220 research outputs found

    h-approximation: History-Based Approximation of Possible World Semantics as ASP

    Full text link
    We propose an approximation of the Possible Worlds Semantics (PWS) for action planning. A corresponding planning system is implemented by a transformation of the action specification to an Answer-Set Program. A novelty is support for postdiction wrt. (a) the plan existence problem in our framework can be solved in NP, as compared to Σ2P\Sigma_2^P for non-approximated PWS of Baral(2000); and (b) the planner generates optimal plans wrt. a minimal number of actions in Δ2P\Delta_2^P. We demo the planning system with standard problems, and illustrate its integration in a larger software framework for robot control in a smart home.Comment: 12th International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR 2013

    Probabilistic Action Language pBC+

    Get PDF
    We present an ongoing research on a probabilistic extension of action language BC+. Just like BC+ is defined as a high-level notation of answer set programs for describing transition systems, the proposed language, which we call pBC+, is defined as a high-level notation of LP^{MLN} programs - a probabilistic extension of answer set programs. As preliminary results accomplished, we illustrate how probabilistic reasoning about transition systems, such as prediction, postdiction, and planning problems, as well as probabilistic diagnosis for dynamic domains, can be modeled in pBC+ and computed using an implementation of LP^{MLN}. For future work, we plan to develop a compiler that automatically translates pBC+ description into LP^{MLN} programs, as well as parameter learning in probabilistic action domains through LP^{MLN} weight learning. We will work on defining useful extensions of pBC+ to facilitate hypothetical/counterfactual reasoning. We will also find real-world applications, possibly in robotic domains, to empirically study the performance of this approach to probabilistic reasoning in action domains

    Postdictive Reasoning in Epistemic Action Theory

    Get PDF
    If an agent executes an action, this will not only change the world physically, but also the agent's knowledge about the world. Therefore the occurrence of an action can be modeled as an epistemic state transition which maps the knowledge state of an agent to a successor knowledge state. For example, consider that an agent in a state s_0 executes an action a. This causes a transition to a state s_1. Subsequently, the agent executes a sensing action a_s, which produces knowledge and causes a transition to a state s_2. With the information which is gained by the sensation, the agent can not only extend its knowledge about s_2, but also infer additional knowledge about the initial state s_0. That is, the agent uses knowledge about the present to retrospectively acquire additional information about the past. We refer to this temporal form of epistemic inference as postdiction. Existing action theories are not capable of efficiently performing postdictive reasoning because they require an exponential number of state variables to represent an agent's knowledge state. The contribution of this thesis is an approximate epistemic action theory which is capable of postdictive reasoning while it requires only a linear number of state variables to represent an agent's knowledge state. In addition, the theory is able to perform a more general temporal form of postdiction, which most existing approaches do not support. We call the theory the h-approximation (HPX) because it explicitly represents historical knowledge about past world states. In addition to the operational semantics of HPX, we present its formalization in terms of Answer Set Programming (ASP) and provide respective soundness results. The ASP implementation allows us to apply HPX in real robotic applications by using off-the-shelf ASP solvers. Specifically, we integrate of HPX in an online planning framework for Cognitive Robotics where planning, plan execution and abductive explanation tasks are interleaved. As a proof-of-concept, we provide a case-study which demonstrates the application of HPX for high-level robot control in a Smart Home. The case-study emphasizes the usefulness of postdiction for abnormality detection in robotics: actions which are performed by robots are often not successful due to unforeseen practical problems. A solution is to verify action success by observing the effects of the action. If the desired effects do not hold after action execution, then one can postdict the existence of an abnormality

    Let's plan it deductively!

    Get PDF
    AbstractThe paper describes a transition logic, TL, and a deductive formalism for it. It shows how various important aspects (such as ramification, qualification, specificity, simultaneity, indeterminism etc.) involved in planning (or in reasoning about action and causality for that matter) can be modelled in TL in a rather natural way. (The deductive formalism for) TL extends the linear connection method proposed earlier by the author by embedding the latter into classical logic, so that classical and resource-sensitive reasoning coexist within TL. The attraction of a logical and deductive approach to planning is emphasized and the state of automated deduction briefly described

    Analysing the visual dynamics of spatial morphology

    Get PDF
    Recently there has been a revival of interest in visibility analysis of architectural configurations. The new analyses rely heavily on computing power and statistical analysis, two factors which, according to the postpositivist school of geography, should immediately cause us to be wary. Thedanger, they would suggest, is in the application of a reductionist formal mathematical description in order to `explain' multilayered sociospatial phenomena. The author presents an attempt to rationalise how we can use visibility analysis to explore architecture in this multilayered context by considering the dynamics that lead to the visual experience. In particular, it is recommended that we assess the visualprocess of inhabitation, rather than assess the visibility in vacuo. In order to investigate the possibilities and limitations of the methodology, an urban environment is analysed by means of an agent-based model of visual actors within the configuration. The results obtained from the model are compared with actual pedestrian movement and other analytic measurements of the area: the agents correlate well both with human movement patterns and with configurational relationship as analysed by space-syntax methods. The application of both methods in combination improves on the correlation with observed movement of either, which in turn implies that an understanding of both the process of inhabitation and the principles of configuration may play a crucial role in determining the social usage of space

    Cognitive Interpretation of Everyday Activities - Toward Perceptual Narrative Based Visuo-Spatial Scene Interpretation

    Get PDF
    We position a narrative-centred computational model for high-level knowledge representation and reasoning in the context of a range of assistive technologies concerned with visuo-spatial perception and cognition tasks. Our proposed narrative model encompasses aspects such as space, events, actions, change, and interaction from the viewpoint of commonsense reasoning and learning in large-scale cognitive systems. The broad focus of this paper is on the domain of human-activity interpretation in smart environments, ambient intelligence etc. In the backdrop of a smart meeting cinematography domain, we position the proposed narrative model, preliminary work on perceptual narrativisation, and the immediate outlook on constructing general-purpose open-source tools for perceptual narrativisation
    • …
    corecore