in the group:

θg ∼ Dist(α) (2.5)

yi,g ∼ Bernoulli(θg) (2.6)

xi,g ∼ Multinomial(φyi,g) (2.7)

The test group is assumed to have a latent class prior θg, which itself has a prior

distribution (we assume Dist(α) = Unif(0, 1) in this work). For each class k, φk is a

class-conditional unigram language model, which is learned from the training data but

fixed at test time. We then perform inference to find θg that gives a high probability

to text data {xi ∈ D(g)}. Figure 2.2 shows the probabilistic graphical model.

2.4.1 MNB and loglinear language models

We experiment with two explicit language models in this generative framework:

(1) multinomial Naive Bayes (MNB), using a training-time symmetric Dirichlet prior

φy ∼ Dir(λ/V ) for vocabulary size V and “pseudocount” λ, and (2) an additive log
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Figure 2.2: Our generative model for prevalence estimation. Left: Class-conditional
language models (φ) are learned at training time. Right: Test-time inference for
multiple groups’ latent prevalences (θ).

linear model (Loglin, a.k.a. SAGE [Eisenstein et al., 2011]). Loglin estimates words’

probabilities as deviations from a background log-probability m,

ηy,w ∼ Laplace(λ) (2.8)

φy,w = exp(mw + ηy,w)/
∑
j

exp(mj + ηy,j)

where mw is the empirical log probability of a word w among all training documents,

and ηy,w denotes class-specific deviations of the log-probability of a word w, MAP

estimated under a sparsity-inducing L1 penalty. Such sparse additive models have

been used in both supervised and unsupervised document modeling; for example, as

a document-level posterior classifier it outperforms MNB [Eisenstein et al., 2011], or

even discriminative models [Taddy, 2013], and its sparsity helps interpretability for

analyzing political, literary, and legal texts [Monroe et al., 2008, Sim et al., 2013,

Bamman et al., 2014, Wang et al., 2012].

2.4.2 Implicit likelihoods from discriminative classifiers (LR-Implicit)

This generative formulation has a major advantage over the discriminative, CC-

style aggregation models because it sets up a likelihood and posterior distribution over

θ. But in terms of document modeling for classification purposes, the independence
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assumptions of the generative model are typically too strong, and for document-

level classification, discriminative models tend to outperform similarly parameterized

generative ones, especially when the training set is sufficiently large [Ng and Jordan,

2002]. Thus, discriminative models may have information better suited to class preva-

lence inference. Also, since the most common practice for document classification is

to use discriminative models, it would be helpful to more effectively use discriminative

posteriors within our generative context.

In Naive Bayes-style generative document classification, the model defines pgen(x |

y) and class prior p(y), which are combined to calculate the posterior pgen(y | x) ∝

pgen(x | y)p(y). Discriminative models, by contrast, directly define a pdisc(y | x). We

can, however, expand this quantity via Bayes Rule:

pdisc(y | x) = pimplicit′(x | y)ptrain(y)/p(x). (2.9)

The “implicit document likelihood” pimplicit′(x | y) is a likelihood function that, com-

bined with a particular class prior p(y), would have resulted in the same posterior

predicted by the discriminative model. Given the discriminative posterior predictions

and the training-time class prior ptrain(y) = θ̂train, an implicit likelihood function

can be backed out for any particular document x; we define the “simple implicit”

likelihood for document x to be:

pimplicit(x | y) = pdisc(y | x)/θ̂train. (2.10)

This takes the form of a correction of the discriminative posterior, by dividing out

the training-time class prevalence.4

4Technically, pimplicit′ is retrievable only up to a constant, and pimplicit is one particular compatible
implicit likelihood, since it can be multiplied by any constant and is still consistent with Eq. 2.9,
and would give rise to the same document- and group-level posteriors.
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Our LR-Implicit generative model uses the same class prevalence and document

label generation setup as before, but to calculate the individual documents’ p(x | y)

probabilities, it uses pimplicit based on a logistic regression pdisc.
5

This model is inspired by [Saerens et al., 2002]’s EM algorithm for adjusting a

classifier for a test set’s class prior; they derive it differently by applying the assump-

tion ptrain(x | y) = ptest(x | y), expanding each side with Bayes’ Rule, solving for

ptest(y | x), then estimating ptest(y) via EM. This in fact optimizes the same marginal

likelihood function in the next section under the implicit-discriminative generative

model; our formulation broadens it as a fully Bayesian or likelihood-based model.

2.4.3 Inference

To estimate class prevalence, we use the marginal log likelihood over θ to obtain

a posterior over θ. For each each test group g, we have the marginal log probability

of all document texts,

MLLg(θ) ≡ log p(D(g) | θ) (2.11)

=
∑
i∈D(g)

log
∑

y∈{0,1}

p(xi, yi = y | θ)

=
∑
i∈D(g)

log

(
θL+

i + (1− θ)L−i
)
,

where we denote the class-conditional document text likelihoods L+
i ≡ p(xi | yi =

1) and L−i ≡ p(xi | yi = 0). The gradient for an individual document is (L+
i −

L−i )/(θL+
i + (1 − θ)L−i ); intuitively, the sign of the numerator says that documents

that are more likely under the positive than negative class encourage higher likelihood

for larger values of θ. When the model is uncertain about a document—that is, when

L+
i ≈ L−i —that document contributes a relatively flat likelihood curve, expressing

5The implicit likelihood still has the form of a logistic regression, adjusting its bias term: if
pdisc(y | x) = σ(β′x+ β0), then pimplicit(x | y) = σ(β′x+ β0 − log (θtrain/(1− θtrain))).
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little preference for likely values of θ. If a model is more heavily regularized—for

example, when the log-linear additive model is more dominated by the background

language model—this condition tends to hold for the documents, leading to a flat,

highly uncertain likelihood curve.

The marginal log likelihood is unimodal over θ ∈ [0, 1], since it is concave, being

a sum of concave log-linear functions, and having negative curvature:

∂2MLLg
∂θ2

= −
∑
i∈D(g)

(
L+
i − L−i

θL+
i + (1− θ)L−i

)2

. (2.12)

Since it is concave and there is only one parameter, a very wide variety of techniques

could be used to reliably find a mode, including EM or first- or second-order methods.

At least two approaches to inferring confidence intervals are possible. One is to use

a central limit theorem-style approximation, assuming the sampling distribution is

approximated by a normal with mean θMLE and variance −[∂2MLLg/∂θ
2]−1. The

second, which we focus on, is Bayesian estimation for log p(θg | D(g)) ∝ log p(θg) +

MLLg(θg) by simply using a grid search over values θ ∈ {0.001, 0.002, ...0.999} to infer

both the posterior mode θMAP as well as a 90% highest posterior density interval.6

In small-scale experiments, this model had very similar results to the central limit

theorem (with EM for θMLE).

2.5 Experiments

2.5.1 Data

To compare document class prevalence estimators, we desire datasets that (1)

have natural document groups that correspond to realistic, real-world applications,

(2) have a large number of test groups (hundreds or more), and (3) are freely available

6Since we use a uniform prior, this is just the MLE. Technically, we used a prior of
Beta(1.0001, 1.0001) to avoid certain issues with tie-breaking, but it was not necessary.
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for academic research. It has been a challenge to fulfill these criteria in previous work.

Nakov et al. [2016] conduct large-scale manual annotation of Twitter sentiment for

SemEval 2016 Task 4, with topic-based test groups; unfortunately, redistribution is

restricted to message IDs, making the original dataset difficult to reconstruct under

Twitter’s terms of service if messages have since been deleted. Bella et al. [2010]

and Esuli and Sebastiani [2015] use large, pre-existing labeled document corpora, but

they do not contain natural groups; evaluations utilize randomly sampled synthetic

groups.

To better fulfill these criteria, we select the task of business review sentiment

prevalence, where the goal is to estimate the proportion of reviews that are positive

for one particular business; specifically, we use labeled data from the Yelp Dataset

Challenge Round Nine7 corpus, which consists of 4.1M reviews by 1M users for 144K

businesses. We sample 500 businesses with at least 200 reviews each as the test

groups. We treat the task as binary classification, and assign yi = 1 to reviews with

3 or more stars. This task seems reasonably representative of real-world sentiment

analysis problems, and this type of dataset can easily be collected and reproduced

from Yelp or other widely available review data.

For training, we simulate a small-scale annotation project by sampling 2000 la-

beled documents from the rest of the corpus. This is a natural prevalence that on

average is about the same as the test groups, though individual test groups may

have a much different prevalence (ranging from 0.096 to 0.997, mean (stdev) 0.823

(0.136)). We also construct a synthetic training setting with a highly skewed class

prior, selecting 2000 documents with a 0.1 class prevalence (i.e. 200 positive docu-

ments in the group). In each case, for every model, we re-run and average results over

7Downloaded June 2017 from https://www.yelp.com/dataset challenge.
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Natural training prevalence ≈ 0.8 Synthetic training prevalence = 0.1

Point est. CIs Point est. CIs
MAE Bias Cover. Width MAE Bias Cover. Width

Const.
Pred. train mean 0.114 -0.045 — — 0.723 -0.723 — —
Pred. 100% 0.177 0.177 — — 0.177 0.177 — —

ReadMe 0.233 -0.222 — — 0.383 -0.382 — —

Disc.
(LR)

CC 0.048 0.042 — — 0.503 -0.503 — —
ACC 0.048 -0.001 — — 0.132 -0.015 — —
PB-PCC 0.049 -0.017 0.283 0.044 0.464 -0.464 0.001 0.054

Gen.
(MLL)

MNB 0.078 0.058 0.120 0.046 0.199 -0.199 0.022 0.073
Loglin 0.089 -0.070 0.410 0.100 0.140 -0.036 0.510 0.273
LR-Implicit 0.050 0.001 0.454 0.074 0.069 -0.051 0.439 0.082

Table 2.1: Mean absolute error (MAE), bias, nominal 90% confidence interval cover-
age, and average CI width for the 500 Yelp data test groups, averaged over 10 sim-
ulations of resampled training (2000 document) sets. We examine both the natural
positive class training prevalence (E[θtrain] = 0.7783), and a synthetic fixed preva-
lence of 0.1. Dashes indicate the methods that are not able to calculate confidence
intervals.

10 different samples of the training set. For preprocessing, we tokenize with NLTK8

and lowercase.

2.5.2 Model training

We use L1 regularization for logistic regression based on the vector of a documents’

word counts, to be most directly comparable to the generative models; for each model,

we select its hyperparameter (LR and Loglin’s λ, or MNB’s pseudocount) by min-

imizing cross-validated cross-entropy of individual document posteriors (within the

labeled training set), over a grid search of powers of 2. The log-linear additive model

is trained with OWL-QN [Andrew and Gao, 2007]9 and the logistic regression model

8http://www.nltk.org/

9Via github.com/larsmans/pylbfgs
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Figure 2.3: Gold prevalence θ∗ (x-axis) versus predicted prevalence θ̂ (y-axis) for
each of the 500 test groups with natural (nat) training prevalence (top row) and
synthetic (syn) 0.1 training prevalence (bottom row). A black y = x line is plotted
for visualization. For the models that allow for confidence intervals, 90% CIs for each
group are given by the faint grey lines. Blue dots indicate the CI does not contain
θ∗ and red dots indicate the CI does contain θ∗. For each setting, we show the the
model with median MAE across training resamplings.

is trained with the default implementation in scikit-learn [Pedregosa et al., 2011].10

We used ReadMe with its default parameters.11

2.5.3 Results

For each of the 500 test groups, we calculate a prevalence point estimate θ̂

with each method, and evaluate by averaging across groups for mean absolute er-

ror
∑

g |θ̂g − θ∗g | and bias
∑

g(θ̂g − θ∗g).
12 For the models that allow for confidence

interval prediction, we infer 90% intervals and calculate coverage, which is best if it

is 0.90. We also report average CI width; a narrower interval indicates more confi-

10Version 0.18.2

11 Version 0.99837 from https://gking.harvard.edu/readme, with default parameters features=15,
n.subset=300, prob.wt=1. We bypass the ReadMe software’s text preprocessing pipeline, and instead
have it use nearly the same document-term matrices as the other models. Since it only handles binary
document-term matrices, we transformed counts to indicators; with other models this change only
made a minor difference in results.

12For the generative (MLL) models, θ̂ is the MAP estimate; the posterior mean gives similar
results.
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Figure 2.4: CI coverage rate (left two graphs) and average CI width (right two graphs)
for three bins of the test groups, binned by number of documents.

dence (even if misplaced). Results are in Table 3.7; every result is averaged over 10

resamplings of the training set.

The ReadMe software did not have competitive performance; we hope in follow-

up work to understand why Hopkins and King found it had considerably stronger

performance than SVM-based CC.

For the natural training class prevalence setting (first column, Table 3.7), the

discriminative-based models (CC, PCC and the adjusted variants ACC and LR-

Implicit) all have very similar point estimate performance, outperforming the purely

generative models (MNB and Loglin). For CI coverage, the log-linear and LR-Implicit

generative models have significantly better coverage than the discriminative model

(PB-PCC) or MNB. Future work is required to improve coverage to be closer to the

nominal ideal of 90%.

By contrast, when the class prevalences are mismatched (second column, Table

3.7), the non-adjusted CC and PCC methods give extremely poor and biased point

estimates, and PB-PCC has incredibly poor CI coverage. ACC and the generative

models do much better, presumably because their models directly allow for variability

in the test class prior. While Loglin has somewhat higher coverage in this setting,

overall, LR-Implicit has consistently strong performance in both training settings,

and for both point estimation and (relatively, at least) confidence intervals.
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Figure 2.3 shows θ∗ versus θ̂ for each of the 500 test groups for each of the models,

including predicted CIs. CC’s and PCC’s erroneous assumptions are directly viewable:

in the natural prevalence setting, the slope shallower than 1, indicating a persistent

under-sensitivity to the true class prevalence—unlike ACC and the generative models.

In the synthetic training case, CC and PCC wildly underpredict, presumably because

they are biased by the low training-time prevalence θtrain = 0.1.

2.5.4 Comparison of PB-PCC and LR-Implicit

Since PB-PCC and LR-Implicit represent the strongest members of non-adjusted

classification aggregation and generative modeling, respectively, we further compare

their results. When varying synthetic training prevalence across 0.1 to 0.9 (Figure

2.5a), LR-Implicit has much better MAE in all settings except near the natural preva-

lence (the test groups have, on average, 0.82 positive prevalence), and consistently

stronger CI coverage.

Figure 2.5b shows results for natural class prevalence when varying the training

set size. Unfortunately, LR-Implicit is disadvantaged at very small test sizes—its

MAE is higher when there are only a few hundred training documents (≤ 28 = 256),

though performance converges after that. We suspect this may occur because, when

textual evidence is weak, the classifier learns to more heavily rely on its bias term,

which can be a useful form of bias when the training class prevalence matches the

test groups (on average). However, at all levels, LR-Implicit’s coverage is better.

Since we hypothesized that PB-PCC may be overconfident for large test groups

(§2.3.5), we test this by binning test groups by the number of documents per group.

Figure 2.4 confirms that PB-PCC exhibits overconfidence for larger groups (smaller

CI width alongside lower CI coverage), but LR-Implicit suffers from the same problem

as well.
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2.6 Additional related work

González et al. [2017a] reviews the class prevalence estimation literature, and we

note a few threads of work here. Bella et al. [2010] propose a probabilistic variant of

ACC, and Esuli and Sebastiani [2015] compare many methods on news article topics

(RCV1) and medical record subject heading (OHSUMED-S) class prevalence tasks,

finding varying results among CC, ACC, and PCC. A number of other empirical eval-

uations were conducted in two SemEval Twitter sentiment prevalence shared tasks,

with varying results among these and other methods with a range of classifiers [Nakov

et al., 2016, Rosenthal et al., 2017]; Nakov et al. note that CC was often one of the

strongest methods. Esuli and Sebastiani as well as Xue and Weiss [2009] present

semi-supervised loss-augmented classifier training methods to improve prevalence es-

timation. Tasche [2017] presents theoretical results for ACC and Saerens et al.’s EM

method (what we call the LR-Implicit MLE), arguing they correctly predict θ∗ under

class prior shift; we confirm that those two methods are indeed better than many

alternatives in our empirical evaluation. While we focus on inference of the test-time

class prior as a class prevalence estimate, Saerens et al. [2002] also show their method

can improve individual-level classification accuracy, which Sulc and Matas [2019] use

for image classification. (From the viewpoint of individual classification, this phe-

nomenon is known as prior probability shift [Moreno-Torres et al., 2012].) González

et al. [2017b] and Card and Smith [2018], similarly to our results, find that CC is

much poorer than ACC under class shift. Card and Smith also show that PCC can be

sensitive to properties of the classifier, finding that well-calibrated classifiers can give

strong performance. They argue that discriminative aggregation models are appro-

priate for tasks where humans respond to text. Jerzak et al. [2019] analyze issues in

class prevalence estimation and propose the ReadMe2 algorithm, which adds external

word embeddings, optimization-based dimension reduction, and similarity matching

to ReadMe’s moment-matching framework.
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2.7 Conclusion

Document class prevalence estimation is a widespread and understudied task. We

show that simple and obvious classifier aggregation methods display consistent biases,

especially under class prior shift. Given how widely some of the less effective methods

are used, machine learning and natural language processing research could have real

impact in this space.

We also call attention to the need for uncertainty aware inference—methods that

give confidence intervals to summarize their uncertainty. While our method is a

first step, future work is necessary to better understand the problem and develop

methods with improved coverage. Also, our framework can accommodate a wide array

of document and language models—while we focus on bag-of-words models, recent

advances in sequence, neural, and attention-based document models could be added

directly to our generative model, or used as a discriminative-implicit component. The

overall framework could also be extended to multiclass, and potentially, structured

prediction settings.
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(a) Varying training prevalence

(b) Varying training size

Figure 2.5: MAE and 90% CI coverage for PB-PCC while varying (a) training preva-
lence (the proportion of the 2000 training documents with positive reviews) and (b)
training size (number of documents in the training data) with natural prevalence.
Lines are the averages over 10 resamplings of training sets and points represent one
resampling.
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CHAPTER 3

ENTITY-EVENT MEASUREMENT FOR POLICE
FATALITIES

We define entity-event measurement as measuring entities who are actors or recipi-

ents of certain events, and focus on a specific application of entity-event measurement—

extracting the names of civilians killed by police from a collection of news reports.

The remainder of this chapter consists of work originally published in Keith et al.

[2017] and Keith et al. [2018].

3.1 Measuring police fatalities

3.1.1 Introduction

The United States government does not keep systematic records of when police

kill civilians, despite a clear need for this information to serve the public interest

and support social scientific analysis. Federal records rely on incomplete cooperation

from local police departments, and human rights statisticians assess that they fail to

document thousands of fatalities [Lum and Ball, 2015].

News articles have emerged as a valuable alternative data source. Organizations

including The Guardian, The Washington Post, Mapping Police Violence, and Fatal

Encounters have started to build such databases of U.S. police killings by manually

reading millions of news articles1 and extracting victim names and event details. This

approach was recently validated by a Bureau of Justice Statistics study [Banks et al.,

1Fatal Encounters director D. Brian Burghart estimates he and colleagues have read 2 mil-
lion news headlines and ledes to assemble its fatality records that date back to January, 2000
(pers. comm.); we find FE to be the most comprehensive publicly available database.
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Text Person killed
by police?

Alton Sterling was killed by police. True

Officers shot and killed Philando Castile. True

Officer Andrew Hanson was shot. False

Police report Megan Short was fatally shot in apparent murder-
suicide.

False

Table 3.1: Toy examples (with entities in bold) illustrating the problem of extracting
from text names of persons who have been killed by police.

2016], which augmented traditional police-maintained records with media reports,

finding twice as many deaths compared to past government analyses. This suggests

textual news data has enormous, real value, though manual news analysis remains

extremely laborious.

We propose to help automate this process by extracting the names of persons

killed by police from event descriptions in news articles (Table 3.1). This can be

formulated as either of two cross-document entity-event extraction tasks:

1. Populating an entity-event database: From a corpus of news articles D(test) over

timespan T , extract the names of persons killed by police during that same

timespan (E (pred)).

2. Updating an entity-event database: In addition to D(test), assume access to both

a historical database of killings E (train) and a historical news corpus D(train) for

events that occurred before T . This setting often occurs in practice, and is

the focus of this paper; it allows for the use of distantly supervised learning

methods.2

The task itself has important social value, but the NLP research community may be

interested in a scientific justification as well. We propose that police fatalities are

2[Konovalov et al., 2017] studies the database update task where edits to Wikipedia infoboxes
constitute events.
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a useful test case for event extraction research. Fatalities are a well defined type of

event with clear semantics for coreference, avoiding some of the more complex issues

in this area [Hovy et al., 2013]. The task also builds on a considerable information

extraction literature on knowledge base population (e.g. [Craven et al., 1998]). Finally,

we posit that the field of natural language processing should, when possible, advance

applications of important public interest. Previous work established the value of

textual news for this problem, but computational methods could alleviate the scale

of manual labor needed to use it.

To introduce this problem, we:

• Define the task of identifying persons killed by police, which is an instance of

cross-document entity-event extraction (§3.2.1).

• Present a new dataset of web news articles collected throughout 2016 that de-

scribe possible fatal encounters with police officers (§3.2.2).

• Introduce, for the database update setting, a distant supervision model (§3.5)

that incorporates feature-based logistic regression and convolutional neural net-

work classifiers under a latent disjunction model.

• Demonstrate the approach’s potential usefulness for practitioners: it outper-

forms two off-the-shelf event extractors (§3.3) and finds 39 persons not included

in the Guardian’s “The Counted” database of police fatalities as of January 1,

2017 (§3.6). This constitutes a promising first step, though performance needs

to be improved for real-world usage.

3.1.2 Related work

This task combines elements of information extraction, including: event extrac-

tion (a.k.a. semantic parsing), identifying descriptions of events and their arguments

from text, and cross-document relation extraction, predicting semantic relations over
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entities. A fatality event indicates the killing of a particular person; we wish to specif-

ically identify the names of fatality victims mentioned in text. Thus our task could

be viewed as unary relation extraction: for a given person mentioned in a corpus,

were they killed by a police officer?

Prior work in NLP has produced a number of event extraction systems, trained

on text data hand-labeled with a pre-specified ontology, including ones that identify

instances of killings [Li and Ji, 2014, Das et al., 2014]. Unfortunately, they perform

poorly on our task (§3.3), so we develop a new method.

Since we do not have access to text specifically annotated for police killing events,

we instead turn to distant supervision—inducing labels by aligning relation-entity

entries from a gold standard database to their mentions in a corpus [Craven and

Kumlien, 1999, Mintz et al., 2009, Bunescu and Mooney, 2007, Riedel et al., 2010].

Similar to this work, Reschke et al. [2014] apply distant supervision to multi-slot,

template-based event extraction for airplane crashes; we focus on a simpler unary

extraction setting with joint learning of a probabilistic model. Other related work in

the cross-document setting has examined joint inference for relations, entities, and

events [Yao et al., 2010, Lee et al., 2012, Yang et al., 2015].

Finally, other natural language processing efforts have sought to extract social

behavioral event databases from news, such as instances of protests [Hanna, 2017],

gun violence [Pavlick et al., 2016], and international relations [Schrodt and Gerner,

1994, Schrodt, 2012, Boschee et al., 2013, O’Connor et al., 2013, Gerrish, 2013]. They

can also be viewed as event database population tasks, with differing levels of semantic

specificity in the definition of “event.”
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Knowledge base Historical Test

FE incident dates Jan 2000
–
Aug 2016

Sep 2016
–
Dec 2016

FE gold entities
(G)

17,219 452

News dataset Train Test

doc. dates Jan 2016
–
Aug 2016

Sep 2016
–
Dec 2016

total docs. (D) 866,199 347,160
total ments. (M) 132,833 68,925
pos. ments. (M+) 11,274 6,132
total entities (E) 49,203 24,550
pos. entities (E+) 916 258

Table 3.2: Data statistics for Fatal Encounters (FE) and scraped news documents.
M and E result from NER processing, while E+ results from matching textual named
entities against the gold-standard database (G).

3.2 Task and data

3.2.1 Cross-document entity-event extraction for police fatalties

From a corpus of documents D, the task is to extract a list of candidate person

names, E , and for each e ∈ E find

P (ye = 1 | xM(e)). (3.1)

Here y ∈ {0, 1} is the entity-level label where ye = 1 means a person (entity) e was

killed by police; xM(e) are the sentences containing mentions M(e) of that person.

A mention i ∈ M(e) is a token span in the corpus. Most entities have multiple

mentions; a single sentence can contain multiple mentions of different entities.
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3.2.2 News documents

We download a collection of web news articles by continually querying Google

News3 throughout 2016 with lists of police keywords (i.e police, officer, cop etc.)

and fatality-related keywords (i.e. kill, shot, murder etc.). The keyword lists were

constructed semi-automatically from cosine similarity lookups from the word2vec pre-

trained word embeddings4 in order to select a high-recall, broad set of keywords. The

search is restricted to what Google News defines as a “regional edition” of “United

States (English)” which seems to roughly restrict to U.S. news though we anecdotally

observed instances of news about events in the U.K. and other countries. We apply

a pipeline of text extraction, cleaning, and sentence de-duplication described in the

appendix.

3.2.3 Entity and mention extraction

We process all documents with the open source spaCy NLP package5 to segment

sentences, and extract entity mentions. Mentions are token spans that (1) were

identified as “persons” by spaCy’s named entity recognizer, and (2) have a (firstname,

lastname) pair as analyzed by the HAPNIS rule-based name parser,6 which extracts,

for example, (John, Doe) from the string Mr. John A. Doe Jr..7

To prepare sentence text for modeling, our preprocessor collapses the candidate

mention span to a special TARGET symbol. To prevent overfitting, other person

3https://news.google.com/

4https://code.google.com/archive/p/word2vec/

5Version 0.101.0, https://spacy.io/

6http://www.umiacs.umd.edu/∼hal/HAPNIS/

7For both training and testing, we use a name matching assumption that a (firstname, lastname)
match indicates coreference between mentions, and between a mention and a fatality database
entity. This limitation does affect a small number of instances—the test set database contains the
unique names of 453 persons but only 451 unique (firstname, lastname) tuples—but relaxing it raises
complex issues for future work, such as how to evaluate whether a system correctly predicted two
different fatality victims with the same name.
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Rule Prec. Recall F1

SEMAFOR R1 0.011 0.436 0.022
R2 0.031 0.162 0.051
R3 0.098 0.009 0.016

RPI-JIE R1 0.016 0.447 0.030
R2 0.044 0.327 0.078
R3 0.172 0.168 0.170

Data upper bound (§3.5.6) 1.0 0.57 0.73

Table 3.3: Precision, recall, and F1 scores for test data using event extractors SE-
MAFOR and RPI-JIE and rules R1-R3 described below.

names are mapped to a different PERSON symbol; e.g. “TARGET was killed in an

encounter with police officer PERSON.”

There were initially 18,966,757 and 6,061,717 extracted mentions for the train

and test periods respectively. To improve precision and computational efficiency,

we filtered to sentences that contained at least one police keyword and one fatality

keyword. This filter reduced positive entity recall a moderate amount (from 0.68 to

0.57), but removed 99% of the mentions, resulting in the |M| counts in Table 3.2.8

Other preprocessing steps included heuristics for extraction and name cleanups

and are detailed in the appendix.

3.3 Off-the-shelf event extraction baselines

From a practitioner’s perspective, a natural first approach to this task would be

to run the corpus of police fatality documents through pre-trained, “off-the-shelf”

event extractor systems that could identify killing events. In modern NLP research, a

major paradigm for event extraction is to formulate a hand-crafted ontology of event

classes, annotate a small corpus, and craft supervised learning systems to predict

event parses of documents.

8In preliminary experiments, training and testing an n-gram classifier (§3.5.4) on the full mention
dataset without keyword filtering resulted in a worse AUPRC than after the filter.

40



We evaluate two freely available, off-the-shelf event extractors that were developed

under this paradigm: SEMAFOR [Das et al., 2014], and the RPI Joint Information

Extraction System (RPI-JIE) [Li and Ji, 2014], which output semantic structures

following the FrameNet [Fillmore et al., 2003] and ACE [Doddington et al., 2004]

event ontologies, respectively.9 [Pavlick et al., 2016] use RPI-JIE to identify instances

of gun violence.

For each mention i ∈M we use SEMAFOR and RPI-JIE to extract event tuples of

the form ti = (event type, agent, patient) from the sentence xi. We want the system

to detect (1) killing events, where (2) the killed person is the target mention i, and

(3) the person who killed them is a police officer. We implement a small progression

of these neo-Davidsonian [Parsons, 1990] conjuncts with rules to classify zi = 1 if:10

• (R1) the event type is ‘kill.’

• (R2) R1 holds and the patient token span contains ei.

• (R3) R2 holds and the agent token span contains a police keyword.

As in §3.5.1 (Eq. 3.3), we aggregate mention-level zi predictions to obtain entity-level

predictions with a deterministic OR of zM(e).

RPI-JIE under the full R3 system performs best, though all results are relatively

poor (Table 3.3). Part of this is due to inherent difficulty of the task, though our

9Many other annotated datasets encode similar event structures in text, but with lighter on-
tologies where event classes directly correspond with lexical items—including PropBank, Prague
Treebank, DELPHI-IN MRS, and Abstract Meaning Representation [Kingsbury and Palmer, 2002,
Hajic et al., 2012, Oepen et al., 2014, Banarescu et al., 2013]. We assume such systems are too nar-
row for our purposes, since we need an extraction system to handle different trigger constructions
like “killed” versus “shot dead.”

10For SEMAFOR, we use the FrameNet ‘Killing’ frame with frame elements ‘Victim’ and ‘Killer’.
For RPI-JIE, we use the ACE ‘life/die’ event type/subtype with roles ‘victim’ and ‘agent’. SE-
MAFOR defines a token span for every argument; RPI-JIE/ACE defines two spans, both a head
word and entity extent; we use the entity extent. SEMAFOR only predicts spans as event argu-
ments, while RPI-JIE also predicts entities as event arguments, where each entity has a within-text
coreference chain over one or more mentions; since we only use single sentences, these chains tend
to be small, though they do sometimes resolve pronouns. For determining R2 and R3, we allow a
match on any of an entity’s extents from any of its mentions.
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entity (e) ment.(i)
prob.

ment. text (xi)

Keith
Scott
(true pos)

0.98 Charlotte protests Charlotte’s Mayor Jennifer Roberts
speaks to reporters the morning after protests against the
police shooting of Keith Scott, in Charlotte, North Car-
olina .

Terence
Crutcher
(true pos)

0.96 Tulsa Police Department released video footage Monday,
Sept. 19, 2016, showing white Tulsa police officer Betty
Shelby fatally shooting Terence Crutcher, 40, a black man
police later determined was unarmed.

Mark Duggan
(false pos)

0.97 The fatal shooting of Mark Duggan by police led to some
of the worst riots in England’s recent history.

Logan
Clarke
(false pos)

0.92 Logan Clarke was shot by a campus police officer after
waving kitchen knives at fellow students outside the cafeteria
at Hug High School in Reno, Nevada, on December 7.

Table 3.4: Example of highly ranked entities, with selected mention predictions and
text.

task-specific model still outperforms (Table 3.7). We suspect a major issue is that

these systems heavily rely on their annotated training sets and may have significant

performance loss on new domains, or messy text extracted from web news, suggesting

domain transfer for future work.

3.4 Probabilistic rule-based IE with dependency parses

3.4.1 Summary of Monte Carlo syntax marginals and dependency path

prediction

Dependency parses (e.g. [Chen and Manning, 2014]) are often used in downstream

applications, such as the entity-event measurement discussed in this chapter. One

commonly used parse substructure is the dependency path between two words, which

is widely used in unsupervised lexical semantics [Lin and Pantel, 2001], distantly

supervised lexical semantics [Snow et al., 2005], relation learning [Riedel et al., 2013],

and supervised semantic role labeling [Hacioglu, 2004, Das et al., 2014], as well as
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applications in economics [Ghose et al., 2007], political science [O’Connor et al., 2013],

biology [Fundel et al., 2006], and the humanities [Bamman et al., 2013, 2014].

Keith et al. [2018] present a Monte Carlo syntax marginal inference method

which exploits information across samples of the entire parse forest. It achieves

higher accuracy predictions than a traditional greedy parsing algorithm, and al-

lows tradeoffs between precision and recall. Keith et al. [2018] define a dependency

path to be a set of edges from the dependency parse; for example, a length-2 path

p = {nsubj(3, 1), dobj(3, 4)} connects tokens 1 and 4. They define dependency path

prediction as the task of predicting a set of dependency paths for a sentence; the

paths do not necessarily have to come from the same tree, nor even be consistent

with a single syntactic analysis. They approach this task with their Monte Carlo syn-

tax marginal method, by predicting paths from the transition sampling parser. They

treat each possible path as a structure query and return all paths whose marginal

probabilities are at least threshold t. Varying t trades off precision and recall.

3.4.2 Police killings victim extraction

Supervised learning typically gives the most accurate information extraction or

semantic parsing systems, but for many applications where training data is scarce,

Chiticariu et al. [2013] argue that rule-based systems are useful and widespread in

practice, despite their neglect in contemporary NLP research. Syntactic dependencies

are a useful abstraction with which to write rule-based extractors, but they can be

brittle due to errors in the parser. We propose to integrate over parse samples to

infer a marginal probability of a rule match, increasing robustness and allowing for

precision-recall tradeoffs.

We examine the task of extracting the list of names of persons killed by police

from a test set of web news articles in Sept–Dec 2016. We use the dataset released by

Keith et al. [2017], consisting of 24,550 named entities e ∈ E and sentences from noisy
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web news text extractions (that can be difficult to parse), each of which contains at

least one e (on average, 2.8 sentences/name) as well as keywords for both police and

killing/shooting. The task is to classify whether a given name is a person who was

killed by police, given 258 gold-standard names that have been verified by journalists.

3.4.3 Dependency rule extractor

In Section 3.3, we present a baseline rule-based method that uses Li and Ji [2014]’s

off-the-shelf RPI-JIE ACE event parser to extract (event type, agent, patient) tuples

from sentences, and assigns fJIE(xi, e) = 1 iff the event type was a killing, the agent’s

span included a police keyword, and the patient was the candidate entity e. An entity

is classified as a victim if at least one sentence is classified as true, resulting in a 0.17

F1 score (as reported in previous work).11

We define a similar syntactic dependency rule system using a dependency parse

as input: our extractor f(x, e, y) returns 1 iff the sentence has a killing keyword k,12

which both

1. has an agent token a (defined as, governed by nsubj or nmod) which is a police

keyword, or a has a (amod or compound) modifier that is a police keyword; and,

2. has a patient token p (defined as, governed by nsubjpass or dobj ) contained in

the candidate name e’s span.

Applying this f(x, e, y) classifier to greedy parser output, it performs better than the

RPI-JIE-based rules (Figure 3.1, right), perhaps because it is better customized for

the particular task.

Treating f as a structure query, we then use our Monte Carlo marginal inference

(§3.5) method to calculate the probability of a rule match for each sentence—that

11This measures recall of the entire gold-standard victim database, though the corpus only includes
57% of the victims.

12Police and killing/shooting keywords are from Keith et al.’s publicly released software.
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Figure 3.1: Left: Rule-based entity precision and recall for police fatality victims,
with greedy parsing and Monte Carlo inference. Right: F1 scores for RPI-JIE,
Greedy, and 1-sample methods, and maximum F1 on PR curve for probabilistic (mul-
tiple sample) inference.

is, the fraction of parse samples where f(x, e, y(s)) is true—and infer the entity’s

probability with the noisy-or formula [Craven and Kumlien, 1999, Keith et al., 2017].

This gives soft classifications for entities.

3.4.4 Results

The Monte Carlo method achieves slightly higher F1 scores once there are at least

10 samples (Fig. 3.1, right). More interestingly, the soft entity-level classifications also

allow for precision-recall tradeoffs (Fig. 3.1, left), which could be used to prioritize

the time of human reviewers updating the victim database (filter to higher precision),

or help ensure victims are not missed (with higher recall). We found the sampling

method retrieved several true-positive entities where only a single sentence had a non-

zero rule prediction at probability 0.01—that is, the rule was only matched in one

of 100 sampled parses. Since current practitioners are already manually reviewing

millions of news articles to create police fatality victim databases, the ability to filter

to high recall—even with low precision—may be useful to help ensure victims are not

missed.
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x z y

“Hard” training observed fixed (distantly labeled) observed
“Soft” (EM) training observed latent observed
Testing observed latent latent

Table 3.5: Training and testing settings for mention sentences x, mention labels z,
and entity labels y.

Supervised learning. Sampling also slightly improves supervised learning for

this problem. We modify Keith et al.’s logistic regression model based on a depen-

dency path feature vector f(xi, y), instead creating feature vectors that average over

multiple parse samples (Ep̃(y)[f(xi, y)]) at both train and test time. With the greedy

parser, the model results in 0.229 F1; using 100 samples slightly improves performance

to 0.234 F1.

3.5 Additional models

Our goal is to classify entities as to whether they have been killed by police (§3.5.1).

Since we do not have gold-standard labels to train our model, we turn to distant

supervision [Craven and Kumlien, 1999, Mintz et al., 2009], which heuristically aligns

facts in a knowledge base to text in a corpus to impute positive mention-level labels

for supervised learning. Previous work typically examines distant supervision in the

context of binary relation extraction [Bunescu and Mooney, 2007, Riedel et al., 2010,

Hoffmann et al., 2011], but we are concerned with the unary predicate “person was

killed by police.” As our gold standard knowledge base (G), we use Fatal Encounters’

(FE) publicly available dataset: around 18,000 entries of victim’s name, age, gender

and race as well as location, cause and date of death. (We use a version of the FE

database downloaded Feb. 27, 2017.) We compare two different distant supervision

training paradigms (Table 3.5): “hard” label training (§3.5.2) and “soft” EM-based
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training (§3.5.3). This section also details mention-level models (§3.5.4,§3.5.5) and

evaluation (§3.5.6).

3.5.1 Novel approach: latent disjunction model

Our discriminative model is built on mention-level probabilistic classifiers. Recall

a single entity will have one or more mentions (i.e. the same name occurs in multiple

sentences in our corpus). For a given mention i in sentence xi, our model predicts

whether the person is described as having been killed by police, zi = 1, with a binary

logistic model,

P (zi = 1 | xi) = σ(βTfγ(xi)). (3.2)

We experiment with both logistic regression (§3.5.4) and convolutional neural net-

works (§3.5.5) for this component, which use logistic regression weights β and feature

extractor parameters γ. Then we must somehow aggregate mention-level decisions to

determine entity labels ye.
13 If a human reader were to observe at least one sentence

that states a person was killed by police, they would infer that person was killed by

police. Therefore we aggregate an entity’s mention-level labels with a deterministic

disjunction:

P (ye = 1 | zM(e)) = 1
{
∨i∈M(e) zi

}
. (3.3)

At test time, zi is latent. Therefore the correct inference for an entity is to marginalize

out the model’s uncertainty over zi:

P (ye = 1|xM(e)) = 1− P (ye = 0|xM(e)) (3.4)

= 1− P (zM(e) = ~0 | xM(e)) (3.5)

= 1−
∏

i∈M(e)

(1− P (zi = 1 | xi)). (3.6)

13An alternative approach is to aggregate features across mentions into an entity-level feature
vector [Mintz et al., 2009, Riedel et al., 2010]; but here we opt to directly model at the mention
level, which can use contextual information.
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Eq. 3.6 is the noisyor formula [Pearl, 1988, Craven and Kumlien, 1999]. Procedurally,

it counts strong probabilistic predictions as evidence, but can also incorporate a large

number of weaker signals as positive evidence as well.14

In order to train these classifiers, we need mention-level labels (zi) which we impute

via two different distant supervision labeling methods: “hard” and “soft.”

3.5.2 “Hard” distant label training

In “hard” distant labeling, labels for mentions in the training data are heuristically

imputed and directly used for training. We use two labeling rules. First, name-only:

zi = 1 if ∃e ∈ G(train) : name(i) = name(e). (3.7)

This is the direct unary predicate analogue of [Mintz et al., 2009]’s distant supervi-

sion assumption, which assumes every mention of a gold-positive entity exhibits a

description of a police killing.

This assumption is not correct. We manually analyze a sample of positive men-

tions and find 36 out of 100 name-only sentences did not express a police fatality

event—for example, sentences contain commentary, or describe killings not by police.

This is similar to the precision for distant supervision of binary relations found by

[Riedel et al., 2010], who reported 10–38% of sentences did not express the relation

in question.

14In early experiments, we experimented with other, more ad-hoc aggregation rules with a “hard”-
trained model. The maximum and arithmetic mean functions performed worse than noisyor, giving
credence to the disjunction model. The sum rule (

∑
i P (zi = 1 | xi)) had similar ranking performance

as noisyor—perhaps because it too can use weak signals, unlike mean or max—though it does not
yield proper probabilities between 0 and 1.
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Our higher precision rule, name-and-location, leverages the fact that the loca-

tion of the fatality is also in the Fatal Encounters database and requires both to be

present:

zi = 1 if ∃e ∈ G(train) :

name(i) = name(e) and location(e) ∈ xi.
(3.8)

We use this rule for training since precision is slightly better, although there is still a

considerable level of noise.

3.5.3 “Soft” (EM) joint training

At training time, the distant supervision assumption used in “hard” label training

is flawed: many positively-labeled mentions are in sentences that do not assert the

person was killed by a police officer. Alternatively, at training time we can treat

zi as a latent variable and assume, as our model states, that at least one of the

mentions asserts the fatality event, but leave uncertainty over which mention (or

multiple mentions) conveys this information. This corresponds to multiple instance

learning (MIL; [Dietterich et al., 1997]) which has been applied to distantly supervised

relation extraction by enforcing the at least one constraint at training time [Bunescu

and Mooney, 2007, Riedel et al., 2010, Hoffmann et al., 2011, Surdeanu et al., 2012,

Ritter et al., 2013]. Our approach differs by using exact marginal posterior inference

for the E-step.

With zi as latent, the model can be trained with the EM algorithm [Dempster

et al., 1977]. We initialize the model by training on the “hard” distant labels (§3.5.2),

and then learn improved parameters by alternating E- and M-steps.

The E-step requires calculating the marginal posterior probability for each zi,

q(zi) := P (zi | xM(ei), yei). (3.9)
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Figure 3.2: For soft-LR (EM), area under precision recall curve (AUPRC) results
on the test set during training, for different inverse regularization values (C, the
parameters’ prior variance).

This corresponds to calculating the posterior probability of a disjunct, given knowl-

edge of the output of the disjunction, and prior probabilities of all disjuncts (given

by the mention-level classifier).

Since P (z | x, y) = P (z, y | x)/P (y | x),

q(zi = 1) =
P (zi = 1, yei = 1|xM(ei))

P (yei = 1|xM(ei))
. (3.10)

The numerator simplifies to the mention prediction P (zi = 1 | xi) and the denomina-

tor is the entity-level noisyor probability (Eq. 3.6). This has the effect of taking the

classifier’s predicted probability and increasing it slightly (since Eq. 3.10’s denom-

inator is no greater than 1); thus the disjunction constraint implies a soft positive

labeling. In the case of a negative entity with ye = 0, the disjunction constraint

implies all zM(e) stay clamped to 0 as in the “hard” label training method.

The q(zi) posterior weights are then used for the M-step’s expected log-likelihood

objective:

max
θ

∑
i

∑
z∈{0,1}

q(zi = z) logPθ(zi = z | xi). (3.11)

This objective (plus regularization) is maximized with gradient ascent as before.

This approach can be applied to any mention-level probabilistic model; we explore

two in the next sections.
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Features

D1 length 3 dependency paths that in-
clude TARGET: word, POS, dep. la-
bel

D2 length 3 dependency paths that in-
clude TARGET: word and dep. label

D3 length 3 dependency paths that in-
clude TARGET: word and POS

D4 all length 2 dependency paths with
word, POS, dep. labels

N1n-grams length 1, 2, 3
N2n-grams length 1, 2, 3 plus POS tags
N3n-grams length 1, 2, 3 plus direction-

ality and position from TARGET
N4concatenated POS tags of 5-word

window centered on TARGET
N5word and POS tags for 5-word win-

dow centered on TARGET

Table 3.6: Feature templates for logistic regression grouped into syntactic dependen-
cies (D) and N-gram (N) features.

3.5.4 Feature-based logistic regression

We construct hand-crafted features for regularized logistic regression (LR) (Table

3.6), designed to be broadly similar to the n-gram and syntactic dependency fea-

tures used in previous work on feature-based semantic parsing (e.g. [Das et al., 2014,

Thomson et al., 2014]). We use randomized feature hashing [Weinberger et al., 2009]

to efficiently represent features in 450,000 dimensions, which achieved similar perfor-

mance as an explicit feature representation. The logistic regression weights (β in Eq.

3.2) are learned with scikit-learn [Pedregosa et al., 2011].15 For EM (soft-LR) train-

ing, the test set’s area under the precision recall curve converges after 96 iterations

(Fig. 3.2).

15With FeatureHasher, L2 regularization, ‘lbfgs’ solver, and inverse strength C = 0.1, tuned on a
development dataset in “hard” training; for EM training the same regularization strength performs
best.
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3.5.5 Convolutional neural network

We also train a convolutional neural network (CNN) classifier, which uses word

embeddings and their nonlinear compositions to potentially generalize better than

sparse lexical and n-gram features. CNNs have been shown useful for sentence-level

classification tasks [Kim, 2014, Zhang and Wallace, 2015], relation classification [Zeng

et al., 2014] and, similar to this setting, event detection [Nguyen and Grishman, 2015].

We use [Kim, 2014]’s open-source CNN implementation,16 where a logistic function

makes the final mention prediction based on max-pooled values from convolutional

layers of three different filter sizes, whose parameters are learned (γ in Eq. 3.2). We

use pretrained word embeddings for initialization,17 and update them during training.

We also add two special vectors for the TARGET and PERSON symbols, initialized

randomly.18

For training, we perform stochastic gradient descent for the negative expected

log-likelihood (Eq. 3.11) by sampling with replacement fifty mention-label pairs for

each minibatch, choosing each (i, k) ∈ M × {0, 1} with probability proportional to

q(zi = k). This strategy attains the same expected gradient as the overall objective.

We use “epoch” to refer to training on 265,700 examples (approx. twice the number

of mentions). Unlike EM for logistic regression, we do not run gradient descent to

convergence, instead applying an E-step every two epochs to update q; this approach

is related to incremental and online variants of EM [Neal and Hinton, 1998, Liang

and Klein, 2009], and is justified since both SGD and E-steps improve the evidence

lower bound (ELBO). It is also similar to [Salakhutdinov et al., 2003]’s expectation

gradient method; their analysis implies the gradient calculated immediately after an

16https://github.com/yoonkim/CNN sentence

17From the same word2vec embeddings used in §3.2.

18Training proceeds with ADADELTA [Zeiler, 2012]. We tested several different settings of
dropout and L2 regularization hyperparameters on a development set, but found mixed results,
so used their default values.
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Figure 3.3: At test time, there are matches between the knowledge base and the news
reports both for persons killed during the test period (“positive”) and persons killed
before it (“historical”). Historical cases are excluded from evaluation.

E-step is in fact the gradient for the marginal log-likelihood. We are not aware of

recent work that uses EM to train latent-variable neural network models, though this

combination has been explored (e.g. [Jordan and Jacobs, 1994])

3.5.6 Evaluation

On documents from the test period (Sept–Dec 2016), our models predict entity-

level labels P (ye = 1 | xM(e)) (Eq. 3.6), and we wish to evaluate whether retrieved

entities are listed in Fatal Encounters as being killed during Sept–Dec 2016. We rank

entities by predicted probabilities to construct a precision-recall curve (Fig. 3.5, Table

3.7). Area under the precision-recall curve (AUPRC) is calculated with a trapezoidal

rule; F1 scores are shown for convenient comparison to non-ranking approaches (§3.3).

Excluding historical fatalities: Our model gives strong positive predictions for

many people who were killed by police before the test period (i.e. before Sept 2016),

when news articles contain discussion of historical police killings. We exclude these

entities from evaluation, since we want to simulate an update to a fatality database

(Fig 3.3). Our test dataset contains 1,148 such historical entities.

Data upper bound: Of the 452 gold entities in the FE database at test time,

our news corpus only contained 258 (Table 3.2), hence the data upper bound of 0.57

recall, which also gives an upper bound of 0.57 on AUPRC. This is mostly a limitation
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Figure 3.4: Test set AUPRC for three runs of soft-CNN (EM) (blue, higher in graph),
and hard-CNN (red, lower in graph). Darker lines show performance of averaged
predictions.
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Figure 3.5: Precision-recall curves for the given models.

of our news corpus; though we collect hundreds of thousands of news articles, it turns

out Google News only accesses a subset of relevant web news, as opposed to more

comprehensive data sources manually reviewed by Fatal Encounters’ human experts.

We still believe our dataset is large enough to be realistic for developing better meth-

ods, and expect the same approaches could be applied to a more comprehensive news

corpus.
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Model AUPRC F1

hard-LR, dep. feats. 0.117 0.229
hard-LR, n-gram feats. 0.134 0.257
hard-LR, all feats. 0.142 0.266
hard-CNN 0.130 0.252

soft-CNN (EM) 0.164 0.267
soft-LR (EM) 0.193 0.316

Data upper bound (§3.5.6) 0.57 0.73

Table 3.7: Area under precision-recall curve (AUPRC) and F1 (its maximum value
from the PR curve) for entity prediction on the test set.

3.6 Results and discussion

Significance testing: We would like to test robustness of performance results to

the finite datasets with bootstrap testing [Berg-Kirkpatrick et al., 2012], which can

accomodate performence metrics like AUPRC. It is not clear what the appropriate

unit of resampling should be—for example, parsing and machine translation research

in NLP often resamples sentences, which is inappropriate for our setting. We elect

to resample documents in the test set, simulating variability in the generation and

retrieval of news articles. Standard errors for one model’s AUPRC and F1 are in

the range 0.004–0.008 and 0.008–0.010 respectively; we also note pairwise significance

test results. See appendix for details.

Overall performance: Our results indicate our model is better than existing

computational methods methods to extract names of people killed by police, by com-

paring to F1 scores of off-the-shelf extractors (Table 3.7 vs. Table 3.3; differences are

statistically significant).

We also compare entities extracted from our test dataset to the Guardian’s “The

Counted” database of U.S. police killings during the span of the test period (Sept.–
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Dec., 2016),19 and found 39 persons they did not include in the database, but who

were in fact killed by police. This implies our approach could augment journalistic

collection efforts. Additionally, our model could help practitioners by presenting them

with sentence-level information in the form of Table 3.4; we hope this could decrease

the amount of time and emotional toll required to maintain real-time updates of police

fatality databases.

CNN: Model predictions were relatively unstable during the training process. De-

spite the fact that EM’s evidence lower bound objective (H(Q) +EQ[logP (Z, Y |X)])

converged fairly well on the training set, test set AUPRC substantially fluctuated as

much as 2% between epochs, and also between three different random initializations

for training (Fig. 3.4). We conducted these multiple runs initially to check for vari-

ability, then used them to construct a basic ensemble: we averaged the three models’

mention-level predictions before applying noisyor aggregation. This outperformed

the individual models—especially for EM training—and showed less fluctuation in

AUPRC, which made it easier to detect convergence. Reported performance num-

bers in Table 3.7 are with the average of all three runs from the final epoch of training.

LR vs. CNN: After feature ablation we found that hard-CNN and hard-LR with

n-gram features (N1-N5) had comparable AUPRC values (Table 3.7). But adding

dependency features (D1-D4) caused the logistic regression models to outperform

the neural networks (albeit with bare significance: p = 0.046). We hypothesize

these dependency features capture longer-distance semantic relationships between the

entity, fatality trigger word, and police officer, which short n-grams cannot. Moving

to sequence or graph LSTMs may better capture such dependencies.

Soft (EM) training: Using the EM algorithm gives substantially better perfor-

mance: for the CNN, AUC improves from 0.130 to 0.164, and for LR, from 0.142 to

19https://www.theguardian.com/us-news/series/counted-us-police-killings, downloaded Jan. 1,
2017.
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0.193. (Both improvements are statistically significant.) Logistic regression with EM

training is the most accurate model. Examining the precision-recall curves (Fig. 3.5),

many of the gains are in the higher confidence predictions (left side of figure). In fact,

the soft EM model makes fewer strongly positive predictions: for example, hard-LR

predicts ye = 1 with more than 99% confidence for 170 out of 24,550 test set entities,

but soft-LR does so for only 24. This makes sense given that the hard-LR model

at training time assumes that many more positive entity mentions are evidence of a

killing than they are in reality (§3.5.2).

Manual analysis: Manual analysis of false positives indicates misspellings or

mismatches of names, police fatalities outside of the U.S., people who were shot by

police but not killed, and names of police officers who were killed are common false

positive errors (see detailed table in the appendix). This suggests many prediction

errors are from ambiguous or challenging cases.20

3.7 Future work

While we have made progress on this application, more work is necessary for accu-

racy to be high enough to be useful for practitioners. Our model allows for the use of

mention-level semantic parsing models; systems with explicit trigger/agent/patient

representations, more like traditional event extraction systems, may be useful, as

would more sophisticated neural network models, or attention models as an alterna-

tive to disjunction aggregation [Lin et al., 2016].

One goal is to use our model as part of a semi-automatic system, where people

manually review a ranked list of entity suggestions. In this case, it is more important

to focus on improving recall—specifically, improving precision at high-recall points on

the precision-recall curve. Our best models, by contrast, tend to improve precision

20We attempted to correct non-U.S. false positive errors by using CLAVIN, an open-source country
identifier, but this significantly hurt recall.
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at lower-recall points on the curve. Higher recall may be possible through cost-

sensitive training (e.g. [Gimpel and Smith, 2010]) and using features from beyond

single sentences within the document.

Furthermore, our dataset could be used to contribute to communication studies, by

exploring research questions about the dynamics of media attention (for example, the

effect of race and geography on coverage of police killings), and discussions of historical

killings in news—for example, many articles in 2016 discussed Michael Brown’s 2014

death in Ferguson, Missouri. Improving NLP analysis of historical events would also

be useful for the event extraction task itself, by delineating between recent events

that require a database update, versus historical events that appear as “noise” from

the perspective of the database update task. Finally, it may also be possible to adapt

our model to extract other types of social behavior events.
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CHAPTER 4

USING TEXT TO REDUCE CONFOUNDING FROM
CAUSAL ESTIMATES

This chapter was originally published as Keith et al. [2020a].

4.1 Introduction

In contrast to descriptive or predictive tasks, causal inference aims to understand

how intervening on one variable affects another variable [Holland, 1986, Pearl, 2000,

Morgan and Winship, 2015, Imbens and Rubin, 2015, Hernán and Robins, 2020].

Specifically, many applied researchers aim to estimate the size of a specific causal

effect, the effect of a single treatment variable on an outcome variable. However, a

major challenge in causal inference is addressing confounders, variables that influence

both treatment and outcome. For example, consider estimating the size of the causal

effect of smoking (treatment) on life expectancy (outcome). Occupation is a potential

confounder that may influence both the propensity to smoke and life expectancy. Es-

timating the effect of treatment on outcome without accounting for this confounding

could result in strongly biased estimates and thus invalid causal conclusions.

To eliminate confounding bias, one approach is to perform randomized controlled

trials (RCTs) in which researchers randomly assign treatment. Yet, in many research

areas such as healthcare, education, or economics, randomly assigning treatment

is either infeasible or unethical. For instance, in our running example, one cannot

ethically randomly assign participants to smoke since this could expose them to major

health risks. In such cases, researchers instead use observational data and adjust for
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Figure 4.1: Left: A causal diagram for text that encodes causal confounders, the
setting that is focus of this review paper. The major assumption is that latent
confounders can be measured from text and those confounder measurements can
be used in causal adjustments. Right: An example application in which practitioner
does not have access to the confounding variable, occupation, in structured form but
can measure confounders from unstructured text (e.g. an individual’s social media
posts).

the confounding bias statistically with methods such as matching, propensity score

weighting, or regression adjustment (§4.5).

In causal research about human behavior and society, there are potentially many

latent confounding variables that can be measured from unstructured text data. Text

data could either (a) serve as a surrogate for potential confounders; or (b) the language

of text itself could be a confounder. Our running example is an instance of text as a

surrogate: a researcher may not have a record of an individual’s occupation but could

attempt to measure this variable from the individual’s entire history of social media

posts (see Fig. 4.1). An example of text as a direct confounder: the linguistic content

of social media posts could influence censorship (treatment) and future posting rates

(outcome) [Roberts et al., 2020].

A challenging aspect of this research design is the high-dimensional nature of

text. Other work has explored general methods for adjusting for high-dimensional
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confounders [D’Amour et al., 2021, Rassen et al., 2011, Louizos et al., 2017, Li et al.,

2016, Athey et al., 2017]. However, text data differ from other high-dimensional

data-types because intermediate confounding adjustments can be read and evaluated

by humans (§4.6) and designing meaningful representations of text is still an open

research question.1 Even when applying simple adjustment methods, a practitioner

must first transform text into a lower-dimensional representation via, for example,

filtered word counts, lexicon indicators, topic models, or embeddings (§4.4). An

additional challenge is that empirical evaluation in causal inference is still an open

research area [Dorie et al., 2019, Gentzel et al., 2019] and text adds to the difficulty

of this evaluation (§4.7).

We narrow the scope of this chapter to review methods and applications with text

data as a causal confounder. In the broader area of text and causal inference, work

has examined text as a mediator [Veitch et al., 2020], text as treatment [Fong and

Grimmer, 2016, Egami et al., 2018, Wood-Doughty et al., 2018, Tan et al., 2014],

text as outcome [Egami et al., 2018], causal discovery from text [Mani and Cooper,

2000], and predictive (Granger) causality with text [Balashankar et al., 2019, del

Prado Martin and Brendel, 2016, Tabari et al., 2018].

Outside of this prior work, there has been relatively little interaction between

natural language processing (NLP) research and causal inference. NLP has a rich

history of applied modeling and diagnostic pipelines that causal inference could draw

upon. Because applications and methods for text as a confounder have been scattered

across many different communities, this review paper aims to gather and unify existing

approaches and to concurrently serve three different types of researchers and their

respective goals:

1For instance, there have been four workshops on representation learning at major NLP confer-
ences in the last four years [Blunsom et al., 2016, 2017, Augenstein et al., 2018, 2019].
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• For applied practitioners, we collect and categorize applications with text

as a causal confounder (Table 4.1 and §4.2), and we provide a flow-chart of

analysts’ decisions for this problem setting (Fig. 4.2).

• For causal inference researchers working with text data, we highlight

recent work in representation learning in NLP (§4.4) and caution that this is

still an open research area with questions of the sensitivity of effects to choices

in representation. We also outline existing interpretable evaluation methods for

adjustments of text as a causal confounder (§4.6).

• For NLP researchers working with causal inference, we summarize some

of the most-used causal estimators that condition on confounders: matching,

propensity score weighting, regression adjustment, doubly-robust methods, and

causally-driven representation learning (§4.5). We also discuss evaluation of

methods with constructed observational studies and semi-synthetic data (§4.7).

4.2 Applications

In Table 4.1, we gather and summarize applications that use text to adjust for

potential confounding. This encompasses both (a) text as a surrogate for confounders,

or (b) the language itself as confounders.2

As an example, consider Kiciman et al. [2018] where the goal is to estimate the

size of the causal effect of alcohol use (treatment) on academic success (outcome)

for college students. Since randomly assigning college students to binge drink is not

feasible or ethical, the study instead uses observational data from Twitter, which also

2 We acknowledge that Table 4.1 is by no means exhaustive. To construct Table 4.1, we started
with three seed papers: Roberts et al. [2020], Veitch et al. [2020], and Wood-Doughty et al. [2018].
We then examined papers cited by these papers, papers that cited these papers, and papers published
by the papers’ authors. We repeated this approach with the additional papers we found that adjusted
for confounding with text. We also examined papers matching the query “causal” or “causality” in
the ACL Anthology.
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Paper Treatment Outcome(s) Confounder Text data Text rep. Adjustment
method

Johansson
et al. [2016]

Viewing device
(mobile or
desktop)

Reader’s
experience

News content News Word counts Causal-driven
rep. learning

De Choudhury
et al. [2016]

Word use in
mental health
community

User transitions
to post in suicide
community

Previous text
written in a forum

Social media
(Reddit)

Word counts Stratified
propensity score
matching

De Choudhury
and Kiciman
[2017]

Language of
comments

User transitions
to post in suicide
community

User’s previous
posts and
comments received

Social media
(Reddit)

Unigrams
and bigrams

Stratified
propensity score
matching

Falavarjani
et al. [2017]

Exercise
(Foursquare
checkins)

Shift in topical
interest on
Twitter

Pre-treatment
topical interest
shift

Social media
(Twitter,
Foursquare)

Topic models Matching

Olteanu et al.
[2017]

Current word use Future word use Past word use Social media
(Twitter)

Top
unigrams
and bigrams

Stratified
propensity score
matching

Pham and
Shen [2017]

Group
vs. individual
loan requests

Time until
borrowers get
funded

Loan description Microloans
(Kiva)

Pre-trained
embeddings
+ neural
networks

A-IPTW, TMLE

Kiciman et al.
[2018]

Alcohol mentions College success
(e.g. study
habits, risky
behaviors,
emotions)

Previous posts Social media
(Twitter)

Word counts Stratified
propensity score
matching

Sridhar et al.
[2018]

Exercise Mood Mood triggers Users’ text on
mood logging
apps

Word counts Propensity score
matching

Saha et al.
[2019]

Self-reported
usage of
psychiatric
medication

Mood, cognition,
depression,
anxiety,
psychosis, and
suicidal ideation

Users’ previous
posts

Social media
(Twitter)

Word counts
+ lexicons +
supervised
classifiers

Stratified
propensity score
matching

Sridhar and
Getoor [2019]

Tone of replies Changes in
sentiment

Speaker’s political
ideology

Debate
transcripts

Topic models
+ lexicons

Regression
adjustment,
IPTW, A-IPTW

Veitch et al.
[2020]

Presence of a
theorem

Rate of
acceptance

Subject of the
article

Scientific
articles

BERT Causal-driven
rep. learning +
Regression
adjustment,
TMLE

Roberts et al.
[2020]

Perceived gender
of author

Number of
citations

Content of article International
Relations
articles

Topic models
+ propensity
score

Coarsened exact
matching

Roberts et al.
[2020]

Censorship Subsequent
censorship and
posting rate

Content of posts Social media
(Weibo)

Topic models
+ propensity
score

Coarsened exact
matching

Table 4.1: Example applications that infer the causal effects of treatment on outcome
by measuring confounders (unobserved) from text data (observed). In doing so, these
applications choose a representation of text (text rep.) and a method to adjust for
confounding.

has the advantage of a large sample size of over sixty-three thousand students. They

use heuristics to identify the Twitter accounts of college-age students and extract

alcohol mentions and indicators of college success (e.g., study habits, risky behaviors,

and emotions) from their Twitter posts. They condition on an individual’s previous

posts (temporally previous to measurements of treatment and outcome) as confound-

ing variables since they do not have demographic data. They represent text as word

counts and use stratified propensity score matching to adjust for the confounding
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bias. The study finds the effects of alcohol use include decreased mentions of study

habits and positive emotions and increased mentions of potentially risky behaviors.

Text as a surrogate for confounders. Traditionally, causal research that uses

human subjects as the unit of analysis would infer demographics via surveys. How-

ever, with the proliferation of the web and social media, social research now includes

large-scale observational data that would be challenging to obtain using surveys [Sal-

ganik, 2017]. This type of data typically lacks demographic information but may

contain large amounts of text written by participants from which demographics can

be extracted. In this space, some researchers are specific about the confounders they

want to extract such as an individual’s ideology [Sridhar and Getoor, 2019] or mood

[Sridhar et al., 2018]. Other researchers condition on all the text they have avail-

able and assume that low-dimensional summaries capture all possible confounders.

For example, researchers might assume that text encodes all possible confounders

between alcohol use and college success [Kiciman et al., 2018] or psychiatric medica-

tion and anxiety [Saha et al., 2019]. We dissect and comment on this assumption in

Section 4.8.

Open problems: NLP systems have been shown to be inaccurate for low-resource

languages [Duong et al., 2015], and exhibit racial and gender disparity [Blodgett and

O’Connor, 2017, Zhao et al., 2017]. Furthermore, the ethics of predicting psycholog-

ical indicators, such as mental health status, from text are questionable [Chancellor

et al., 2019]. It is unclear how to mitigate these disparities when trying to condition

on demographics from text and how NLP errors will propagate to causal estimates.

Language as confounders. There is growing interest in measuring language it-

self (e.g. the sentiment or topical content of text) as causal confounders. For example,

[Roberts et al., 2020] examine how the perceived gender of an author affects the num-

ber of citations that an article receives. However, an article’s topics (the confounders)

are likely to influence the perceived gender of its author (reflecting an expectation
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Figure 4.2: This chart is a guide to design decisions for applied research with causal
confounders from text. Step 1: Encode domain assumptions by drawing a causal
diagram (§4.3). If the application does not use text to measure latent confounders,
the causal effects are not identifiable or the application is outside the scope of this
review. Step 2: Use NLP to measure confounders from text (§4.4). Step 3: Choose
a method that adjusts for confounding in causal estimates (§4.5). Evaluation should
include (A) sensitivity analysis (§4.4), (B) human evaluation of adjustments when
appropriate (§4.6), and (C) evaluation of recovering the true causal effects (§4.7).

that women write about certain topics) and the number of citations of that article

(“hotter” topics will receive more citations). Other domains that analyze language

as a confounder include news [Johansson et al., 2016], social media [De Choudhury

et al., 2016, Olteanu et al., 2017], and loan descriptions [Pham and Shen, 2017]. See

Section 4.4 for more discussion on the challenges and open problems of inferring these

latent aspects of language.

4.3 Estimating causal effects

Two predominant causal inference frameworks are structural causal models (SCM)

[Pearl, 2009b] and potential outcomes [Rubin, 1974, 2005], which are complementary

and theoretically connected [Pearl, 2009b, Richardson and Robins, 2013, Morgan

and Winship, 2015]. While their respective goals substantially overlap, methods from

structural causal models tend to emphasize conceptualizing, expressing, and reasoning
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about the effects of possible causal relationships among variables, while methods from

potential outcomes tend to emphasize estimating the size or strength of causal effects.

4.3.1 Potential outcomes framework

In the ideal causal experiment, for each each unit of analysis, i (e.g., a person),

one would like to measure the outcome, yi (e.g., an individuals life expectancy), in

both a world in which the unit received treatment, ti = 1 (e.g., the person smoked), as

well as in the counterfactual world in which the same unit did not receive treatment,

ti = 0 (e.g the same person did not smoke).3 A fundamental challenge of causal

inference is that one cannot simultaneously observe treatment and non-treatment for

a single individual [Holland, 1986].

The most common population-level estimand of interest is the average treatment

effect (ATE).4 In the absence of confounders, this is simply the difference in means

between the treatment and control groups, τ = E(yi|ti = 1) − E(yi|ti = 0), and the

“unadjusted” or “naive” estimator is

τ̂naive =
1

n1

∑
i:ti=1

yi −
1

n0

∑
j:tj=0

yj (4.1)

where n1 is the number of units that have received treatment and n0 is the number

of units that have not received treatment. However, this equation will be biased if

there are confounders, zi, that influence both treatment and outcome.

3In this work, we only address binary treatments, but multi-value treatments are also possible
(e.g., Imbens [2000]).

4Other estimands include the average treatment effect on the treated (ATT) and average treat-
ment effect on the control (ATC) [Morgan and Winship, 2015]
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4.3.2 Structural causal models framework

Structural causal models (SCMs) use a graphical formalism that depicts nodes as

random variables and directed edges as the direct causal dependence between these

variables. The typical estimand of choice for SCMs is the probability distribution of

an outcome variable Y given an intervention on a treatment variable T :

P (Y | do(T = t)) (4.2)

in which the do-notation represents intervening to set variable T to the value t and

thereby removing all incoming arrows to the variable T .

Identification. In most cases, Equation 4.2 is not equal to the ordinary con-

ditional distribution P (Y | T = t) since the latter is simply filtering to the sub-

population and the former is changing the underlying data distribution via interven-

tion. Thus, for observational studies that lack intervention, one needs an identification

strategy in order to represent P (Y | do(T = t)) in terms of distributions of observed

variables. One such identification strategy (assumed by the applications throughout

this review) is the backdoor criterion which applies to a set of variables, S, if they (i)

block every backdoor path between treatment and outcome, and (ii) no node in S is

a descendant of treatment. Without positive identification, the causal effects cannot

be estimated and measuring variables from text is a secondary concern.

Drawing the causal graph. Causal graphs help clarify which variables should

and should not be conditioned on. The causal graphs in Figure 4.3 illustrate how

the direction of the arrows differentiates confounder, collider, and mediator vari-

ables. Identifying the differences in these variables is crucial since, by d-separation,

conditioning on a confounder will block the treatment-confounder-outcome path, re-

moving bias. By contrast, conditioning on a collider can create dependence between
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Figure 4.3: A causal diagram showing common causal relationships.

treatment-collider-outcome5 Pearl [2009a] potentially introducing more bias [Mont-

gomery et al., 2018, Elwert and Winship, 2014]. Mediator variables require a different

set of adjustments than confounders to find the “natural direct effect” between treat-

ment and outcome [VanderWeele, 2015, Pearl, 2014]. A practitioner typically draws

a causal graph by explicitly encoding theoretical and domain assumptions as well as

the results of prior data analyses.6

Open Problems: When could text potentially encode confounders and colliders

simultaneously? If so, is it possible to use text to adjust exclusively for confounders?

4.4 Measuring confounders via text

After drawing the causal graph, the next step is to use available text data to

recover latent confounders. Some approaches pre-specify the confounders of interest

5 In Pearl et al. [2016]’s example of a collider, suppose scholarships at a college are only given
to two types of students: those with unusual musical talents and high grade point averages. In the
general population, musical and academic talent are independent. However, if one discovers a person
is on a scholarship (conditioning on the collider) then knowing a person lacks musical talent tells us
that they are extremely likely to have a high GPA.

6See Morgan and Winship [2015] pgs. 33-34 on both the necessity and difficulty of specifying a
causal graph for applied social research. Time-ordering can be particularly helpful when encoding
causal relationships (for instance, there cannot be an arrow pointing from variable A to variable B
if B preceded A in time).
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and measure them from text, P (z | x). Others learn confounders inductively and use

a low-dimensional representation of text as the confounding variable z in subsequent

causal adjustments.

Pre-specified confounders. When a practitioner can specify confounders they

want to measure from text (e.g., extracting “occupation” from text in our smoking

example), they can use either (1) lexicons or (2) trained supervised classifiers as the

instrument of measurement. Lexicons are word lists that can either be hand-crafted

by researchers or taken off-the-shelf. For example, Saha et al. [2019] use categories of

the Linguistic Inquiry and Word Count (LIWC) lexicon [Pennebaker et al., 2001] such

as tentativeness, inhibition, and negative affect, and use indicators of these categories

in the text as confounders. Trained supervised classifiers use annotated training ex-

amples to predict confounders. For instance, Saha et al. [2019] also build machine

learning classifiers for users’ mental states (e.g., depression and anxiety) and apply

these classifiers on Twitter posts that are temporally prior to treatment. If these clas-

sifiers accurately recover mental states and there are no additional latent confounders,

then conditioning on the measured mental states renders treatment independent of

potential outcomes.

Open problems: Since NLP methods are still far from perfectly accurate, how

can one mitigate error that arises from approximating confounding variables? Closely

related to this question is effect restoration which addresses error from using proxy

variables (e.g., a father’s occupation) in place of true confounders (e.g, socioeconomic

status) [Kuroki and Pearl, 2014, Oktay et al., 2019]. Wood-Doughty et al. [2018]

build upon effect restoration for causal inference with text classifiers, but there are

still open problems in accounting for error arising from other text representations and

issues of calibration [Nguyen and OConnor, 2015] and prevalence estimation [Card

and Smith, 2018, Keith and O’Connor, 2018] in conjunction with NLP. Ideas from
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the large literature on measurement error models may also be helpful [Fuller, 1987,

Carroll et al., 2006, Buonaccorsi, 2010].

Inductively derived confounders. Other researchers inductively learn con-

founders in order to condition on all aspects of text, known and unknown. For

example, some applications condition on the entirety of news [Johansson et al., 2016]

or scientific articles [Veitch et al., 2020, Roberts et al., 2020]. This approach typically

summarizes textual information with text representations common in NLP. Ideally,

this would encode all aspects of language (meaning, topic, style, affect, etc.), though

this is an extremely difficult, open NLP problem. Typical approaches include the fol-

lowing. (1) Bag-of-words representations discard word order and use word counts as

representations. (2) Topic models are generative probabilistic models that learn latent

topics in document collections and represent documents as distributions over topics

[Blei et al., 2003, Boyd-Graber et al., 2014, Roberts et al., 2014]. (3) Embeddings are

continuous, vector-based representations of text. To create vector representations of

longer texts, off-the-shelf word embeddings such as word2vec [Mikolov et al., 2013]

or GloVe [Pennington et al., 2014] or combined via variants of weighted averaging

[Arora et al., 2017] or neural models [Iyyer et al., 2015, Bojanowski et al., 2017, Yang

et al., 2016]. (4) Recently, fine-tuned, large-scale neural language models such as

BERT [Devlin et al., 2019] have achieved state-of-the-art performance on semantic

benchmarks, and are now used as text representations. Each of these text represen-

tations is a real-valued vector that is used in place of the confounder, z, in a causal

adjustment method (§4.5)

Open problems: Estimates of causal effects are contingent on the “garden of

forking paths of data analysis, meaning any “paths an analyst did not take could

have resulted in different conclusions [Gelman and Loken, 2013]. For settings with

causal confounders from text, the first fork is the choice of representation (e.g., topic
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models or embeddings) and the second fork is the pre-processing and hyperparameter

decisions for the chosen representations.

We highlight that these decisions have been shown to alter results in predictive

tasks. For instance, studies have shown that pre-processing decisions dramatically

change topic models [Denny and Spirling, 2018, Schofield et al., 2017]; embeddings

are sensitive to hyperparameter tuning [Levy et al., 2015] and the construction of

the training corpus [Antoniak and Mimno, 2018]; and fine-tuned language model

performance is sensitive to random restarts [Phang et al., 2018]. Thus, reporting

sensitivity analysis of the causal effects from these decisions seems crucial: how robust

are the results to variations in modeling specifications?

4.5 Adjusting for confounding bias

Given a set of variables Z that satisfy the backdoor criterion (§4.3.2), one can use

the backdoor adjustment to estimate the causal quantity of interest,

P (Y = y | do(T = t)) =∫
P (Y = y | T = t, Z = z) P (Z = z) dz

(4.3)

Conditioning on all confounders is often impractical in high-dimensional settings such

as those found in natural language. We provide an overview of methods used by

applications in this review that approximate such conditioning, leading to unbiased

estimates of treatment effect; however, we acknowledge this is not an exhaustive list

of methods and direct readers to more extensive guides [Morgan and Winship, 2015,

Athey et al., 2017].

Open problems: Causal studies typically make an assumption of overlap, also

known as common support or positivity, meaning that any individual has a non-zero

probability of assignment to each treatment condition for all possible values of the

covariates: ∀z, 0 < P (T = 1 | Z = z) < 1. D’Amour et al. [2021] show that as
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the dimensionality of covariates grows, strict overlap converges to zero. What are the

implications of these results for high-dimensional text data?

4.5.1 Propensity scores

A propensity score estimates the conditional probability of treatment given a set

of possible confounders [Rosenbaum and Rubin, 1984, 1983, Caliendo and Kopeinig,

2008]. The true model of treatment assignment is typically unknown so one must

estimate the propensity score from data (e.g., from a logistic regression model),

π ≡ P (T = 1 | Z). (4.4)

Inverse Probability of Treatment Weighting (IPTW) assigns a weight to each unit

based on the propensity score [Lunceford and Davidian, 2004],

wi = ti/π̂i + (1− ti)/(1− π̂i), (4.5)

thus emphasizing, for example, treated units that were originally unlikely to be treated

(ti = 1, low πi). The ATE is calculated with weighted averages between the treatment

and control groups,7

τ̂IPTW =
1

n1

∑
i:ti=1

wiyi −
1

n0

∑
j:tj=0

wjyj (4.6)

4.5.2 Matching and stratification

Matching aims to create treatment and control groups with similar confounder as-

signments; for example, grouping units by observed variables (e.g., age, gender, occu-

7Lunceford and Davidian [2004] note there are two versions of IPTW, where both the weighted
sum and the raw count have been used for the n0 and n1 denominators.
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pation), then estimating effect size within each stratum [Stuart, 2010]. Exact match-

ing on confounders is ideal but nearly impossible to obtain with high-dimensional

confounders, including those from text. A framework for matching with text data

is described by Mozer et al. [2020] and requires choosing: (1) a text representation

(§4.4); (2) a distance metric (cosine, Eucliean, absolute difference in propensity score

etc.); and (3) a matching algorithm. As Stuart [2010] describes, the matching algo-

rithm involves additional decisions about (a) greedy vs. optimal matching; (b) number

of control items per treatment item; (c) using calipers (thresholds of maximum dis-

tance); and (d) matching with or without replacement. Coarsened exact matching

(CEM) matches on discretized raw values of the observed confounders [Iacus et al.,

2012].

Instead of directly matching on observed variables, stratified propensity-score match-

ing partitions propensity scores into intervals (strata) and then all units are compared

within a single strata [Caliendo and Kopeinig, 2008]. Stratification is also known as

interval matching, blocking, and subclassification.

Once the matching algorithm is implemented, counterfactuals (estimated potential

outcomes) are obtained from the matches Mi for each unit i:

ŷi(k) =


yi if ti = k

1
|Mi|

∑
j∈Mi

yj if ti 6= k

(4.7)

which is plugged into the matching estimator,8

τ̂match =
1

n

n∑
i

(
ŷi(1)− ŷi(0)

)
. (4.8)

8For alternative matching estimators see Abadie et al. [2004]. This estimator is techinally the
sample average treatment effect (SATE), not the population-level ATE, since we have pruned treat-
ment and control pairs that do not have matches [Morgan and Winship, 2015].
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Open problems: Ho et al. [2007] describe matching as a method to reduce model

dependence because, unlike regression, it does not rely on a parameteric form. Yet,

estimated causal effects may still be sensitive to other matching method decisions

such as the number of bins in coarsened exact matching, the number of controls to

match with each treatment in the matching algorithm, or the choice of caliper. Are

causal estimates made using textual covariates particularly sensitive or robust to such

choices?

4.5.3 Regression adjustment

Regression adjustment fits a supervised model from observed data about the ex-

pected conditional outcomes

q(t, z) ≡ E(Y | T = t, Z = z) (4.9)

Then the learned conditional outcome, q̂, is used to predict counterfactual outcomes

for each observation under treatment and control regimes,

τ̂reg =
1

n

n∑
i

(q̂(1, zi)− q̂(0, zi)) (4.10)

4.5.4 Doubly-robust methods

Unlike methods that model only treatment (IPTW) or only outcome (regression

adjustment), doubly robust methods model both treatment and outcome, and have

the desirable property that if either the treatment or outcome models are unbiased

then the effect estimate will be unbiased as well. These methods often perform very

well in practice [Dorie et al., 2019]. Adjusted inverse probability of treatment weighting

(A-IPTW) combines estimated propensity scores (Eqn. 4.4) and conditional outcomes

(Eqn. 4.9), while the more general targeted maximum likelihood estimator (TMLE)
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updates the conditional outcome estimate with a regression on the propensity weights

(Eqn. 4.5) and q̂ [Van der Laan and Rose, 2011].

4.5.5 Causal-driven representation learning

Several research efforts design representations of text specifically for causal in-

ference goals. These approaches still initialize their models with representations of

text described in Section 4.4, but then the representations are updated with machine

learning architectures that incorporate the observed treatment assignment and other

causal information. Johansson et al. [2016] design a network with a multi-task ob-

jective that aims for low prediction error for the conditional outcome estimates, q,

and minimizes the discrepancy distance between q(1, zi) and q(0, zi) in order achieve

balance in the confounders. Roberts et al. [2020] combine structural topic mod-

els (STM; [Roberts et al., 2014]), propensity scores, and matching. They use the

observed treatment assignment as the content covariate in the STM, append an esti-

mated propensity score to the topic-proportion vector for each document, and then

perform coarsened exact matching on that vector. Veitch et al. [2020] fine-tune a pre-

trained BERT network with a multi-task loss objective that estimates (a) the original

masked language-modeling objective of BERT, (b) propensity scores, and (c) condi-

tional outcomes for both treatment and control. They use the predicted conditional

outcomes and propensity scores in regression adjustment and the TMLE formulas.

Open problems: These methods have yet to be compared to one another on the

same benchmark evaluation datasets. Also, when are the causal effects sensitive to

hyperparameter and network architecture choices and what should researchers do in

these settings?

4.6 Human evaluation of intermediate steps

Text data has the advantage of being interpretable—matched pairs and some low-

dimensional representations of text can be read by humans to evaluate their quality.
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When possible, we suggest practitioners use (1) interpretable balance metrics and/or

(2) human judgements of treatment propensity to evaluate intermediate steps of the

causal estimation pipeline.

4.6.1 Interpretable balance metrics

For matching and propensity score methods, the confounder balance should be

assessed, since ideally P (Z | T = 1) = P (Z | T = 0) in a matched sample [Stuart,

2010]. A standard numerical balance diagnostic is the standardized difference in

means (SDM),

SDM(j) =
1
n1

∑
i:ti=1 zij − 1

n0

∑
i:ti=0 zij

σt=1
j

where zij is a single confounder j for a single unit i and σt=1
j is the standard deviation

of zij for all i such that ti = 1. SDM can also be used to evaluate the propensity

score, in which case there would only be a single j [Rubin, 2001].

For causal text applications, Roberts et al. [2020] and Sridhar and Getoor [2019]

estimate the difference in means for each topic in a topic-model representation of con-

founders and Sridhar et al. [2018] estimate the difference in means across structured

covariates but not the text itself. As an alternative to SDM, Roberts et al. [2020] use

string kernels to perform similarity checks. Others use domain-specific, known struc-

tured confounders to evaluate the balance between treatment and control groups. For

instance, De Choudhury and Kiciman [2017] sample treatment-control pairs across all

propensity score strata and label the sampled text based on known confounders (in

their case, from a previously-validated codebook of suicidal ideation risk markers).

Open problems: For embeddings and causally-driven representations, each di-

mension in the confounder vector z is not necessarily meaningful. How can balance

metrics be used in this setting?
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4.6.2 Judgements of treatment propensity

When possible, one can also improve validation by evaluating matched items

(posts, sentences, documents etc.) to humans for evaluation. Humans can either

(a) use a scale (e.g., a 1-5 Likert scale) to rate items individually on their propen-

sity for treatment, or (b) assess similarity of paired items after matching. A simple

first step is for analysts to do “in-house” evaluation on a small sample (e.g., Roberts

et al. [2020]), but a larger-sample experiments on crowd-working platforms can also

increase the validity of these methods (e.g., Mozer et al. [2020]).

Open problems: How can these human judgement experiments be improved

and standardized? Future work could draw from a rich history in NLP of evaluating

representations of topic models and embeddings [Wallach et al., 2009, Bojanowski

et al., 2017, Schnabel et al., 2015] and evaluating semantic similarity [Cer et al.,

2017, Bojanowski et al., 2017, Reimers and Gurevych, 2019].

4.7 Evaluation of causal methods

Because the true causal effects in real-world causal inference are typically un-

known, causal evaluation is a difficult and open research question. As algorithmic

complexity grows, the expected performance of causal methods can be difficult to

estimate theoretically [Jensen, 2019]. Other causal evaluations involve synthetic data.

However, as Gentzel et al. [2019] discuss, synthetic data has no “unknown unknowns”

and many researcher degrees of freedom, which limits their effectiveness. Thus, we

encourage researchers to evaluate with constructed observational studies or semi-

synthetic datasets, although measuring latent confounders from text increases the

difficulty of creating realistic datasets that can be used for empirical evaluation of

causal methods.
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4.7.1 Constructed observational studies

Constructed observational studies collect data from both randomized and non-

randomized experiments with similar participants and settings. Evaluations of this

kind include job training programs in economics [LaLonde, 1986, Glynn and Kashin,

2013], advertisement marketing campaigns [Gordon et al., 2019], and education [Shadish

et al., 2008]. For instance, Shadish et al. [2008] randomly assign participants to a

randomized treatment (math or vocabulary training) and non-randomized treatment

(participants choose their own training). They compare causal effect estimates from

the randomized study with observational estimates that condition on confounders

from participant surveys (e.g., sex, age, marital status, like of mathematics, extrover-

sion, etc.).

Open problems: To extend constructed observational studies to text data, one

could build upon Shadish et al. [2008] and additionally (a) ask participants to write

free-form essays of their past educational and childhood experiences and/or (b) obtain

participants’ public social media posts. Then causal estimates that condition on

these textual representation of confounders could be compared to both those with

surveys and the randomized settings. Alternatively, one could find observational

studies with both real covariates and text and (1) randomize treatment conditional

on the propensity score model (constructed from the covariates but not the text) and

(2) estimate causal effect given only text (not the covariates). Then any estimated

non-zero treatment effect is only bias.

4.7.2 Semi-synthetic datasets

Semi-synthetic datasets use real covariates and synthetically generate treatment

and outcome, as in the 2016 Atlantic Causal Inference Competition [Dorie et al.,

2019]. Several applications in this review use real metadata or latent aspects of

text to simulate treatment and outcome: Johansson et al. [2016] simulate treatment
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and outcome from two centroids in topic model space from newswire text; Veitch

et al. [2020] use indicators of an article’s “buzzy” keywords; Roberts et al. [2020]

use “quantitative methodology” categories of articles that were hand-coded by other

researchers.

Open problems: Semi-synthetic datasets that use real covariates of text seem to

be a better evaluation strategy than purely synthetic datasets. However, with semi-

synthetic datasets, researchers could be inadvertently biased to choose metadata that

they know their method will recover. A promising future direction is a competition-

style evaluation like Dorie et al. [2019] in which one group of researchers generates

a causal dataset with text as a confounder and other groups of researchers evaluate

their causal methods without access to the data-generating process.

4.8 Discussion and conclusion

Computational social science is an exciting, rapidly expanding discipline. With

greater availability of text data, alongside improved natural language processing mod-

els, there is enormous opportunity to conduct new and more accurate causal observa-

tional studies by controlling for latent confounders in text. While text data ought to

be as useful for measurement and inference as “traditional” low-dimensional social-

scientific variables, combining NLP with causal inference methods requires tackling

major open research questions. Unlike predictive applications, causal applications

have no ground truth and so it is difficult distinguish modeling errors and forking

paths from the true causal effects. In particular, we caution against using all avail-

able text in causal adjustment methods without any human validation or supervision,

since one cannot diagnose any potential errors. Solving these open problems, along

with the others presented in this paper, would be a major advance for NLP as a social

science methodology.
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CHAPTER 5

CAUSAL RESEARCH DESIGN FOR EFFECTS OF
DIFFERENTIAL TREATMENT OF SOCIAL GROUPS

VIA LANGUAGE MEDIATORS

5.1 Introduction

Interactions between individuals are key components of social structure [Hinde,

1976]. While we rarely have access to individuals’ internal thoughts during these

interactions, we often can observe the language they use. Using observed language

to better understand interpersonal interactions is important in high-stakes decision

making—for instance, judges’ decisions within the United States legal system [Danescu-

Niculescu-Mizil et al., 2012] or police interaction with citizens during traffic stops

[Voigt et al., 2017].

Important decision makers sometimes treat some social groups (e.g. women, racial

minorities, or ideological communities) differently than others [Gleason, 2020]. Yet,

quantitative analyses of this problem often do not account for all possible mecha-

nisms that could induce this differential treatment. For instance, one might ask, Is

a U.S. Supreme Court justice interrupting female advocates more because they are

female, because of the advocates’ language content, or because of the advocate’s lan-

guage delivery? (Fig. 5.1B). Accounting for these language mechanisms could help

separate the remaining “gender bias” of justices.

We reformulate the previous question as a general counterfactual [Pearl, 2009b,

Morgan and Winship, 2015] about two speakers: How would Speaker 2 respond if

the signal they received of Speaker 1’s social group flipped from A to B but Speaker 1

still used language typical of social group A? Here, our question is about the direct
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T: Speaker 1 
social group

Y: Speaker 2 
response

M1: Speaker 1 
text aspect 1 

T: Advocate 
gender

Y: Justice
 interrupts
advocate

M1: (Delivery)
advocate speech 

disfluencies

M2: (Content)
Topics 

discussed

A. General framework

B. Case study: Supreme Court oral arguments

M2: Speaker 1 
text aspect 2 

Figure 5.1: Causal diagrams in which nodes are random variables and arrows denote
causal dependence for A. proposed general framework for differential treatment of
social groups via language aspects and B. instantiation of the framework for a case
study of Supreme Court oral arguments. In both diagrams, T is the treatment vari-
able, Y is the outcome variable, and M are mediator variables. This is a simplified
schema; see Fig. 5.2 for an expanded diagram.

causal effect of treatment—Speaker 1’s signalled social group—on outcome—Speaker

2’s response—that is not through the causal pathway of the mediator—an aspect of

language (Fig. 5.1A).

The fundamental problem with this and any counterfactual question is that we

cannot go back in time and observe an individual counterfactual while holding all

other conditions the same [Holland, 1986]. Furthermore, in many high-stakes, real-

world settings (e.g. the U.S. Supreme Court), we cannot run experiments to randomly

assign treatment and approximate these counterfactuals. Instead, in these settings,

causal estimation must rely on observational (non-experimental) data.
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In this work, we focus on this observational setting and build from causal media-

tion methods [Pearl, 2001, Imai et al., 2010, VanderWeele, 2016] to specify a research

design of causal estimates of differential treatment of social groups via language as-

pects.1 We address critiques of the design in §5.4.2 and §5.5 including: flaws in using

social groups as a causal treatment, dependence between mediators in conversations,

and dependence between perception of social groups and linguistic perception.

Overall, we make the following contributions:

• We propose a new causal research design for estimating the natural indirect and di-

rect effects of social group signal on a conversational outcome with separate aspects

of language as causal mediators (§5.3).

• We illustrate the promises and challenges of this framework via a theoretical case

study of the effect of an advocate’s gender on interruptions from justices in Supreme

Court oral arguments. (§5.2).

• We discuss challenges researchers might face conceptualizing and operationalizaing

the causal variables in this research design (§5.4).

• We directly address critiques of using social groups (e.g. race or gender) as treatment

and construct gender and language as constitutive variables, building from Sen and

Wasow [2016], Hu and Kohler-Hausmann [2020].

• We articulate potential open challenges in this research design including tempo-

ral dependence between mediators in conversations, causal dependence between

multiple language mediators, and dependence between social group perception and

language perception (§5.5).

1Other work has used mediation analysis to understand NLP components [Vig et al., 2020,
Finlayson et al., 2021]; however, this work is more closely aligned with recent work examining the
role of text in causal estimates [Veitch et al., 2020, Roberts et al., 2020, Keith et al., 2020a, Zhang
et al., 2020, Pryzant et al., 2021].
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(A) Case: Kennedy v. Plan Administrator for DuPont Sav. and
Investment Plan (2008-07-636)
Mark Irving Levy: [...] The QDRO provision is an objective checklist that is easy
for – for plan administrators to follow.
Antonin Scalia: What if they had agreed to the waiver apart from [...] We’d be in
the same suit that you’re - - that you say we have to avoid, wouldn’t we?
Mark Irving Levy: I don’t think so. I mean I think that would be an alienation.
Antonin Scalia: Well, if it’s an alienation, but his point is that a waiver is not an
alienation.
(B) Case: Lozano v. Montoya Alvarez (2013-12-820)
Ann O’Connell Adams: Well - -
Antonin Scalia: I mean, it seems to me it just makes that article impossible to
apply consistently country to country.
Ann O’Connell Adams: - - No, I don’t think so. And - - and, the other signatories
have - - have almost all, I mean I think the Hong Kong court does say that it doesn’t
have discretion, but it said in that case nevertheless it would, even if it had
discretion, it wouldn’t order the children returned. But the other courts of signatory
countries that have interpreted Article 12 have all found a discretion, whether it be in
Article 12 or in Article 8. And if I - -
Antonin Scalia: Have they exercised it? Have they exercised it, that discretion
which they say is there?

Table 5.1: Selected utterances from the oral arguments of two Supreme Court cases, A
[Oyez, a] and B [Oyez, b], with advocates Mark Irving Levy (male) and Ann O’Connell
Adams (female) respectively. Justice Antonin Scalia responds to both advocates.
Hedging language is highlighted in blue. Speech disfluencies are highlighted in red.
Gray-colored utterances directly proceed the target utterances (non-gray colored) in
the oral arguments.

5.2 Theoretical case study of gender bias in U.S. Supreme

Court interruptions

To motivate our causal research design and illustrate challenges that arise with it,

we focus on a specific theoretical case study—the effect of advocate gender on justice

interruptions via advocates’ language in Supreme Court oral arguments (Fig. 5.1B).

Previous work found female lawyers are interrupted earlier in oral arguments, allowed

to speak for less time, and subjected to longer speeches by justices [Patton and Smith,

2017], and justices are more likely to vote for a female advocate’s party when the

female advocate uses emotional language [Gleason, 2020].
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Counterfactual questions. We present a novel causal approach to understand-

ing gender bias in Supreme Court oral arguments that corresponds to the following

counterfactual questions:

1. (NDE): How would a justice’s interruptions of an advocate change if the signal

of the advocate’s gender the justice received flipped from male to female, but

the advocate still used language typical of a male advocate?

2. (NIE): How would a justice’s interruptions of an advocate change if a male advo-

cate used language typical of a female advocate but the signal of the advocate’s

gender the justice received remained male?

which we show correspond to the natural direct effect (NDE) and natural indirect

effect (NIE) respectively in §5.3. In §5.4, we walk through the theoretical conceptual-

ization and empirical operationalization of advocate gender (treatment), interruption

(outcome), and advocate language (mediators).

Intuitive example. We describe intuitive challenges of our causal research design

with the example in Table 5.1. In Example A [Oyez, a], Levy—a male advocate—is

not interrupted by Justice Antonin Scalia but in Example B [Oyez, b], Adams—a

female advocate—is interrupted. Why was the female advocate interrupted? Was it

because of her gender or because of what she said or how she said it? We hypoth-

esize one causal pathway between gender and interruption is through the mediating

variable hedging—expressions of deference or politeness.2 Suppose we operationalize

hedging as certain key phrases, e.g. “I don’t think so” and “I mean I think.” An

initial causal design might assign a binary hedging indicator to utterances and then

compare average interruption outcomes for male and female advocates conditional on

the hedging indicator.

2Previous work has shown hedging is used more often by women [Lakoff, 1973, Poos and Simpson,
2002], and we hypothesize judges might respond more positively to more authoritative language (less
hedging) from advocates.
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However, advocate utterances matched on this hedging indicator could have a

number of latent mediators and confounders. In Table 5.1, Adams has speech dis-

fluencies (“and - - and” and “have - - have” shown in red) which might cause Scalia

to get frustrated and interrupt. The cases are from different areas of the law3 and

Scalia may interrupt more for case issue areas he cares more about. The advocate

utterance in Ex. B is longer (more tokens) and longer utterances may be more likely

to be interrupted. In Ex. B, Scalia interrupts Adams just prior to the target utter-

ance which possibly indicates a more “heated” portion of the oral arguments during

which interruptions occur more on average. With these confounding and additional

mediator challenges, a simple causal matching approach (e.g. Stuart [2010], Roberts

et al. [2020]) is unlikely to work and we advocate for the causal estimation strategy

presented in §5.3.3. We move from this case study to a formalization of our causal

research design in §5.3.

5.3 Causal mediation formalization, identification, and esti-

mation

Many causal questions involve mediators—variables on a causal path between

treatment and outcome. For example, what is the effect of gender4 (treatment) on

salary (outcome) with and without considering merit (a mediator)? If one intervenes

on treatment, then one would activate both the “direct path” from gender to salary

and the “indirect path” from gender through merit to salary. Thus, a major focus of

causal mediation is specifying conditions under which one can separate estimates of

the direct effect from the indirect effect—the former being the effect of treatment on

outcome not through mediators and the later the effect through mediators.

3The Supreme Court Database codes Ex. A as “economic activity” and Ex. B as “civil rights”
[Spaeth et al., 2021].

4See §5.4 for discussion of operationalizing difficult causal variables such as gender.
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We use this causal mediation approach to formally define our framework. For

each unit of analysis (see §5.4.1), i, let Ti represent the treatment variable—the social

group, e.g. gender of an advocate—and Yi represent the outcome variable—the second

speaker’s response, e.g. a judge’s interruption or non-interruption of an advocate.

For each defined mediator j, let M j
i represent the mediating variable—an aspect of

language, e.g. an advocate’s speech disfluencies or the topics of an utterance. Let Xi

represent any other confounders between any combination of the other variables.

Because causal mediation consists of inquiries about counterfactual paths and not

interventions of variables,5 we use the potential outcomes framework [Rubin, 1974] to

define the effects of interest. Let Mi(t) represent the (counterfactual) potential value

the mediator would take if Ti = t. Then Yi(t,Mi(t
′)) is a doubly-nested counterfactual

that represents the potential outcome that results from both Ti = t and potential

value of the mediator variable with Ti = t′. With this formal notation, we define the

individual natural direct effect (NDE) and natural indirect effect (NIE):6

NDEi = Yi(1,Mi(0))− Yi(0,Mi(0)) (5.1)

NIEi = Yi(0,Mi(1))− Yi(0,Mi(0)) (5.2)

These correspond to the two counterfactual questions from §5.2 if Ti = 0 and Ti = 1

represent the gender signal of the advocate being male and female respectively.

5In the words of Pearl [2001], a mediation research question “cannot be represented in the stan-
dard syntax of do(x) operators—it does not involve fixing any of the variables in the model but,
rather, modifying the causal paths in the model.”

6We note Pearl et al. [2016] defines the NDE and NIE in terms of the non-treatment condition,
T = 0. Others (e.g. Imai et al. [2010] and Van der Laan and Rose [2011]) give alternate definitions
of these quantities in terms of T = 1. We follow Pearl et al.’s definitions in the remainder of this
work.
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5.3.1 Interpretation of the NDE as “bias”

Many applications of causal mediation aim to quantify “implicit bias” or “dis-

crimination” via the natural direct effect. However, if all relevant mediators are not

accounted for, one cannot interpret the estimand of the natural direct effect as the

actual direct causal effect [Van der Laan and Rose, 2011, p.135]. Nevertheless, sep-

arating the total effect into the proportion that is the NDE and the NIE with the

mediators we can measure moves our analysis closer to estimating the true direct

effect between treatment and outcome. Thus, in this work we emphasize the value of

having interpretable mediators (i.e. language aspects) for which the NIE is a mean-

ingful quantity to analyze in itself.

5.3.2 Identification

Like any causal inference problem, we first examine the identification assumptions

necessary to claim an estimate as causal. The key assumption particular to causal

mediation is that of sequential ignorability [Imai et al., 2010]:

1. Potential outcomes and mediators are independent of treatment given confounders

{Yi(t′,m),Mi(t)} |= Ti | Xi = x (5.3)

2. Potential outcomes are independent of mediators given treatment and confounders

Yi(t
′,m) |= Mi(t) | {Ti = t,Xi = x} (5.4)

for t, t′ ∈ {0, 1} and all values of x and m.

Mediator Independence Assumption:7 For our particular framework, we make an

additional assumption that for each language aspect we study, the mediators are

7This is similar to the assumptions Pryzant et al. [2021] make for linguistic properties of text as
treatment.
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independent conditional on the treatment and confounders

∀j, j′ : M j
i (t) |= M j′

i (t) | {Ti = t,Xi = x} (5.5)

With this assumption, we can estimate the NIE and NDE of each mediator succes-

sively, ignoring the existence of other mediators. [Imai et al., 2010, Tingley et al.,

2014]. We discuss the validity of this assumption in §5.5.

5.3.3 Estimation

Given the satisfaction of sequential ignorability, mediator independence, and other

standard causal identification assumptions,8 we propose using the following estimators

of population-level natural direct and indirect effects for each mediator j [Imai et al.,

2010, Pearl et al., 2016]:

SA-NDEj =
1

N

N∑
i=1

∑
x∈X

∑
m∈Mj

(
f̂ j(Y |M j

i = m,Ti = 1, Xi = x)

− f̂ j(Y |M j
i = m,Ti = 0, Xi = x)

)
ĝj(m|Ti = 0, Xi = x)

(5.6)

SA-NIEj =
1

N

N∑
i=1

∑
x∈X

∑
m∈Mj

f̂ j(Y |M j
i = m,Ti = 0, Xi = x)(

ĝj(m|Ti = 1, Xi = x)− ĝj(m|Ti = 0, Xi = x)

) (5.7)

Each is a Sample Average estimate from N data points, relying on models trained to

predict mediator and outcome given confounders and treatment: ĝj infers mediator j’s

probability distribution, while f̂ j infers the expected outcome conditional on mediator

j. The estimators marginalize over confounder and mediator from their respective

domains (x ∈ X , m ∈ Mj), which for our discrete variables is feasible with explicit

sums (see Imai et al. for the continuous case).

8Overlap, SUTVA etc.; see Morgan and Winship [2015].
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Model fitting. When fitting models f̂ and ĝ, we highly recommend using a

cross-sample or cross-validation approach in which one part of the sample is used for

training/estimation (Strain) and the other is used for testing/inference (Stest) in order

to avoid overfitting [Chernozhukov et al., 2017, Egami et al., 2018]. With text, one

must also fit a model for the mediators conditional on text, h(m|text) using Strain.

In some cases, such as measuring advocate speech disfluencies, h may be a simple

deterministic function. However, when using NLP and other probabilistic models

(e.g topic models or embeddings), h could be a difficult function to fit and have a

certain amount of measurement error. A major open question is whether to jointly fit

h and g at training time as advocated by previous work [Veitch et al., 2020, Roberts

et al., 2020] or if h and g should be treated as separate modules. At inference time,

we do not use the inference text from Stest since Eqns. 5.6 and 5.7 only rely on the

mediators through estimates from ĝ.

5.4 Conceptualization and operationalization of causal vari-

ables

For any causal research design—and particularly those in the social sciences—

there are often challenges conceptualizing the theoretical causal variables of interest.

Even after these theoretical concepts are made concrete, there are often multiple

ways to operationalize these concepts. We discuss conceptual and operational issues

for our both our general research design and case study. In particular, we recommend

researchers formalize variables such as gender and language as constitutive variables

made of multiple components, building from Sen and Wasow [2016], Hu and Kohler-

Hausmann [2020] (e.g. see Fig. 5.2).
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5.4.1 Unit of analysis

As with most causal research designs, one starts by conceptualizing the unit of

analysis—the smallest unit about which one wants to make counterfactual inquiries.

In our framework, the unit of analysis is language (L) between speakers of two cat-

egories: the first (P1) being a social group of interest (e.g. advocates) for which

treatment values (e.g. female and male) will be assigned; and the second (P2) being

the set of decision-makers responding to the first speaker (e.g. judges).

Operationalizations. There are several possible operationalizations of L: pairs

of single utterances—whenever a P1 speaks and a P2 responds; a thread of several

utterances between a P1 and a P2 within a conversation; or the entire conversation

between a P1 and a P2. In §5.5, we note that selecting the unit of language could

have implications for modeling temporal dependence between mediators.

5.4.2 Treatment

At the most basic level, treatment, T , in our research design is the social group of

P1 (Fig. 5.1). However, inspired by the causal consistency arguments from Hernán

[2016],9 we examine several competing versions of treatment for our theoretical case

study and explain the reasons we eventually choose version #5 (in bold):

1. Do judges interrupt at different rates based on an advocate’s gender?

2. Based on an advocate’s biological sex assigned at birth?

3. An advocate’s perceived gender?

4. An advocate’s gender signal?

9 Consistency is the condition that for observed outcome Y and treatment T , the potential
outcome equals the observed outcome, Y (t) = Y for each individual with T = t. Hernán [2016]
presents eight versions of treatment for the causal question “Does water kill?” to illustrate the
deceptiveness of this apparently simple consistency condition. Hernán points out that “declaring a
version of treatment sufficiently well-defined is a matter of agreement among experts based on the
available substantive knowledge” and is inherently (and frustratingly) subjective.
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5. An advocate’s gender signal as defined by (hypothetical) manipulations

of the advocate’s clothes, hair, name, and voice pitch?

6. An advocate’s gender signal by (hypothetical) manipulations of their entire phys-

ical appearance, facial features, name, and voice pitch?

7. An advocate’s gender signal by setting their physical appearance, facial features,

name, and voice pitch to specific values (e.g. all facial features set to that of the

same 40-year-old, white female and clothes set to a black blazer and pants).

In critique of treatment version #1, most social groups (e.g. gender or race) re-

flect highly contextual social constructs [Sen and Wasow, 2016, Kohler-Hausmann,

2018, Hanna et al., 2020]. For gender in particular, researchers have shown social,

institutional, and cultural forces shape gender and gender perceptions [Deaux, 1985,

West and Zimmerman, 1987], and thus viewing gender as a binary “treatment” in

which individuals can be randomly assigned is methodologically flawed. In critique of

version #2, biological sex assigned at birth is a characteristic that is not manipulable

by researchers and the “at birth” timing of treatment assignment means all other

variables about the individual are post-treatment. Thus, researchers have warned

against estimating the causal effects of these “immutable characteristics” [Berk et al.,

2005, Holland, 2008].

Greiner and Rubin [2011] propose overcoming the issues in versions #1 and #2

by shifting the unit of analysis to the perceived gender of the decision-maker (#3)

and defining treatment assignment as the moment the decision-maker first perceives

the social group of the other individual. Hu and Kohler-Hausmann [2020] critique

this perceived gender variable and emphasize that we, as researchers, cannot actually

change the internal, psychological state of the decision-makers, but rather we can

change the signal about race or gender those decision-makers receive (#4). However,

as Sen and Wasow [2016] discuss, defining treatment as the gender signal (#4) is

dismissive of the many components that make up a social construct like gender.
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Instead, Sen and Wasow recommend articulating the specific variables one would

potentially manipulate. For gender in our case study, this could mean hypothetical

manipulations of an advocate’s dress, name, and voice pitch (#5).

Shifting from versions #5 to #6 and #7, we define treatment in terms of more

specific manipulations. However, we also enter the realm of Hernán’s argument that

precisely defining the treatment never ends, and some aspects of #6 and #7 are

impossible to manipulate in the real-world setting of the U.S. Supreme Court. What

does it mean to manipulate an advocate’s “entire physical appearance?”10 When we

define treatment very specifically—e.g. using the same 40-year old white woman as

the treatment for “female advocate” (#7)—are we estimating a causal effect of gender

in general? Thus, we back-off from versions #6 and #7, and advocate using #5 as

our definition of treatment.

Constitutive causal diagrams. With these considerations, drawing a causal

diagram in which a gender is represented as a single node seems methodologically

flawed. Instead, building from Sen and Wasow [2016], Hu and Kohler-Hausmann

[2020], we represent treatment (the social group) as cloud of components (a constitu-

tive variable), some of which are latent, some observable, and some manipulable. In

Fig. 5.2, we shade the “outward” components of gender—hair, appearance, clothes,

voice pitch, and name—that are our hypothetical manipulations and would influence

the latent variable of a judge’s perceived gender of the advocate. Other “background”

components of gender—gender norms, education, and socialization—are the compo-

nents that causally influence language.

10Would justices have to interact with advocates through a computer-mediated system in which
one could customize avatars of the advocates? We note, using computer-mediated avatars to signal
social group identity has been used effectively in other causal studies, e.g. Munger [2017].
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Figure 5.2: Constitutive causal diagram for gendered interruption in Supreme Court
oral arguments. Latent theoretical concepts are unshaded circles and observed mea-
surements are shaded circles. The causal variables gender and language are repre-
sented as dashed lines around their constituent parts. The shaded portion of gender
consists of the gender variables that one could manipulate in a hypothetical interven-
tion.

Case study operationalizations. Even after selecting version #5 as our concep-

tualization of treatment, there are still multiple operationalizations for our theoretical

case study:

Treatment operationalization 1: Previous work operationalizes gender in

Supreme Court oral arguments by using norm that the Chief Justice introduces an

advocate as “Ms.” and “Mr.” before their first speaking turn [Patton and Smith,

2017, Gleason, 2020]. The advantage of this operationalization is that it is simple,

clean, and consistent, and occurs direct before an advocate’s first utterance.11

11The treatment assignment timing is potentially important for the rest of the causal diagram. If
we can define gender signal and thus latent perceived gender as happening right before an advocate
first speaks, and then is not adapted or updated by the judge over the course of the oral arguments
and we can eliminate the causal arrow between variables “language” and “perceived gender.”
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Treatment operationalization 2: Alternatively, one could focus on even more

specific components of gender for (hypothetical) manipulations. For instance, Chen

et al. [2016] and Chen et al. [2019] measure voice pitch when studying gender on the

U.S. Supreme Court. While being more cumbersome to measure, this operationalizes

gender as a real-valued (instead of binary) variable and thus potentially measures

more subtle gender biases.

5.4.3 Outcome

In our general framework, we define the outcome, Y , as the response of the sec-

ond speaker (Fig. 5.1A), and we intentionally leave this variable vague and domain-

specific. However, if making the leap from differential treatment to claiming discrim-

ination or bias, conceptualizing a causal outcome requires normative commitments

and a moral theory of what is harmful [Kohler-Hausmann, 2018, Blodgett et al., 2020].

In our case study, we conceptualize the outcome variable as a judge interrupting an

advocate. This outcome is of substantive interest because, in general, interruptions

can indicate and reinforce status in conversation [Mendelberg et al., 2014], and, specif-

ically to the U.S. Supreme Court, there is interest in connecting justice’s behavior in

oral arguments to case outcomes.

Outcome operationalization 1: Previous work uses the transcription norm

of a double-dash (“- -”) at the end of a advocate utterance when a justice inter-

rupts in the next utterance [Patton and Smith, 2017]. However, the validity of this

operationalization relies on consistent transcription standards.

Outcome operationalization 2: An alternative operationalization could clas-

sify interruptions into positive (agreeing with the first speaker’s comment), nega-

tive (disagreeing, raising an objection, or completely changing the topic), or neutral

[Stromer-Galley, 2007, Mendelberg et al., 2014]. While estimating the effects of only

negative interruptions could further refine the causal question—Do justices nega-
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tively interrupt female advocates more?—this operationalization could also introduce

measurement error since it could prove difficult difficult to design an accurate NLP

classifier for this task.

5.4.4 Language mediators

Our framework explicit focuses on language as a mediator in differential treat-

ment of social groups. Yet, language consists of multiple levels of linguistic structure

[Bender, 2013, Bender and Lascarides, 2019], so as with social groups (§5.4.2) it is a

variable that is non-modular and should be represented as constituent parts (Fig. 5.2).

Mediator Operationalizations: We focus on three potential language aspects

for our Supreme Court case study: (A) hedging—expressions of deference or politeness—

with an operationalization as lexical matches from a single-word hedging dictionary

(e.g. Prokofieva and Hirschberg [2014]); (B) speech disfluencies—repetitions of sylla-

bles, words, or phrases—which we operationalize as the transcript noting a repeated

unigram with a double dash, “word - - word”; and (C) semantic topics operationalized

as a topic model [Blei et al., 2003] applied to utterances.

Recommendations. We discuss the choice of these particular language aspects,

M j, for our case study as well as general recommendations for researchers opera-

tionalizing language as a mediator.

Is M j interpretable? Is there a hypothetical manipulation12 of M j? In contrast to

prior work that treats language as a black-box in causal mediation estimates [Veitch

et al., 2020], we advocate for using interpretable aspects of language so that the NIE

is meaningful.

12To be precise, the controlled direct effect is the estimand in which the mediator is manipulated,
do(M) [Pearl, 2001]. In contrast, the natural direct and indirect effects are counterfactuals on
paths. However, we still find thinking through potential manipulations is helpful in refining the
conceptualization of a language aspect.
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Is there substantive theory for causal pathways T → M j and from M j → Y ?

Without such theory, studying certain aspects of language is not meaningful. See

§5.2 for our theoretical reasoning through the causal connections between gender,

hedging, and interruption.

To what extent does one expect measurement error of M j when using automatic

NLP tools? Our operationaliztions of hedging lexicons and speech disfluences are de-

terministic; however, topic model inferences are probabilistic and sensitive to changes

in hyperparameters and pre-processing decisions [Schofield et al., 2017, Denny and

Spirling, 2018], and these kinds of measurement errors are still open questions (al-

though there is work that examines measurement error when text is treatment [Wood-

Doughty et al., 2018]).

Is M j causally independent from other measured language aspects, M j′? If not,

our proposed estimator from §5.3.3 is invalid. Thus, one must scrutinise which aspects

of language are separable and thus able to be included in the causal analysis—e.g.

we could include content (topics) versus delivery (speech disfluencies) since one could

hypothetically modify one without affecting the other. We discuss this assumption

further in §5.5.

5.4.5 Non-language mediators

Returning to §5.3.1, there is often a tendency to interpret the NDE as something

like “pure” gender bias—What is the effect of gender on interruption when all other

possible causal pathways are stripped away? Conceptualizing and operationalizing

language aspects as mediators (§5.4.4) moves the NDE towards the desired “gender

bias.” However, there may be other mediator pathways that explain these effects. For

example, in our case-study, two additional mediators of interest are advocate ideology

(e.g. liberal or conservative) and the level of “eliteness” of the advocate’s law firm. A

major validity issue is the causal independence of these mediators from the language
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mediators. For instance, ideology could influence certain aspects of language (topic),

and “eliteness” of the advocate’s law firm could be a proxy for level of training which

could influence the advocate’s delivery.

5.5 Challenges and threats to validity

Temporal dependence of utterances. So far, we assumed the “units of analy-

sis” of text are independent (§5.4.1). However, previous utterances in a conversation

often influence the target utterances. For our case study, if Judge A interrupted

Advocate B often in t′ < t, interruption at t is more likely (the two speakers are

possibly in a “heated” part of the conversation) and Advocate B’s speech disfluen-

cies at t are also more likely (the advocate could be mentally fatigued). Potential

avenues forward include changing the unit of analysis to the entire conversational

thread between the two target speakers or building extensions to the multiple media-

tor literature, i.e. Imai and Yamamoto [2013], VanderWeele and Vansteelandt [2014],

Daniel et al. [2015], VanderWeele [2016].

Dependence between multiple language mediators. Our framework as-

sumes one can computationally separate aspects of language.13 However, some soci-

olinguists argue aspects of language such as “style” cannot be separated from “con-

tent” because style originates in the content of people’s lives and different ways of

speaking signal socially meaningful differences in content [Eckert, 2008, Blodgett,

2021]. If our mediator independence assumption (Eqn. 5.5) is violated, then we would

have to turn to alternate estimation strategies from the multiple mediator literature

to deal with this dependence.

Dependence between social group perception and linguistic perception.

Separating the direct and indirect causal paths in our framework relies on there being

13This assumption is made in other NLP applications such as style transfer or machine translation
[Prabhumoye et al., 2018, Li et al., 2018, Hovy et al., 2020].
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a decision-maker’s latent perception of social group variable on the direct path and

this is independent from a decision-maker’s latent perception of language variable

on the indirect path. However, in sociolinguistics, “indexical inversion” considers

“how language ideologies associated with social categories produce the perception of

linguistic signs” [Inoue, 2006, Rosa and Flores, 2017]. Suppose Judge A perceives

Advocate B as female, then Judge A might perceive Advocate B’s language as more

feminine even if it is linguistically identical to language used by male advocates. Fur-

thermore, latent gender perception and latent language perception might interact in

affecting the outcome through mechanisms such as rewarding “conforming to gen-

der norms”—an advocate who is perceived as a man might get penalized for using

feminine language whereas an advocate perceived as a woman might get rewarded,

e.g. Gleason [2020].

5.6 Conclusion

In this work, we specify a causal research design for differential treatment of social

groups with language as a mediator. We believe this research design is important for

studying the direct and indirect causal effects in high-stakes decision making such as

gender bias in the United States Supreme Court. Separating the indirect effect of

treatment on outcome through interpretable language aspects allows us to estimate

counterfactual inquiries about differential treatment when speakers use and do not

use the same language. Despite open technical challenges, we remain optimistic that

researchers can build upon this framework and continue to improve our understanding

of differential treatment in settings of high-stakes decision making.
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CHAPTER 6

CONCLUSION

This thesis has been motivated by real-world social science applications that use

text data. In order to support social science needs, this thesis has addressed gaps be-

tween methods in natural language processing (NLP) used to automate and scale-up

these quantitative studies of text and themes of measurement and causal inference.

We have made progress in closing this gap via models for document class prevalence

estimation that are more robust to shifts in class priors between training and infer-

ence (Chapter 2); methods for entity-event measurement with a new latent disjunction

model that aggregates mention-level inferences to determine entity-level labels (Chap-

ter 3); a review, guidelines, and open problems for using text to reduce confounding

from causal estimates (Chapter 4); and a new causal research design for language

as causal mediators in estimating the effects of social group signals on differential

treatment (Chapter 5). While these are incremental contributions towards better

“corpus-centered” NLP, there are numerous future directions in closing this gap.

6.1 Future work and discussion

We see fruitful future work in improved characterization of the relationship be-

tween noisy text measurements and causal estimation (§6.1.1); improved empirical

evaluation of corpus-level measurement, causal evaluation, and some text-based causal

inference assumptions (§6.1.2); and extensions of text measurement applications and

approaches (§6.1.3).

99



6.1.1 Relationship between measurement and causal inference with text

In this thesis, we have treated our two themes—measurement and causal inference

with text—as somewhat separate endeavors. However, the two are inextricably linked.

Causal questions help direct which measurements are important to construct (even

for purely descriptive studies), and measurement of text is the necessary component

that converts raw text data into variables that can be incorporated into a causal

model.

Modular vs. joint learning of measurement and causal estimation with

text. In many cases, the accuracy of a noisy measurement component will affect the

error and validity of causal estimates. With text, it is unclear in what situations one

should jointly learn text measures and causal estimates or if measurement should be

treated as a separate module that can be plugged into a causal estimator.

In favor of the modular approach, work on “effect restoration” adjusts causal

estimates by relying on obtaining the conditional probabilities of the proxy (in our

case text) given confounders that govern the error mechanism [Pearl, 2010, Kuroki

and Pearl, 2014]. Wood-Doughty et al. [2018] extend this approach to measurement

errors in text classifiers. Yet, it is unclear how to use this approach when text en-

codes multiple causal variables simultaneously (e.g. confounding and treatment). In

this entangled case, the particular structure of measurement error (e.g. whether it is

“independent” or “nondifferential”) may be helpful in guiding which methods can be

used to correct it [Hernán and Robins, 2020, Chapter 9]

In favor of the joint approach, recent work with text as a proxy for treatment or

confounders finds (in semi-synthetic experiments) that joint learning of text repre-

sentations and causal variables results in decreased error of causal estimates. Veitch

et al. [2020] develop a method for “causally sufficient embeddings” that learn aspects

of text predictive of treatment and outcome, and find jointly-learned representations

have much lower causal estimate errors than representations learned without training
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on treatment and outcome. Roberts et al. [2020] use a structured topic model to in-

corporate topic and treatment assignment for text as confounders and they find that

this joint learning has improved mean squared error, bias, and coverage compared to

matching on only topics or only on treatment assignment. With text as treatment,

Pryzant et al. [2021] find causal estimates “can lose fidelity when then proxy is less

than 80% accurate.” While these preliminary experimental results are promising,

future work needs better empirical evaluation (see §6.1.2) and methods to manually

validate these jointly-learned measures of text.

Sensitivity of causal estimates to text measurement decisions. One po-

tential direction forward is to evaluate the sensitivity of measurement decisions in

causal estimates across a suite of real-world empirical applications. As we mention in

Chapter 4, estimates of causal effects are contingent on the “garden of forking paths”

of data analysis [Gelman and Loken, 2013], meaning any “paths” an analyst did not

take could result in different conclusions, differences which are important to character-

ize for valid social science. While recent work uses synthetic or semi-synthetic data

for sensitivity analysis in text-based causal inference [Wood-Doughty et al., 2021],

evaluations with with real-world data may be more meaningful. For instance, Keith

et al. [2020b] empirically examine an established economic index which measures “eco-

nomic policy uncertainty” from keyword occurrences in news articles [Baker et al.,

2016]. Keith et al. swap the measurement module from keyword-matching to a su-

pervised classifier (which has higher F1 and accuracy on the training and test sets),

and show the two measurement modules have very low correlation (0.38 Pearson’s

ρ), a concerning conclusion for the validity of the index. Future work could extend

this method to other text-as-data applications to better characterize the sensitivity

of measurement decisions in causal estimates.

101



6.1.2 Empirical evaluation

Corpus-level evaluations. As we describe in the introduction, one of the chal-

lenges of shifting from “downstream-centered” to “corpus-centered” NLP is that the

later is concerned with inferences not at the individual phrase, sentence, or document

level but at the corpus-level. Yet, corpus-level evaluation is still underaddressed in

NLP and requires large amounts of labeled data. In Chapter 2, we evaluate our

prevalence estimation approaches by constructing a natural prevalence estimation

task—inferring the prevalence of positive sentiment from Yelp reviews for individual

businesses. However, this evaluation required an extremely large collection of pseudo-

labels (Yelp stars) and a large number of test groups (500 businesses) each of which

consisted of 200 to 2000 reviews. Other recent work on corpus-level evaluation by this

thesis author also required large amounts of labeled data; Halterman et al. [2021] an-

notate all 21,391 sentences for police activity from one-month of Times of India news

reports in order to evaluate temporal trends of event counts. Both these corpus-level

evaluations are extremely data-hungry, exemplifying a major barrier to corpus-level

evaluation at scale. Possible future work could gather previous data annotation ef-

forts by social scientists and build suites of corpus-level evaluation benchmarks. Other

promising avenues could be distant supervision (such as the approach used in Chapter

3) using existing structured social science databases.

Methods to examine some text-based causal assumptions. Although most

causal assumptions are untestable, there are a few that have the possibility to be

assessed. For instance, Hill and Su [2013] assess the causal assumption of overlap—the

conditional probability of treatment given confounding covariates is bounded between

0 and 1—since there is nothing to prevent some causal estimation methods from

extrapolating over areas of the confounder space in which overlap does not exist;

Hill and Su propose a solution that removes observations that have large standard

deviations of model-inferred Bayesian posteriors. Veitch and Zaveri [2020] create
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plots that help researchers qualitatively reason about how unobserved confounders

could compare to observed confounders. Since overlap violations and unobserved

confounding are major concerns for high-dimensional text data, interesting future

avenues could explore expanding these methods to text.

Causal evaluation with text. As we mention in Chapter 4, evaluation of

causal methods is a difficult and open problem and extending this to text is even

more complicated. There could be future efforts in competition-based benchmarks

of causal inference with text similar to the approach of Dorie et al. [2019]. This

direction is promising given newly created venues such as the First Workshop on

Causal Inference & NLP1 that could support these types of competitions.

6.1.3 Measurement extensions

Heterogeneous perception of text. Although we hint at this in the introduc-

tion when discussing linguistic ambiguity (measurement challenge #3), this thesis

does not address the possibility of heterogeneous perception of texts. Modeling this

ambiguity is crucial both in incorporating uncertainty in text measurements and

the importance of heterogeneous perception measurement in some causal estimation

settings (e.g. latent perception of social groups and language which we mention in

Chapter 5). Future efforts could build upon recent work in NLP that focuses on propa-

gating annotator uncertainty to downstream inferences [Dumitrache et al., 2018, Paun

et al., 2018, Pavlick and Kwiatkowski, 2019] or Bayesian models for rational speech

acts which formalize communication as recursive reasoning between a speaker and

listener [Andreas and Klein, 2016, Monroe, 2018].

Collecting counterdata from text. A potentially impactful application area

of the methods presented in this thesis is collecting counterdata—ground-up collec-

tion of data that is missing or not collected by central governments or institutions

1To appear at EMNLP in November, 2021 https://causaltext.github.io/2021/
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[Currie et al., 2016, D’Ignazio and Klein, 2020]. Chapter 3—updating a database of

police fatalities—can be see as an instance of counterdata collection, and counterdata

collection efforts can be beneficial to those aiming for data-driven policy changes.

Expanding these text-based counterdata collection applications is a rich avenue of

future work. For instance, Halterman et al. [2021] use event extraction techniques

to detect police actions during riots in Gujurat, India in 2002—data not released by

the Indian government. Future work could expand these initial efforts and build a

broader set of NLP tools to augment existing manual counterdata collection projects.

For example, D’Ignazio and Klein [2020] provide an example of a single citizen in

Mexico generating a map of femicides from manually reading news reports.2

6.2 Final thoughts

It is an invigorating era for computational social science and text-as-data research.

The explosion of available text data that has accompanied the digital age has provided

many opportunities to quantitatively analyze the relationships between language use

and human thought, actions, and societal structure. Key to these quantitative conclu-

sions are improved measurement and causal inference, the foci of this thesis. However,

we believe the research community must be vigilant of replication issues, not neces-

sarily because of lack of transparency or open data, but because of the “garden of

forking paths” that different text methods may result in wildly different conclusions.

Additionally, we echo the cautions of D’Ignazio and Klein [2020] and Crawford [2021]

that what we—as researchers and society—decide to measure often becomes the basis

for policy-making and resource allocation and what is not measured risks becoming

invisible. Holding these tensions as we decide what text-based measures and causal

estimates to focus on is crucial moving forward.

2https://feminicidiosmx.crowdmap.com
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APPENDIX

POLICE FATALITY APPENDIX

A.1 Document retrieval from Google News

Our news dataset is created using documents gathered via Google News. Specif-

ically, we issued search queries to Google News1 United States (English) regional

edition throughout 2016. Our scraper issued queries with terms from two lists: (1)

a list of 22 words closely related to police officers and (2) a list of 21 words closely

related to killing. These lists were semi-automatically constructed by looking up the

nearest neighbors of “police” and “kill” (by cosine distance) from Google’s public

release of word2vec vectors pretrained on a very large (proprietary) Google News cor-

pus,2 and then manually excluding a small number of misspelled words or redundant

capitalizations (e.g. “Police” and “police”).

Our list of police words includes: police, officer, officers, cop, cops, detective,

sheriff, policeman, policemen, constable, patrolman, sergeant, detectives, patrolmen,

policewoman, constables, trooper, troopers, sergeants, lieutenant, deputies, deputy.

Our list of kill words includes: kill, kills, killing, killings, killed, shot, shots, shoot,

shoots, shooting, murder, murders, murdered, beat, beats, beating, beaten, fatal,

homicide, homicides.

We construct one word queries using single terms drawn from one of the two lists,

as well as two-word queries which consist of one word drawn from each list (e.g. “police

1https://news.google.com/

2https://code.google.com/archive/p/word2vec/
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rank name positive analysis

1 Keith Scott true
2 Terence Crutcher true
3 Alfred Olango true
4 Deborah Danner true
5 Carnell Snell true
6 Kajuan Raye true
7 Terrence Sterling true
8 Francisco Serna true
9 Sam DuBose false name mismatch
10 Michael Vance true
11 Tyre King true
12 Joshua Beal true
13 Trayvon Martin false killed, not by police
14 Mark Duggan false non-US
15 Kirk Figueroa true
16 Anis Amri false non-US
17 Logan Clarke false shot not killed
18 Craig McDougall false non-US
19 Frank Clark true
20 Benjamin Marconi false name of officer

Table A.1: Top 20 entity predictions given by soft-LR (excluding historical entities)
evaluated as “true” or “false” based on matching the gold knowledge base. False
positives were manually analyzed. See Table 7 in the main paper for more detailed
information regarding bold-faced entities.

shoot” or “cops gunfire”), yielding 505 different queries (22×21 + 22 + 21), each of

which was queried approximately once per hour throughout 2016.3 This yielded a list

of recent results matching the query; the scraper downloaded documents whose URL

it had not seen before, eventually collecting 1,162,300 web pages (approx. 3000 per

day).
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Model AUPRC SE-1 SE-2 SE-3 F1 SE-1 SE-2 SE-3

(m1) hard-LR, dep. feats. 0.117 (0.018) (0.005) (0.004) 0.229 (0.021) (0.009) (0.008)
(m2) hard-LR, n-gram feats. 0.134 (0.020) (0.006) (0.005) 0.257 (0.022) (0.011) (0.009)
(m3) hard-LR, all feats. 0.142 (0.021) (0.006) (0.005) 0.266 (0.023) (0.010) (0.009)
(m4) hard-CNN 0.130 (0.019) (0.006) (0.005) 0.252 (0.022) (0.009) (0.009)

(m5) soft-CNN (EM) 0.164 (0.023) (0.007) (0.007) 0.267 (0.023) (0.009) (0.009)
(m6) soft-LR (EM) 0.193 (0.025) (0.008) (0.008) 0.316 (0.025) (0.011) (0.010)

Data upper bound (§3.5.6) 0.57 – – – 0.73 – – –

Table A.2: Area under precision-recall curve (AUPRC) and F1 (its maximum value
from the PR curve) for entity prediction on the test set with bootstrap standard errors
(SE) sampling from (1) entities (2) documents (3) documents without replacement.

A.2 Document preprocessing

Once documents are downloaded from URLs collected via Google news queries,

we apply text extraction with the Lynx browser4 to extract text from HTML. (Newer

open-source packages, like Boilerpipe and Newspaper, exist for text extraction, but

we observed they often failed on our web data.)

A.3 Mention-level preprocessing

From the corpus of scraped news documents, to create the mention-level dataset

(i.e. the set of sentences containing candidate entities) we :

1. Apply the Lynx text-based web browser to extract all a webpage’s text.

2. Segment sentences in two steps:

(a) Segment documents to fragments of text (typically, paragraphs) by split-

ting on Lynx’s representation of HTML paragraph, list markers, and other

dividers: double newlines and the characters -,*, |, + and #.

3We also collected data during part of 2015; the volume of search results varied over time due to
changes internal to Google News. After the first few weeks in 2016, the volume was fairly constant.

4Version 2.8
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(b) Apply spaCy’s sentence segmenter (and NLP pipeline) to these paragraph-

like text fragments.

3. De-duplicate sentences as described in detail below.

4. Remove sentences that have fewer than 5 tokens or more than 200.

5. Remove entities (and associated mentions) that

(a) Contain punctuation (except for periods, hyphens and apostrophes).

(b) Contain numbers.

(c) Are one token in length.

6. Strip any “’s” occurring at the end of named entity spans.

7. Strip titles (i.e. Ms., Mr. Sgt., Lt.) occurring in entity spans. (HAPNIS

sometimes identifies these types of titles; this step basically augments its rules.)

8. Filter to mentions that contain at least one police keyword and at least one

fatality keyword.

Additionally, we remove literal duplicate sentences from our mention-level dataset,

eliminating all but one duplicated sentence. We select the earliest sentence by down-

load time of its scraped webpage.

A.4 Noisyor numerical stability

Under “hard” training, many entities at test time have probabilities very close to

1; in some cases, higher than 1 − e−1000. This happens for entities with a very large

number of mentions, where the naive implementation of noisyor as p = 1−∏i(1−pi)

has numerical underflow, causing many ties with entities having p = 1. In fact,

random tie-breaking for ordering these entity predictions can give moderate variance

to the AUPRC. (Part of the issue is that floating point numbers have worse tolerance

near 1 than near 0.)
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Instead, we rank entity predictions by the log of the complement probability (i.e.

1000 for p = 1− e−1000):

log
(
1− P (ye = 1 | xM(e))

)
=
∑
i

logP (zi = 0 | xi)

This is more stable, and while there are a small number of ties, the standard deviation

of AUPRC across random tie breakings is less than 10−10.

A.5 Manual analysis of results

Manual analysis is available in Table A.1.

A.6 Bootstrap

We conduct three different methods of bootstrap resampling, varying the objects

being sampled:

1. Entities

2. Documents

3. Documents, with deduplication of mentions.5

We resample both test-set entities and test-set documents because we are currently

unaware of literature that provides reasoning for one over the other, and both are

arguably relevant in our context. The bootstrap sampling model assumes a given

dataset represents a finite sample from a theoretically infinite population, and asks

what variability there would be if a finite sample were to be drawn again from the

5To implement, we take the 10,000 samples (with replacement) of documents, and reduce them
to the unique set of drawn documents. This effectively removes duplicate mentions that occur in
method 2 when the same document is drawn more than once in a sample.
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population. This has different interpretations for entity and document resampling.

Resampling entities measures robustness due to variability in the names that occur

in the documents. Resampling documents measures robustness due to variability

in our data source—for example, if our document scraping procedure was altered,

or potentially, if the news generation process was changed. Since both entities and

documents are not i.i.d., these are both dissatisfying assumptions.

We also conduct resampling of documents with deduplication of mentions since,

during development, we found our noisy-or metric was sensitive to duplicate mentions;

this deduplication step effectively includes running our analysis pipeline’s sentence

deduplication for each bootstrap sample.

In Fig. A.2, we augment the results from Fig. 3.7 with standard errors calculated

from B = 10, 000 bootstrap samples given the three methods for sampling described

above. Document resampling tends to give smaller standard errors than entity re-

sampling, which is to be expected since there is a larger number of documents than

entities. We analyze our results using the standard errors and significance tests from

method 3.

We examine the statistical significance of difference between models with a one-

sided hypothesis test. Our statistic is

Tij = AUPRCmodel j − AUPRCmodel i.

We use hypotheses H0 : T ≤ 0 and H1 : T > 0. As above, we take 10,000 bootstrap

samples and find T b statistic of each sample b ∈ {1..10000}. Then we compute

p-values

p-valueij =
Count(T bij ≤ 0)

10000
.

Finally, since in the observed data, one model is better than the other, we are inter-

ested the null hypothesis that the apparently-worse model outperforms the apparently-
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better model. Therefore the final p-value comparing systems i and j is actually calcu-

lated as min(pij, pji), since the different directions correspond to the fraction of boot-

strap samples with Tij ≤ 0 versus Tij > 0; these values are shown in Fig. A.3. (Note

pji = 1−pij in expectation.) While this seems to follow standard practice in bootstrap

hypothesis testing in NLP [Berg-Kirkpatrick et al., 2012], we note that MacKinnon

[2009] argues to instead multiply that by two (i.e., calculate 2 min(pij, pji)) to con-

duct a two-sided test that correctly gives p ∼ Unif(0, 1) when a null hypothesis of

equivalent performance is true.

111



m2 m3 m4 m5 m6
m1 2.7e-1 1.8e-1 3.1e-1 6.0e-2 6.2e-3
m2 3.8e-1 4.5e-1 1.7e-1 3.2e-2
m3 3.3e-1 2.5e-1 5.8e-2
m4 1.4e-1 2.2e-2
m5 1.9e-1

(a) Entity resampling

m2 m3 m4 m5 m6
m1 3.5e-2 1.7e-3 5.0e-2 0 0
m2 1.8e-1 4.1e-1 3.6e-3 0
m3 1.2e-1 3.1e-2 0
m4 2.1e-3 0
m5 1.2e-2

(b) Document resampling

m2 m3 m4 m5 m6
m1 2.2e-2 8.2-4 9.3e-2 1e-4 0
m2 1.5e-1 2.6e-1 7.3e-3 0
m3 4.6e-2 5.9e-2 0
m4 1.6e-3 0
m5 2.7e-3

(c) Document resampling with deduplication

Table A.3: One-sided p-values for for the difference between two models using statistic
Tij where AUPRCmodel j > AUPRCmodel i; each cell in the table shows min(pij, pji).

112



BIBLIOGRAPHY

Alberto Abadie, David Drukker, Jane Leber Herr, and Guido W Imbens. Implement-
ing matching estimators for average treatment effects in stata. The Stata Journal,
4(3):290–311, 2004.

Jacob Andreas and Dan Klein. Reasoning about pragmatics with neural listeners and
speakers. In Proceedings of the 2016 Conference on Empirical Methods in Natural
Language Processing, pages 1173–1182, 2016.

Galen Andrew and Jianfeng Gao. Scalable training of L1-regularized log-linear mod-
els. In Proceedings of the 24th International Conference on Machine Learning,
2007.

Joshua D Angrist and Jörn-Steffen Pischke. Mostly harmless econometrics: An em-
piricist’s companion. Princeton university press, 2008.

Maria Antoniak and David Mimno. Evaluating the stability of embedding-based
word similarities. Transactions of the Association for Computational Linguistics,
6:107–119, 2018.

Sanjeev Arora, Yingyu Liang, and Tengyu Ma. A simple but tough-to-beat baseline
for sentence embeddings. In ICLR, 2017.

Susan Athey, Guido Imbens, Thai Pham, and Stefan Wager. Estimating average
treatment effects: Supplementary analyses and remaining challenges. American
Economic Review, 107(5):278–81, 2017.

Isabelle Augenstein, Kris Cao, He He, Felix Hill, Spandana Gella, Jamie Kiros,
Hongyuan Mei, and Dipendra Misra. Proceedings of the Third Workshop on Rep-
resentation Learning for NLP. In Proceedings of The Third Workshop on Repre-
sentation Learning for NLP, 2018.

Isabelle Augenstein, Spandana Gella, Sebastian Ruder, Katharina Kann, Burcu Can,
Johannes Welbl, Alexis Conneau, Xiang Ren, and Marek Rei. Proceedings of the
4th Workshop on Representation Learning for NLP. In Proceedings of the 4th
Workshop on Representation Learning for NLP (RepL4NLP-2019), 2019.

Scott R Baker, Nicholas Bloom, and Steven J Davis. Measuring economic policy
uncertainty. The quarterly journal of economics, 131(4):1593–1636, 2016.

113



Ananth Balashankar, Sunandan Chakraborty, Samuel Fraiberger, and Lakshmi-
narayanan Subramanian. Identifying predictive causal factors from news streams.
In Empirical Methods in Natural Langugage Processing, 2019.

David Bamman, Brendan O’Connor, and Noah A. Smith. Learning latent personas
of film characters. In Proceedings of ACL, 2013.

David Bamman, Ted Underwood, and Noah A. Smith. A Bayesian mixed effects
model of literary character. In Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics, June 2014. URL http://www.aclweb.
org/anthology/P14-1035.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina Georgescu, Kira Griffitt, Ulf
Hermjakob, Kevin Knight, Philipp Koehn, Martha Palmer, and Nathan Schneider.
Abstract meaning representation for sembanking. In Proceedings of the 7th Lin-
guistic Annotation Workshop and Interoperability with Discourse, pages 178–186,
Sofia, Bulgaria, August 2013. Association for Computational Linguistics. URL
http://www.aclweb.org/anthology/W13-2322.

Duren Banks, Paul Ruddle, Erin Kennedy, and Michael G. Planty. Arrest-related
deaths program redesign study, 2015–16: Preliminary findings, 2016.
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