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Abstract

If an agent executes an action, this will not only change the world physically, but also
the agent’s knowledge about the world. Therefore the occurrence of an action can be
modeled as an epistemic state transition, which maps the knowledge state of an agent to
a successor knowledge state. For example, consider that an agent in a state s0 executes
an action a. This causes a transition to a state s1. Subsequently, the agent executes a
sensing action as, which produces knowledge and causes a transition to a state s2. With
the information gained by the sensation, the agent can not only extend its knowledge
about s2, but also infer additional knowledge about the initial state s0. That is, the agent
uses knowledge about the present to retrospectively acquire additional information about
the past. We refer to this temporal form of epistemic inference as postdiction.

s0 s1 s2a as
Postdiction

Existing action theories are not capable of efficiently performing postdictive reasoning
because they require an exponential number of state variables to represent an agent’s
knowledge state.
The contribution of this thesis is an approximate epistemic action theory, which is
capable of postdictive reasoning, while it requires only a linear number of state variables
to represent an agent’s knowledge state. In addition, the theory is able to perform a more
general temporal form of postdiction, which most existing approaches do not support. We
call the theory the h-approximation –HPX– because it explicitly represents “historical”
knowledge about past world states.
In addition to the operational semantics ofHPX , we present its formalization in terms
of Answer Set Programming (ASP) and provide respective soundness results. The ASP
implementation allows us to apply HPX in real robotic applications by using off-the-
shelf ASP solvers. Specifically, we integrate ofHPX in an online planning framework
for Cognitive Robotics where planning, plan execution and abductive explanation tasks
are interleaved.
As a proof-of-concept, we provide a case study that demonstrates the application of
HPX for high-level robot control in a smart home. The case-study emphasizes the
usefulness of postdiction for abnormality detection in robotics: actions performed by
robots are often not successful due to unforeseen practical problems. A solution is to
verify action success by observing the effects of the action. If the desired effects do not
hold after action execution, then one can postdict the existence of an abnormality and
perform failure diagnosis.
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1
Introduction

The term Epistemology was coined by the Scottish philosopher James Frederick Ferrier
(1854, p.49) in his book “Institutes of Metaphysics: The Theory of Knowing and Being”.
According to Ferrier, epistemology is the theory of knowing. Philosophers commonly
distinguish knowledge into “knowing how” and “knowing that” (e.g. (Bengson and
Moffett, 2012)): the first kind of knowledge concerns procedural knowledge about
how to do something, e.g. how to ride a bike. The second kind refers to propositional
knowledge about how things are, e.g. that the bike is green in color.
This thesis concerns the interplay of both branches and investigates epistemology from
an action-theoretic Artificial Intelligence point of view: here, epistemic reasoning is
referred to as the logical inference about what an agent knows according to which events
occur, which event occurrences the agent is aware of, and what the agent knew initially.
The agent can acquire knowledge directly through sensing, by means of communication,
or it can acquire knowledge in a less direct manner, by means of deductive and abductive
inference. For instance, consider a robotic agent that tries to drive blindfolded through a
door from a room A into a room B. It can infer that the door is open if it knows that it
was in room A before the start of the movement and that it is in room B afterwards – If
the door was closed it would be stuck in front of the door and could not have reached
room B.
Taking a closer look at this example, one can actually be more precise: consider that
knowledge about the robot’s location is acquired through a location sensor. That is, the
robot senses its location, executes the “move”-command, and later senses its location
again. Then, at the time the agent acquires knowledge about being in room B, it can
infer that the door must have been open at the time it was passing it. In other words, the
agent generates knowledge about how the world was at a previous point in time, but is
not able to perform this inference until a later time point where additional knowledge
has been acquired. In this thesis, the temporal inference of knowledge about the past
by evaluating knowledge about the presence is referred to as postdiction. Postdiction
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CHAPTER 1. INTRODUCTION

typically generates knowledge about the condition of an action (the door being open) by
observing its effect (the robot successfully passed the door).
Existing epistemic action theories are not capable of efficiently performing postdictive
inference. Two major disadvantages in present approaches are:

1. Existing approaches are computationally complex in that they require an expo-
nential number of state-variables to represent the knowledge of an agent. The
combinatorial explosion of state variables makes the practical application of these
approaches intractable.

2. Existing approaches do not consider temporal aspects of knowledge. Even though
they can postdict knowledge about the condition of an action by observing its effect,
existing approaches are non-temporal in the sense that they do not say anything
about the time at which the condition did or did not hold. We show that such
non-temporal postdiction causes problems with actions that involve concurrent
acting and sensing. This is not the case for temporal postdiction, where knowledge
about the past is explicitly modeled.

This thesis addresses these problems and answers the following research question:

How is it possible to realize temporal postdictive reasoning whilst avoiding a
combinatorial explosion of state variables?

The core contribution of this thesis is an epistemic action theory that is based on ex-
plicit but approximate knowledge about the past. The advantage is that the number of
knowledge-state variables is linear, as compared to an exponential number for existing
approaches. This results in a lower computational complexity for reasoning tasks such as
action planning: the proof of Theorem 3.1 shows that the plan existence problem for our
theory is in NP, while e.g. for the epistemic action language Ak it is in ΣP

2 (Baral et al.,
2000). Despite the lower computational complexity, our theory is more expressive in the
sense that knowledge about the past is explicitly represented and postdiction is temporal.

1.1. Reasoning about Action, Change and
Knowledge

The research field of reasoning about action, change and knowledge deals with the
inference about what an agent knows according to what it knew initially and which
actions occurred. Mathematically, the occurrence of an action is understood as a state
transition, where a state s is determined by a set of domain variables. Domain variables
usually change their value when state transitions occur and are therefore called fluents
(Sandewall, 1994). Fluents paired with a value are called domain literals. If an agent
executes an action, the fluent values change; according to a transition function (denoted
φ), which maps a set of domain literals and an action to a set of domain literals.

2



1.1. REASONING ABOUT ACTION, CHANGE AND KNOWLEDGE

1.1.1. Epistemic and Non-epistemic State Transitions

In the non-epistemic case an agent has complete knowledge about the world. For instance,
consider a domain with two boolean variables denoted by the symbols ◦ and △. The
variables’ values are denoted by coloring. For example let ◦ / • denote that a robot
is in room A / room B and let △ / N denote an open / closed door that connects the
rooms. Assume that the robot can perform a blindfold “move” action a, which has the
conditional effect that ◦ (in room A) becomes • (in room B) if △ (door open) holds. We
denote this by a :△⇒ •.
The execution of this action is modeled as the application of a transition function φ as
demonstrated in Figure 1.1: the state transition φ(a, {◦,△}) = {•,△} describes that
action a was executed in state {◦,△}, resulting in a different state {•,△}.

◦
△

•
△

a :△⇒ •

Figure 1.1.: State transition in the case of complete knowledge

This simple deduction task becomes non-trivial if we consider agents with incomplete
knowledge about the world. One way to model incomplete knowledge is to introduce a
third possible variable value unknown (denoted by coloring gray). This allows one to
model three important epistemic phenomena: knowledge loss, sensing and postdiction.

• Knowledge loss is depicted in Figure 1.2: a state transition φ(a, {◦,N}) = {•,N}
denotes that action a was executed in a partially unknown state {◦,N}. Since it is
unknown whether or not the condition of action a holds (•), one is unable to tell
whether or not the effect of the action was achieved. For example, consider that the
robot knows that it is in room A (denoted by ◦) and it does not know whether the
door is open (denoted by N). If it then tries to move through the door blindfolded
it will lose knowledge about its location because it can not deduce the effect of
the action. Consequently, the result of the transition is a state {•,N} where all
variable values are unknown, i.e. knowledge about ◦ / • is lost.

◦
N

•
N

a :△⇒ •

Figure 1.2.: Epistemic state transitions with knowledge loss
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CHAPTER 1. INTRODUCTION

• Sensing actions can be used to acquire new knowledge. For example, let a•s denote
a sensing action revealing that • holds. We model the application of this action in
a state {•,N} as φ(a•s, {•,N}) = {•,N} (see Figure1.3).

•
N

•
N

a•s : •

Figure 1.3.: Epistemic state transitions with sensing

• Postdiction is the inference of determining the condition of an action by observing
its effect. For example, consider Figure 1.4, which illustrates two successive state
transitions:

1. act: φ(a, {◦,N}) = {•,N}
2. sense: φ(a•s, {•,N}) = {•,N}

After the second state transition the sensing action a•s reveals that • holds. In this
case an agent should be able to evaluate the sensing result and to postdict that △
held before executing a.1

◦
N

•
N

a :△⇒ •
act

•
N

a•s : •
sense

postdict

Figure 1.4.: Epistemic state transitions with postdiction

An important epistemic phenomenon, which has so far been ignored by most existing
epistemic action theories, is that state transitions do not only have one but two temporal
dimensions if considering incomplete knowledge: an “outer” dimension reflects the
temporal progression of knowledge states of an agent. For example sensing that • holds
in state {•,N} causes a transition towards a state {•,N}. Within this outer dimension
there is an “inner” dimension of knowledge, that enables one to express propositions like
“after the agent executes a•s it knows that △ held before executing a”.
It is this inner dimension which our theory exploits to achieve two advantages compared
to traditional possible-worlds approaches: an increase of expressiveness in terms of
temporal aspects of knowledge, and a decrease of the computational complexity for
solving epistemic planning problems.

1Under the assumption that a is the only action that happens.
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1.1. REASONING ABOUT ACTION, CHANGE AND KNOWLEDGE

1.1.2. Reasoning About Possible Worlds
The most popular approach to model an agent’s knowledge is based on the Possible
Worlds Semantics (PWS). PWS can be traced back to Hintikka (1962), Kripke (1963)
and others, who together invented Modal Logic (e.g. (Blackburn et al., 2001)). Years
later, Moore (1985) applied the possible-worlds-approach in action theory and described
dynamic epistemic systems based on an early formulation of the Situation Calculus
(McCarthy, 1963).2

To represent knowledge and to describe adherent epistemic phenomena PWS does
not use an extra variable value unknown. Its knowledge model is more precise in that
it considers all possible combinations of unknown world properties separately. Each
possible combination is called a possible world. If something holds in all possible worlds,
then the agent knows that it holds.
The execution of physical (non-sensing) actions is modeled by separately applying the
corresponding state transition to each individual possible world. Sensing is modeled as a
filter that rules out those possible worlds, in which a sensing result does not hold. For an
illustration, consider Example 1.1.
Using PWS-based formalizations to cope with incomplete knowledge and sensing such
that postdiction is supported, results in a high computational complexity: let |F| be the
number of domain fluents. Given that all fluents are unknown, PWS based approaches
compile one incomplete world to 2|F| complete possible worlds. Each of these worlds
again contains |F| fluents, and modeling the knowledge state of an agent requires a total
of 2|F| · |F| variables.
The high computational complexity that emerges from the exponential blowup3 is a
problem for applications in areas like Cognitive Robotics or Ambient Intelligence, where
real-time response is needed. Though there are indeed many efficient PWS based
planners available (e.g. ContingentFF (Hoffmann and Brafman, 2005) or MBP (Bertoli
et al., 2001)), these only work well for small to mid-size problem domains. There is
a phase transition, if the domain size exceeds a certain threshold.4 If this threshold is
exceeded, then the reaction time of a PWS-driven system is not acceptable anymore.

1.1.3. Approximations of the Possible Worlds Semantics
To reduce the computational complexity of epistemic state transition systems, approxima-
tions of the PWS have been proposed. A prominent example is the 0-approximation for

2For a detailed survey on the history of possible worlds based semantics we refer to (Goldblatt, 2003).
3Baral et al. (2000) show that if that the plan length is polynomial and the number of sensing actions is

limited then the plan-existence problem for the action language Ak is ΣP
2 complete.

4For example, the RING problem (e.g. (Hoffmann and Brafman, 2005)) where an agent must move
through n rooms and close the windows in these rooms demands 1.5s for 4 rooms, 480s for 5 rooms
and produces a timeout > 3600s for 6 rooms with the ContingentFF planner on a 2 Ghz i5 machine
with 6GB RAM. See Table 6.2 for details.
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CHAPTER 1. INTRODUCTION

Example 1.1 Possible worlds model of knowledge
Consider Figure 1.5: the considered domain (i.e. the world) has two boolean state vari-
ables, △ / N and ◦ / •. In the initial state [S0] it is unknown whether △ / N, respectively
◦ / • holds. This lack of knowledge is represented by the explicit consideration of all
possible combinations of variable-value pairs: sa0 = {◦,N}, sb0 = {•,△}, sc0 = {•,N}
and sd0 = {◦,△}.We call sa0 – sd0 possible worlds that constitute the knowledge state of
an agent.
The agent can execute an action a that causes • to hold under the condition that △
holds (denoted as a :△⇒ •). After the execution of this action there are four new
possible worlds: sa1 = {◦,N}, sb1 = {•,△}, sc1 = {•,N} and sd1 = {•,△}.a In sa1 – sc1
nothing has changed, because (i) the condition △ of action a does not hold (sa0 and
sc0) or (ii) the effect did already hold in the initial state (sb0 and sc0). In sd1 the world
changed in that ◦ became •.
Consider a sensing action as that determines whether ◦ or • holds. If an agent is
planning to execute this action, then it has to consider two possible outcomes of the
sensing actions and create two possible future branches, one for each possible sensing
result. Sensing is modeled as a “filter”, which assigns those possible worlds that
coincide with a potential sensing result to one branch. In the example, two branches
are created.

(Sa
2 ) The first branch reflects that ◦ is the sensing result (denoted a◦s : ◦). Since only

state sa1 coincides with this sensing result, only sa1 is assigned to the branch.
In this branch, all remaining possible worlds agree on both variables, i.e. in
all worlds which passed the sensing-filter, ◦ and N hold. Since both ◦ and N
hold in all worlds which are possible after the execution of a and under the
assumption that ◦ will be the sensing outcome, we say that ◦ and N are known
to hold.

The implicit postdictive inference which is made in this case is that knowledge
about △ was generated even though only ◦ was sensed. That is, by ruling out
those possible worlds that do not coincide with the sensing result, additional
knowledge is postdicted.

(Sb−d
2 ) The second branch reflects that • is the sensing result (denoted as a•s : •). States

sb1 – sd1 coincide with this sensing result and are assigned to one branch. In this
case, all remaining possible worlds agree on •, and hence the agent knows that
• holds. However, the possible worlds do not agree on △ / N, consequently this
variable could not be postdicted and remains unknown.

aActually there are only three possible worlds remaining because sb1 and sd1 are identical. However,
for the purpose of illustration we do not consider this mathematical detail now.
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[S0]
INITIAL
KNOWLEDGE

◦
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•
△sb0 :

•
Nsc0 :

◦
△sd0 :

[S1]
KNOWLEDGE
AFTER a

◦
Nsa1 :

•
△sb1 :

•
Nsc1 :

•
△sd1 :

a :△⇒ •

a :△⇒ •

a :△⇒ •

a :△⇒ •

[Sa
2 ]

KNOWLEDGE AF-
TER SENSING ◦

◦
Nsa2 :

a◦s : ◦

[Sb−d
2 ]

KNOWLEDGE AF-
TER SENSING •

•
△sb2 :

•
Nsc2 :

•
△sd2 :

a•s : •

a•s : •

a•s : •

Figure 1.5.: Possible worlds model for epistemic state transitions
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the action language Ak by Son and Baral (2001). Instead of using exponentially many
possible worlds, the 0-approximation considers only one world which is the intersection
of all possible worlds. It uses a 3-valued knowledge model, i.e. variables are known to
be true, known to be false, or unknown. Knowledge is produced only by sensing and
deductive causal reasoning, as illustrated in Example 1.2.

Example 1.2 0-Approximation Model of Knowledge
Figure 1.6 shows the transition tree for the 0-approximation. Gray coloring of a fluent
symbol means that its value is unknown. Initially [s0], the world state is completely
unknown: [s0] = {•,N}. After applying a, both fluents remain unknown: [s1] =
{•,N}. Sensing creates two successor states: in sa2 holds ◦ and in sb2 holds •. In both
cases, knowledge about ◦ / • is correctly generated, but knowledge about △ / N is not
postdicted.

[s0]
INITIAL
KNOWLEDGE

•
Ns0 :

[s1]
KNOWLEDGE
AFTER a

•
Ns1 :

a :△⇒ •

[sa2]
KNOWLEDGE AF-
TER SENSING ◦

◦
Nsa2 :

a◦c : ◦

[sb2]
KNOWLEDGE AF-
TER SENSING •

•
Nsb2 :

a•c : •

Figure 1.6.: 0-approximation model for epistemic state transitions

With this approach, modeling the knowledge state of an agent requires only |F| state vari-
ables and this lowers the complexity of the plan existence problem to NP-completeness
(Baral et al., 2000). However, the inference capabilities of the approach are incomplete,
i.e. postdiction is not supported.
Some approximations are enhanced with additional language elements like so-called
Static Causal Laws (SCLs) (e.g. (Tu et al., 2007)), which can be exploited to realize
postdiction in an ad-hoc manner. However, there are two major problems with this ap-
proach: first, this method is not guaranteed to be epistemically accurate: SCL are used to
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model knowledge-level effects of actions manually. This implies, that a domain designer
could state SCLs that have “wrong” epistemic effects. For example, an epistemically
inaccurate SCL could cause to “know” that a robot is in a certain room without the robot
actually being in the room.
Second, the method is not elaboration tolerant. The concept of elaboration tolerance
was introduced by McCarthy (1998) and refers to the scalability of a theory in terms
of expressiveness. In the case of Ac

k, this means that even if the SCL is modeled in an
epistemically accurate manner, accuracy can dissolve if one extends a domain, e.g. by
adding more doors and rooms to the simple introductory example. Consequences of
elaboration intolerance are illustrated in Example 2.1.

1.2. Contributions of this Thesis
Section (1.1) illustrated that there is a dilemma in choosing either an efficient approximate
action theory with limited inference capabilities or choosing an action theory with
full inference capabilities, at the cost that knowledge representation and reasoning is
computationally more complex. This thesis presents the h-approximation theory that
solves this dilemma. To give an overview of this contribution, we distinguish three
components C1. – C3.

C1. We presentHPX– an approximation of the possible worlds semantics of knowl-
edge with native support for postdiction, while the number of state-variables is
linear and the planning problem is in NP. To show thatHPX is sound wrt. tradi-
tional PWS-based approaches we also presentATQS

k – a temporal query semantics
for the action language Ak (Son and Baral, 2001) based on PWS .

C2. We implementHPX in terms of Answer Set Programming (ASP) (Gelfond and
Lifschitz, 1988). The implementation as ASP is provably sound with the basic
HPX semantics and lays the ground for the practical application.

C3. We extend the original implementation such that it is capable of performing online
action planning, and we integrate the implementation in an Cognitive Robotic
control framework. As a proof-of-concept and evaluation we apply the system in a
Smart Home.

C1. HPX – an Approximate Epistemic Action Theory with
a Temporal Knowledge Dimension
The h-approximation (HPX ) is a history based approximation of the PWS with native
and elaboration tolerant support for postdiction. The combinatorial explosion of state
variables is avoided by an alternative state representation which is not based on an
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exponential number of possible worlds, but instead on a single-state world history. It can
be understood as an extension to the 0-approximation by Son and Baral (2001), when not
only the present approximated state is considered but also refinements of previous states.

Temporal Knowledge Dimension

InHPX , the notion of history is used in the epistemic sense of maintaining and refining
knowledge about the past by postdiction and commonsense law of inertia. That is,HPX
considers single approximate states instead of an exponential number of possible worlds.
In addition, it refines the history of these approximate states after each state transition.
For instance, consider that in a world state s0 an agent is in front of a door (denoted
◦) and moves forward. Later (in s1) it acquires knowledge that it is behind the door
(denoted •); then it can postdict that the door must have been open (denoted △) in s0.
After applying this postdiction inference it can further refine its knowledge and use the
inertia assumption to infer that the door is still open in s1. For illustration consider
Example 1.3.

Linear Number of State Variables – Plan Existence in NP

Given that |F| is the number of fluents and t is the number of state transitions (or steps),
only |F| · (t+ 1) state variables are required to model an agent’s “historical” knowledge
state. In Section 3.3 we show that for this reason solving the plan-existence problem
remains in NP while postdiction is still possible.

Native and Elaboration Tolerant Postdiction

According to McCarthy (1998), “[a] formalism is elaboration tolerant to the extent that
it is convenient to modify a set of facts expressed in the formalism to take into account
new phenomena“. For instance, consider a navigation problem where robots can move
through doors into rooms, pick up things, etc. An epistemic side-effect in the navigation
scenario is the postdictive inference of knowing that a door must be open if a robot
successfully passed it. If more doors are added to the problem specification then it should
not be necessary to model this side-effect for each new door (see Example 2.1 for a
detailed illustration).

Concurrent Sensing and Action

Another advantage of considering the temporal dimension of knowledge is that one
can elegantly model and reason about the concurrent execution of sensing and physical
actions. For instance, consider the following extended version of the well-known Yale
Shooting Problem (Hanks and McDermott, 1987): if an agent shoots at a turkey then it
can sense whether the gun was loaded by hearing the explosion’s noise. At the same
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time, the bullet may kill the turkey: if the gun was loaded then it can conclude that the
turkey must be dead and that the gun is unloaded after the shooting.5 This version of the
problem requires to model the shooting action with concurrent sensing (gun loaded if
explosion heard) and physical effects (turkey dead, gun unloaded).
HPX is capable of correctly inferring that the turkey is dead if the explosion is heard
because it models sensing as acquisition of knowledge about how the world is before
the action affects the world physically. Modeling this scenario such that a conclusion
about the turkey’s death follows is not possible with traditional approaches because here
sensing is modeled as acquisition of knowledge about how the world is after the action
affects the world. (See Example 7.1 for details.)

ATQS
kA
TQS
kA
TQS
k – A Temporal Query Semantics for Ak

To provide a semantic grounding forHPX we develop a semantics which takes the role
of a benchmark in terms of reasoning capabilities and expressiveness. We consider it to
be epistemically complete (under some restrictions) while at the same times it allows
one to make propositions about the past. The semantics is a temporal extension of the
action language Ak, called the temporal query semantics – Ak

TQS .

C2. Implementation as Answer Set Programming

In order to makeHPX accessible and applicable in real-world applications we formulate
the theory in terms of Answer Set Programming (Chapter 4). A planning problem
specification is formulated in a PDDL-like syntax is compiled into a Logic Program via
certain translation rules. The Logic Program is processed by an off-the-shelf ASP solver
which generates Stable Models (Gelfond and Lifschitz, 1988). These Stable Models
can be interpreted as conditional plans for applications in Cognitive Robotics. The ASP
implementation givesHPX an alternative model-theoretic semantics which is provably
sound wrt. the operational semantics.

C3. Integration in a Cognitive Robotic Control Framework

In order to apply HPX in practice we implement some extensions to the original
formalism. We evaluate the implementation by presenting case studies in a Smart Home.

Extensions for Online Planning and Abductive Explanation

As an extension to the basic HPX implementation we implement several features
like execution monitoring, abductive explanatory reasoning and basic performance

5Under the assumption that the agent’s aiming is correct.
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Example 1.3 h-approximation model of knowledge
Consider Figure 1.7 which demonstrates postdictive inference with the h-
approximation approach. The initial state [S0] is completely unknown: {•,N}. Then
an action a is applied which has the conditional effect that • is set if △ holds (denoted
a :△⇒ •). The successor state [S1] does not contain new knowledge because the
condition of a is unknown (N). [S1] consists of two sub-states which represent the
present and the past world state: s1:0 refers to the world state that the agent knows he
was in before executing a and s1:1 reflects what the agent knows about the world state
after the driving. In other words, s1:0 represents the agent’s knowledge at state [S1]
about how the world was at state [S0].
After execution of a a sensing action as is executed to acquire knowledge. We anticipate
two possible outcomes of the sensing action: [Sa

2 ] represents that state where sensing
reveals that ◦ holds and [Sb

2] represents the state where • is the sensing result.
Sensing triggers a refinement of knowledge about the past: for example, in state
[Sa

2 ] the robot learns through sensing that ◦ held if a◦s was executed (sa2:1). With this
knowledge, the agent postdicts that N must have held before applying a (sa2:0) because
otherwise, due to its conditional effect, a would have caused that • holds.
The agent is also aware that no other state transition has happened that could have
changed △ to N, i.e. △ is inertial. This means that △ persists to hold in sa2:1 and sa2:2 as
well. Similarly, • persists to hold in all three states sa2:0 s

a
2:1 s

a
2:2.

In our metaphor of the robot passing through the door, this case of postdiction reflects
that the robot infers closed-ness of the door (denoted N) because it learned by sensing
that it is not behind the door (denoted ◦) after the driving.
In state [Sb

2] sensing reveals that • holds. However, the postdictive inference about △
/ N is not possible in this case, because it is not known whether or not • did already
hold in [S0], respectively whether or not • ∈ sb2:0. In terms of the robot-scenario, this
case reflects that the robot is unable to postdict the open-state of the door because it
is possible that it was already behind the door before the blindfold execution of the
“move”-action.
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Figure 1.7.: h-approximation model for temporal epistemic state transitions
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optimization (Chapter 5). These extensions are developed in response to the demands of
practical applications for epistemic reasoning, such as Smart Homes, Cognitive Robotics
or Narrative Interpretation tasks. The extensions are integrated as a prototypical online
planning system.

Application in a Smart Home: Postdictive Reasoning for a Wheelchair
Robot

Chapter 6 contains a proof-of-concept of the work and motivates the approach with
a real robotic application. We demonstrate how the HPX planning framework is
applied in the Bremen Ambient Assisted Living Lab (BAALL) (Krieg-Brückner et al.,
2010). The BAALL features many different actuators and sensors such as automatic
doors, illumination control, or video cameras. BAALL’s most noteworthy feature is
an autonomous robotic wheelchair called “Rolland” (Mandel et al., 2005). Rolland
can drive autonomously and utilizes a waypoint-based navigation module, along with
obstacle-avoidance facilities (Röfer et al., 2009).
In the context of such environments, the postdiction capabilities of HPX are used
for abnormality detection: abnormalities are conditions under which actions fail. For
instance, a typical assistance task in the BAALL is (a) navigate the wheelchair to a
person’s location (b) pick the person up and (c) bring her to her destination. In this
task, an abnormality could e.g. be caused by a jammed automatic door which can not
be opened remotely anymore. If one observes that the door did not open, then one can
postdict that there was an abnormality and the wheelchair has to pick an alternative route
(through another door) to reach its destination.
As an example, consider Figure 1.8 which illustrates the (sub-) problem of driving
the wheelchair to the sofa. Under ideal conditions, a plan is to open D1, pass it and
approach the sofa. However, in real robotic environments it often happens that there is
an unforeseen system failure. For instance, D1 can be blocked or jammed. In this case a
more robust plan is required: open D1 and verify if the action succeeded by sensing the
door status [S1]; if the door is open, drive through the door and approach the user. Else
postdict that there was an abnormality concerning the opening of D1. In this case, open
and pass D3; drive through the bedroom [S2]; pass D4 and D2; and approach the sofa
[S3].

1.3. Thesis Outline

This introduction briefly illustrates the complexity problem of traditional PWS-based
epistemic action theory. It sketches how HPX solves this problem, and depicts how
postdiction is used in practice, e.g. for abnormality detection.
Chapter 2 communicates the basics of the related research fields Reasoning about
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Figure 1.8.: The autonomous wheelchair Rolland operating in the Smart Home BAALL
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Action and Change, Answer Set Programming, and Epistemic Logic. It also places
the h-approximation within current research in the field by identifying strengths and
weaknesses of state-of-the-art approaches.
Chapter 3 is the core chapter of this thesis. It formalizesHPX in terms of a transition
function semantics and describes how the temporal knowledge dimension and the post-
diction mechanisms are implemented. In order to define a notion of soundness forHPX ,
the chapter also provides an extended temporal query semantics for the action language
Ak (Son and Baral, 2001), which allows for temporal reasoning. We prove thatHPX is
sound wrt. this extended semantics.
Chapter 4 provides the implementation ofHPX in terms of Answer Set Programming
and describes how the implementation is formally related to the operational semantics.
Chapter 5 describes theHPX planning framework and its implementation. The frame-
work contains certain extensions and optimizations which allow for online planning,
interleaved with abductive explanation and automated plan repair.
Chapter 6 contains an extensive case study in the Smart Home BAALL (Krieg-Brückner
et al., 2012). This serves as the practical evaluation and proof-of-concept of theHPX
planning framework.
Chapter 7 concludes this thesis. It discusses strengths and limitations of HPX and
provides an outlook towards future work.
Appendix A contains proofs pertaining to the soundness of the ASP formalization of
HPX wrt. its operational semantics.
Appendix B contains proofs for the computational properties ofHPX , in particular the
computational complexity.
Appendix C contains soundness results of the operationalHPX -theory wrt. the extended
Ak semantics.
Appendix D contains examples and source code of theHPX implementation.
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2
Background and Related Work

This chapter provides preliminaries, which are required to follow the core chapters of the
thesis and also encompasses related work. Section 2.1 concerns the field of Reasoning
about Action and Change (RAC): it provides an overview over operational and model-
theoretic approaches and contains definitions of the problems which HPX can solve:
the projection problem and the planning problem. Further, we describe the inherent
non-monotonicity of action theory.
Section 2.2 describes Answer Set Programming (ASP) and the Stable Model Semantics
of Logic Programming.1 The section is preliminary to Chapters 4 and 5, which describe
the ASP formalization ofHPX . The section also motivates the decision to use Answer
Set Programming for the implementation ofHPX .
Section 2.3 is a brief introduction to Modal Logic and the Possible Worlds Semantics of
knowledge. This is preliminary to Section 2.4, which focuses on other epistemic action
theories and places HPX within the state of the art. The latter section highlights and
summarizes features of the individual approaches and compares related work accordingly.

2.1. Reasoning about Action, Change and
Knowledge

The research field of Reasoning about Action and Change (RAC) deals with the problem
of determining and formalizing how actions change the world. Research in this field
can be traced back to early work by McCarthy (1959) who envisioned “Programs with

1Examples and notation are partly taken from the article “Answer Set Programming: A Primer” by Eiter
et al. (2009) and the textbook “Answer Set Programming in Practice” by Gebser et al. (2012b). The
latter describes the Potassco ASP toolkit which we use to implement the ASP formalization ofHPX .
To describe the semantics of incremental ASP solving and online ASP solving we cite many definitions
from (Gebser et al., 2008, 2011a).
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Common Sense”. McCarthy was primarily concerned with cases where an agent has
complete knowledge about its domain of discourse. However, since having complete
knowledge about a domain is a very strong assumption, researchers also investigated
the epistemic case of incomplete knowledge and tried to formalize sensing actions. The
first logical formalization which considers incomplete knowledge is due to Moore (1985)
who implemented the concept of possible worlds from Modal Logic to action theory.
One way to formalize action and change is to use a first order logical theory, possibly
with second order extensions. Examples are the Situation Calculus (McCarthy, 1963),
the Fluent Calculus (Hölldobler and Schneeberger, 1990; Thielscher, 1998), the Event
Calculus (Kowalski and Sergot, 1986) and Temporal Action Logic (Doherty, 1994).
Another possibility to formalize action and change is the syntactic definition of a high-
level action language and to ground the language in a set-theoretic operational semantics.
This approach is commonly used e.g. in action planning. The planning language PDDL
(McDermott et al., 1998) is based on STRIPS (Fikes and Nilsson, 1972) and the Ac-
tion Description Language (ADL) (Pednault, 1994) which are both formalized in an
operational semantics.
In both cases, a domain of discourse D contains descriptions of actions and information
about the initial world state.2 Properties of a world, like the battery state of a robot or
the open state of a door, are represented by variables called fluents.3 A fluent literal (for
brevity often simply called “literal”) is a pair of a fluent and its value.
In brief, one can understand reasoning about action, change and knowledge as the
problem of formalizing how fluents change over time. The main reasoning tasks in action
theory are (a) projection, (b) planning and (c) abductive explanation.

2.1.1. Operational Semantics

An operational action-theoretic semantics typically considers a snapshot of the world and
seeks to formalize an action’s effect on this snapshot. Such snapshots are usually referred
to as states and the occurrence of an action is understood as a state transition. For
instance, if in a state s0 there is a robot in a room A and the robot executes a move-action
to an adjacent room B, then there is a transition from s0 to a successor state s1 such that
the robot is in room B after the transition. However, the transition can depend on certain
conditions, e.g. that the robot’s battery is full and that there is a door between the two
rooms.
A state is a set of fluent literals. For instance, a state representing that a robot’s battery
is full and that the robot is in room A and that the door to the room is closed may be

2For some action theories a domain also involves so-called State Constraints (see e.g. (Thiebaux et al.,
2003)), Static Causal Laws (see e.g. (Tu et al., 2007)) or other extensions, but discussing this is not
within the scope of this thesis.

3The variable itself is also referred to as a feature and called fluent if its change over time is considered
(Sandewall, 1994). For simplicity we will use only use the term fluent in this thesis.
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represented as: s = {battery full, in roomA,¬is open}. For non-epistemic action
formalisms a state must be completely determined, i.e. the value of every fluent must be
specified. This is not the case when incomplete knowledge is considered.

State Transitions

Transitions between states are modeled by a transition function which map an action and
a state to a state.4 Let D be a domain with a set of action symbols A, the set of fluents F
and the set of allowed fluent values V . Let S ⊆ F × V be the subset of all consistent
fluent-value pairings, i.e. the set of possible states. Then a transition function ψ of D
has the signature ψ : A× S → S. If considering complete knowledge then S must be
complete, i.e. all fluents must be assigned a value.
This simplification is not made for the case of incomplete knowledge. If considering
incomplete knowledge then a transition function has to account for sensing actions.
The occurrence of sensing actions generates contingencies, i.e. all possible outcomes
of the sensing have to be accounted for separately.5 For instance, consider a sensing
action as which reveals whether or not a fluent f holds. Then projecting the sensing
result of as on future states requires to consider one possible successor state for each
possible sensing outcome f and ¬f . This behavior is called branching, i.e. each branch
represents one possible sensing outcome. A transition function which considers sensing
actions and branching has the signature ψ : A× S → 2S , where states in S may now be
incomplete. For example, let sense open denote an action which determines the open-
state of a door (denoted is open) then for a state s = ∅ we have ψ(sense open, s) =
{{is open}, {¬is open}}.

Plans: Combinations of State Transitions

Plans (denoted p) are well-formed formulae defined in the theory’s input language and
denote combinations of action occurrences. To model the execution of plans one typically
defines an extended transition function which maps a plan and a state to a state or a set of
states. In the case of complete knowledge the extended transition function has a signatureψ : P × S → S, where we use P to denote the set of well-formed plans according to a
syntax specification and S is the set of complete consistent states.
A simple form of a plan which is often used in the case of complete knowledge is
a sequence of actions, commonly represented in the syntactic form [a1; . . . ; an] with
a1, . . . , an ∈ A, were A is the set of domain actions.

4Some calculi like ADL (Pednault, 1994) also consider actions to be themselves functions that map states
to states.

5Planning with incomplete knowledge is also known as contingent planning (see e.g. (Hoffmann and
Brafman, 2005)).
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For planning with incomplete knowledge one usually considers conditional plans which
involve if-then-else constructs. For example, a plan

pc = [as; if ϕ then a1 else a2]

denotes that first as is executed and subsequently a1 or a2 are executed, depending on
whether or not a propositional formula ϕ is true (see also Definition 3.5). An extended
transition function which considers sensing actions has the signature ψ : A× S → 2S ,
where states in S may be incomplete.

The Projection Problem

Projection is the deductive reasoning task of determining possible states of the world
after a plan is applied on an initial state.
In the case of incomplete knowledge one can either ask whether a world property possibly
holds after a plan is executed or whether a world property necessarily holds. The first case
refers to weak projection and the second case refers to strong projection (see e.g. (Cimatti
et al., 2003)). Weak and strong projection are formalized in Definition 2.1.

Definition 2.1 (The projection problem for operational action theories) Let D be a
domain description, such that ψ : P × S → 2S is a transition function of the domain
and s0 is an initial state. Let p be a plan which contains actions {a1, . . . , an} ⊆ A and
let G be a set of fluent literals.

• The weak projection problem is to decide whether (2.1) holds.

∃s ∈ ψ(p, s0) : G ⊆ s (2.1)

• The strong projection problem is to decide whether (2.2) holds.

∀s ∈ ψ(p, s0) : G ⊆ s (2.2)

The Planning Problem

Planning is a decision-theoretic method based on the motivation to deliberate agents
in the task of achieving a specified goal G starting in an initial wold state s0. One is
interested in finding a plan p, such that the execution of the plan causes a transition from
state s0 to a final state s′ such that G ⊆ s′.
For weak planning one is interested in whether a goal is entailed in at least one possible
leaf state and for strong planning a goal must hold in all possible leaf states. This is
described in Definition 2.2.
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Definition 2.2 (The planning problem for operational action theories) LetD be a do-
main description, such that ψ : P × S → 2S is a transition function of the domain and
s0 is an initial state. Let p be a plan which contains actions {a1, . . . , an} ⊆ A and let G
be a set of fluent literals.

• The weak planning problem is that deciding whether (2.3) holds.

∃p : ∃s ∈ ψ(p, s0) : G ⊆ s (2.3)

• The strong planning problem is that deciding whether (2.4) holds.

∃p : ∀s ∈ ψ(p, s0) : G ⊆ s (2.4)

Abductive explanation

Abductive explanation is a diagnostic method which seeks to find a cause for why the
world is as it is. Technically, abductive explanation is based on the same reasoning
mechanism as planning with complete knowledge: given an initial state s0 and a set of
world properties G one is interested in a course of action that can explain why the world
changed from s0 to G. The difference between planning with complete knowledge and
abductive explanation lies solely in the application one is interested in. For abductive
explanation a set of world properties G is known to hold at present or in the past, while
for planning, G is a goal which one seeks to achieve in the future. For instance, abductive
explanation may be used in forensic reasoning to find out how an object was stolen, while
in planning one would be interested in a way to steal the object.
Despite the technical equivalence of action planning and abductive explanation, there are
use cases where both reasoning tasks are performed in an interleaved manner and where
it is important to distinguish both tasks. In Section 6.2 we present a scenario which
underpins this observation.

2.1.2. Model-theoretic Semantics

As an alternative to operational semantics one can also use a model-theoretic semantics
to formalize the problems of projection, planning and abductive explanation. Respective
action theories are usually specified in First Order Logic (FOL), possibly with some
second-order extensions. Examples are the Situation Calculus (McCarthy, 1963), the
Event Calculus (Kowalski and Sergot, 1986), and Temporal Action Logic (Doherty,
1994). Here, a domain D is considered as a first-order theory which represent the initial
world state and how actions affect the world. To denote that a fluent f is true after the
t-th state transition one typically uses a predicate holds(f, t), or in the epistemic case
knows(f, t). Branching is realized by using predicates with an additional parameter
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which represents a label for the branch. For example, holds(f, t, b) denotes that f is true
after t state transitions in a branch b.
The intuition behind the problems of projection, planning and abductive explanation is
the same as for operational semantics.

The projection problem for model-theoretic semantics

For the projection problem, a plan Γp is given as a conjunction of logical facts, and one
is interested in whether a formula ϕg is logically entailed the conjunction of the domain
theory and Γp. In the case of incomplete knowledge, ϕg usually contains predicates
which involve a parameter b to denote the label of a branch.

Definition 2.3 (The projection problem for model-theoretic action theories) LetD be
a first-order logical domain theory and Γp be a set of formulae which denote the oc-
currence of actions and let ϕg(b) denote a formula which involves predicates with a
parameter b.

• The weak projection problem is to decide whether (2.5) holds.

∃b : D ∧ Γp |= ϕg(b) (2.5)

• The strong projection problem is to decide whether (2.6) holds.

∀b : D ∧ Γp |= ϕg(b) (2.6)

The planning problem for model-theoretic semantics

For the planning problem, a formula ϕg is given and one seeks to find a plan Γp such that
ϕg is entailed in the logical theory Γp ∧ D.

Definition 2.4 (The planning problem for model-theoretic action theories) LetD be
a first-order logical domain theory and ϕg(b) be a formula denoting a goal state which
involves predicates with a parameter b.

• The weak planning problem is to decide whether (2.7) holds.

∃Γp : ∃b : (D ∧ Γp |= ϕg(b)) (2.7)

• The strong planning problem is to decide whether (2.8) holds.

∃Γp : ∀b : (D ∧ Γp |= ϕg(b)) (2.8)
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2.1.3. Non-monotonicity and Circumscription

Action theories are usually non-monotonic. In general, a theory is monotonic if given a
knowledge base KB and two formulae α and β the following holds:

if KB |= α then KB ∪ β |= α. (2.9)

If (2.9) does not hold, then a theory is non-monotonic.

Non-monotonicity in Action Theory

Action theories are inherently non-monotonic if the inertia assumption is made. The
assumption presumes that a world property persists if nothing happened that changed this
property. This implies that one considers a closed world where the agent is aware of all
actions that happen and where everything that is not known to be true or false is assumed
to be false. Consider the following example from the blocksworld domain (Winograd,
1971): an action theory DB represents that a block is on the table in a situation S0. The
block will persist on the table in situation S1 if it is not picked up in S0.

DB =OnTable(Block, S0) (2.10)
∧(OnTable(Block, S1)⇔ OnTable(Block, S0) ∧ ¬PickUp(Block, S0))

Under the closed world assumption ¬ means “can not be shown to be true”. Conse-
quently:

DB |= OnTable(Block, S1)

If we conjoinDB with PickUp(Block, S0) then we see that the theory is non-monotonic:

DB ∧ PickUp(Block, S0) ̸|= OnTable(Block, S1)

Circumscription and the Frame Problem

One way to implement non-monotonicy is Circumscription (McCarthy, 1980). Circum-
scription reflects the closed-world assumption, i.e. everything that is not known to be true
is considered to be false. The most common applications of circumscription in action
theory are the implementation of the law of inertia and reasoning about abnormalities.
Intuitively, circumscription minimizes the extension of a predicate in a theory. (Lifschitz,
1994) formulates circumscription with the following second-order definition:

Definition 2.5 (Circumscription) Let Φ(P ) be a formula containing a predicate con-
stant P . Let Q be a predicate variable with the same arity as P , and Φ(Q) denote the
formula where all occurrences of P in Φ are replaced by Q. Then the circumscription of
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Φ that minimizes predicate P , denoted as CIRC[Φ;P ], is a sentence schema represented
by the following second-order formula:

Φ(P ) ∧ ¬∃Q : [Φ(Q) ∧Q < P ]

where
Q = P means ∀x⃗ : [Q(x⃗)⇔ P (x⃗)]

Q ≤ P means ∀x⃗ : [Q(x⃗)⇒ P (x⃗)]

Q < P means [Q ≤ P ] ∧ ¬[Q = P ]

(2.11)

Equation (2.11) can be understood as a condition under which a first-order theory is
circumscribed.
Circumscribed theories contain a number of axioms which intuitively provide a “frame”
that limits the extent of each fluent wrt. each action. In the Situation Calculus (McCarthy
and Hayes, 1969) such axioms are called Frame Axioms. The problem with this ap-
proach is that the number of such axioms is usually huge: if there are |F | fluents and
|A| actions, then a properly circumscribed theory contains O(|A| · |F |) frame axioms
(see e.g. (McCarthy and Hayes, 1969)). This problem is commonly known as the Rep-
resentational Frame Problem. Though there are partial solutions to this problem, such
as the successor state axioms described in (Reiter, 1991), circumscription always has
the disadvantage that a domain description can not be arbitrary. It must be “compatible”
with the circumscription formula (2.11).
An alternative to circumscription is using formalisms which are based on the so-called
Negation as Failure (NaF) principle. One formalism which follows this principle is
Answer Set Programming.

2.2. Answer Set Programming
Answer Set Programming (ASP) is a form of Logic Programming which uses Negation
as Failure (NaF) to implement non-monotonic reasoning.
Other approaches to Logic Programming, in particular Prolog, use an algorithm called
SLDNF-resolution (Kowalski, 1974). The disadvantage of these approaches is that
SLDNF-resolution is not fully declarative: in particular conjunction is not commutative
and the order in which rules are written has an influence of the evaluation of a Logic
Program. For instance, if rules are not provided in an appropriate order then SLDNF
might not terminate.
Answer Set Programming (ASP) is an alternative approach to Logic Programming which
does not have these limitations. ASP is based on the Stable Model (SM) semantics
(Gelfond and Lifschitz, 1988) which makes ASP fully declarative. ASP solvers take
Logic Programs (LPs) as input and employ the Stable Model Semantics to find solutions
to Logic Programs which are called Answer Sets. To explain how Answer Sets are
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computed for so-called normal Logic Programs we first explain the simpler case of
positive Logic Programs.

2.2.1. Positive Logic Programs

Positive Logic Programs are LPs that do not contain negations. A positive LP P is
defined by a set of rules of the form

h← b1, . . . , bn. (2.12)

with 0 ≤ n and where h and b1, . . . , bn are symbols called atoms. h is called the head
and b1, . . . , bn is called the body of a rule r, denoted head(r) and body(r) respectively.
If the body of a rule is empty (n = 0) then the arrow symbol← is typically omitted and
the rule is called a fact.

Solving Positive Logic Programs

ASP pursues a bottom-up approach to solve Logic Programs in that it a-priori considers
all subsets of a set of atoms to be possible solutions, called interpretations of the Logic
Programs. For instance, consider the following Logic Program:

a← b.

b← a.

c.

(2.13)

The set of possible interpretations of (2.13) is given by the powerset 2{a,b,c}. In a “filtering”
step, the ASP solver rules out all these interpretations which are not “compatible” with
the constraints and facts defined in the program. For instance, an interpretation {a, b} is
not compatible because c is a fact which must also be true but which is not contained
in the set. What is left after ruling out incompatible interpretations are the models of P ,
denoted by M . In the above case these are {c}, {a, b, c}. In Logic Programming, one is
interested in these models which are minimal in the sense of Definition 2.6.

Definition 2.6 (Minimal Model of a Logic Program) A model M of a Logic Program
P is a Minimal Model if there is no other model M ′ of P such that M ′ ⊂M .

It turns out that every normal Logic Program has exactly one minimal model, as stated
by Theorem 2.1.

Theorem 2.1 (Least Model of a Logic Program) Every positive Logic Program P has
a single minimal model, also called the Least Model, denoted by LM(P ).
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A proof of the theorem can be found in literature, e.g. (Eiter et al., 2009). The Least
Model of a positive LP P , denoted by LM(P ) can be computed iteratively with a
consequence operator TP . Let I be an interpretation of P , then

TP (I) = {a|∃r ∈ P : head(r) = a ∧ body(r) ⊆ I} (2.14)

Positive Logic Programs have a least fixpoint, as stated by Theorem 2.2.

Theorem 2.2 (Least fixpoint of a positive Logic Program) Let T 0
P = ∅ and T i+1

P =
TP (T

i
P ) with i ≥ 0. Then TP has a least fixpoint lf (TP ) to which T i

P converges for i ≥ 0,
such that lf (TP ) = LM(P ).

A proof can be found e.g. in (Eiter et al., 2009).

2.2.2. Grounding

So far we considered grounded Logic Programs. A Logic Program P is grounded if
predicates do not contain variables, i.e. if predicates are atoms. In the general case
however, predicates do contain variables which are usually denoted by uppercase letters.
We call Logic Programs which contain variables non-ground Logic Programs, and write
grd(P ) to denote a grounded version of a non-ground Logic Program P . Consider the
Logic Program (2.15) as an example which implements a simple blocksworld domain.
The first rule in (2.15) states that for any robot, any object and any location in the domain
of discourse, if a robot is holding an object, then the object must be at the same location
as the robot.

at(O,X)← holding(R,O), at(R,X), robot(R), location(X), object(O).

robot(pr2).

object(block1).

object(block2).

location(atTable).
(2.15)

Variables are implicitly universally quantified over a set C of constants that are declared
in the Logic Program as lower-case arguments of predicates. In the above LP we have
C = {pr2, block1, block2, atTable}:
Before solving a LP it has to be grounded, i.e. variables have to be eliminated. Software
tools like gringo (Gebser et al., 2011b) employ efficient algorithms for this purpose. The
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grounded version of LP (2.15) is the LP (2.16).

robot(pr2).

object(block1).

object(block2).

location(atTable).

at(block1, atTable)← holding(pr2, block1), at(pr2, atTable),

robot(pr2), location(atTable), object(block1).

at(block2, atTable)← holding(pr2, block2), at(pr2, atTable),

robot(pr2), location(atTable), object(block2).

(2.16)

Logic Programs can also contain functions which may be arguments of predicates or
other functions. For instance, the following rule is a reified version of the first rule in
(2.15) which involves a modularity S. S denotes a situation in which a fact holds:

holds(at(O,X), S)←holds(holding(R,O), S), holds(at(R,X), S),

robot(R), location(X), object(O), situation(S).
(2.17)

In (2.17) the binary predicate holds has as argument the binary functions at and holding
plus a variable S.

2.2.3. Normal Logic Programs and Negation as Failure

Normal Logic Programs are more general than positive Logic Programs because they can
contain negated atoms in the bodies of their rules. A grounded normal Logic Program P
is defined by a set of rules of the form

h← b1, . . . , bn, not bn+1, . . . , not bn+m. (2.18)
with 0 ≤ n ≤ n+m.

The symbol not denotes Negation as Failure (NaF), also known as default negation or
weak negation. In the following, an atom a or the default negation not a of an atom
is referred to as a literal. It is important to not confuse default negation with classical
negation (denoted by “~”) which is discussed in Section 2.2.4.
Intuitively, NaF is a form of “sceptical” reasoning which means that something is
considered not to hold if the formalism fails to prove that it holds. For instance, the Logic
Program

c.

a← b.

b← a.

(2.19)
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has one Stable Model c. The atoms a and b are not in the Stable Model, because there is
no evidence that they hold. In contrast, if we treat the program (2.19) as a formula in
Propositional Logic, i.e.

c ∧ (b⇒ a) ∧ (a⇒ b) (2.20)

then, because Propositional Logic does not employ Negation as Failure, we obtain two
models: c ∧ a ∧ b and c.
The Negation as Failure principle emerges from the Stable Model semantics (Gelfond and
Lifschitz, 1988). In Section 2.2.6 we describe how this is used to realize non-monotonic
reasoning in action theory.

The Stable Model Semantics

Normal Logic Programs underly the so-called Stable Model Semantics. The definition of
a Stable Model is based on the Gelfond-Lifschitz reduct (Gelfond and Lifschitz, 1988) of
a Logic Program P wrt. a model M . This is described in Definition 2.7.

Definition 2.7 (The Gelfond Lischitz Reduct) Let body+(r) be the set of positive lit-
erals in a rule r of a Logic Program, and body−(r) the set of negative literals. The
Gelfond-Lifschitz reduct (GL-reduct) of a Logic Program P wrt. a model M , denoted by
PM , is defined as:

PM = {head(r)← body+(r)|r ∈ P ∧ body−(r) ∩M = ∅} (2.21)

The reduct of a program P wrt. a model M , denoted PM , is obtained as follows: (a) For
all atoms a ∈M remove every rule which contains not a in its body, so that the rule can
not trigger its head atom to be true. (b) For the remaining rules remove all negative literals
from their bodies. These can be assumed true as their atoms are not in M anyways.
Obviously, a reduct PM is always a positive Logic Program as it does not contain negative
literals anymore. Hence, with Theorem 2.1, a reduct must always have one unique Least
Model LM(PM). This is said to be a Stable Model of P if it is equal to the original
model M . The set of Stable Models of a Logic Program is denoted by SM [P ]. Formally:

Definition 2.8 (Stable Model) A model M of a Logic Program P is a Stable Model of
P if it is equal to the Least Model of the Gelfond-Lifschitz reduct LM(PM):

M ∈ SM [P ]⇔M = LM(PM) (2.22)

The definition of Stable Models implies that a normal LP can have multiple Stable
Models, also called Answer Sets. Here, a weakly negated literal causes a reduct not
to contain rules with the negated literal. Therefore these literals cause models to be
“unstable”. Alternative approaches such as the Perfect Model semantics (Przymusinski,
1987) treat weak negation differently, such that only one model (the Perfect Model) for a
normal Logic Program is allowed.
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2.2.4. Extensions to the Stable Model Semantics
Several extensions to the Stable Model Semantics were proposed and implemented to
increase the expressiveness of Answer Set Programming and to facilitate the Logic Pro-
gram design. In the following, a non-exhaustive summary about extensions implemented
in the Potassco ASP toolkit (Gebser et al., 2012b) is provided. The described extensions
are preliminary to the ASP formalization ofHPX in Chapter 4.

Integrity Constraints

Default negation can be used to formulate so-called integrity constraints. These are rules
where the head is empty, i.e. rules of the following form:

← b1, . . . , bn, not bn+1, . . . , not bn+m (2.23)

Integrity Constraints do not require a semantical extension and can be rewritten using
Negation as Failure as follows:

h← b1, . . . , bn, not bn+1, . . . , not bn+m, not h. (2.24)

Intuitively, an integrity constraint of the form (2.24) can be understood as “filter” which
rules out these Stable Models which do not contain atoms← b1, . . . , bn and which do
contain bn+1, . . . , bn+m.

Strong Negation

Strong negation is usually represented with the “~”-symbol. While Negation as Failure
(NaF) intuitively means that it can not be proven that a fact holds, strong negation means
that it can be proven that a fact does not hold. Gelfond (1994) pointed out that similar to
autoepistemic logic, strong negation can be understood as knowing that something does
not hold, while NaF refers to not knowing that something holds. Consider the following
example which can be found in (Gelfond and Lifschitz, 1991):

canPass(L)← railroadCrossing(L), not trainApproaching(L). (2.25)
canPass(L)← railroadCrossing(L), ~trainApproaching(L). (2.26)

Here, (2.25) means hat if it is not known that a train is approaching, then the railroad
crossing can safely be passed. In contrast, (2.26) is a stronger and “safer” assertion:
It means that the railroad crossing can only be passed if it is known that no train is
approaching.
Strong negation does not require an extension of the Stable Model semantics. It can be
compiled away by treating a strongly negated atom ~a as a new independent atom and
by adding the integrity constraint (2.27) for every atom a in the Logic Program.

← a, ~a. (2.27)
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Basic Arithmetic

State-of-the-art ASP grounders like gringo (Gebser et al., 2011b) support basic arithmetic
with integer numbers. For instance, consider the following simple program:

int(0..10).

sum(A,B,A+B)← int(A), int(B).
(2.28)

The first rule is a macro to define the facts int(0). . . . int(10). The second rule uses
addition to define the sum of A and B. Apart from addition, subtraction, multiplication
and division, gringo also supports comparison, i.e. the operators {<,>,≤,≥,=}.

Choice Rules

Choice Rules are used in the so-called generation part of a Logic Program (see e.g. (Geb-
ser et al., 2012b)). Intuitively, Choice Rules propose candidate sets of atoms which
“generate” a Stable Model if they are compatible with the other rules and constraints in
the Logic Program and if they result in a model that is stable. Choice Rules are constructs
of the form (2.29).

{h1, . . . , hn} ← b1, . . . , bm, not bm+1, not bm+k. (2.29)

They can be compiled into 2m+ 1 rules as follows:

h′ ← b1, . . . , bm, not bm+1, not bm+k.

h1 ← h′, not h′1
...

hn ← h′, not h′n
h′1 ← not h1

...
h′n ← not hn

where h′, h′1, . . . h
′
n are additional auxiliary atoms.

(2.30)

As an example consider the program (2.31).

a.

{b, c, d} ← a.
(2.31)

The program generates 8 Stable Models SM(P ) =
{{a}, {a, b}, {a, c}, {a, d}, {a, b, c}, {a, c, d}, {a, b, d}, {a, b, c, d}}, that is the choice
rule generates all possible combinations of facts enlisted in its head if its body is a fact.
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Cardinality Constraints

Choice rules can be augmented with so-called cardinality constraints. Consider the
program (2.32).

a.

2{b, c, d}3← a.
(2.32)

This program generates only these subsets of the powerset of {a, b, c} which contain at
least 2 and at most 3 elements. That is, cardinality constraints allow one to define upper
and lower bounds for the number of atoms that are produced with a choice rule. However,
cardinality constraints can also be used in the body of a rule, as shown in (2.33).

← 2{b, c, d}3. (2.33)

The rule is an integrity constraint which removes all Stable Models which contain less
than 2 and more than 3 atoms of the set {a, b, c}.
Cardinality rules are a purely syntactical extension of gringo’s input language. The
translation relies on a special counter-predicate which is explained in detail in (Gebser
et al., 2012b).

Conditions

Non-grounded programs can contain conditions within the head of a choice rule, indicated
with the “:” symbol as in (2.34).

int(0..4).

{p(T ) : int(T )}.
where int(0..4). is short for int(1), int(2), int(3), int(4).

(2.34)

The “:” symbol indicates a so-called condition statement. It causes the grounder to
rewrite the head of the choice rule as a list of all possible instantiations p. That is, the
grounded version of the above program is (2.35).

int(0..4).

{p(1), p(2), p(3), p(4)}.
(2.35)

Note that the occurrence of variables in a condition statement has a different effect than
the occurrence of variables in the body of a choice rule. For example consider (2.36)
which is a variant of (2.34).

int(0..4).

{p(T )} ← int(T ).
(2.36)
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The grounded set of rules of this variant (and hence also its Answer Sets) differs from
the grounded LP of (2.34 as shown in (2.37).

int(0..4).

{p(1)}.
{p(2)}.
{p(3)}.
{p(4)}.

(2.37)

Optimization Statements

Modern ASP solvers have inherent support for solving optimization problems. The
keywords #minimize and #maximize can be used to select one Stable Model among
the set of Stable Models in a Logic Program which contains the minimal or maximal
number of a certain predicate. It can also be used in combination with arithmetics to
maximize the value of a variable. An obvious application for action planning is to
minimize the length or cost of a plan.
The general form of a minimization statement of gringo’s input language is:

#minimize{l1 = w1@p1, . . . , ln = wn@pn} (2.38)

Here, li are literals, wi are integer numbers denoting weight and pi are positive integers
denoting priority for 0 ≤ i ≤ n. The semantics of this statement is as follows. Let X , Y
be Stable Models of a Logic Program P .

Consider a priority value pi. Then
X
pi

=

li∈X

wi denotes the sum of weights of a Stable

Model. Let pmax be the maximal priority value. Then a Stable Model X is said to be

dominated by X ′ if
X′

pmax

<
X

pmax

. If a Logic Program contains a minimization statement,

then the ASP solver returns only these Stable Models which are not dominated by another
Stable Model.
Maximization is an alternative form of optimization. However, this is a merely syntactic
extension and specified as in (2.39).

#maximize{l1 = w1@p1, . . . , ln = wn@pn} (2.39)

A maximization statements of the form (2.39) is equivalent to the minimization statement
(2.40).

#minimize{l1 = −w1@p1, . . . , ln = −wn@pn} (2.40)
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2.2.5. Computational Properties
The computational properties of ASP are well-known. The following Theorem considers
the complexity of grounded positive Logic Programs:

Theorem 2.3 (Complexity for positive Logic Programs) Deciding whether an atom
a is contained in a Stable Model of a grounded positive Logic Program is P-complete.

Similarly for grounded normal Logic Programs:

Theorem 2.4 (Complexity for normal Logic Programs) Deciding whether an atom a
is contained in a Stable Model of a grounded normal Logic Program is NP-complete.

And for grounded normal Logic Programs with optimization statements:

Theorem 2.5 (Complexity for normal Logic Programs with optimization) Deciding
whether an atom a is contained in a Stable Model of a grounded normal Logic Program
with optimization statements is ∆P

2 -complete.

Details and proofs for Theorems 2.3 – 2.5 can be found in literature, e.g. (Gebser et al.,
2012b).

2.2.6. ASP-based Action Theory and Negation as Failure
Answer Set Programming offers a convenient solution to the frame problem described in
Section 2.1.3 because it is based on the Negation as Failure Principle. This means that
circumscription or similar approaches are not required to model the inertia law. As an
example consider the simple block domain LP (DB) = (2.41). 6

onTable(block, s0).

onTable(block, s1)← onTable(block, s0), not noninertial(block, s0).

~onTable(block, s1)← ~onTable(block, s0), not noninertial(block, s0).
noninertial(block, s0)← pickUp(block, s0).

~onTable(block, s1)← pickUp(block, s0).

(2.41)

The Logic Program has one Stable Model:

SM [LP (DB)] = {onTable(block, s0), onTable(block, s1)}

To see that the reasoning is non-monotonic we add the fact pickUp(block, s0) and obtain:

SM [LP (DB) ∪ pickUp(block, s0)] = {onTable(block, s0), ~onTable(block, s1)}
6Recall that opposed to First Order Logic, the convention for Logic Programming is that constants and

predicate names usually start with a lower-case letter and variables start with an upper-case letter.
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This approach of modeling inertia is e.g. used in the ASP formalization of the action
language A (Gelfond and Lifschitz, 1993). To understand the advantage of this approach
before circumscription (see Section 2.1.3) observe that one atom noninertial(f, s) is
defined for each fluent f and situation s. Therefore two rules per fluent are sufficient
to model under which condition a fluent or its negation is non-inertial. Hence, given
that |E| is the number of action effects and |F| is the number of fluents in the domain
only O(|E|+2|F|) rules are required to model inertia, where O(|A| · |F|) frame axioms
are required if using circumscription (|A| being the number of actions). It was shown
that despite the lower representational complexity, the Stable Model Semantics and
Circumscription are equivalent in terms of computational soundness and completeness
for certain canonical formulae (see e.g. (Lee and Palla, 2009)).
Apart from the language A byGelfond and Lifschitz (1993) there are many other Action
Languages which can be understood as extensions of A and which have been translated
to ASP. For instance, B (Gelfond and Lifschitz, 1998, Section 5) extends A with indirect
action effects and ramifications. C (Giunchiglia and Lifschitz, 1998) is another extension
which also involves indirect effects, but has a more general model of inertia and allows
for concurrency. C+ (Giunchiglia et al., 2004) is an extension of C which is based on
universal causation (Turner, 1999).

2.2.7. ASP Module Theory

Modularity of Answer Set Programming was defined by Oikarinen and Janhunen (2006).
Intuitively, the module theory describes how separate Logic Programs can be conjoined
such that the union of the answer sets of each individual LP equals the answer set of the
union of the Logic Programs. We make use of the module theory in Chapter 5, where we
describe how we employ oclingo for our iterative online ASP solving approach.
A logic program module is formally described by Definition 2.9

Definition 2.9 (Logic program module (Oikarinen and Janhunen, 2006)) A triple P =
⟨P, I, O⟩ is a (propositional logic program) module, if

1. P is a finite set of rules of the form h← B+, not B−;

2. I and O are sets of propositional atoms such that I ∩O = ∅; and

3. head(P ) ∩ I = ∅

We write P (P), I(P), O(P) to denote the constituents of a module P.

To define composability we first describe the positive dependency graph of a Logic
Program in Definition 2.10.
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Definition 2.10 (Positive dependency graph of a Logic Program) Let P be a ground
normal Logic Program. The vertices of the positive dependency graph of P are the atoms
occurring in P . The edges of the graph are described by the set

{⟨a, b⟩ |r ∈ P, a ∈ head(r), b ∈ body(r)+}

where body(r)+ denotes the positive atoms of a rule r.

Definition 2.11 describes composability of modules, i.e. the definition of their join.7

Definition 2.11 (Join of LP modules (Gebser et al., 2011a)) Let P1 = ⟨P1, I1, O1⟩ and
P2 = (⟨P2, I2, O2⟩ be modules such that

1. O1 ∩O2 = ∅;

2. there is no edge in the positive dependency graph of P1 ∪ P2 that shares atoms
with both O1 and O2.

Then the join of P1 and P2, denoted as P1 ⊔ P2, is defined as the module

⟨P1 ∪ P2, (I1 \O2) ∪ (I2 \O1) , O1 ∪O2⟩

Answer Sets of modules are described in Definition 2.12.

Definition 2.12 (Answer Sets of Modules (Gebser et al., 2011a)) A set of atoms X is
an Answer Set of a module P = ⟨P, I, O⟩ ifX is an Answer Set of P ∪{a← |a ∈ X∩I}.
We denote the set of answer sets of a module P as AS(P).

2.2.8. Iterative ASP Solving
Iterative ASP solving is used to perform slice-wise (Gebser et al., 2011b) grounding of
the Logic Program according to a single integer iterator t. Which each iteration a new set
of rules (also called a slice) is added to the grounded LP. Each slice is a modular element
of the Logic Program.

Incremental Modularity

If using the incremental ASP solver iclingo (Gebser et al., 2011b), incremental problem
solving is realized by splitting a LP into three parts: #base , #cumulative and #volatile .
The #base part is a part of the Logic Program which does not contain the iterator t.
The #cumulative part includes rules with the parameter t and the set of rules which is
instantiated for each t accumulates with the previously grounded LP. The #volatile also

7Note that Definition 2.11 is not the original definition by Oikarinen and Janhunen (2006) but a more
restricted and simpler definition by Gebser et al. (2011a).
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contains the parameter t, but here the rules which contain t are removed from the set of
LP rules after each iteration.
Formally, one is interested in finding an answer set for a Logic Program

R[t] = B ∪


1≤j≤t

P [j] ∪Q[t] (2.42)

for some t ≥ 1 where B represents the #base part, P represents the #cumulative part
and Q represents the #volatile part. Incremental ASP solving is realized with iclingo
(Gebser et al., 2008) and oclingo (Gebser et al., 2011a) by incremental grounding. As an
auxiliary definition to relate the module theory to the idea of incremental ASP solving,
consider Definition 2.13 which describes how a set of rules P is “projected” to a set of
atoms X .

Definition 2.13 (Projecting rules onto atoms (Gebser et al., 2008)) We define for a pro-
gram P and a set X of atoms the set P |X as

P |X = {head(r)← body(r)+ ∪ L|
r ∈ P ∧ body(r)+ ⊆ X ∧ L = {not c|c ∈ (body(r)− ∩X)}}

As an example consider the following Logic Program:

P =

p.

q ← notp.

v ← w.

x← y.

y ← not q, not w.

← v.

Let X = {p, q}, then we have the following “projected” set of rules:

P |X =

p.

q ← not p.

y ← not q.

One can understand P |X as the set of rules of a LP P where the positive bodies are
“compatible” with X and the set of negative body atoms of each rule is truncated, such
that only these atoms which are also in X remain. Definition 2.13 allows one to relate
non-ground Logic Programs to ground modules. This is described in Definition 2.14.
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Definition 2.14 (Relating non-ground LPs to ground modules (Gebser et al., 2008))
Let P be a non-ground program over a set of predicates A, let grd(A) be the set of
atoms occurring in the grounded Logic Program grd(P ) and let I ⊆ grd(A) be a set of
atoms. Then we define P(I) as the module

P(I) = ⟨grd(P )|Y , I, head(grd(P )|X)⟩

where X = I ∪ head(grd(P )) and Y = I ∪ head(grd(P )|X).

The Logic Program P (P(I)) is the projection of grd(P ) onto inputs and head atoms of
grd(P ). The outputO(P(I)) is the set of head atoms of the Logic Program grd(P )|I∪head(grd(P ))

Example for Iterative ASP Solving

As an example for iterative ASP solving consider the following Logic Program (2.43).

#base.

p(1).

p(2).

#cumulative t.

q(t)← p(t).

#volatile t.

v(t)← p(t).

← v(t).

(2.43)

The first grounded LP with the slice for t = 1 is (2.44)

p(1).

p(2).

q(1)← p(1).

v(1)← p(1).

← v(1).

(2.44)

Due to the integrity constraint← v(1) the LP does not have a Stable Model. Therefore
another slice is added to the LP, which results in (2.45)

p(1).

p(2).

q(1)← p(1).

q(2)← p(2).

v(2)← p(2).

← v(2).

(2.45)
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Note that the LP rules v(1) ← p(1) and ← v(1) are not part of the Logic Program
anymore, since v(t) ← p(t) and ← v(t) appear in the #volatile part of the non-
grounded LP and are therefore discarded in the second iteration. As in (2.44), the LP
does not have a Stable Model.
The third iteration produces (2.46)

p(1).

p(2).

q(1)← p(1).

q(2)← p(2).

q(3)← p(3).

v(3)← p(3).

← v(3).

(2.46)

Now, since p(3) is not part of the Stable Model v(3) is also not part of the Stable Model
and the integrity constraint← v(3) does not prevent the LP from having Stable Models.
The solution is {p(1), p(2), q(1), q(2), v(3)}.
Iterative ASP solving is closely related to action theory and action planning in the sense
that each iteration of the LP grounding increments the planning horizon by one step. The
planning is finished when the planning horizon is broad enough to achieve the stated
goal. Note that the online ASP solver oclingo (Gebser et al., 2011a) which we are using
in our online implementation also supports incremental grounding.

2.2.9. Incremental Online ASP Solving

Online ASP solving as implemented in the solver oclingo (Gebser et al., 2011a) is
an extension to incremental ASP solving which is also based on the module theory
(Oikarinen and Janhunen, 2006). On the syntactic level, a keyword #external is used to
define a set of atoms as external wrt. an incremental Logic Program. If such an atom is
received by the ASP solver, then it adds this atom as a new module to the Logic Program
and generates new Answer Sets. We denote external atoms by IP . To understand the
semantics of online ASP solving we first describe online progressions as defined in
(Gebser et al., 2011a).

Definition 2.15 (Online Progression (Gebser et al., 2011a)) An online progression
⟨Ei[ei], Fi[fi]⟩i≥1 is a sequence of pairs of Logic Programs Ei, Fi with associated
positive integers ei, fi.
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Informally, Ei refer to events and Fi refer to inquiries. Syntactically, the input syntax of
oclingo represents an online progression with statements of the form

#step j

a1(t1), . . . , an(tn)

#endstep

In this work we only use events Ei in form of Logic Programming facts a1(t), . . . , an(t)
and no inquiries, i.e. Fi = ∅. In particular, the above statement represents an i-th online
progression ⟨{a1(t1), . . . , an(tn)}, ∅⟩, i.e. Ei = {a1(t1), . . . , an(tn)}.
Online progression statements are sent to the online solver while the main loop is running,
and each reception of an online progression triggers a new grounding and solving process.
For details concerning the particular interleaving of grounding and solving we refer to
Algorithm 1 in (Gebser et al., 2011a). We are now ready to define modularity of online
progressions.

Definition 2.16 (Modularity of Online Progressions (Gebser et al., 2011a)) We define
an online progression (Ei[ei], Fi[fi])i≥1 as modular wrt. an incremental LP ⟨B,P [t], Q[t]⟩
if the following modules are defined for all j, k ≥ 1 such that e1, . . . , ej, fj ≤ k.

1. P0 = B(IB)

2. Pn = Pn−1 ⊔ P[t/n](O(Pn−1) ∪ IP [t/n])

3. E0 = ⟨∅, ∅, ∅⟩

4. En = En−1 ⊔ En[en](O(Pen) ∪O(En−1) ∪ IEn[en])

5. Rj, k = Pk ⊔ Ej ⊔Q[t/k](O(Pk) ∪ IQ[t/k]) ⊔ Fj[fj](O(Pfj) ∪O(Ej) ∪ IFj [fj ])

Here, Rj,k is called the k-expanded Logic Program of
⟨Ei[ei], Fi[fi]⟩1≤i≤j wrt. ⟨B,P [t], Q[t]⟩. For details we refer to (Gebser et al.,
2011a, 2012a).

2.3. Modal Logic and the Possible Worlds Model of
Knowledge

A Modal Logic (e.g. (Blackburn et al., 2001)) is concerned with propositions that depend
on modalities. The most common Modal Logic involves the modalities possibly (denoted
by 3) and necessarily (denoted by 2). Hintikka (1962) provided a semantics for this
Modal Logic which is based on possible worlds. Kripke (1963) formulated a deductive
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system which allowed him to prove the completeness theorems of Modal Logic.8 In the
following we provide a brief description of Kripke’s Semantics for the single-agent case.
For a comprehensive study see e.g. (Blackburn et al., 2001) or (Fagin et al., 1995).
A Kripke Structure M is triple ⟨W,π,R⟩ where W is a set of possible worlds, π :
Φ×W → {true, false} is an interpretation that assigns truth values to formulae Φ and
R is an accessibility relation between worlds.
The set Φ represents first-order formulae augmented with a modal operator 2 that denotes
knowledge. For instance, to state that an agent knows ϕ one writes 2ϕ. Intuitively, an
agent knows ϕ if it knows ϕ in all possible worlds. To denote that an agent knows ϕ in a
particular world w wrt. a Kripke Structure M one writes ⟨M,w⟩ |= ϕ. The operator |=
is defined as follows:

⟨M,w⟩ |= ϕ iff π(ϕ, s) = true

⟨M,w⟩ |= ϕ ∧ ϕ′ iff ⟨M,w⟩ |= ϕ ∧ ⟨M,w⟩ |= ϕ′

⟨M,w⟩ |= ¬ϕ iff ⟨M,w⟩ ̸|= ϕ

⟨M,w⟩ |= 2ϕ iff ∀w′ ∈ W : (⟨w,w′⟩ ∈ R⇒ ⟨M,w′⟩ |= ϕ)

(2.47)

The diamond operator is defined as follows:

3ϕ := ¬2¬ϕ (2.48)

In Epistemic Modal Logic, an operator symbol K is commonly used to syntactically
replace 2 and to denote that a formula is known to hold.
There are different modal axiom schemata which define an epistemic system of a Modal
Logic. The schemata are related to so-called frame conditions9 concerning the accessibil-
ity relation R: if a frame condition holds for R, then the corresponding axiom schema
holds in the particular epistemic system.
Table 2.1 illustrates the most common schemata and their respective frame conditions.
Axiom K is called the distribution axiom and constitutes a minimal Modal Logic. T is
called the reflexivity axiom. If it is contained in a Modal Logic, then intuitively all that
is known to be true is indeed true. That is, such a Modal Logic constitutes a theory of
knowledge, not about belief. 4 is the positive introspection axiom: if an agent knows ϕ,
then it knows that it knows ϕ. Similarly, 5 reflects negative introspection: If an agent
does not know that ϕ, then it knows that it does not know ϕ.10 B states that if ϕ holds,
then the agent knows that ϕ is possible, i.e. it knows that it does not know that not ϕ
holds.
Common Modal Logic systems are enlisted in Table 2.2. K is the minimal Modal Logic.

8For a detailed survey on the history of Modal Logic we refer to (Goldblatt, 2003).
9Frame conditions in Modal Logic are not to be confused with frame axioms used for circumscription as

described in Section 2.1.3.
10Axioms 4 and 5 are subject to a fundamental debate in philosophy and many authors (e.g. Williamson

(2002)) argue against them.
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Label Axiom Frame Condition

K
2(ϕ→ ϕ′)
→ (2ϕ→ 2ϕ′)

— —

T 2ϕ→ ϕ ⟨w,w⟩ ∈ R reflexive
4 22ϕ→ 2ϕ {⟨w, v⟩ , ⟨v, u⟩} ⊆ R⇒ ⟨w, u⟩ ∈ R transitive
5 ¬2ϕ→ 2¬2ϕ {⟨w, v⟩ , ⟨w, u⟩} ⊆ R⇒ ⟨v, u⟩ ∈ R euclidean
B ϕ→ 23ϕ ⟨w, v⟩ ∈ R⇒ ⟨v, w⟩ ∈ R symmetric

Table 2.1.: Common modal axiom schemata and their corresponding frame conditions

Label Axioms
K K
KT K, T
S4 K, T , 4
S5 K, T , 4, 5, B

Table 2.2.: Common Modal Logic systems and their axiomatization

KT is a Modal Logic which requires that an agent only knows facts that are true. S4
features positive introspection and S5 uses also negative introspection.
Most epistemic action theories like Ak (Son and Baral, 2001), DECKT (Patkos and
Plexousakis, 2009) and also the h-approximation consider an equivalent of KT , in
the sense that they do not model introspection. The Dynamic Epistmic Logic by van
Ditmarsch et al. (2007) and AOL by Lakemeyer and Levesque (1998) are examples for
more expressive formalisms which use introspection. However, in their non-restricted
form, they are also undecidable due to the infinite number of state variables which emerge
from unlimited nested introspection.

2.4. Epistemic Action Theory: A Survey
In the following we present a survey concerning the state of the art in epistemic action
theory. To this end we distinguish theories into four categories.

• Theories based on a PWS. This is the traditional approach, following the work
by (Hintikka, 1962; Kripke, 1963; Moore, 1985). Model-theoretic PWS-based
approaches (e.g. (Scherl and Levesque, 2003)) typically employ Kripke’s acces-
sibility relation to model knowledge and operational approaches use multisets of
fluents (e.g. (Lobo et al., 2001)).

• Theories based on disjunctive state-representations (e.g. (Patkos and Plexousakis,
2009)). Their expressiveness and inference capabilities are comparable to PWS
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approaches, but corresponding implementations can be more efficient in practice
(To, 2011).

• Approximations of PWS (e.g. (Son and Baral, 2001)). These are less expressive
but have better computational complexity properties than PWS .

• Theories that rely on explicit formulation of knowledge-level effects (e.g. (Petrick
and Bacchus, 2004)). Theories of this category can be understood as approxima-
tions too, but it is required to carefully specify knowledge-level effects of actions
in an epistemically accurate manner. For instance, it has to be explicitly modeled
that if the condition of an action is unknown, then its effect is unknown.

We investigate existing approaches of each type and compare their computational prop-
erties, expressiveness and inference capabilities. We are primarily interested in the
following features which are summarized in Table 2.3.

1. Number of state variables (exponential or linear) and computational complexity.
The number of state variables is a major factor that determines the computational
complexity of an action formalisms. For instance, consider the action language
Ak (Son and Baral, 2001): the plan existence problem is ΣP

2 -complete for an
exponential number of state variables and NP-complete for the 0-approximation
where the number of state variables is linear wrt. the domain size (Baral et al.,
2000).11

2. Elaboration tolerant postdiction.
Postdiction is an inference-pattern which is required to model diagnosis tasks like
abnormality detection. We emphasize the need for elaboration tolerant (McCarthy,
1998) formalisms that capture postdiction. For example, some action theories
(e.g. (Tu et al., 2007)) support so-called Static Causal Laws (SCL). SCL are if-then
constructs that can be used for an ad-hoc implementation (by explicit encoding) of
postdiction. Example 2.1 shows that this approach is not elaboration tolerant.

11Under the assumption that plans are polynomial in size.
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Example 2.1 Elaboration Tolerance and Static Causal Laws
A robot can execute an action drived to reach a room through a door d. A fluent
in denotes that it is in the room, and a fluent opend denotes that the door d is
open. An auxiliary fluent did drived represents that drive has been executed.
A manually encoded SCL postdicts that if the robot is in the destination room
after driving the door must be open: “If did drived and in then opend”. The
robot has a location sensor to determine whether it is in the room. The sensor is
activated with an action sense in. Consider a scene where the robot initially
does not know whether the door is open or closed. It executes first drive1

and then sense in. Here Ac
k correctly generates knowledge that open1 holds

if the robot indeed arrived in the room. Now consider an elaboration of the
problem with two doors, i.e. d ∈ {1, 2}. The robot could first try to drive
through door 1 (drive1), then drive through door 2 (drive2) and then sense its
location (sense in). Here, did drive1 becomes true after drive1, regardless
of the actual open-state of door 1. Therefore, if door 1 is closed and the robot
actually passed door 2 to get into the room, then the SCL would produce the
wrong conclusion that door 1 is open. Hence, the workaround is not elaboration
tolerant.

3. Concurrent acting and sensing.
Real-world domains often demand to model actions which change the world and
concurrently sense a property of the world.12 For instance, pulling the trigger of a
gun causes the shooter to know whether the gun was loaded and at the same time
has the physical effect of the impact of the bullet (see Example 7.1). Another more
practical example is a sensor which consumes energy while the sensing happens.

4. Temporal knowledge dimension.
Reasoning about past (or future) facts opens up a new range of problems, for
instance in narrative interpretation or forensic reasoning. Witnesses may give
evidence about facts in the past; or knowledge about the occurrence of an event may
be acquired at a later time point. Example 7.1 illustrates that a temporal knowledge
dimension is also required to model actions which sense and concurrently affect
the same fluent.

5. Implementation.
A major goal of our research is to applyHPX in real robots and other applications
which require an implementation. An implementation also serves as a proof-of
concept of a formalism.

12In fact, the Uncertainty Principle by Heisenberg (1927) states that – at least on the quantum physical
level – sensing is actually impossible without concurrent physical side-effects.
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6. Soundness / completeness results.
Many formalism are defined in “isolation” wrt. other approaches, i.e. the relation
to other formalisms is not investigated formally by performing soundness or
completeness proofs. Without such proofs, the relation between different action
theories is unclear and conditions under which a formalism is equally expressive
as another formalism can not be identified.

2.4.1. PWSPWSPWS-based Epistemic Action Theories

The most popular approach to represent knowledge is a non-approximated PWS: knowl-
edge is represented by an exponential number of possible worlds. The idea behind this
approach stems from the work concerning Epistemic Modal Logic by Hintikka (1962),
Kripke (1963) and Moore (1985) which we described in Section 2.3. That is, knowledge
states are modeled either with an modal-logical accessibility relation (e.g. (Scherl and
Levesque, 2003)) or with multisets of fluents in mathematical logic (e.g. (Son and Baral,
2001)). These approaches support postdictive reasoning in an elaboration tolerant man-
ner, but they have the disadvantage that modeling an agent’s knowledge state requires
an exponential number of possible worlds and hence an exponential number of state
variables.
For instance, Lobo et al. (2001) use both mathematical logic and epistemic logic pro-
gramming to formulate a PWS based epistemic extension to the action language A.
Another PWS based semantics for A is defined for the action language Ak by Son and
Baral (2001). The semantics is sound and complete wrt. the approach by Scherl and
Levesque (2003) and the approach by (Lobo et al., 2001). The PWS-based semantics
for Ak has not been implemented and does not feature concurrent actions in general. A
special concern on Ak is given in Section 3.4, where we extend its semantics towards the
temporal dimension of knowledge.
Scherl and Levesque (2003) provide an epistemic extension and a solution to the frame
problem for the Situation Calculus (McCarthy, 1963) using an accessibility relation. A
temporal knowledge dimension does not exist and concurrency are not supported. To the
best of our knowledge there exists no implementation of their version of the epistemic
SC. Son and Baral (2001) showed that under certain assumptions Scherl and Levesque’s
approach is sound and complete wrt. the PWS-based semantics for the action language
Ak.
Lakemeyer and Levesque (1998) combine knowledge and action in the logic AOL in
the context of the situation calculus and the logic of only knowing (Levesque, 1990).
Their approach considers introspection, i.e. knowledge about knowledge, and for this
reason the number of state variables is in infinite. A temporal dimension of knowledge
and concurrency is not considered. To the best of our knowledge, the theory has not been
implemented and the relation to other epistemic action calculi has not been investigated
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formally.
The Fluent Calculus (FC) (Hölldobler and Schneeberger, 1990; Thielscher, 1998) was
extended to consider knowledge in (Thielscher, 2000). It uses an accessibility relation
similar to (Scherl and Levesque, 2003) and hence requires an exponential number of state
variables. The epistemic FC does not consider a temporal knowledge dimension. There
exists an extension which covers concurrency (Thielscher, 2001), but this extension does
not consider knowledge and sensing. Kahramanogullari and Thielscher (2003) provide a
formal investigation concerning the relation between FC and the epistemic extension of
A by Lobo et al. (2001). There exists a Prolog implementation of the epistemic Fluent
Calculus called FLUX (Thielscher, 2005), but its semantics differs from the original
epistemic FC in that it does not employ an accessibility relation. For this reason we
report about FLUX separately.
In addition to logic-based action-theoretic approaches there exist several PDDL-based
(McDermott et al., 1998) planners that deal with incomplete knowledge. These planners
achieve high performance via practical optimizations such as BDDs (Bertoli et al., 2001)
or heuristics-driven search algorithms like those used for the ContingentFF (CFF) planner
(Hoffmann and Brafman, 2005). However, their underlying semantics is typically based
on a PWS . For instance, the semantics of CFF is based on sequential STRIPS (Fikes and
Nilsson, 1972) and adds the PWS-approach to model sensing and knowledge. Despite
its efficiency in relatively small domains, the exponential number of state variables causes
an extreme phase transition if the domain size exceeds a certain threshold.13 Postdiction
is possible and elaboration tolerant, but concurrent acting and sensing is not supported in
CFF. A formal investigation of the relation between CFF and other formalisms is also
not provided.
To the best of our knowledge, there are only two approaches that consider the temporal
dimension of knowledge. Ma et al. (2013) proposed an epistemic extension to the
Event Calculus which considers possible world histories instead of possible worlds. It
has elaboration tolerant support for postdiction and knowledge about past and future
can be represented. Concurrent acting and sensing is possible with EFEC, and an
implementation exists as Answer Set Programming.14

Another PWS-based first-order logical framework to model a temporal dimension of
knowledge is provided by Vlaeminck et al. (2012). The framework employs first-order-
reasoning such that it allows for elaboration tolerant postdiction and the projection
problem is solvable in polynomial time. However, the authors do not provide a practical
implementation and evaluation of their method. The key feature of their approach is that
the first-order reasoning is approximated, such that the plan-existence problem is in NP

13For example, the RING problem (Hoffmann and Brafman, 2005) where an agent must move through n
rooms and close the windows in these rooms demands 1.5s for 4 rooms, 480s for 5 rooms and produces
a timeout > 3600s for 6 rooms with CFF on a 2 Ghz i5 machine with 6GB RAM.

14http://www.ucl.ac.uk/infostudies/efec/ (accessed on 17th July 2013)
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despite the exponential number of state variables of the actual action formalism.15 The
framework has not been implemented and the relation to other action calculi has not been
formally investigated.

2.4.2. Theories with a Disjunctive Knowledge State
Representation

There are alternatives to a PWS-based knowledge representations which use a disjunc-
tive knowledge representation. One example is DECKT (Patkos and Plexousakis, 2009)
– an epistemic extension to the Event Calculus. DECKT relies on so-called Hidden
Causal Dependencies which are modeled by reified first-order predicates. For instance
Knows(¬f ∨ f, T ) represents that at a time T an agent has knowledge about the causal
dependency “if f1 holds then f2 must also hold”. In general, disjunctive approaches
require only a linear number of states to model an agent’s knowledge but the number
of variables per state is up to exponential. An implementation of DECKT is presented
in (Patkos and Plexousakis, 2012) but the implementation is not capable of action plan-
ning. DECKT is sound and complete wrt. BDECKT (Patkos and Plexousakis, 2009), a
PWS-based version of the Event Calculus. Concurrent acting and sensing is in principle
possible but fails if an action senses the value of a fluent which is modified at the same
time, as demonstrated in our Yale Shooting Scenario in Example 7.1.
Another approach is presented by To (2012). The author implements a performance-wise
very successful general planning framework called PrAO which is based on so-called
minimalDNS representations. Concurrency is not supported and a formal comparison
with other epistemic action calculi is not presented.

2.4.3. Approximate Epistemic Action Theories

Approximate theories are usually derived from a PWS based formalization. Approxima-
tions can have simpler state representations and hence a lower computational complexity,
but postdiction is not naively supported with existing approaches. Demolombe and del
Pilar Pozos Parra (2000) provide an approximate epistemic extension to the Situation
Calculus (SC) which is based on special knowledge fluents. Their approach involves
simpler frame axioms compared to the PWS based approach by Scherl and Levesque
(2003), such that an implementation would be tractable. However, postdiction is not
possible with this approach. A temporal knowledge dimension and concurrency is also
not supported. Liu and Levesque (2005) present another epistemic extension of the
Situation calculus. Their approach to approximate PWS is based on so-called local
action effects. The intuition behind local action effects is that all conditions of an action

15The authors only provide a complexity result that the projection problem is polynomial, but it follows
directly from the definition of non-deterministic Turing machines that plan-existence is in NP.
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must be known before execution. This implies that postdiction – in the sense of inferring
the conditions of an action by observing its effect – is not required. The approach by
(Liu and Levesque, 2005) is claimed to coincide with the 0-approximation of Son and
Baral (2001) if formulae are restricted to be propositional. However, we were unable to
locate a formal proof.
The 0-approximation by Son and Baral (2001) does not consider an exponential number
of possible worlds, but instead one single approximate world which is the intersection
of all possible worlds. This requires only a linear number of state variables to model
the knowledge state of an agent, instead of an exponential number with PWS based
approaches. The plan-existence problem for Ak is NP-complete (Baral et al., 2000), and
postdiction is not supported.16 Tu et al. (2007) introduce Ac

k and add Static Causal Laws
(SCLs) to the 0-approximated Ak. In Example (ex:AckNotElTolerant) we demonstrate
that SCL allow only for a non-elaboration tolerant form of Postdiction.

2.4.4. Epistemic Action Theories with Explicit
Knowledge-Level Effects

Approaches like the PKS planner (Petrick and Bacchus, 2004), the FLUX system
(Thielscher, 2005) or INDIGOLOG (de Giacomo and Levesque, 1998) require to model
the knowledge-level effects of an agent explicitly in the action specification. These are
able to deal with incomplete knowledge, but knowledge-level effects of actions have to
be defined manually for each action.
An example is given wrt. the PKS planner by Petrick and Bacchus (2004): consider a dial
action that is supposed to open a safe if the dialed combination is correct. If it is known
that the safe is initially closed, and if it is unknown whether the dialed combination is
correct, then obviously knowledge about the closed-ness of the safe is lost after dialing,
because the dialed combination may or may not be correct and the safe may or may
not open. In PKS, the epistemic effect of knowledge loss must be explicitly stated.
In consequence, epistemic accuracy of the specification is not guaranteed because the
definition of knowledge-level effects is left to the domain designer. Postdiction can be
implemented in a similar manner, but this also has to be done manually in the action
specification which is not elaboration-tolerant. PKS is based on the Epistemic Situation
Calculus by (Scherl and Levesque, 2003), but a formal soundness proof wrt. this or other
formalisms is not presented. There exists an implementation of PKS which is particularly
efficient if many functional fluents are used.
FLUX (Thielscher, 2005) can be understood as an implementation of the (epistemic)
Fluent Calculus in Prolog. However, there is a fundamental difference between the
epistemological reasoning machineries of both calculi: Unlike the original epistemic

16Son and Baral (2001) present other approximations (e.g. 1-approximation or ω-approximation) in the
same paper as well, but these also do not support postdiction.
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Fluent Calculus defined in (Thielscher, 2000), FLUX does not employ an accessibility
relation but instead an explicit knowledge-predicate. As a result, knowledge-level effects
of actions (such as postdiction) have to be specified manually which makes a formal
investigation of the relation between this limited form of epistemic reasoning and the
epistemic FC difficult; soundness or completeness results are not provided. The manual
specification of knowledge-level effects make FLUX also elaboration-intolerant.
INDIGOLOG (de Giacomo and Levesque, 1998) is a high-level Cognitive Robotics
control framework that supports sensing and incomplete knowledge. It is based on an
operational semantics and implemented in Prolog. In the implementation, sensing is
modeled in a simplified manner and an accessibility relation is not employed. Though
work concerning epistemic accuracy of INDOGOLOG has been conducted in (Sardina
et al., 2004), we were unable to find actual soundness or completeness results for
INDIGOLOG’s semantics wrt. other epistemic action theories like (Scherl and Levesque,
2003).
Concurrent acting and sensing is possible with all enlisted approaches (PKS, FLUX and
INDIGOLOG) but fails for actions which sense and concurrently change the same fluent’s
value, as described in our extended version of the Yale Shooting Problem (Example 7.1).
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3
HPXHPXHPX : The h-Approximation

This chapter describes the operational semantics of the h-approximation. We first describe
the syntactic elements of the PDDL-like input language and state how these map to a set-
theoretic formalization ofHPX (Section 3.1). The formalization is based on so-called
h-states which represent the knowledge state of an agent. An h-state considers a set of
pairs of fluent literals and time points which represent the knowledge history of an agent.
In addition, a set of pairs of actions and time points represent the action history.
Section 3.2 describes how state transitions are modeled. We define a transition function
which maps an h-state and a set of actions to a set of h-states. State transitions involve a re-
evaluation step which iteratively refines the knowledge history of an agent by considering
sensing results and the occurrence of actions. Based on the basic transition function for
single actions, we formalize concurrent conditional plans (CCP) and define an extended
transition function which maps a CCP and an h-state to a set of h-states. We illustrate
the theory with a running minimal example of a robot trying to enter a room by driving
through a door.
In Section 3.3 we discuss the computational complexity ofHPX . Theorem 3.1 states
that the plan-existence problem forHPX is in NP.
We conclude the chapter with Section 3.4, which demonstrates soundness of HPX
wrt. traditional epistemic action theories based on a possible-worlds semantics. To this
end we define an extended temporal semantics for the action languageAk(Son and Baral,
2001), which is PWS-based and capable of representing temporal knowledge.

3.1. Domain Specification and Syntax

Throughout this thesis we use the following notational conventions: We use the symbol
a to denote actions, ep for effect proposition, n and t for time (or step), b for branch, and
f for fluent. l denotes fluent literals of the form f or ¬f . l denotes the complement of l
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and |l| is used to “positify” a literal, i.e. |¬f | = f and |f | = f .
With these conventions we describe the syntax of our PDDL dialect to specify planning
domains denoted D. D consists of the language elements (3.1a) – (3.1f) as follows:

(:init (and linit1 . . . linitnin
) ) (3.1a)

(oneof lisc1 . . . liscn ) (3.1b)

(:action a :effect if (and lc1 . . . l
c
nc
) then le) (3.1c)

(:action a :observe fs) (3.1d)

(:action a :executable (and lex1 . . . lexnex
)) (3.1e)

(:goal type (and lg1 . . . l
g
ng
)) (3.1f)

(3.1a). A set of value propositions (VP) denote initial facts. Formally, for an expression
(3.1a) VP = {linit1 , . . . , linitnin

} is a set of fluent literals.

(3.1b). A set of initial state constraints (ISC) denotes exclusive-or knowledge about the
initial state. Formally, an ISC is a set of literals, e.g. for (3.1b) we have one ISC
C = {lisc1 , . . . , liscn } and C ∈ ISC.

(3.1c). A set of effect propositions (EP) of an action a (denoted EPa) represents condi-
tional action effects . We call lc1 . . . l

c
nc

condition literals and le effect literals. c(ep)
denotes the set of condition literals and e(ep) denotes the effect literal of an effect
proposition ep. Formally, an EP is the pair ⟨c(ep), e(ep)⟩. An action has a finite
number of EPs and we write epi(a) to denote the i-th effect proposition of an
action a.

(3.1d). A knowledge proposition of an action a, denoted KPa, represents that an action
senses a fluent f s, i.e. for (3.1d) we have KPa = f s.

(3.1e). Executability conditions (EXCa) denote what an agent must know in order to
execute an action a. Formally, an executability condition is a set of literals, i.e. for
(3.1e) we have EXCa = {lex1 , . . . , lexnex

}

(3.1f). Goal propositions (Gstrong, Gweak) denote goals, where type ∈ {weak, strong}.
Formally, Gstrong is the set of literals specified with type = strong and Gweak is
the set of literals specified with type = weak. Weak goals denote that a plan has
to be found which possibly achieves the goal. That is, there must be at least one
leaf state in the transition tree where the goal is achieved. A strong goal must be
achieved in all leaf states, i.e. a plan must necessarily achieve a goal. The formal
difference between weak and strong goals is discussed in Section 3.2.11.
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Note that a set of domain fluents (denoted FD) is implicitly defined by the domain
definition: whenever a fluent literal f or ¬f is involved in one of the language elements
(3.1a) – (3.1f), then f is contained in the set of domain-fluents FD. Respectively, LD is
the set of domain literals.

3.2. Operational Semantics of the
H-Approximation

The semantics is defined in terms of a transition function (3.7) that maps actions and
state histories to state histories. To realize postdiction and other epistemic effects, a
re-evaluation function eval is applied after each state transition. eval retrospectively
considers temporal knowledge and incrementally refines knowledge with inference
mechanisms for postdiction, causation and inertia. In addition to the transition function
(3.7) for single actions we define an extended transition function (3.18) that maps a
concurrent conditional plan and a state to a set of states.1

Formally, a planning domain D is a tuple ⟨VP , ISC,A,G⟩ where:

• VP is a set of value propositions (3.1a)

• ISC is a set of initial state constraints (3.1b)

• A is a set of actions. A non-sensing action a is a pair ⟨EPa, EXCa⟩ consisting of a
set of effect propositions EPa (3.1c) and an executability condition EXCa (3.1e).
Sensing actions are represented as a tuple ⟨KPa, EPa, EXCa⟩ where KPa (3.1d)
denotes a knowledge proposition.

• G =

Gstrong,Gweak


is a pair of strong and weak goal propositions (3.1f).

3.2.1. Knowledge States with a Temporal Dimension

The HPX semantics is based on so-called history-states (h-states) h which are pairs
⟨α,κ⟩. α denotes the action history and κ the knowledge history of h. Formally, α and
κ are represented as follows:

• An action history α consists of pairs ⟨a, t⟩ where a is an action and t is a time
step.

• A knowledge history κ is a set of pairs ⟨l, t⟩ where l is a literal and t is a time-step.

1Our definition of concurrency is restricted in the sense that all actions are assumed to have the same
duration. Therefore we define concurrency only wrt. single actions and not wrt. to other concurrent
conditional (sub-)plans.
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To handle concurrency in a more convenient manner we introduce effect histories as an
auxiliary instrument derived from action histories.

• An effect history ϵ is a set of pairs ⟨ep, t⟩ where ep is an effect proposition and t is
a time-step.

The formal definition of effect histories is provided in Definition 3.1.

Definition 3.1 (Effect history ϵ) Let α = {⟨a1, t1⟩ , . . . , ⟨an, tn⟩} be an action history
and let EPa denote the set of effect proposition of an action a. Then the effect history
ϵ(α) of the action history α is given by (3.2).

ϵ(α) = {⟨ep, t⟩ |∃ ⟨a, t⟩ ∈ α : ep ∈ EPa} (3.2)

For convenience we also write (3.3).

ϵ(h) = ϵ(α(h)) (3.3)

In general, we write α(h) , κ(h) and ϵ(h) to denote the action history, knowledge history
and effect history of an h-state h. To simplify notation, we sometimes transfer sub- and
superscripts from h to ϵ, κ and α (if clear from the context). For instance we write ϵn to
denote ϵ(hn).

3.2.2. Initial Knowledge

A particular h-state of a domain description is the initial state, described by Definition
3.2.

Definition 3.2 (Initial h-state h0) A state is called the initial state (denoted by h0 =
⟨α0,κ0⟩) of a domain D if and only if

1. α0 = ∅

2. for every fluent literal l in a value proposition VP: ⟨l, 0⟩ ∈ κ0.

3. for every initial state constraint C ∈ ISC:

∀l ∈ C : ⟨l, 0⟩ ∈ κ0 ⇒ (∀l′ ∈ C \ l :

l′, 0


∈ κ0)

∧(∀l′ ∈ C \ l :

l′, 0


∈ κ0)⇒ ⟨l, 0⟩ ∈ κ0

(3.4)

Example 3.1 depicts how an action is applied to transform the initial state h0 into a
successor state h1.
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(:action open :effect if ¬jammed then is_open)
(:init ¬in_room ¬is_open)
(:goal weak is_open)

Listing 3.1: Opening an potentially jammed door

Example 3.1 Action and knowledge history
Consider Listing 3.1 which specifies the problem of driving through a door into a room
if it is unknown whether the door is open. The value proposition (:init ¬is open)

results in the initial knowledge history κ0 = {⟨¬is open, 0⟩} and the action history
α0 = ∅. Applying action open door on h0 causes a transition to h1:

h0

κ0 = {

¬in room, 0


,

¬is open, 0

}

α0 = {}

h1

κ1 = {

¬in room, 0


,


¬in room, 1


,

¬is open, 0

}

α1 = { ⟨open door, 0⟩}

open door

Note that κ1 does not contain a pair ⟨in open, 1⟩ or ⟨¬is open, 1⟩: If it is unknown
whether there is an abnormality in opening the door, then it is also unknown whether
the door is actually open after executing this action.

3.2.3. Knowledge about the Presence (and the Past)
To identify the present world state within a knowledge history we define an auxiliary
function now (3.5): it returns the number of state transitions that have occurred so far.

now(h) =


0 if α(h) = ∅
t+ 1 if ∃ ⟨a, t⟩ ∈ α(h) : ∀ ⟨a′, t′⟩ ∈ α(h) : t′ ≤ t

(3.5)

To represent knowledge about the past and the presence, we use an entailment operator |=
to define (a) whether a literal l is known to hold at the present step (3.6a), or (b) whether
a pair ⟨l, t⟩ is known to hold (3.6b), i.e. whether at the present step l is known to hold at
a possibly earlier step t.

h |= l⇔ ⟨l, now(h)⟩ ∈ κ(h) (3.6a)

h |= ⟨l, t⟩ ⇔ ⟨l, t⟩ ∈ κ(h) (3.6b)
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3.2.4. Executability of Actions
Executability conditions (3.1e) are qualifications on the agent’s knowledge at the time it
executes an action. They reflect what an agent must know in order to execute an action.
Executability conditions are formalized in Definition 3.3.

Definition 3.3 (Executability of actions) Consider an action a with an executability
condition EXCa = {lex1 , . . . , lexnex

}. We say that a is executable in an h-state h if ∀lex ∈
EXCa : h |= ⟨lex, now(h)⟩.

Intuitively, an action is executable if all literals in the executability condition are known
to hold at the step the action is executed, i.e. at now(h).

3.2.5. Sensing, Branching, Transition Function
The transition function Ψ (3.7) adds a set of actions to the action history α and then
evaluates the knowledge-level effects of these actions. Ψ considers sensing and maps a
set of actions A and a state to a set of states.

Ψ(A,h) =


k∈sense(Aex,h)

eval(⟨α′,κ(h) ∪ k⟩)

where
•Aex is the subset of actions of A which are executable in h

•α′ = α(h) ∪ {⟨a, t⟩ |a ∈ Aex ∧ t = now(h)}

(3.7)

The transition function calls two other function, sense and eval:

• eval (3.17) is a re-evaluation function which we describe in Section 3.2.8. In brief,
eval refines the knowledge-history of an h-state by determining the knowledge-
level effects of non-sensing actions using certain inference mechanisms.

• sense adds sensing results to the knowledge history. It is formally defined as
follows. Let ts = now(h) then:

sense(A,h) =



{{⟨f s, ts⟩}, {⟨¬f s, ts⟩}}
if A contains exactly one sensing action a
with a knowledge proposition KPa = f s

and {⟨f s, ts⟩ , ⟨¬f s, ts⟩} ∩ κ(h) = ∅

{∅} otherwise

(3.8)

Intuitively, sense describes that knowledge is added to the original h-state if none
of the possible outcomes of the sensing (either f s or ¬f s) is already known. Note

56



3.2. OPERATIONAL SEMANTICS OF THE H-APPROXIMATION

that the time at which the sensing result holds is the time at which the sensing
happens, i.e. the time before the successor-state time: ts = now(h). Example 7.1
demonstrates that this is important to model concurrent acting and sensing.

The re-evaluation function eval consists of five inference mechanisms which constitute
the re-evaluation process. Before defining these inference mechanisms we need to
introduce the auxiliary notion of intermeditate h-states which result from a partial re-
evaluation. Intermediate h-states are used in Examples 3.2 – 3.5 which illustrate the
inference mechanisms.

3.2.6. Intermediate h-states
We define intermediate h-states, denoted by a “tilde” symbol (e.g. h̃) to represent partial
state-transitions. That is, if an action a is applied to an h-state h, then we add the action
to the action history but do not necessarily add all effects of the action to the knowledge
history. The formal definition of intermediate h-states is as follows:

Definition 3.4 (Intermediate h-states) Given h-states h, h̃ and a set of actions A. We
say that

h̃ is an intermediate h-state of h wrt. A

if the following holds:

h̃ = ⟨α(h) ∪ {⟨a, now(h)⟩ |a ∈ A}, κ̃⟩ (3.9)

where κ̃ is called intermediate knowledge history with κ̃ ⊇ κ(h).

With the intermediate h-states we are ready to define and to illustrate five individual in-
ference mechanisms which constitute the re-evaluation process. Intuitively, intermediate
h-states denote h-states which are not completely re-evaluated. For example, consider an
h-state where a sensing result is added, but postdictive conclusions have not been drawn
yet, even though this would be possible.

3.2.7. Inference Mechanisms (IM1.–IM.5)
The evaluation function employs the following five inference mechanisms (IM):

IM.1 — Forward inertia of knowledge

IM.2 — Backward inertia of knowledge

IM.3 — Causation

IM.4 — Positive postdiction

IM.5 — Negative postdiction
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I IM.1 – IM.2: Inertia
To define how knowledge persists, we first formalize inertia (3.10). Intuitively, a literal l
is inertial at a step t if no effect proposition can negate l.

inertial(l, t,h) =


true if ∀ ⟨ep, t⟩ ∈ ϵ(h) :

e(ep) = l

⇒


∃lc ∈ c(ep) :


lc, t


∈ κ(h)


false otherwise

(3.10)

A literal l is inertial at a step t if (a) there is no effect proposition such that ⟨ep, t⟩ ∈ ϵ(h)
and ep has a complementary effect literal l, or (b) there is an EP such that ⟨ep, t⟩ ∈ ϵ(h)
and ep has a complementary effect literal l, but ep has at least one condition literal lc

which is known not to hold at t.
Having defined when a fluent is inertial, we can define forward and backward inertia of
knowledge: to this end, we state two functions fwd (3.11) and back (3.12) that map an
h-state to an h-state. Forward inertia is defined by (3.11).

fwd(h) = ⟨α(h),κ(h) ∪ addfwd(h)⟩
where
addfwd(h) = {⟨l, t⟩ | ⟨l, t− 1⟩ ∈ κ(h) ∧ inertial(l, t− 1,h) ∧ t ≤ now(h)}

(3.11)

Backward inertia is defined by (3.12).

back(h) = ⟨α(h),κ(h) ∪ addback(h)⟩
where

addback(h) = {⟨l, t⟩ | ⟨l, t+ 1⟩ ∈ κ(h) ∧ inertial(l, t,h) ∧ t ≥ 0}
(3.12)

Example 3.2 demonstrates how inertia produces knowledge in the domain specified by
Listing 3.2.2

(:action drive :effect if is_open then in_room)
(:action sense_open :observe is_open)
(:init ¬in_room)
(:goal weak in_room)

Listing 3.2: Driving through a potentially closed door

2Example 3.2 considers that the robot first drives through a door without knowing its open-state and then
senses the door’s open-state. In practice it makes much more sense to first sense the door’s open-state
and then drive through the door. We consider this less sensible case any ways to illustrate how forward
and backward inertia retrospectively generate knowledge.
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Example 3.2 Knowledge gain through sensing and inertia
Consider Listing 3.2 and the action sequence [drive ; sense open]. The state h0 is
the initial state where the door’s open state is uknown. The state transition from h0 to
h1 represents that the robot drives through the door without actually knowing whether
it is open.

h0
κ0 = {


¬in room, 0


}

α0 = {}

h1
κ1 = {


¬in room, 0


}

α1 = {

drive, 0


}

Ψ({drive},h0)

h̃1+
2

κ̃1+

2 = {

¬in room, 0


, 

is open, 1

}

α2 = {

drive, 0


, ⟨sense open,1⟩}

Ψ({sense open},h1) with ⟨is open, 1⟩

h̃2+
2

κ̃2+

2 = {

¬in room, 0


, 

is open, 1

,

is open,2


}

α2 = {

drive, 0


, ⟨sense open, 1⟩}

fwd(h̃1+

2 )

h̃3+
2

κ̃3+

2 = {

¬in room, 0


,

is open, 0
 

is open, 1

,

is open, 2


}

α2 = {

drive, 0


, ⟨sense open, 1⟩}

back(h̃2+

2 )

h̃1−
2

Ψ({sense open},h1)
with ⟨¬is open,1⟩

State h1 is similar to h0 because the agent does not know whether the door was open
at the time of driving. Therefore it does not gain any new knowledge.
sense open generates two intermediate successor h-states: h̃1+

2 contains the positive
sensing outcome ⟨is open, 1⟩ and h̃1−

2 contains the negative outcome ⟨¬is open, 1⟩.
For brevity we only consider the positive case.

Forward inertia generates the next intermediate h-state h̃
2+

2 . Consider that no action is
applied that could change is open. Therefore we have that inertial(is open, 1, h̃2+

2 )
holds (3.10). Consequently, fwd (3.11) generates knowledge that the door is open in
the future and adds ⟨is open,2⟩ to κ̃2+

2 .

The case for next state h̃
3+

2 is similar. Since ¬is open is inertial at step 0 we have that
back (3.12) generates ⟨is open,0⟩.
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I IM.3: Causation
We define a function cause that produces knowledge about the effects of actions if the
conditions are known. Intuitively, if an effect proposition ep is applied at t all condition
literals of ep are known to hold at t then the effect literal le of ep holds at step t+ 1.

cause(h) = ⟨α(h),κ(h) ∪ addcause(h)⟩
where
addcause(h) = {⟨le, t⟩ |∃ ⟨ep, t− 1⟩ ∈ ϵ(h) : {⟨lc1, t− 1⟩ , . . . , ⟨lcn, t− 1⟩} ⊆ κ(h)}

(3.13)
with c(ep) = {lc1, . . . , lck} and e(ep) = le.
Example (3.3) illustrates how cause produces knowledge.

Example 3.3 Knowledge gain through causation
Recall the specification of the drive action from Listing 3.2:

(:action drive :effect if is open then in room)

Further, reconsider state h̃3+

2 from Example 3.2. We have that ⟨open, 0⟩ holds in h̃3+

3

and the action history α2 contains information that drive was executed at step 0.
Consequently there is an effect proposition ep0(drive) such that ⟨ep0(drive), 0⟩ ∈ ϵ2
(see Definition 3.1). The effect proposition has an effect literal e(ep0(drive)) =
in room.
cause retrospectively evaluates the effects of the effect proposition. In this case we
have ⟨in room, 1⟩ ∈ cause


h̃3+

2


.

h̃3+
2

κ̃3+

2 = {

¬in room, 0


,

is open, 0

,


is open, 1


,

is open, 2


}

α2 = {

drive, 0


, ⟨sense open, 1⟩}

h̃4+
2

κ̃4+

2 = {

¬in room, 0


,


in room, 1


,

is open, 0

,


is open, 1


,

is open, 2


}

α2 = {

drive, 0


, ⟨sense open, 1⟩}

cause

h̃3+

2



I IM.4 – IM.5: Positive and negative postdiction
The function pdpos (3.14) defines positive postdiction. This is the inference that knowl-
edge about the conditions of an effect proposition is gained if (a) the effect is known to
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hold after the action and (b) known not to hold before the action and (c) no other effect
proposition could have triggered the effect.

pdpos(h) = ⟨α(h),κ(h) ∪ addpdpos(h)⟩
where
addpdpos(h) = {⟨lc, t⟩ |∃ ⟨ep, t⟩ ∈ ϵ(h) :

lc ∈ c(ep) ∧ ⟨le, t+ 1⟩ ∈ κ(h) ∧

le, t


∈ κ(h)

∧ (∀ ⟨ep′, t⟩ ∈ ϵ(h) : (ep′ = ep ∨ e(ep′) ̸= le))}
with le = e(ep)

(3.14)

The function pdneg (3.15) describes negative postdiction. This is the inference that
knowledge about one yet unknown condition literal of an effect proposition is gained if
the effect is known not hold after the action a and all other condition literals are known
to hold before the action.

pdneg(h) = ⟨α(h),κ(h) ∪ addpdneg(h)⟩
where

addpdneg = {

lcu, t


|∃ ⟨ep, t⟩ ∈ ϵ(h) :

lcu ∈ c(ep) ∧

le, t+ 1


∈ κ(h)

∧ (∀lc ∈ c(ep) \ lcu : ⟨lc, t⟩ ∈ κ(h))}
with le = e(ep)

(3.15)

Example 3.4 illustrates how knowledge is gained through postdiction.

3.2.8. Re-evaluation of Knowledge-level Effects

To collectively apply the five inference mechanisms in one function we define an
evalOnce function that successively applies each of the inference mechanisms.

evalOnce(h) = pdneg(pdpos(cause(back(fwd(h))))) (3.16)

A problem is that inference mechanism may trigger each other in any order, so it is
often not sufficient to apply IM.1 – IM.5 only once. This is illustrated in Example 3.5.
After sensing that the robot arrived in the room postdiction rules are applied to infer that
⟨is open, 0⟩ ∈ κ̃2+

2 . Thereafter inertia rules yield that ⟨is open, 1⟩ ∈ κ̃3+

2 . To this end,
re-evaluation is defined recursively (3.17) until convergence is reached.

eval(h) =


h if evalOnce(h) = h

eval(evalOnce(h)) otherwise
(3.17)
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Example 3.4 Knowledge gain through postdiction
Consider the domain specified in Listing 3.3 and the sequence [drive;

sense in room]. In the state transition from h0 to h1 no knowledge is gained because
the condition of the drive action is not known to hold. For the next state transition
we have two branches. According to the transition function (3.7), sense in room

generates two intermediate h-states denoted h̃1+

2 and h̃1−
2 . In h̃1+

2 the robot is con-
sidered to be in the room, i.e. h̃1+

2 |= ⟨in room, 1⟩ and in h̃1−
2 it is not in the room,

i.e. h̃1−
2 |= ⟨¬in room, 1⟩.

h0
κ0 = { ⟨¬in room, 0⟩}
α0 = {}

h1
κ1 = { ⟨¬in room, 0⟩}
α1 = { ⟨drive, 0⟩}

Ψ({drive},h0)

h̃1+
2

κ̃1+

2 = { ⟨¬in room, 0⟩ , ⟨in room, 1⟩}
α2 = { ⟨drive, 0⟩ , ⟨sense in room, 1⟩}

Ψ({sense in room},h1)
with ⟨in room, 1⟩

h̃2+
2

κ̃2+

2 = { ⟨¬in room, 0⟩ , ⟨in room, 1⟩
⟨is open, 0⟩}

α2 = { ⟨drive, 0⟩ , ⟨sense in room, 1⟩}

pdpos(h̃1+

2 )

h̃1−
2

κ̃1−
2 = { ⟨¬in room, 0⟩ , ⟨¬in room, 1⟩}

α2 = { ⟨drive, 0⟩ , ⟨sense in room, 1⟩}

Ψ({sense in room},h1)
with ⟨¬in room, 1⟩

h̃2−
2

κ̃2−
2 = { ⟨¬in room, 0⟩ , ⟨¬in room, 1⟩

⟨¬is open,0⟩}
α2 = { ⟨drive, 0⟩ , ⟨sense in room, 1⟩}

pdneg(h̃1−
2 )

In h̃2+

2 it is known that the robot was not in the room when the driving started
(⟨¬in room, 0⟩ ∈ κ̃1+

2 ) but it was in the room after the driving (⟨in room, 1⟩ ∈ κ̃1+

2 ).
Consequently, positive postdiction generates knowledge that the condition of the
drive-action was true, i.e. ⟨is open, 0⟩ ∈ addpdpos(h̃1+

2 ).
In h̃2−

2 it is known that the robot was not in the room after the driving
(i.e. ⟨¬in room, 1⟩ ∈ κ̃1−

2 ). Consequently, negative postdiction generates knowledge
that the condition of the drive-action was false, i.e. ⟨¬is open, 0⟩ ∈ addpdneg(h̃1−

2 ).

(:action drive :effect if is_open then in_room)
(:action sense_in_room :observe in_room)
(:init ¬in_room)
(:goal weak in_room)

Listing 3.3: Postdict open-state of door
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The recursive definition of eval (3.17) also implies that the order in which the IM are
applied in evalOnce (B.2) is arbitrary: as long as all IM are applied in any fixed order,
eval will yield the same result.
eval converges in linear time because there exists only a linear number of elements in the
knowledge history and because no element is ever removed from the knowledge history
(see Lemma B.5).

3.2.9. Concurrent Conditional Plans
So far we considered single state transition steps. In order to model more complex transi-
tion models which imply several transition steps we define concurrent conditional plans
(CCP). A CCP is a combination of sequences of concurrent actions and if-then-else

constructs formalized in Definition 3.5.3

Definition 3.5 (Concurrent Conditional Plan)

• An empty sequence of actions (denoted by []) is a CCP

• If a1, . . . , an are actions, then [a1||. . .||an] is a CCP.

• If p1 and p2 are concurrent conditional plans, then [p1;p2] is a CCP.

• If p1 and p2 are concurrent conditional plans and l is a fluent literal, then [if l

then p1 else p2] is a CCP4

Listing 3.4 specifies a planning domain together with a plan p1 which solves the problem.
The weak goal5 is to get into an adjacent room and it is uncertain whether opening the
door to the room will succeed: the agent first tries to open a door, then verifies whether
the door is indeed open and drives through the door only if opening succeeded.

(:action drive :effect if is_open then in_room)
(:action open_door :effect if ¬jammed then is_open)
(:action sense_open :observe is_open)
(:init ¬in_room)
(:goal weak in_room)

p1 = [open_door; sense_open; [if open then [drive]]]

Listing 3.4: A problem which requires postdiction with conditional plan

3Recall that we use a restricted form of concurrency where all actions have the same duration. Hence we
consider only concurrent actions and not concurrent (sub-)plans.

4For notational convenience we allow to skip the else-part, i.e. [if l then p1] is equivalent to
[if l then p1 else []]

5Recall that weak goals must only be achieved in at least one leaf of the transition tree. See Section 2.1.1
for details.
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Example 3.5 Repeated Evaluation
Reconsider Listing 3.3 and the sequence [drive; sense in room]. State h1 which
results from the drive action does not contain additional knowledge because the condition
of the drive action (the door being open) is unknown.
Sensing generates an intermediate successor state h̃1+

2 state with h̃1+

2 |= ⟨in room, 1⟩.
Thereafter, evalOnce(h̃1+

2 ) (B.2) calls IM.1 – IM.5. The only IM that produces knowl-
edge in this first evaluation step is positive postdiction (3.14) – IM.4 which adds a pair
⟨is open, 0⟩. This results in the next intermediate h-state h̃2+

2 .
In the next re-evaluation step, evalOnce(h̃2+

2 ) calls IM.1 – IM.5 again, and forward
inertia (3.11) – IM.1 generates knowledge that the door is open during the sensing:
⟨is open, 1⟩. It also generates knowledge that the robot is in the room after the sensing:
⟨in room, 2⟩. A third application of evalOnce results in the state h+

2 . Here, forward
inertia generates knowledge that the door is open after the sensing: ⟨is open, 2⟩. The
state h+

2 is not an intermediate state because further application of evalOnce will not
produce any additional knowledge, i.e. the re-evaluation process converged.

h0
κ0 = { ⟨¬in room, 0⟩}
α0 = {}

h1
κ1 = { ⟨¬in room, 0⟩}
α1 = { ⟨drive, 0⟩}

Ψ({drive},h0)

h̃1+
2

κ̃1+

2 = { ⟨¬in room, 0⟩ , ⟨in room, 1⟩}
α2 = { ⟨drive, 0⟩ , ⟨sense in room, 1⟩}

Ψ({sense in room},h1) with ⟨in room, 1⟩

h̃2+
2

κ̃2+

2 = { ⟨¬in room, 0⟩ , ⟨in room, 1⟩
⟨is open,0⟩}

α2 = { ⟨drive, 0⟩ , ⟨sense in room, 1⟩}

evalOnce

h̃1+

2



h̃3+
2

κ̃3+

2 = { ⟨¬in room, 0⟩ , ⟨in room, 1⟩ , ⟨in room, 2⟩
⟨is open, 0⟩ , ⟨is open, 1⟩}

α2 = { ⟨drive, 0⟩ , ⟨sense in room, 1⟩}

evalOnce

h̃2+

2



h+
2

κ+
2 = { ⟨¬in room, 0⟩ , ⟨in room, 1⟩ , ⟨in room, 2⟩

⟨is open, 0⟩ , ⟨is open, 1⟩ , ⟨is open,2⟩}

α+
2 = { ⟨drive, 0⟩ , ⟨sense in room, 1⟩}

evalOnce

h̃3+

2


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3.2.10. Extended Transition Function
We define an extended transition function Ψ that maps a plan and a state to a set of states.

Ψ(p,h) =



{h} if p =[]

Ψ({a1 . . . an},h) if p =[a1||. . .||an]
h′∈Ψ(p1,h)

Ψ(p2,h
′) if p =[p1;p2]

Ψ(p1,h) if p =if l then p1 else p2 and h |= lΨ(p2,h) if p =if l then p1 else p2 and h ̸|= l

(3.18)

The extended transition function models branching as a reaction on respective sensing
results. For instance, consider an initial state h0 and plan p1 from Listing 3.4. Given
that h0 does not contain information about the open-state of the door (e.g. κ(h0) = ∅),
sense open will generate two h-states: one where the resulting h-state satisfies the
condition is open and another where it does not satisfy the condition. In the former
h-state – where the condition is satisfied – the action drive is applied after sensing. In
the latter h-state action execution ends after sensing. Hence, the extended transition
function for p1 in Listing 3.4 evaluates as follows:

Ψ(p1,h0) ={Ψ(drive,Ψ(sense open,Ψ(open door,h0))),

Ψ(sense open,Ψ(open door,h0))}
(3.19)

A detailed trace of how (3.19) generates the transition tree can be found in Appendix
D.2.

3.2.11. Plan Verification – Weak and Strong Goals
The extended transition function takes a plan p and an initial h-state h0 of a domain D as
input and generates a transition tree. The nodes of the three are h-states and its edges are
actions and sensing results.
Weak goals require that a goal is possibly achieved by a plan. That is, it is sufficient to
have one leaf of the transition tree where the goal literal is known to hold. In contrast,
strong goals require that a literal is known to hold in all leafs of the transition tree. This
is implemented by the plan verification function (3.20).

solves(p,D) = ∀h ∈ Ψ(p,h0) : ∀lsg ∈ Gstrong : h |= lsg

∧∃h ∈ Ψ(p,h0) : ∀lwg ∈ Gweak : h |= lwg
(3.20)

where Gstrong, Gweak are the goal proposition in the planning domain D. Consider a
concurrent conditional plan p and an initial h-state h0. The leaf states of the transition
tree are generated by calling the extended transition function Ψ(p,h0). (3.20) involves a
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∀-quantification to state that strong goals (denoted by lsg) must hold in all leafs of the
transition tree. Weak goals (denoted by lwg) must only hold in one leaf (expressed with
the ∃-quantifier).

3.3. Computational Complexity ofHPXHPXHPX
For determining the computational complexity we only consider plans of polynomial size
wrt. the input problem, i.e. the size of p is polynomial wrt. the size of D. This restriction
is justified because plans which grow exponentially wrt. to the planning problem are not
useful in practice (a similar argument can be found in (Baral et al., 2000)). The following
theorem states that under this restriction solving the plan existence problem is in NP:

Theorem 3.1 (Complexity of theHPX planning problem) Given a planning domain
D, deciding whether the following holds is in NP:

∃p : solves(p,D) (3.21)

Proof sketch: (The full proof can be found in Appendix B.1)

• Let p be a plan of which the size is polynomial wrt. the size of a domain D. Then
solves(p,D) is polynomial for to the following reasons:

– solves(p,D) calls the extended transition function Ψ(p,h0). For each set
of actions A in p the transition function Ψ(A,h) is called for an h-state h.
Since p is of polynomial size, this happens polynomially often (see Lemma
B.1).

– Calling Ψ(A,h) involves calling the re-evaluation function eval (3.17),
which in turn calls evalOnce(h) (B.2) until the h-state converged. evalOnce(h)
converges after a polynomial number of applications because the size of the
knowledge history κ(h) is linear wrt. the length of the plan p and we restrict
p to be of polynomial size.

– A single re-evaluation step evalOnce(h) employs inference mechanisms
IM.1–IM.5. These are all performed in polynomial time (Lemma B.4).

• If solves(p,D) is polynomial for a given p then deciding whether ∃p : solves(p,D)
is in NP.

3.4. Relation BetweenHPXHPXHPX and PWSPWSPWS: A Temporal
Semantics for the Action LanguageAkAkAk

In order to describe howHPX relates to traditional epistemic action theories which are
based on a possible-worlds-semancics (PWS) we present a temporal query semantics
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for the action language Ak (Son and Baral, 2001) which we call ATQS
k .

ATQS
k is a PWS-based approach to reason about the past and can express statements

like “at step 5 it is known that the door was open at step 3”. This is also possible with
HPX , but not with traditional PWS-based semantics like the original Ak. Theorem 3.3
states thatHPX is sound wrt. ATQS

k .
Note that we want to keep the focus on the temporal postdiction aspect of knowledge and
therefore we make the following simplifications: (a) we do not consider executability
conditions and initial state constraints, (b) we restrict theAk semantics and forbid sensing
the value of more than one single fluent per action and (c) we only consider sequences of
actions. We justify these simplifications with the argument that they do not affect the
temporal postdiction mechanics which we are interested in.

3.4.1. Syntactical Mapping BetweenAkAkAk andHPXHPXHPX
The syntactical mapping between the original action language Ak (Son and Baral, 2001)
andHPX is presented in Table 3.1. This illustrates that anAk domain description D can
always be mapped to a correspondingHPX domain specification due to the one-to-one
syntactical correspondence.

Ak HPX PDDL dialect
Value prop. initially(linit) (:init linit)

Effect prop. causes(a,le, {lc1 . . . lcn})
(:action a

:effect if (and lc1 . . . l
c
k) then le)

Sensing determines (a,{f s,¬f s}) (:action a :observe fs)

Table 3.1.: Relation between Ak syntax and our PDDL dialect

The set of effect propositions (EP) of an action a (denoted EPa) and the knowledge
proposition (KP) of an action a (denoted KPa) is obtained analogously to the case of
the PDDL-syntax. For example causes(a,le, {lc1 . . . lck}) is semantically represented as
an effect proposition ep with the effect literal e(ep) = f e and the condition literals
c(ep) = {lc1, . . . , lck}. Similarly, determines (a,{f s,¬f s}) denotes that action a has the
knowledge proposition f s, denoted KPa = f .

3.4.2. Original PWSPWSPWS-basedAkAkAk Semantics

The original Ak semantics (Son and Baral, 2001) is defined via a transition function that
maps actions and so-called c-states to c-states. A c-state δ is a tuple ⟨u,Σ⟩, where u is
called a state and Σ is called a k-state. Informally, u represents a possible world and
Σ represents the possible agent’s belief wrt. u. A k-state Σ is a set of possible states,
denoted s ∈ Σ. A state (denoted u or s) is a set of fluents. If for a state s and a fluent f it
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holds that f ∈ s then the value of f in s is true and otherwise false. We require that
c-states are grounded, i.e. that u ∈ Σ for all c-states δ = ⟨u,Σ⟩. Intuitively this means
that the possible world u is among the worlds Σ the agent believes it could be in. For
convenience we introduce the following |=-notation for a state s:

(s |= f)⇔ (f ∈ s)
(s |= ¬f)⇔ (f ̸∈ s)

(s |= L ⇔ (∀l ∈ L : s |= l)

(3.22)

where L is a set of literals. Similarly we define for a k-state Σ:

(Σ |= l)⇔ (∀s ∈ Σ : s |= l) (3.23)

Equation (3.23) reflects that a literal l is known to hold if it is true in all possible worlds
s in Σ. Given a domain description D, one is interested in a setM of valid models of D.
A valid model m = ⟨δ0,Φ⟩ is a pair of a valid initial c-state δ0 and a transition function
Ψ. An initial c-state is called valid if it does not contradict the initial knowledge defined
in D (see (Son and Baral, 2001) for details).
The transition function emerges from the effect propositions and knowledge propositions
in D. It maps an action a and a c-state to a c-state. It is defined with a case distinction as
follows:

1. a is a non-sensing action: in this case the transition function is defined as:

Φ(a, ⟨u,Σ⟩) =

Res(a, u), {Res(a, s′)|s′ ∈ Σ}


where (3.24)

Res(a, s) = s ∪ E+
a (s) \ E−

a (s) where (3.25)

E+
a (s) = {f | ∃ep ∈ EPa : e(ep) = f ∧ s |= c(ep)}

E−
a (s) = {¬f | ∃ep ∈ EPa : e(ep) = f ∧ s |= c(ep)}

Res (3.25) is a result function that reflects causation: if all conditions of an effect
proposition ep hold (denoted s |= c(ep)), then the effect e(ep) holds in the result.

2. a is a sensing action: in this case a has a knowledge proposition KPa = f s and
the transition function is defined as:

Φ(a, ⟨u,Σ⟩) = ⟨u, {s|(s ∈ Σ) ∧ (f s ∈ s⇔ f s ∈ u)}⟩ (3.26)

Intuitively, (3.26) rules out these possible worlds in Σ which do not coincide with
the actual world u.

Example 3.6 illustrates the original Ak semantics.
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Example 3.6 PWS-based Ak semantics
Consider Figure 3.1. A robot can execute an action drive to get into the living room
if the door to the room is open. A fluent in liv denotes that it is in the living room
and a fluent is open denotes that the door is open. A sensing action sense in liv can
be executed to determine whether or not the robot is in the living room. The domain
specification in Ak syntax is:

initially(¬in liv)
causes(drive, in liv, {is open})
determines(sense in liv, {in liv, ¬in liv})

Initially it is known that the robot is not in the living room and it is unknown whether
the door is open. This results in two valid initial c-states: δ0:a = ⟨u0:a,Σ0:a⟩ and
δ0:b = ⟨u0:b,Σ0:b⟩. u0:a and u0:b represent two initial possible worlds where the door
may be open or not, i.e. u0:a = {open} and u0:b = {}. Σ0:a and Σ0:b represent two
possible knowledge-states wrt. the possible worlds u0:a and u0:b. Initially these are
identical, i.e. Σ0:a = Σ0:b.
Applying the transition function (3.24) with drive results in the next states δ1:a and δ1:b.
Here we have that u1:a = {open, in liv} and u1:b = {}. In the second possible world
u1:b the robot is stuck in front of a closed door. The knowledge-states in the two possible
worlds are again identical because so far no sensing has happened, i.e. Σ1:a = Σ1:b.
To model the sensing action the transition function (3.26) generates the next c-states δ2:a
and δ2:b. The sensing “transfers” information about being in the living room or not from
the actual world to the knowledge state. This is done by eliminating these states which
are “incompatible” with the possible worlds u1:a, resp. u1:b. This causes two possible
knowledge states wrt. each individual possible world, Σ2:a = {{open, {in liv}} and
Σ2:b = {}}. In Σ2:a state it is known that the robot is in the living room and the door is
open and in Σ2:b it is known that the robot is stuck at the closed door, not being in the
living room.

δ0:a
u0:a = {is open}
Σ0:a = {{is open}, {}}

δ1:a
u1:a = {is open}
Σ1:a = {{is open,in liv}, {}}

δ2:a
u2:a = {is open}
Σ2:a = {{is open,in liv}}

Φ(drive, δ0:a)

Φ(sense in liv, δ1:a)

δ0:b
u0:b = {}
Σ0:b = {{is open}, {}}

δ1:b
u1:b = {}
Σ1:b = {{is open,in liv}, {}}

δ2:b
u2:b = {}
Σ2:b = {{}}

Φ(drive, δ0:b)

Φ(sense in liv, δ1:b)

Figure 3.1.: Ak semantics
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3.4.3. Temporal Query Semantics –ATQS
kA
TQS
kA
TQS
k

Our approach to make Ak capable of temporal reasoning is based on a re-evaluation
step with an intuition is as follows: Let Σ0 = {s00, . . . , s

|Σ0|
0 } be the set of all possible

initial states of a (complete) initial k-state wrt. a valid initial c-state δ0 of an Ak domain
D. Whenever sensing happens, the transition function will remove some states from the
k-state, i.e. Φ(an,Φ(an−1, · · ·Φ(a1, ⟨u0,Σ0⟩))) = ⟨un,Σn⟩. To reason about the past,
we refine the set of possible initial states and re-apply the result function to the refined
set of initial states again. The refined set of initial states is the set of initial states which
“survived” the transition of a sequence of actions.
For example, consider a sequence of n actions and say we are interested in the world
state after the t-th action. Then we consider a re-evaluated initial k-state, denoted Σn

0 ,
which consists of states s0 ∈ Σ0 such that for sn = Res(an, · · ·Res(a1, s0) it holds that
sn ∈ Σn. In other words, we consider these initial states s0 of which the child states sn
“survived” the sensing actions.
Once we identified the re-evaluated initial k-state we apply the result function on each
s ∈ Σn

0 up to the t-th action for this state. The resulting re-evaluated k-state is denoted
Σt

n. If a fluent holds in all states stn ∈ Σt
n, then after the n-th action, it is known that a

fluent holds after the t-th action. This is formalized by Definitions 3.6 and 3.7.

Definition 3.6 (Re-evaluated initial k-state) Let α = [a1; . . . ; an] be a sequence
of actions and δ0 = ⟨u0,Σ0⟩ be a valid initial c-state such that ⟨un,Σn⟩ =
Φ(an,Φ(an−1, · · ·Φ(a1, δ0))). We define a re-evaluated initial k-state, denoted Σ0

n, as
the set of initial belief states in Σ0 which are valid after applying α:6

Σ0
n = {s0|s0 ∈ Σ0 ∧Res(an, Res(an−1, · · ·Res(a1, s0))) ∈ Σn} (3.27)

Re-evaluated c-states are defined in Definition 3.7: given a sequence of actions α, re-
evaluated c-states are obtained by applying the Ak transition functions (3.24) and (3.26)
on the re-evaluated initial k-state Σn

0 .

Definition 3.7 (Re-evaluated c-states) Let α = [a1; . . . ; an] be a sequence of actions
and δ0 = ⟨u0,Σ0⟩ be a valid initial c-state, such that Σ0

n is a re-evaluated initial k-state
according to Definition 3.6. We define a re-evaluated c-state, denoted δtn as follows

δtn =

un,Σ

t
n


(3.28)

where un = Res(an, un−1) and Σt
n =


s∈Σt−1

n

Res(at, s) (3.29)

with 0 < t ≤ n

Σt
n is called the re-evaluated k-state.

6Consider that according to (3.25) Res(a, s) = s if a is a sensing action.
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3.4. RELATION BETWEENHPX AND PWS: A TEMPORAL SEMANTICS FOR
THE ACTION LANGUAGE AK

A property that emerges from Definition 3.7 is that knowledge itself is persistent: if after
n actions it is known that l holds at t, then this is still known after n+ 1 actions (with
0 ≤ t ≤ n). That is, Σt

n+1 ⊆ Σt
n (see Lemma C.5 in Appendix C for a formal proof).

Example 3.7 Ak
TQS semantics

Consider the c-state δ2:a from Example 3.6. The original Ak semantics allows one
to infer that after the sensing the robot knows that the door is open and that it is in
the living room, i.e. Σ2:a = {is open, in liv}. However, it does not allow one to
infer whether the robot knows that the door was already open before the sensing,
i.e. at a step t = 1. Our Temporal Query Semantics supports this inference as follows:
Let δ2:a = ⟨u2:a,Σ2:a⟩ = ⟨{is open, in liv}, {{is open, in liv}}⟩. Then applying
(3.27) for re-evaluated initial k-states yields

Σ0
2:a = {s0 ∈ Σ0:a|Res(sense in liv, Res(drive, s0)) ∈ Σ2:a} = {is open}

The re-evaluation step (3.28) produces

Σ1
2:a = Res(drive, {is open}) = {{is open, in liv}}

In other words, ATQS
k can express the temporal statement “after the sensing the robot

knows that it was in the living room before the sensing”.

δ2:a
u2:a = {is open}
Σ2:a = {{is open}}

Σ0
2:a = {{in liv}, {is open}}

δ12:a
u2:a = {is open}

Σ1
2:a = {{is open}}

Re-evaluate initial k-state (3.27)

Re-evaluate c-state (3.28)
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3.4.4. Relation betweenAkAkAk andATQS
kA
TQS
kA
TQS
k

Since Ak does not have a temporal knowledge dimension we can only consider knowl-
edge about the present state to formally relate Ak to ATQS

k . The following Theorem 3.2
considers equivalence of Akand Ak

TQS for the projection problem for a sequence of
actions for the present state, i.e. the case where t = n.

Theorem 3.2 (Equivalence of Ak and ATQS
k for t = n) Given a domain D,

a valid initial c-state δ0 = ⟨u0,Σ0⟩ and a sequence of actions αn =
[a1; . . . ; an] such that ⟨un,Σn⟩ = Φ(an,Φ(an−1, · · ·Φ(a1, ⟨u0,Σ0⟩))). Let
Σn

n = Res(an, Res(an−1, · · ·Res(a1,Σ0
n))) be a re-evaluated k-state with Σ0

n as
the re-evaluated initial state according to Definition 3.6. Then (3.30) holds.

Σn = Σn
n (3.30)

Proof:
The theorem follows directly from Lemma C.6.

3.4.5. Soundness ofHPXHPXHPX wrt.ATQS
kA
TQS
kA
TQS
k

Now that we have defined ATQS
k – a semantics which is (a) based on the possible-worlds

semantics and (b) can express temporal knowledge we can formally relateHPX with a
possible-worlds approach. The following Theorem 3.3 considers soundness of HPX
wrt. Ak

TQS for the projection problem for a sequence of actions.
Soundness is defined wrt. an initial h-state h0 and an arbitrary valid initial c-state of a
domain. On the ATQS

k -side the theorem considers one valid initial c-state u0, i.e. one
possible world which does not contradict the initial knowledge definitions. On the
HPX -side we argue that there exists on h-state hn such that if a pair ⟨l, t⟩ is known to
hold in hn then l is known to hold in the re-evaluated k-state Σt

n which results from the
valid initial c-state u0. A similar notion of soundness is presented for (Son and Baral,
2001, Proposition 6, Lemma C.4).

Theorem 3.3 (Soundness ofHPX wrt. Ak
TQS) Let α = [a1; . . . ; an] be a sequence

of actions and D a domain specification. Let ⟨u0,Σ0⟩ be a valid grounded initial c-
state of D, such that with Definition 3.7 the re-evaluated c-state after t ≤ n actions
is given as ⟨ut,Σt

n⟩ = Φ(at,Φ(at−1, · · ·Φ(a1, ⟨u0,Σ0
n⟩))). Then there exists a h-state

hn ∈ Ψ(α,h0) such that for all literals l and all steps n, t with 0 ≤ t ≤ n:

(hn |= ⟨l, t⟩)⇒ (Σt
n |= l) (3.31)

Proof:
The theorem follows directly from Lemma C.1. We proof Lemma C.1 by induction over
the number of actions (see Appendix C).
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4
Answer Set Programming Formalization ofHPXHPXHPX

To makeHPX applicable in practice, we implement the theory in terms of Answer Set
Programming. To this end, the individual inference mechanisms IM.1 – IM.5, which we
present in Chapter 3, are modeled as Logic Programming rules. An additional set of
rules is used to implement plan generation and verification.
Section 4.1 describes the main predicates and how the temporal dimension of knowledge
is represented. Section 4.2 provides an overview of the constitution of anHPX -Logic
Program. This consists of a domain-specific and a domain-independent part. The
domain-specific part is generated by eight translation rules (T1) – (T8), which compile
the PDDL-like input language into LP rules (Section 4.3). These include the inference
mechanisms of postdiction and causation. The LP rules which represent the domain-
independent part are fixed and model inertia and sensing (Section 4.4). Section 4.5
describes the way in which agents interpret Stable Models of the Logic Program as
conditional plans.
The Logic Programming implementation of HPX constitutes an alternative model-
theoretic semantics ofHPX . The relation between the model-theoretic semantics and
the operational HPX semantics is illustrated in Section 4.6, which also contains a
corresponding soundness theorem.

4.1. Main Predicates and Notation

The following are the main predicates used in the ASP formalization:

• knows(l, t, n, b) states that at step n in branch b it is known that l holds (or did
hold) at step t (with t ≤ n).

• occ(a, n, b) denotes that action a occurs at step n in branch b.
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CHAPTER 4. ANSWER SET PROGRAMMING FORMALIZATION OFHPX

• apply(ep, n, b) denotes that an effect proposition ep is applied at step n in branch
b. Whenever occ(a, n, b) and ep is an effect proposition of a, then apply(ep, n, b).
This reflects the abstraction from action histories to effect histories (see Definition
3.1).

• sRes(l, n, b, b′) denotes that the literal l is sensed at step n in branch b, such that it
will hold in the child branch b′.

• uBr(n, b) denotes that branch b is a valid branch at step n. Actions can only be
executed if a branch is valid.

As a notational convention, for negative literals we write ¬f to denote neg(f) in ASP
syntax. A state transition in terms of the ASP formalization ofHPX can be understood
by adding an occ/3 atom to the Logic Program. This is illustrated in Example 4.1.

Example 4.1 Action and knowledge history in ASP formalization
Let D be the domain specified by Listing 4.1. A robot can execute an open door

action under consideration that the action may fail (door may be jammed) and the door
is in fact not open after execution. The value proposition in Listing 4.1 translates to
knows(¬is open, 0, 0, 0), i.e. this atom is contained in the Stable Model of an initial
Logic Program LP (D)0.
The occurrence of action open door is represented by adding the atom
occ(open door, 0, 0) to the Logic ProgramLP (D)0, resulting inLP (D)1 = LP (D)0∪
occ(open door, 0, 0)

SM of
LP (D)0

{...,knows(¬in room, 0, 0, 0),
knows(¬is open, 0, 0, 0)}

SM of
LP (D)1

{...,knows(¬in room, 0, 1, 0), knows(¬in room, 1, 1, 0),
knows(¬is open, 0, 1, 0)}

LP (D)0 ∪ occ(open door, 0, 0)

The reasoning mechanisms must be defined such that the Stable Model of LP (D)1
does not contain knowledge about the door-state after executing open door, because
it is unknown whether the door is jammed. Further, the reasoning mechanisms must
cover inertia: no action occurred that could have affected the robot’s location outside
the living room (¬in room) and therefore one can conclude that the robot remains
outside the room after opening the door, i.e. knows(¬in room, 1, 1, 0).
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4.2. CONSTITUTION OF ANHPX -LOGIC PROGRAM

(:action open_door :effect if ¬jammed then is_open)
(:init ¬is_open)

Listing 4.1: Opening a potentially jammed door

A conditional plan is determined by a set of occ, and sRes atoms. For example, consider
the atoms occ(a0, 0, b), sRes(f, 0, b, b), sRes(¬f, 0, b, b′), occ(a1, 1, b) and occ(a2, 1, b

′).
This is equivalent to the conditional plan a0;[if f then a1 else a2]. A detailed
formal description of plan extraction from Stable Models is provided in Section 4.5.

4.2. Constitution of anHPXHPXHPX -Logic Program
The formalization is based on a domain independent foundational theory Γhpx and on a set
of translation rules T that are applied to a planning domain D. An ASP formalization of
D, denoted by LP(D), consists of a domain dependent theory and a domain independent
theory:

• Domain dependent theory (Γworld ): It consists of a set of rules Γinit representing
initial knowledge; Γact representing actions; and Γgoal representing goals.

• Domain independent theory (Γhpx ): This consists of a set of auxiliary definitions
Γaux ; a set of rules to handle inertia (Γin); sensing (Γsen); inference mechanisms
(Γinfer ); concurrency (Γconc); plan verification (Γverify) and plan-generation &
optimization (Γplan).

The resulting Logic Program LP(D) is given as:

LP (D) = [ Γaux ∪ Γin ∪ Γsen ∪ Γinfer ∪ Γconc ∪ Γverify ∪ Γplan ]  
Γhpx

∪ [ Γinit ∪ Γact ∪ Γgoal ]  
Γworld

(4.1)

We call a Logic Program that is assembled according to (4.1) anHPX -Logic Program
for a planning problem D.

4.3. Translation Rules: (D T1–T8→−→ Γworld)
The domain dependent theory Γworld is obtained by applying the set of translation rules
T = {T1, . . . , T8} on a planning domain D, specified in our PDDL-like input syntax.
Recall the following syntactical elements from Chapter 3:
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(:init (and linit1 . . . linitnin
) ) (3.1a)

(oneof lisc1 . . . liscn ) (3.1b)
(:action a :effect if (and lc1 . . . l

c
nc
) then le) (3.1c)

(:action a :observe f) (3.1d)
(:action a :executable (and lex1 . . . lexnex

)) (3.1e)
(:goal type (and lg1 . . . l

g
ng
)) (3.1f)

The translation rules are as follows:

Action and Fluent Declarations (T1)

For every fluent f or action a, LP(D) contains the facts:

fluent(f ). action(a). (T1)

Initial Knowledge (I (T2)−(T3→−→ Γinit)

Facts Γinit for initial knowledge are obtained by applying translation rule (T2). For each
value proposition (3.1a) we generate the fact:

knows(linit , 0, 0, 0). (T2)

For each initial state constraint (3.1b) C ∈ ISC such that C = {lisc1 . . . liscn } we iterate
over each literal lisci ∈ C and define {l+i1 , . . . , l

+
im
} = C\lisci as the subset of literals C

except lisci . Then, for each lisci ∈ C we generate the LP rule:

knows(lisci , 0, 0, 0)← knows(l+i1 , 0, 0, 0), . . . , knows(l
+
im
, 0, 0, 0). (T3a)

knows(l+i1 , 0, 0, 0)← knows(lisci , 0, 0, 0). . . .

knows(l+im , 0, 0, 0)← knows(lisci , 0, 0, 0).
(T3b)

(T3a) denotes that if all literals except lisci are known not to hold, then lisci must hold.
Rules (T3b) represent that if one literal lisci is known to hold, then all others do not hold.
At this stage of our work we only support constraints for the the initial state, because this
is the only state in which they do not interfere with the postdiction rules. More general
Static Causal Laws (Turner, 1999) as e.g. in the action language C+ (Giunchiglia et al.,
2004) would affect postdiction and causation rules. Their implementation is not trivial
and therefore we leave this open to future work.
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Actions (A T4–T7→−→ Γact )

The generation of rules representing actions covers executability conditions, knowledge-
level effects, and knowledge propositions.

Executability Conditions.
These reflect what an agent must know to execute an action. Let EXCa of the form
(3.1e) be the executability condition of action a in D. Then LP(D) contains the following
constraints:

← occ(a,N,B), not knows(lex1 , N,N,B). . . .

← occ(a,N,B), not knows(lexnex
, N,N,B).

(T4)

Effect Propositions (EP).
For every effect proposition ep ∈ EPa, of the form (if (and lc1 . . . l

c
nc
) then le), LP(D)

contains (T5), where hasCond represents condition literals, hasEff represents effect
literals and hasEP assigns an effect proposition to an action:

hasEP(a, ep).

hasEff (ep, le).

hasCond(ep, lc1). . . . hasCond(ep, lcnc
).

(T5)

Knowledge Level Effects of Non-Sensing Actions.
Knowledge-level effects represent knowledge gain by causation and postdiction, i.e. they
reflect inference mechanisms IM.3 – IM.5 of the operational semantics.

kCause(le, T + 1, N,B)←apply(ep, T,B), N > T,

knows(lc1, T,N,B), . . . , knows(lck, T,N,B).
(T6a)

kPosPost(lci , T,N,B)←apply(ep, T,B),

knows(le, T + 1, N,B), knows(le, T,N,B).
(T6b)

kNegPost(lc−i , T,N,B)←apply(ep, T,B), knows(le, T + 1, N,B),

knows(lc+i1 , T,N,B), . . . , knows(lc+ik , T,N,B).
(T6c)

I Causation (T6a). This refers to Inference Mechanism IM.3 (3.13). After an arbitrary
number of steps n, if all condition literals lci of an EP (3.1c) are known to hold at t, and
if the action is applied at t, then at step n > t, it is known that its effect le holds at
t+ 1. This is denoted by the atom kCause(le, t+ , n, b) which reads as “by causation
inference it is known that at step n in branch b literal le is known to hold at step t+ 1”.
The atom apply(ep,t,b) represents that action a with the EP ep happens at t in b.

I Positive postdiction (T6b). In the operational semantics, positive postdiction is
defined as Inference Mechanism IM.4 (3.14). In the ASP formulation, we iterate over
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condition literals lci ∈ {lc1, . . . , lcnc
} of an effect proposition ep and add a rule (T6b) to

the LP for each condition literal lci . This defines how knowledge about the condition
of an effect proposition is postdicted by knowing that the effect holds after the action
but did not hold before. For example, if at n in b it is known that the complement le
of an effect literal of an EP holds (i.e., knows(le, t, n, b)), and if the EP is applied at t,
and if it is known that the effect literal holds at t + 1 (knows(le, t + 1, n, b)), then the
application of the EP must have produced the effect. Therefore one can conclude that
the conditions {lc1, . . . , lcnc

} of the EP must hold at t. This is represented by the atom
kPosPost(lc−i , t, n, b) which reads as “by positive postdiction it is known that at step n
in branch b literal lc−i is known to hold at step t”.

I Negative postdiction (T6c). Negative Postdiction is defined as Inference Mechanism
IM.5 3.15) in the operational semantics. We iterate over each potentially unknown
condition literal lc−i ∈ {lc1, . . . , lcnc} of an effect proposition ep. For each literal lc−i , we
add one rule (T6c) to the program, where {lc+i1 , . . . , l

c+
inc
} = {lc1, . . . , lcnc}\lc−i are the

condition literals that are known to hold.
An atom kNegPost(lc−i , t, n, b) denotes that “by negative postdiction it is known that at
step n in branch b literal lc−i is known to hold at step t”. This covers the case where we
postdict that a condition must be false if the effect is known not to hold after the action
and all other conditions are known to hold. For example, if at n it is known that the
complement of an effect literal l holds at some t+ 1, and if the EP is applied at t, and
if it is known that all condition literals hold at t, except one literal lc−i for which it is
unknown whether it holds. Then the complement of lc−i must hold because otherwise the
effect literal would hold at t+ 1.

Knowledge Propositions.
We assign a knowledge proposition (KP) (3.1d) to an action a using a hasKP predicate:

hasKP (a, f). (T7)

Example 4.2 demonstrates how translation rules (T4) – (T7) generate the Logic Program-
ming rules for Γact.

Goals (G T8→−→ Γgoal)

For literals lsg1 , ..., l
sg
nsg
∈ Gstrong in a strong goal proposition and lwg

1 , ..., lwg
nwg
∈ Gweak in

a weak goal proposition we write the facts:

wGoal(lwg
1 ). . . . wGoal(lwg

nwg
). (T8a)

sGoal(lsg1 ). . . . sGoal(lsgnsg
). (T8b)
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Example 4.2 Generating Γact

Recall the following specification of the action drive:

(:action drive :executable ¬in room

:effect if is open then in room)

(T4) generates the executability constraint:

← occ(drive, N,B), not knows(in room, N,N,B).

The effect propositions are defined by (T5) as follows:

hasEP(drive, ep drive 0).

hasEff (ep drive 0, in room).

hasPC (ep drive 0, open).

where ep drive 0 is a syntactically generated label for the 0-th effect proposition of
the drive action. The knowledge-level effects of the action are generated through
(T6a–T6c):

kCause(in room, T + 1, N,B)←apply(ep drive 0, T, B), N > T,

knows(open, T,N,B).

kPosPost(open, T,N,B)←apply(ep drive 0, T, B),

knows(in room, T + 1, N,B),

knows(¬in room, T,N,B).

kNegPost(¬open, T,N,B)←apply(ep drive 0, T, B),

knows(¬in room, T + 1, N,B).

The first rule refers to causation (T6a): If it is known that the door is open, then
it is known that the robot arrives in the living room after driving. The second rule
represents positive postdiction (T6b): If it is known that the robot arrived in the living
room, then it must be true that the door was open while it was driving. The third rule
captures negative postdiction (T6c): If the robot did not arrive in the living room, then
the door must have been closed.
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These are used to trigger integrity constraints (F6a) and (F6d) of the domain independent
theory which rule out Stable Models where the goals are not achieved.

4.4. ΓhpxΓhpxΓhpx – Foundational Theory (F1) – (F7)
The foundational domain independentHPX -theory covers auxiliaries (F1), concurrency
(F2), inertia (F3), inference mechanisms (F4), sensing (F5), plan verification (F6) as well
as plan generation and optimization (F7).

F1. Preliminaries and Auxiliary Definitions (Γaux) First, the maximal plan length
and width is defined by instantiating atoms for steps (s) and branches (br ) (F1a). Here,
maxS and maxBr are constants of which the value is passed to the Logic Program at
execution time.

s(0..maxS).

br(0..maxBr).
(F1a)

To speed up the solving process we precompute inequality of branch labels with (F1b).

neq(B1, B2)← B1 ̸= B2, br(B1), br(B2). (F1b)

In (F1c) we declare fluents f and their negations neg(f) as literals, and we define an
auxiliary predicate to denote the complement of literals.1

literal(neg(F ))← fluent(F ).

literal(F )← fluent(F ).

complement(neg(F ), F )← fluent(F ).

complement(L1, L2)← complement(L2, L1).

(F1c)

F2. Concurrency (Γconc) Concurrency and the abstraction of effect propositions
from actions is implemented as follows:

apply(EP,N,B)← hasEP(A,EP ), occ(A,N,B). (F2a)

← apply(EP1, T, B), hasEff (EP1, L), apply(EP2, T, B), hasEff (EP2, L),

EP1 ̸= EP2, br(B), literal(L).
(F2b)

(F2a) applies all effect propositions of an action a if that action occurs. (2) is a restriction
concerning the application of similar effect propositions: two effect propositions are
similar if they have the same effect literal. They may not be applied concurrently because
otherwise the positive postdiction rule (T6b) and the inertia law (F3) would not work
correctly. This is discussed in Section 7.1.

1Recall, that we often write ¬f as a shorthand for neg(f) to denote the negation of a fluent.
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F3. Inertia (Γin) Inertia is applied in both forward and backward direction similar to
(Gelfond and Lifschitz, 1993). To formalize this, we need a notion on knowing that a
literal is not set by an action. This is expressed with the predicate kNotSet .

kNotSet(L, T,N,B)← not kMaySet(L, T,B), uBr(N,B), s(T ), literal(L). (F3a)

kMaySet(L, T,B)← apply(EP, T,B), hasEff (EP,L) (F3b)

kNotSet(L, T,N,B)← apply(EP, T,B), hasCond(EP,L′), hasEff (EP,L),

knows(L′, T,N,B), complement(L′, L′), N >= T.
(F3c)

A literal could be known to be not set for two reasons: (1) if no effect proposition with the
respective effect literal is applied, then this fluent can not be initiated. kMaySet(l, t, b)
(F3b) represents that at t an EP with the effect literal l is applied in branch b. If
kMaySet(l, t, b) does not hold then l is known not to be set at t in b (F3a). (2) a literal
is known not to be set if an effect proposition with that literal is applied, but one of its
conditions is known not to hold (F3c). Note that this requires the concurrency restriction
(2), because without that restriction a literal could still be set by another effect proposition.
We can now formulate forward inertia (F3d) and backward inertia (F3e) as follows:

knows(L, T,N,B)←knows(L, T − 1, N,B),

kNotSet(L, T − 1, N,B), complement(L,L), T ≤ N.
(F3d)

knows(L, T,N,B)←knows(L, T + 1, N,B),

kNotSet(L, T,N,B), N > T.
(F3e)

Inertia is represented as inference mechanisms IM.1 and IM.2 (3.11–3.12) in the opera-
tional semantics.
The above inertia rules refer to a mental operation of inferring the temporal propagation
of facts within an agent’s knowledge. However, the operational semantics of HPX
implies that knowledge itself is inertial (see Lemma B.8). That is, if at n it is known
that l holds at t, then this is also known at n+ 1. Inertia of knowledge implemented as
follows:

knows(L,T ,N ,B)← knows(L,T ,N − 1 ,B), N ≤ maxS. (F3f)

F4. Inference Mechanisms (Γinfer ) The following rules are required to transfer the
result of causation and positive and negative postdiction to knowledge.

knows(L,T ,N ,B)← kCause(L,T ,N ,B). (F4a)
knows(L,T ,N ,B)← kPosPost(L,T ,N ,B). (F4b)
knows(L,T ,N ,B)← kNegPost(L,T ,N ,B). (F4c)
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F5. Sensing and Branching (Γsense) If sensing occurs, then each possible outcome
of the sensing is assigned to a different branch, where uBr(n, b) denotes that branch b is
used at step n. Initially, only branch 0 is used (F5a).
sNextBr (F5b) is an auxiliary predicate to denote that sensing produced a child branch.
This is used in (F5c), which denotes that if no sensing result was produced, then a branch
that was used in the past (at n − 1) is used now (at n). If sensing did produce a child
branch, i.e. if sNextBr(n, b) is triggered, then uBr(n, b ′) will be set by (F5j), where b′

is the child branch’s label.

uBr(0, 0). (F5a)
sNextBr(N,B)← sRes(L,N,B,B′). (F5b)

uBr(N,B)← uBr(N − 1, B), not sNextBr(N − 1, B), s(N). (F5c)

An auxiliary predicate kw (F5d),(F5e) is an abbreviation for knowing whether:

kw(F, T,N,B)← knows(F, T,N,B). (F5d)
kw(F, T,N,B)← knows(¬F, T,N,B). (F5e)

Next we describe the key rules that generate the sensing results, i.e. the sRes atoms:
atoms occ(a, n, b), hasKP (a, f) denote that a sensing action with the knowledge propo-
sition f occurs at step n in branch b. Sensing generates two branches. The positive
sensing result is assigned to the original branch via (F5f). However, the sensing result is
only generated if the negative sensing result is not already known to hold.
For the negative result, the choice rule (F5g) “picks” a valid child branch. It must be
restricted that two sensing actions which occur at the same step n but in different branches
b pick the same child branch (F5h). It must further be restricted that the negative sensing
result is not assigned to already used branches (F5i).

sRes(F,N,B,B)←occ(A,N,B), hasKP(A,F ), (F5f)
not kw(neg(F ), N,N,B).

1{sRes(neg(F ), N,B,B′) : neq(B,B′)}1←occ(A,N,B), hasKP(A,F ), (F5g)
not kw(F,N,N,B).

← 2{sRes(L,N,B,B′) : br(B) : literal(L)}, br(B′), step(N). (F5h)
← sRes(L,N,B,B′), uBr(N,B′), literal(L), neq(B,B′). (F5i)

If an sRes atom is produced, then the assigned branch is marked as used (F5j). Sensing
results affect knowledge through (F5k). Note that like in the sense function (3.8) of the
operational semantics, sensing yields the value of a fluent at the time it was changed,
i.e. at N − 1 and not at N .
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Finally, we need to implement theHPX -restriction that two fluents can not be sensed
concurrently (see 3.8). This is done with (F5l).

uBr(N,B′)←sRes(L,N − 1, B,B′), s(N). (F5j)
knows(L,N − 1, N,B′)←sRes(L,N − 1, B,B′), s(N). (F5k)

←2{occ(A,N,B) : hasKP(A, )}, br(B), s(N). (F5l)

In order to to apply postdiction, causation and inertia rules to a child branch resulting
from a sensing action, the child branch has to inherit knowledge (F5m) and application
of EPs (F5n) from the parent branch.

knows(L, T,N,B′)←sRes( , N − 1, B,B′), neq(B,B′), (F5m)
knows(L, T,N − 1, B), N ≥ T.

apply(EP, T,B′)←sRes( , N,B,B′), neq(B,B′), (F5n)
apply(EP, T,B), N ≥ T.

F6. Plan Verification (Γverify) The ASP formalization supports both weak and
strong goals. For weak goals there must exist one leaf where all goal literals are achieved
and for strong goals the goal literals must be achieved in all leafs. Weak or strong goals
are declared with the wGoal and sGoal predicates and defined through translation rules
(T8). (F6a) defines atoms notWG(n, b) which denote that a weak goal is not achieved
at step n in branch b. An atom allWGAchieved(N) reflects whether all weak goals are
achieved at a step N (F6b). If they are not achieved at step maxS, then a corresponding
model is not stable (F6c ).

notWG(N,B)←wGoal(L), uBr(N,B), (F6a)
not knows(L,N,N,B), literal(L).

allWGAchieved(N)←not notWG(N,B), uBr(N,B). (F6b)
←not allWGAchieved(maxS). (F6c)

Similarly, notSG(n, b) denotes that a strong goal is not achived at step n in branch b
(F6d). In contrast to weak goals, strong goals must be achieved in all used branches at
the final step maxS (F6e).

notSG(N,B)← sGoal(L), uBr(N,B), not knows(L,N,N,B), literal(L). (F6d)
← notSG(maxS, B), uBr(maxS, B). (F6e)
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Information about nodes where goals are not yet achieved is also generated. This is used
in the plan generation part for pruning (F7a)–(F7b).

notGoal(N,B)←notSG(N,B).

notGoal(N,B)←notWG(N,B).
(F6f)

F7. Plan Generation and Optimization (Γplan) In the generation part of the Logic
Program, (F7a) and (F7b) implement sequential and concurrent planning respectively:
for concurrent planning the choice rule’s upper bound “1” is simply removed.2 As
described in Section 2.2.4, choice rules are used to “generate” atoms and hence can be
interpreted as those mechanisms which span up the search tree. Optimal plans in terms
of the number of actions are generated with the optimization statement (F7c), at the
cost that computational complexity of the ASP solving raises from NP-completeness to
∆P

2 -completeness (see e.g. (Gebser et al., 2012b)).

1{occ(A,N,B) : a(A)}1←uBr(N,B), notGoal(N,B), N < maxS. (F7a)
1{occ(A,N,B) : a(A)} ←uBr(N,B), notGoal(N,B), N < maxS. (F7b)

#minimize{occ( , , )@1}. (F7c)

4.5. Plan Extraction from Stable Models
To formally define how concurrent conditional plans (CCP) relate to Stable Models, we
define a function trans that takes a set of atoms S and two integer numbers 0 ≤ n ≤
maxS, 0 ≤ b ≤ maxB as input and produces a CCP as output. n and b describe the position
of the plan’s root node in the transition tree, i.e. trans(S, 0, 0) yields the conditional
plan starting at the initial state.

trans(S, n, b) =

[] if n = maxS

[[a1|| . . . ||am]; trans(S, n+ 1, b)] if ¬∃b′, f : sRes(¬f, n, b, b′) ∈ S

[[a1|| . . . ||am]; if ¬f if ∃b′, f : sRes(¬f, n, b, b′) ∈ S
then trans(S, n+ 1, b′)

else trans(S, n+ 1, b)]

(4.2)

where {a1, . . . , am} = {a|occ(a, n, b) ∈ P } and maxS is a constant that limits the plan
depth.

2In an actual implementation the LP may of course only contain one of these two choice rules, depending
on which kind of planning is desired.
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4.6. Relation between the ASP Implementation and
the Operational HPX -Semantics

The translation function (4.2) relates the occurrence of actions in the ASP implementation
ofHPX to state transitions in the operational semantics but it does not guarantee that the
epistemic effects of actions are equivalent. In the following we formalize this equivalence
and present a soundness Theorem.
As a prerequisite we define the auxiliary function (4.3) which describe a parent-child-
relation between nodes in the transition tree. Let S be a Stable Model and 0 ≤ n ≤ maxS,
0 ≤ b ≤ maxB, 0 ≤ b′ ≤ maxB be integers which are used to represent nodes in the
transition tree. Then a function which defines whether a branch b′ is a child branch of a
node ⟨n, b⟩ wrt. a set of atoms S is defined as follows:

hasChild(n, b, b′, S)


true if ∃l : sRes(l, n, b, b′) ∈ S
true if b = b′ ∧ ¬∃l : sRes(l, n, b, b′) ∈ S
false otherwise

(4.3)

This is used to define the following ancestor relation:

ancestor(n1, b1, n2, b2, S) =


true if ∃n, b : (ancestor(n1, b1, n, b, S)∧

hasChild(n, b, b2, S) ∧ n2 = n+ 1)

false otherwise
(4.4)

We are now ready to define the following auxiliary functions (4.5) which are used to map
atoms in a Stable Model to nodes in the transition tree of the operational semantics:

κ(n, b, S) = {⟨l, t⟩ |knows(l, t, n, b) ∈ S} (4.5a)
α(n, b, S) = {⟨a, t⟩ |∃b′, t : (occ(a, t, b′) ∈ S ∧ ancestor(t, b′, n, b, S))} (4.5b)
h(n, b, S) = ⟨α(n, b, S),κ(n, b, S)⟩ (4.5c)
ϵ(n, b, S) = ϵ(h(n, b, S)) (4.5d)

We also presume the following Definition 4.1 as a notational convention to formally
describe the relation between the ASP formalization and the operational semantics.

Definition 4.1 (Notation to relate ASP implementation withHPX semantics) .

• maxS and maxB are constants denoting the maximal plan depth and width respec-
tively. 0 ≤ n ≤ maxS, 0 ≤ b ≤ maxB and 0 ≤ b′ ≤ maxB denote variables for
steps and branches respectively.

• D is a domain description with the initial h-state h0
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• LP (D) is the Logic Program of a domain descriptionD without the plan-generation
rule (F7) and without the goal statements generated by translation rule (T8)

• SP
D is a Stable Model of LP (D) ∪ P where P is a set of occ(a, n, b) atoms with

0 ≤ n < maxS such that

– ∀a, n, b :

occ(a, n, b) ∈ SP

D ⇒ uBr(n, b)

.3

– ∀n, b :

uBr(n, b) ∈ SP

D ⇒ ∃a : occ(a, n, b) ∈ SP
D


4

• An,b = {a|occ(a, n, b) ∈ SP
D } is a set of actions applied at a transition tree node

with the “coordinates” ⟨n, b⟩.

Functions (4.3) and (4.5) along with Definition 4.1 allow us to provide a complete
summary of how ASP atoms relate to the operationalHPX semantics in Table 4.1.
Theorem 4.1 is the core soundness theorem concerning knowledge:

Theorem 4.1 (Soundness of ASP Formalization ofHPX ) For all l, n, t, b: if there
exists a b′ such that hasChild(n, b, b′, SP

D ) and knows(l, t, n + 1, b′) ∈ SP
D , then there

exists an h-state h ∈ Ψ(An,b,h(n, b, S
P
D )) such that h |= ⟨l, t⟩.

Proof: The theorem follows directly from Lemma A.2 in Appendix A.
The Lemmata which we mention in Table 4.1 are defined and proven in Appendix
A. The results concern the soundness of the ASP implementation wrt. the operational
semantics. Completeness results are not provided because the ASP implementation is
incomplete wrt. the operational semantics. This is discussed in Section 7.1. In addition,
to demonstrate that the ASP implementation provides results for many problem instances,
we present a number of examples throughout this thesis where the ASP formalization
correctly generates knowledge (see e.g. Chapter 6).

3This restriction reflects the mechanics of the plan generation rule (F7) which only generates occ(a, n, b)
atoms if uBr(n, b) ∈ SP

D .
4This restricts that there are no “gaps” in a plan, i.e. for all nodes in used branches there occurs at

least one action. Note that this restriction is met for all occ/3 atoms which are generated by the plan
generation rule (F7).
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ASP formalization Operational Semantics

Core predicates

Knowledge knows(l, t, n+ 1, b′) ∈ SP
D ⟨l, t⟩ ∈ κ(h) Theo. 4.1

Inertia kNotSet(l, t, n+ 1, b′) ∈ SP
D inertial(l, t,h) Lem. A.3

App. of EP apply(ep, t, b′) ∈ SP
D ⟨ep, t⟩ ∈ ϵ(h) Lem. A.7

Sensing sRes(l, n, b, b′) ∈ SP
D ⟨l, n⟩ ∈ sense(An,b,h(n, b, S

P
D )) Lem. A.10

Action occ. occ(a, n, b) ∈ SP
D a ∈ An,b Def. 4.1

Inference mechanisms

Causation kCause(l, t, n, b′) ∈ SP
D ⟨l, t⟩ ∈ addfwd(h)

Pos. post. kPosPost(l, t, n, b′) ∈ SP
D ⟨l, t⟩ ∈ addpdpos(h)

Neg. post. kNegPost(l, t, n, b′) ∈ SP
D ⟨l, t⟩ ∈ addpdneg(h)

where b′ such that
hasChild(n, b, b′, SP

D )
and t ≤ n.

where h ∈
Ψ(An,b,h(n, b, S

P
D )

and t ≤ n.

Auxiliary predicates

Eff. prop. hasEP(a, ep) ∈ SP
D ep ∈ EPa Lem. A.12

Eff. literal hasEff (ep, f) ∈ SP
D e(ep) = f Lem. A.12

Cond. lit. hasCond(ep, f) ∈ SP
D f ∈ c(ep) Lem. A.12

Know.
prop.

hasKP(a, f) ∈ SP
D KPa = f Lem. A.12

Table 4.1.: Relation between ASP formalization ofHPX and its operational semantics
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5
AnHPXHPXHPX Online Planning Framework

The basic h-approximation formalism is designed for offline problem solving. This
means that a conditional plan is generated and it is checked whether redefined goals are
entailed in future world states. After the generation of the plan an agent executes the
plan.
However, in practice it is often useful to interleave planning and plan execution. There-
fore we integrate theHPX implementation in an online system architecture for general
Cognitive Robotics control (Section 5.1).
To this end, we extend the HPX implementation so that it is capable of interleaving
planning and plan execution and we combine this with abductive explanation (Section
5.2). We also present modifications which improve the computational performance of
the problem solving and implement typing to add expressiveness to the PDDL-like input
language.

5.1. System Architecture
The HPX compiler which translates the PDDL-like input language into Logic Pro-
gramming Rules is combined with a controller and the incremental online ASP solver
oclingo (Gebser et al., 2011a) to constitute a Cognitive Robotic control system. This is
illustrated in Figure 5.1. The controller communicates new goals, sensing results and
execution statements to the solver and is also responsible for the plan execution and the
communication with actuators and sensors.
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HPX Compiler
D TO1–TO8→−→ Γo

world ∪ Γo
hpx

Online ASP Solver

Controller

EnvironmentHuman Input

D (PDDL domain)

LP o(D)
(Logic Program)

SM [LP (D,N ,G)] =
{occ/3 , sRes/4 , . . .}
(Stable Models)

LP (N ) = {exec/2, sensed/2}
(Execution Narrative)

LP (G) = {wGoal/1, sGoal/1}
(Goals)

Commands

Sensor data

Goals

Figure 5.1.: Architecture of the online planning framework

In the online architecture, the Logic Program to be solved is given as

LP (D,G,N ) = LP o(D) ∪ LP (G) ∪ LP (N ) (5.1)

where

• LP o(D) = Γo
hpx ∪ Γo

world

– Γo
hpx is an online version of the domain independent theory, constituted by

the Logic Programming rules (FO1) – (FO9). Rules (FO1) – (FO7) are online
versions of their corresponding offline domain independent rules (F1) – (F7)
which we describe in Chapter 4. (FO8) – (FO9) are additional rules which
cover the physical execution of actions and abductive explanation.

– Γo
world is an online version of the domain specific part of the extendedHPX

implementation. Γo
world is generated by applying translation rules (TO1) –

(TO8) on the PDDL-like domain description. (TO1) – (TO8) are online
versions of their corresponding offline counterparts (T1) – (T8) which we
describe in Chapter 4.

• LP (G) denotes a set of dynamically stated goals through wGoal/1 and sGoal/1
atoms.

• LP (N ) denotes an execution narrative. LP (N ) is a set of exec/2 and sensed/2
atoms which reflect which actions were executed and which sensing results were
obtained.
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Once a Stable Model (i.e. a plan) P ∈ SM [LP (D,G,N )] is found, it is sent to the
controller which starts to execute the plan. During execution, the controller reports
the execution narrative LP (N ) back to the solver. The solver adopts the search space
according to this information and expands the plan accordingly. The updated Stable
Models are thereupon sent to the controller again which executes the corresponding plan.
The loop is repeated until the goal is achieved or the problem becomes unsolvable.
For illustrations we refer to Section 6.2 where we present an elaborate use case that
depicts the functioning of the online planning system in detail.

5.2. Extensions for Online Planning

In order to enable online planning we made some extensions to the original ASP-based
HPX implementation. The main differences to the original formalism which we describe
in Chapter 4 are that (a) online ASP solving allows to have an incremental planning
horizon, (b) action planning and action execution is interleaved (c) abductive explanation
is integrated in the framework (d) some basic performance optimizations are implemented
and (e) typing is introduced to extend the expressiveness of the PDDL-like input syntax.
Details concerning the implementation of the extensions are provided in Appendix D.3,
including a Listing of the domain independent online theory Γo

hpx.

5.2.1. Incremental Planning Horizon Extension

If using non-incremental ASP solving for planning it is required to pre-set a fixed
planning horizon before solving the LP. That is, the constant maxS which we introduced
in Chapters 3 and 4 and which represents the plan length has to be defined before the
planning starts. However, since the minimal plan length is usually unknown it can be
problematic to find a suitable value for this constant.
A solution is incremental ASP solving which we describe in Section 2.2.8. This allows
one to expand the planning horizon dynamically, to a minimal extend which is required to
find a plan. At the same time this approach guarantees that generated plans are minimal
in terms of the number of state transitions.

5.2.2. Interleaving Planning and Plan Execution

Rules (F1), (F2), (F3), (F6) and (T3) – (T8) require only the following minor modifica-
tions: the variable N is replaced by the iterator t, the keywords #base, #cumulative
and #volatile are placed appropriately to partition the incremental Logic Program into
its respective parts. For example, recall the LP rule (F3e) for backward inertia:

knows(L, T,N,B)←knows(L, T + 1, N,B), kNotSet(L, T,N,B), N > T

91



CHAPTER 5. ANHPX ONLINE PLANNING FRAMEWORK

In the online planning LP this rule is placed within the #cumulative part and N is
replaced by t:

#cumulative t

knows(L, T, t, B)← knows(L, T + 1, t, B), kNotSet(L, T, t, B), t > T

In addition to replacing N by t and splitting the program into its respective parts we
replace the apply/3 predicates by apply/4. This is due to a restriction of the ASP solver
oclingo which we are using. With apply/3 predicates it would happen that rules are
re-grounded during the iterative problem solving. This is currently not allowed within
oclingo. In addition, the keyword #external is used to mark the predicates sensed/2 ,
exec/2 , wGoal/1 and sGoal/1 as external. This is required for the ASP solver to
consider that respective atoms may be added to the Logic Program on-the-fly.
In the following we describe the modifications to the translation rules (T4), (T6). Trans-
lation rules (TO3), (TO5), (TO7) and (TO8) are identical to their offline versions (T3),
(T5), (T7) and (T8). Modifications to translation rules (T1), (T2) are described within
the context of performance optimizations in Section 5.2.4.
We also describe necessary modifications to the domain-independent Logic Programming
rules (F5), (F7), and we present two additional rules (FO8) – (FO9).

TO4 and TO6. Actions (ΓO
act)

We reformulate rule (T4) in that we simply replace the variable N by the iterator t:

← occ(a, t, B), not knows(lex1 , t, t, B), uBr(t, B). . . .

← occ(a, t, B), not knows(lexn , t, t, B), uBr(t, B).
(TO4)

Similarly we rewrite rules (T6a) – (T6c) as follows:

knows(le, T + 1, t, B)←apply(ep, T, t, B), t > T,

knows(lc1, T, t, B), . . . , knows(lcn, T, t, B).
(TO6a)

knows(lci , T, t, B)←apply(ep, T, t, B), uBr(t, B),

knows(le, T + 1, t, B), knows(le, T, t, B).
(TO6b)

knows(lc−i , T, t, B)←apply(ep, T, t, B), knows(le, T + 1, t, B), uBr(t, B),

knows(lc+i1 , T, t, B), . . . , knows(lc+in , T, t, B).
(TO6c)
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FO5. Sensing and Branching (Γo
sense)

If a sensing result was obtained through physical execution of a sensing action, the planner
must not consider branches of the execution tree anymore in which the contrary of the
sensing result was presumed. We refer to this behavior as commitment to sensing results.
That is, if a message sensed(f, t) was received, then atoms representing the contrary
sensing result sRes(¬f, t, b, b′) may not be produced. We respect this by replacing rules
(F5f) and (F5g) with the following rules (FO5e), (FO5f):

sRes(F, t− 1, B,B)← occ(A, t− 1, B), hasKP(A,F ),

not sensed(neg(F ), t− 1), not kw(F, t− 1, t− 1, B).
(FO5e)

1{sRes(neg(F ), t− 1, B,B′) : neq(B,B′)}1← occ(A, t− 1, B), hasKP(A,F ),

not sensed(F, t− 1), not kw(F, t− 1, t− 1, B).
(FO5f)

The difference to the original rules (F5f) and (F5g) are the not sensed(neg(F ), t − 1)
(resp. not sensed(F, t− 1)) atoms in the rules’ bodies which prevent from generating
child branches if a contradictory sensing result was obtained. In rules (FO5e) – (FO5f)
one would usually use a parameter t instead of t− 1, but we discovered that the online
solver oclingo produces an error message if we replace t − 1 by t. This is probably
caused by restrictions within oclingo v3.0.92 which is a beta version.

FO7. Plan Generation (Γo
plan)

For the plan generation part of the online theory, we need to prevent rules (F7) from
proposing additional action occurrences at steps that were already executed in the past.
For this reason, we replace the rule for sequential offline planning (F7a)1 with the
following extended rule:

1{occ(A, t, B) : action(A)}1←
uBr(t, B), not executedStep(t), notGoal(t, B).

(FO7a)

A new component in (FO7a) is not executedStep(t) which denotes that an action can
only be planned for at a step t if the step has not already been executed. This is defined
in (FO8b) .

FO8. Execution (Γo
exec)

The interleaving of action planning and execution requires that the search space generated
by the planner does not contradict the real action execution. For instance, if the action
of opening a door was executed at a step t, then the planner always has to consider the

1The same is done respectively for the concurrent planning rule (F7b).
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execution of this action in its search tree. Similar to commitment to sensing results, we
refer to this behavior as commitment to action execution which is implemented by the
following rule:

occ(A, t, B)← exec(A, t), action(A), uBr(t ,B). (FO8a)

That is, whenever the execution of an action was reported by the controller (represented
by exec(A, t)) the ASP solver considers the occurrence of this action in all nodes of the
transition tree.
The following rules implement an abbreviation predicate executedStep/1 which denotes
that a step t has already been physically executed.

executedStep(t)← exec(A, t), action(A).

executedStep(t)← sensed(L, t), literal(L).
(FO8b)

In addition to rules (FO8a) and (FO8b) we need two more rules (FO8c) and (FO8d)
which assure that sensed knowledge becomes actually known if acquired unexpectedly,
i.e. without having anticipated the execution of a sensing action. This is useful for
continuously monitoring world properties, such as the open-state of a door.

knows(L, t, t, B)← sensed(L, t), uBr(t, B), literal(L). (FO8c)
← sensed(L1, t), uBr(t, B), knows(L2, t, t, B), complement(L1, L2). (FO8d)

5.2.3. Exogenous Events and Abductive Explanation
In domains where world properties change unexpectedly, it is useful to monitor these
properties continuously to make sure that their correct values are always known. For
instance, one may open a door and then send a robot through the door, but one never
knows whether the door is accidentally closed by another (human) agent after the door
was opened. We call such unexpected actions which can not be controlled by the
reasoning agent exogenous actions. In contrast, we call actions that are executed by the
reasoning agent endogenous actions.
For instance, consider the following action description:

(:action closeDoorExo exogenous
:effect ¬is_open)

This describes that a door can be closed by an external agent, syntactically indicated by
the keyword exogenous. Note that it makes no sense to define executability conditions
(3.1e) for exogenous actions, as these refer to the knowledge of the reasoning agent.2

Hence we assume that all exogenous action do not have executability conditions.
2As an example consider two agents R1 and R2 which can move from room A to room B through a door.
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FO9. Exogenous Events and Abductive Explanation (Γo
exo)

To account for exogenous actions in the generated HPX -Logic Program, we modify
translation rule (T1) as follows: for every fluent f , endogenous action a or exogenous
action aexo, LP(D) contains the facts:3

fluent(f ). action(a). exoAction(aexo).

In our framework, unexpected change of world properties is modeled by abductive expla-
nation. In Section 2.1.2 we argue that the abductive explanation problem is technically
equal to the planning problem: given an initial state, one is interested in a course of
actions that leads to a final state. In the context of abduction, the final state is any state
that has a certain property which is to be explained. We implement the explanation
mechanism with the following choice rule:

0{exoHappened(A, t− 1, B)

: hasEP(A,EP ) : hasEff (EP,L) : exoAction(A)}1← (FO9a)

sensed(L, t), uBr(t, B), knows(L, t− 1, t, B), complement(L,L).

The rule reflects that if at step t it is known that literal l holds at the previous step t− 1,
but it is sensed that at t the complement, l holds, then propose an exogenous action
(denoted exoAction(a)) which could possibly have set l.
In addition to (FO9a) another rule (FO9b) that applies the effect propositions of exoge-
nous actions is required:

apply(EP, t− 1, t, B)← hasEP(A,EP ), exoHappened(A, t− 1, B). (FO9b)

Note that exogenous actions are only used for explanation if there occurred no endoge-
nous action which may also have set the value of concern for the following reason: the
ASP implementation of the h-approximation has the restriction that no two actions with
the same effect literal may happen concurrently. Therefore, if an endogenous action with
the respective effect literal has been executed, an exogenous action with the same effect
literal will not be considered for explanation.
A problem with abductive explanation is that explanations for unexpected world change
are often ambiguous. For example, if a door is closed exogenously and two persons
could have closed it then without additional knowledge it is impossible to tell which one
of the persons actually closed the door. This is discussed in Section 7.2.

Here it is sensible to use an executability condition which requires the agents to know whether the door
is open before passing it. We consider R1 to be the reasoning agent and R2 to be an exogenous agent.
Assume that the exogenous actions which R2 can execute are modeled within R1’s domain description.
Then from R1’s perspective it does not make sense to represent the exogenous move-action of R2 with
an executability condition concerning open-ness of the door. This would only require R1 to known
whether the door is open, but the moving would refer to movement of R2. Therefore the executability
conditions is semantically inadequate.

3Note that this rule is not the final version of the online translation rule TO1: in Section 5.2.4 we describe
how the rule is extended further with a performance optimization statement.
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5.2.4. Performance Optimization: Static Relations and
Impossible Actions

Though practical performance is not the main focus in the development of HPX , we
implement an extension to reduce the computation time by considering so-called static
relations. Static relations represent relations between objects which can not be changed,
e.g. the connectivity of rooms. We extend theHPX -compiler such that it automatically
marks these fluents as static relations which do not occur in any effect proposition or
knowledge proposition of an action. This is formalized in Definition 5.1.

Definition 5.1 (Static Relations) For a domain D = ⟨A, I,G⟩, a fluent f is called
static relation if the the following conditions hold:

• ∀a ∈ A : KPa ̸= f
(There exists no action a with a knowledge proposition KPa = f )

• ∀a ∈ A : ∀ep ∈ EPa : e(ep) ̸∈ {f,¬f} ∧ {f,¬f} ∩ c(ep) = ∅
(There exists no action a with an effect proposition ep that has a condition literal
f or ¬f or an effect literal f or ¬f .)

Obviously there is no need to represent static relations with the 4-ary knows predicate,
since they can not change; it is sufficient to use a 1-ary holds predicate to denote whether
or not a world property is (and stays) true or false. This simplifies the knowledge
representation and results presented in Section 6.2 reveal that especially the grounding
time of the ASP solving is reduced with this extension.
Static relations bring another advantage in combination with executability conditions in
that they allow one to quickly determine whether or not an action is actually impossible.
This can drastically reduce the search space, especially if many impossible actions are
specified. For instance, driving from a room A to room B is impossible if there is no
connection between room A and B, and in this case the action does not have to be
considered.
We implement this thought by simply not instantiating actions which are impossible on
the Logic Programming level. This is realized with the following extended version of
translation rule (T1). For every fluent f , endogenous action a and exogenous action aexo,
LP o(D) contains the facts:

fluent(f ).

action(a)← holds(lex1 ), . . . , holds(lexnexs
).

exoAction(aexo).

(TO1)

where lex1 , . . . , l
ex
nexs

are these literals in the executability condition EXPa of an action a
which are static. Exogenous actions are not affected, because as stated in Section 5.2.2
these actions do not have executability conditions.

96



5.3. INCREMENTAL REACTIVE PLANNING

Rule (T2) which generates initial knowledge is modified such that knows/4 is replaced
by holds/1 as follows: let (:init (and linit1 . . . linitnin

)) be a value proposition (3.1a).
Then for each literal linit ∈ {linit1 , . . . , linitnin

} we generate the fact

knows(linit , 0, 0, 0). if linit = f or linit = ¬f and f is not static

holds(linit). otherwise
(TO2)

Other translation rules do not have to be modified because by Definition 5.1 static
relations do not occur in effect propositions or knowledge propositions of actions.
The result in terms of computational performance is investigated in Section 6.2.2 where
we analyze a planning problem with and without accounting for static relations.

5.3. Incremental Reactive Planning
In Section 2.2 we illustrate that online ASP solving relies on the module theory (Oikarinen
and Janhunen, 2006). However, in order to apply the theory some requirements have to
be met to guarantee the compositionality of separate Logic Programming modules.
In order to show that incremental onlineHPX -Logic Programs satisfy the composition-
ality conditions we investigate their semantics from this point of view.
According to Section 2.2.8, an incremental Logic Program is given as

R[t] = B ∪


0≤j≤t

P [j] ∪Q[t] (5.2)

for some t ≥ 0 where B represents the #base part, P represents the #cumulative part
and Q represents the #volatile part. These particular constituents are identified in detail
in Appendix D.3.2.
As described in Section 2.2.8, one needs to consider certain restrictions on the #external
input atoms wrt. the online Logic Program, i.e. the modularity condition described by
Definition 2.16. In theHPX -Logic Program, we have that sensed/2, exec/2, wGoal/1
and sGoal/1 atoms are external, and the controller sends inputs of the following form to
the ASP solver:
#step tmax + 1.
sensed(ls,ts).
exec(a,te).
wGoal(lwg).
sGoal(lsg).
#endstep.

where tmax = max(ts, te) and ts, te ≥ 0. Intuitively, ls are the atoms that are sensed, a
are the actions that are executed, lwg are weak goal statements and lsg are strong goal
statements.
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Fortunately, oclingo checks automatically whether the modularity condition (see Defini-
tion 2.16) holds. We have not formally proven that all input sent by the controller satisfies
the condition. However, oclingo internally performs a check whether the modularity
condition is met. If the condition is not met, oclingo provides an error message and no
solution is generated. Therefore, the correctness of our reasoning results is guaranteed.
Furthermore, we have not observed that oclingo provides an error message during the
conduction of our experiments described in Chapter 6.

5.4. Extending Expressiveness: Typing
Though the core focus of this work lies in the epistemic action-theoretic aspects, we
also make some basic efforts to improve the practical applicability of the implemented
system. To this end, we improve the expressiveness of our PDDL-like input language and
implement typing. Typing allows one to define action schemes which are more general
than the effect propositions (3.1c), knowledge propositions (3.1d) and executability
conditions (3.1e) defined in Section 3.1. Typing is implemented in most PDDL dialects,
for details we refer to (McDermott et al., 1998). As an example for a domain description
which involves typing we refer to Appendix D.4 where we present the complete domain
description of a use case described in Section 6.2.
In the following we describe four language elements, namely type definitions, predicate
definitions, object definitions and action scheme definitions.
The following example Listings 5.1 – 5.4 refer to a domain specification where robotic
agents (denoted rolland1 and rolland2) can move through doors to navigate between
rooms (denoted corr1 ,bed ,liv, office, bath).

Type Definitions

Types are defined as follows:

(:types

type1 - typeparent1

...
typent

- typeparentnt

(5.3a)

where type are child-types of typeparent .
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For instance, the following Listing 5.1 implements the types Door, Room, Agent, Person
and Robot, where Person and Robot are sub-types of Agent.

(:types
Door
Room
Agent
Person - Agent
Robot - Agent)

Listing 5.1: Type definitions in the extended input language

Object Definitions

Objects are defined as follows:

(:objects

object1 - type1
...

objectno
- typeno

)

(5.3b)

The following Listing 5.2 implements five rooms corr1, bed, liv, office and bath,
three doors d1, d2 and d4, two robots, rolland and iwalker and a person paul.

(:objects
corr1,bed,liv,office,bath - Room
d1,d2,d4 - Door
rolland1, rolland2 - Robot
paul - Person)

Listing 5.2: Object definitions in the extended input language

Predicate Definitions

Predicates are defined as follows:

(:predicates

pred1(type
1
1, . . . , type

t1
1 )

...

prednp
(type1np

, . . . , type
tnp
np )

)

(5.3c)
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Predicate definitions are used to define the set of domain fluents FD.4 For instance,
Listing 5.3 implements five predicates hasDoor/2, connected/2, inRoom/2, open/1
and abnormal drive/1.

(:predicates
hasDoor(Room, Door)
connected(Room, Room)
inRoom(Agent, Room)
open(Door)
abnormal_drive(Robot))

Listing 5.3: Predicate definitions in the extended input language

In combination with the object and type definitions stated in Listings 5.1 and 5.2 the
predicate hasDoor/2 evaluates to 15 fluents hasDoor(corr1,d1), hasDoor(corr1,d2),
. . ., hasDoor(bath,d2), hasDoor(bath,d4), and similar for the other predicates.

Action Scheme Definitions

Action schemes are defined as follows:

(:action act :parameters (?v1 - type1),. . .,?vnt
- typent

)

:executable (and fluentLitScheme1,. . .,fluentLitSchemenexc
)

:effect (and epScheme1,. . .,epSchemenep
)

:observe fluentLitSchemeobs)
(5.3d)

where

• :parameters (?v1 - type1),. . .,?vnt
- typent

) is a parameters section where
?v1, . . . ,?vnt

denote variable names of the respective types.

The parameters section is used to define variables which are used in fluent lit-
eral schemes denoted fluentLitScheme. Fluent literal schemes have the form
pred(arg1, . . . , argnp) where pred is a predicate name and arg1, . . . , argnp are
either variable names which must occur in the parameters section or objects de-
fined in the objects definition (5.3b). Action scheme definitions are only valid if
the types of variables defined in the parameters section and the objects definition
coincides with the type assignment defined in the predicate definition (5.3c). In
the following we assume that all action scheme definitions are valid.

4 In the basic ASP iplementation of HPX we have assumed that the set of domain fluents FD is
automatically extracted from the domain definition. However, in practice we define the set of predicates
(and thereby the set of domain fluents) manually with the predicate definitions. This makes the domain
design less error-prone because the domain designer has to think more carefully about the fluents
he is using. Also, typing errors are reduced. Defining domain predicates manually is typical for
PDDL-planning in general (see e.g. (McDermott et al., 1998)).
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• :executable (and fluentLitScheme1,. . .,fluentLitSchemenexc
) is an optional exe-

cutability section.

• :effect (and epScheme1,. . .,epSchemenep
) is an optional effect section where

epScheme1,. . .,epSchemenep
denote effect proposition schemes of the form if

(and fluentLitSchemec1 . . .fluentLitSchemecnc
) then fluentLitSchemee.

• :observe fluentLitSchemeobs is an optional observation section.

All action scheme definitions must have a parameter section and an effect section or an
observation section. As an example consider Listing 5.4 which models the action of a
robot driving through a door and the sensing action of locating a robot.
Actions are generated from action schemes in the obvious way, i.e. by instantiating the
action scheme with all possible combinations of parameters, according to the type and
object definitions. For example, the object and type definitions stated in Listings 5.1 and
5.2 define 2 robots, 3 doors and 5 rooms. Hence, the action scheme drive door results
in 2 · 3 · 5 · 5 = 150 actions.5

(:action drive_door
:parameters (?robo - Robot ?door - Door ?from ?to - Room)
:executable (and

open(?door)
hasDoor(?from, ?door)
hasDoor(?to, ?door)
inRoom(?robo, ?from)
!inRoom(?robo, ?to))

:effect (and
(if !abnormal_drive(?robo) then !inRoom(?robo, ?from))
(if !abnormal_drive(?robo) then inRoom(?robo, ?to))))

(:action senseLocation
:parameters (?robo - Robot ?room - Room)
:observe inroom(?robo, ?room))

Listing 5.4: Action scheme definitions in the extended input language

5 However, note that by applying the modified translation rule (TO1) described in Section 5.2.4 usually
only a small subset of these actions are actually generated because “impossible” actions are rules out.
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6
Application in a Smart Home and Evaluation

To evaluate theHPX formalism and integration in the online planning framework, we
present two scenarios where HPX is used for action planning, abnormality detection
and abductive explanation in the Bremen Ambient Assisted Living Lab (BAALL) (Krieg-
Brückner et al., 2010). BAALL is a robotic Smart Home environment equipped with an
autonomous robotic wheelchair and various actuators and sensors.
The first scenario (Section 6.1) has mainly the illustrative purpose of describing postdic-
tion and other basic offline inference mechanisms using the basic offline ASP implemen-
tation ofHPX .
The second scenario (Section 6.2) illustrates howHPX is used for online planning and
how abductive explanation is interleaved with action planning and plan execution. In
order to assess the practical applicability of HPX in actual robotic environments, we
also provide an empirical evaluation in terms of computation time for this scenario.
In addition to the case studies, and though computational performance is not the main
focus of this work, we present an empirical evaluation in Section 6.3. We compare
the computation time of the HPX planning system with the CFF planner (Hoffmann
and Brafman, 2005) and the ASCP planning system (Tu et al., 2007) for three typical
benchmark problems from literature.

6.1. Case Study 1: Abnormality Detection in a
Smart Home

This use case pertains to the example depicted in Figure 6.1: the Bremen Ambient
Assisted Living Lab has (automatic) sliding door. Sometimes a box or a chair accidentally
blocks the door such that it opens only half way. In this case, the planning component
in the overall system should be able to postdict such an abnormality and to find an
alternative route for robotic vehicles which would usually pass the defect door.
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A simplified domain description is as follows:

(:action open_door :effect if ¬ab_open then is_open)
(:action drive :effect if is_open then in_liv)
(:action sense_open :observe is_open)
(:init ¬is_open)
(:goal weak in_liv)

Listing 6.1: Simplified problem of moving through a door with potential abnormalities

An action open door causes a door to be open if there is no abnormality (denoted by
ab open).1 The action drive has the effect that the robot is in the living room (which
is behind the door) if the door is open. sense open can be executed to determine the
open-state of the door. Initially the door is not open and the goal is that the robot is in
the living room.

6.1.1. Trace: Conditional Planning with Abnormalitiy
Postdiction

Consider the situation where a person instructs a command to reach a location, e.g. the
sofa, to the wheelchair [S0]. An optimal plan to achieve this goal is to pass D1. However,
if D1 does not open because it is jammed, then a more error tolerant plan is required:
[S1] open D1 and verify if the action succeeded by sensing the door status. If the door
is open, drive through the door and approach the user. Else there is an abnormality: in
this case open and pass D3 [S2]; drive through the bedroom; pass D4 and D2; and finally
approach the sofa [S3].2 A transition tree is provided in Figure 6.2.
Initially, wheelchair Rolland is outside the living room (¬in liv) and the weak goal is
that the robot is inside the living room. The robot can open the door (open door) to the
living room. Unfortunately, since the door may be jammed, opening the door does not
always work, i.e. there may be an abnormality. However, the robot can perform sensing
to verify whether the door is open (sense open) and then postdict whether or not there
is an abnormality in opening the door.
This mechanism is illustrated in Figure 6.2. Initially (at step n = 0 and branch
b = 0) it is known that the robot is in the corridor at step t = 0 (denoted by
knows(¬in liv, 0, 0)). The first action is opening the door, i.e. the Stable Model
contains the atom occ(open door, 0, 0). Inertia holds for ¬in liv, because nothing
happened that could have initiated in liv. Consequently, rules (F3a) – (F3c) trigger
kNotInit(in liv, 0, 0, 0) and (F3f) triggers knows(¬in liv, 0, 1, 0). In turn, the for-
ward inertia rule (F3d) causes atom knows(¬in liv, 1, 1, 0) to hold. Next, sensing

1The usage of abnormality-predicates for failure diagnosis is discussed in more detail in Section 7.2.
2Abnormalities are considered on the alternative route as well but skipped here for brevity.
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Figure 6.1.: Use case 1: abnormality detection in the Smart Home BAALL
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SM of
LP (D)0

{...,knows(¬in liv, 0, 0, 0),

knows(¬is open, 0, 0, 0)}

SM of
LP (D)1

{..., knows(¬in liv, 0, 1, 0), knows(¬in liv, 1, 1, 0),

knows(¬is open, 0, 1, 0) }

SM of
LP (D)2

{...,knows(¬in liv, 0, 2, 0), knows(¬in liv, 1, 2, 0), knows(¬in liv, 2, 2, 0),

knows(¬is open, 0, 2, 0), knows(is open, 1, 2, 0), knows(is open, 2, 2, 0),

knows(¬ab open, 0, 2, 0), knows(¬ab open, 1, 2, 0), knows(¬ab open, 2, 2, 0),

knows(¬in liv, 0, 2, 1), knows(¬in liv, 1, 2, 1), knows(¬in liv, 2, 2, 1),

knows(¬is open, 0, 2, 1), knows(¬is open, 1, 2, 1), knows(¬is open, 2, 2, 1),

knows(ab open, 0, 2, 1), knows(ab open, 1, 2, 1), knows(ab open, 2, 2, 1)}

SM of
LP (D)3

{...,knows(¬in liv, 1, 3, 0), knows(¬in liv, 2, 3, 0), knows(in liv, 3, 3, 0),

knows(is open, 1, 3, 0), knows(is open, 2, 3, 0), knows(is open, 3, 3, 0),

knows(¬ab open, 1, 3, 0), knows(¬ab open, 2, 3, 0), knows(¬ab open, 3, 3, 0)}

LP (D)0 ∪ occ(open door, 0, 0)

LP (D)1 ∪ occ(sense open, 1, 0)

LP (D)2 ∪ occ(drive, 2, 0)

(F3d)
Γin (inertia)

Γsense (sensing)

(F5f)

(F5g)

Γact (pos. postdiction)(T6b)

Γact (neg. postdiction)(T6c)

Γact (causation)
(T6a)

Figure 6.2.: Abnormality detection as postdiction with h-approximation

happens, i.e. occ(sense open, 1, 0). According to rule (F5f), the positive result is as-
signed to the original branch and sRes(is open, 1 , 0 , 0 ) is produced. With rule (F5g),
the negative sensing result is assigned to some child branch b′ = 1. In the example we
have sRes(¬is open, 1, 0, 1), such that together with (F5k) knows(¬is open, 1, 2, 1) is
produced. This result triggers the negative postdiction rule (T6c) and knowledge about
an abnormality concerning the opening of the door is produced: knows(ab open, 0, 2, 1).
Consequently, the wheelchair has to follow another route to achieve the goal.

For branch 0, we have knows(is open, 1, 2, 0) after the sensing. This result trig-
gers the positive postdiction rule (T6b): because knows(¬is open, 0, 2, 0) and
knows(is open, 1, 2, 0) hold, one can postdict that there was no abnormality when
open door occurred: knows(¬ab open, 0, 2, 0). Finally, the robot can drive through the
door: occ(drive, 2, 0) and the causation rule (T6a) triggers knowledge that the robot is
in the living room at step 3: knows(in liv, 3, 3, 0).
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6.2. CASE STUDY: INTERLEAVING ACTION PLANNING, ABNORMALITY
DETECTION AND ABDUCTIVE EXPLANATION IN A SMART HOME

6.1.2. Results and Discussion

In the depicted scenario, the weak goal of driving to the couch was issued and the ASP
solver found a plan within 140 ms on a standard 2Ghz Intel i5 computer with 6GB
RAM. The purpose of this use case was primarily the illustration of the postdiction
mechanism of the ASP implementation of HPX . For a more thorough evaluation in
terms of computation time we refer to the results obtained from the second scenario
(Section 6.2.2) and the empirical comparison with other planners in Section 6.3.

6.2. Case Study: Interleaving Action Planning,
Abnormality Detection and Abductive
Explanation in a Smart Home

This case study emphasizes how planning, abnormality detection, abductive explanation
and plan repair play together. The scenario takes place in the Bremen Ambient Assisted
Living Lab (BAALL) and involves the autonomous robotic wheelchair “Rolland”. We
assume abnormalities in the wheelchair’s driving action and illustrate how this is coped
with in an online manner. In addition, an exogenous action happens which triggers
abductive explanation and online plan repair. The Case Study is depicted in Figure 6.3. 3

6.2.1. Trace: Interplay Between Controller and ASP Solver

The controller serves as interface between the robotic sensors and actuators and the ASP
solver. It also translates goals which are received by human interface devices like remote
controls, mobile phones or speech recognition systems into Logic Programming facts.
For example, as illustrated in Figure 5.1, a person called fred is sitting on the couch and
wants to get to the bathroom. He issues this goal using natural language and the controller
of the online architecture employs its speech recognition module to generate an LP fact
LP (G) = wGoal(inroom(fred,bath)). This fact is sent to the ASP solver which starts
to compute Stable Models. The first Stable Model found (SM1) is sent to the controller
again which interprets it as a conditional plan. The plan foresees to use the wheelchair
rolland1 which is currently behind the couch to drive in front of the couch, pick fred

up and bring him to the bathroom. During this course of actions, the wheelchair executes
sensing actions to verify whether driving commands were successful.
To execute the plan, the controller translates the action occurrences in the Stable Model
to corresponding XML strings which can be interpreted by the Smart Home and the

3A video of this use case can be found at www.commonsenserobotics.org, accessed Dec. 12th,
2013.

107

www.commonsenserobotics.org


CHAPTER 6. APPLICATION IN A SMART HOME AND EVALUATION

wheelchair. It also generates LP messages involving exec/2 and sensed/2 atoms to
inform the ASP solver about action execution and sensing results.
First, rolland1 receives the command to drive directly to the couch. However, un-
fortunately the passage is blocked by an obstacle (the little box) which was acciden-
tally placed next to the couch. This abnormality is postdicted if the sensing action
senseloc(rolland1,couch) reveals that the wheelchair is not at the couch (represented
by the LP atom sensed(¬inroom(rolland1,couch),1)).
The ASP solver receives this information and according to the LP rule (FO5e) atom
sRes(inroom(rolland1,couch),1,0,0) which contradicts the actual sensing result is
no longer produced. Hence the assumptions which are required to achieve the goal are
not met and the original plan SM1 becomes invalid.
This triggers the ASP solver to generate new Stable Models. SM2 represents a re-
paired plan which involves the second wheelchair rolland2 to drive from the desk to
the couch and to bring fred to the bathroom. The controller executes the proposed
actions and while executing drive direct(rolland2,couch) another person george

walks into the bathroom and closes its door. The controller receives the sensing re-
sult that the door to the bathroom has been closed exogenously. This information
is sent to the ASP solver in terms of a fact sensed(closed(d5),4) and the ASP
solver explains the closing of the door with the occurrence of an exogenous event
exoHappens(person close door(george,d5),3,1). This is produced by the choice
rule (FO9). The occurrence of the exogenous action triggers the postdiction that george
must be in the bathroom. However, for privacy reasons the system is not allowed to open
the bathroom door if the room is occupied, so the action move person(george,corr1)

must occur before the door can be opened.4 Once door d5 to the bathroom is opened, the
wheelchair can drive into the bathroom and the goal is achieved.

6.2.2. Results and Discussion

To evaluate the practical performance of theHPX implementation we investigated the
computation time required to solve the depicted use case. For the empirical evaluation of
the scenario we use a slightly different formulation of the use case which can be found
in Appendix C, Listing D.5.5 Table 6.1 summarizes the results on a 2.3Ghz Intel i5
computer with 6GB RAM. We used the beta-version 3.0.92 of the online ASP solver
oclingo for the experiments.
To investigate how the static relations which we describe in Section 5.2.4 improve the
performance we present results for two cases. We implemented the scenario once with

4Since this action can not be controlled by the system, it is announced by the Smart Home’s multimedia
devices to emulate the execution. The success of the action is determined by user input, i.e. either
George or Fred has to inform the system that the action has been executed. This can be done with a
smart phone, via speech recognition or any other input device.

5The use case presented in this section was simplified for illustration purposes.
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6.2. CASE STUDY: INTERLEAVING ACTION PLANNING, ABNORMALITY
DETECTION AND ABDUCTIVE EXPLANATION IN A SMART HOME
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LP (G) = {wGoal(inroom(fred,bath))}Goal

SM1 = {. . .,
occ(drive direct(rolland1,couch),0,0),
occ(senseloc(rolland1,couch),1,0),
sRes(inroom(rolland1,couch),1,0,0),
sRes(¬inroom(rolland1,couch),1,0,1),
occ(drive person(fred,rolland1,corr1),2,0),
occ(drive person(fred,rolland1,bath),3,0)}

Plan 1

LP (N1) = {. . .,
{exec(drive direct(rolland1,couch),0),
exec(senseloc(rolland1,couch),1),
sensed(¬inroom(rolland1,couch),1)}

Execution Narrative 1 Abnormality: pas-
sage is blocked

X

SM2 = {. . .,
occ(drive direct(rolland2,corr1),2,1),
occ(senseloc(rolland2,corr1),3,1),
sRes(inroom(rolland2,corr1),3,1,1),
sRes(¬inroom(rolland2,corr1),3,1,2),
occ(drive direct(rolland2,couch),4,1)
occ(drive person(fred,rolland2,corr1),5,1),
occ(drive person(fred,rolland2,bath),6,1)}

Plan 2

LP (N2) = {. . .,
exec(drive direct(rolland2,corr1),2),
exec(senseloc(rolland2,corr1),3),
sensed(inroom(rolland2,corr1),3),
exec(drive direct(rolland2,couch),4)
sensed(closed(d5),4)}

Execution Narrative 2 Exogenous action:
door is closed

X

SM3 = {. . .,
exoHappens(person close door(george,d5),3,1),
occ(drive person(fred,rolland2,corr1),5,1),
occ(move person(george,corr1),6,1),
occ(open(d5),7,1),
occ(drive person(fred,rolland2,bath),8,1)}

Plan 3

LP (N3) = {. . .,
exec(drive person(fred,rolland2,corr1),5),
exec(move person(george,corr1),6),
exec(open(d5),7),
exec(drive person(fred,rolland2,bath),8)}

Execution Narrative 3

Figure 6.3.: Use case 2: interleaving planning, plan execution and abductive explanation
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and once without the extended rules covering static relations and impossible actions
(TO1), (TO2).6 These prune the search space in that they guide the planner to consider
only those actions which are actually possible. For example, consider the action of
driving rolland2 directly from the bedroom to the couch. The is not possible because
there is no direct connection between bedroom and couch. Consequently the planner
does not have to consider this action when generating the search space.

Reasoning task With static relations Without static rela-
tions

First plan found 4.36 sec. 14.58 sec.
1st Plan repair (abnormality) 23.65 sec. 50.89 sec.
2nd Plan repair (exogenous event) 4.8 sec. 7.71 sec.

Table 6.1.: Computation time required to solve online planning tasks

Table 6.1 depicts the computation times for the individual episodes of the use case:

1. First plan found denotes the time the ASP solver needed to find a first plan to bring
fred to the bathroom. This refers to the naive plan of using rolland1, assuming
that there is no abnormality.

2. 1st Plan repair (abnormality) denotes the time the ASP solver needed to find an
alternative plan when the sensing result that the wheelchair is not at the couch was
received.

3. 2nd Plan repair (exogenous event) denotes the time the ASP solver needed to find
an alternative plan when the exogenous event of closing the bathroom door was
abduced.

It is easy to see that the pruning mechanism, i.e. the consideration of static relations,
approximately halves the computation time. To investigate how the individual sub-
processes are involved in the Stable Model generation we enabled verbose output of the
ASP solver. This told us that for the first case (with static relations) grounding played a
minor role in the solving process, i.e. approximately 10% of the total computation time.
For the second case (without static relations) grounding required 20-30% of the total
computation time.
It shall also be noted that the time which the HPX -compiler needs to translate the
PDDL-like problem description into the Logic Programming rules was always in the
order of milliseconds and was neglected.

6For the case without static relations we used the non-incremental translation rules (T1), (T2).
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Problem h-appx. ASCP CFF
RINGS(1) 0.016 0.016 0.01
RINGS(2) 0.203 0.156 0.02
RINGS(3) 9.734 169.26 0.09
RINGS(4) MEM MEM 1.56
RINGS(5) MEM MEM 480.1
SICK(2) 0.078 0.031 0.02
SICK(4) 0.889 0.061 0.04
SICK(6) 30.81 0.125 0.07
SICK(8) 1361.5 157.3 0.1
BTS(2) 0.016 0.016 0.01
BTS(4) 0.14 0.05 0.02
BTS(6) 7.160 0.55 0.03
BTS(8) 281.0 138.6 0.05

Table 6.2.: Comparison of different planners for benchmark problems from literature

6.3. Empirical Comparison with other Planners

In Section 6.2 we have investigated the computational performance of the online planning
framework for a real-word use case. To evaluate how fast the HPX -planning system
performs wrt. other planners, we compare our planner with ContingentFF (CFF) by
Hoffmann and Brafman (2005) and ASCP by Tu et al. (2007) using typical benchmark
problem domains from the literature. The domains are selected on the basis of the
individual features of the planners, namely postdiction, the performance optimization
described in Section 5.2.4 and different sensing capabilities. A summary is presented in
Table 6.2.

6.3.1. Benchmark Problems

Rings – RING(nr)

A number (nr) of rooms are ring-wise connected. There are windows in the rooms which
must be closed and locked. It can be sensed whether the windows in the rooms are open
or not (see e.g. (Cimatti et al., 2003)).
The connectedness of rooms is modeled with static relations and we have chosen this
problem in order to investigate how static relations improve the planning performance.
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Sickness – SICK(ns)

A patient is infected with one of ns illnesses. A test can be performed which stains
a paper, such that the color of the paper indicates the illness. This domain requires
postdiction to diagnose the illness based on the paper’s color (see e.g. (Tu et al., 2007)).7

We have chosen this problem to investigate the influence of different sensing capabilities
on the computation time: ASCP can sense the color of the paper with one action while
HPX requires to perform ns sensing actions: one for each possible color.

Bomb in the toilet – BTS(np)

In this problem, np is a parameter which reflects the number of suspicious packages that
may or may not be bombs. Potential bombs can be disarmed by dunking them in a toilet.
The agent can perform a sense metal-action to sense whether or not a package contains
a bomb and it can dunk a package into a toilet to disarm it if it contains a bomb (see
e.g. (Weld et al., 1998)).
We have chose this problem because both ASCP andHPX do not have any advantage
in the domain. Hence, this problem reflects an unbiased benchmark to compare ASCP
andHPX if no postdiction is required.

6.3.2. Setup

All goals in the domains are strong goals. Experiments were conducted on a Intel i5
machine with 6 GB RAM. The ASP solver used is clingo (Gebser et al., 2011b). For
the computation times of HPX we neglected the time it took the HPX compiler to
translate the PDDL-like input syntax into Logic Programming rules; this was always in
the order of magnitude of milliseconds.

6.3.3. Discussion

Even though CFF is based on a PWS and hence has a higher computational complexity
thanHPX and the 0-approximation-based ASCP planner, it clearly outperforms both
approaches. This is probably due to heuristics that are based on relaxed formulations of
the planning problem (see (Hoffmann and Brafman, 2005) for details).
The good result in the RING domain of HPX compared to ASCP is due to the fact
that the connectedness of the rooms can be modeled as static relations, which gives
our planner an advantage. However, the h-approximation is outperfomed by ASCP in
the SICK domain because ASCP supports sensing the color of the paper with only one

7To “emulate” postdiction for ASCP, the definition of additional static causal laws was necessary, similar
to the case presented in Example 2.1.
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sensing action whileHPX has to consider ns−1 sensing actions: one for every potential
illness. That is,HPX requires a higher planning horizon.
The results of these experiments, in particular the clear superiority of CFF, leads to
the conclusion that implementing heuristics in terms of Answer Set Programming is a
promising future research direction to keep ASP based planners competitive with dedi-
cated and more optimized planners implemented in traditional programming languages
like C++. We discuss this point in Section 7.2.
A problem for benchmarking planning with incomplete knowledge is that only a few
implemented planning systems which are able to cope with incomplete knowledge and
sensing actions are freely available. Table 2.3 enlists many epistemic action theories,
but it also shows that only few of them are actually implemented. From these theories
which are actually implemented, not all are freely available and others have a different
understanding of “planning”: while in this work planning is understood as finding a
course of actions that lead from an epistemic initial state to an epistemic goal state (see
Definition 2.4), other systems like INDIGOLOG system (de Giacomo and Levesque,
1998) understand planning as executing a predefined course of actions, possibly enhanced
with dynamically generated sub-plans. Though in INDIGOLOG, the dynamic generation
of sub-plans is equivalent to our definition of planning, INDIGOLOG is not capable
of dynamically integrating sensing actions in a plan. Another example is the EFEC
implementation by Miller et al. (2013): even though the implementation exists and
is available online, their planning mechanism does not feature a semantics based on
branching. These differences make it hard to implement planning problems for different
planners in a way such that their formalizations and results are actually comparable.
Another problem is that of syntactic compatibility. The the Planing Domain Definition
Language PDDL (McDermott et al., 1998) – which is the de-facto standard language to
specify planning problems – does not officially support sensing actions and incomplete
knowledge. Hence, each planner uses its own input language or dialect.
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7
Discussion and Future Work

To conclude this thesis, we discuss its scientific contribution in Section 7.1. A particular
emphasis is given on the interplay of the features ofHPX and on its practical application
in robotics and related fields. We also identify limitations of HPX . This connects to
Section 7.2 where we sketch how limitations could be overcome and where we propose
future extensions for HPX . Finally, Section 7.3 provides an upshot of the overall
achievements of this thesis.

7.1. Discussion

The research question which we state in the introduction of this thesis is formulated as
follows:

How is it possible to realize temporal postdictive reasoning whilst avoiding a
combinatorial explosion of state variables?

As a main contribution we have presented the h-approximation (HPX ) of knowledge
which answers this question: it avoids the combinatorial explosion of state variables by
approximating the agent’s knowledge state, but it is still capable of postdiction because
the temporal dimension of knowledge is explicitly represented. The temporal dimension
makes it possible to efficiently postdict about facts. At the same time it makes HPX
more expressive than most other epistemic action theories which do not consider temporal
knowledge.
HPX has a particular combination of features which in Table 2.3 was compared with
other epistemic action theories. In the following we discuss how the interplay of these
features creates a synergistic gain in practical applications. Specifically, we discuss
the advantages which emerge if combining the complexity properties of HPX with
the support for postdictive reasoning; in addition we demonstrate that the temporal
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knowledge dimension ofHPX is useful for planning problems which involve concurrent
acting and sensing.

Postdiction with a Linear Number of State Variables

The core feature of HPX is its support for postdictive reasoning at a comparably low
computational complexity. The low complexity emerges from the fact that only a linear
number of state variables are required to model an agent’s knowledge state, as compared
to an exponential number for existing theories. The combination of both features is
particularly useful in practical applications: (a) a low computational complexity lays the
ground for the application in practical applications where real-time response to planning
queries and other reasoning tasks is needed. Algorithms with a higher complexity
generate a combinatorial explosion of state variables and can only be used in very small
problem domains, otherwise computation time becomes unacceptable. (b) Postdiction
can be used to achieve error-tolerance: in practice, actions do not always succeed due to
unforeseen complications and system failures. In Chapter 6 we have demonstrated that a
way to diagnose such abnormalities is postdiction.
Another advantage before PWS-based approaches becomes obvious when considering
that in PWS-based action theories the number of state variables is exponential wrt. the
number of unknown fluents. In contrast, with HPX the number of state variables is
independent from the number of unknown fluents. A synergistic gain emerges if the
independence of the number of state variables from unknown fluents is combined with
postdictive reasoning for abnormality detection: under the (realistic) assumption that the
outcome of actions is always subject to potential failure one has to model abnormalities
as unknown conditions of actions. These can be postdicted by observing whether the
action was successful or not. However, the more actions a domain contains, the more
abnormalities have to be modeled and hence the more unknown fluents are involved.
This makes the application of PWS-based theories inappropriate due to the exponential
blowup of possible worlds caused by unknown abnormalities. HPX will perform much
better in such real-world cases because the exponential blowup is avoided.

Temporal Dimension of Knowledge, Postdiction and
Concurrent Acting and Sensing

TheHPX formalism is more expressive than most epistemic action theories in the sense
that it supports reasoning about the past. As we demonstrate with Example 7.1, this
temporal aspect combines nicely with postdiction and concurrent acting and sensing.
Example 7.1 is an extended version of the well-known Yale Shooting Problem (Hanks
and McDermott, 1987). It shows that the temporal dimension of knowledge is required
to reason about actions which sense a fluent’s value and concurrently change this value:
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pulling the trigger of a gun causes one to sense (by hearing the explosion) whether the
gun was loaded. At the same time the gun unloads. If the gun was loaded then one can
conclude that the target is dead. This inference is not possible with existing theories.

Example 7.1 An Extended Yale Shooting Problem
Consider the following domain specification:

(:init alive)

(:action shoot

:effect ¬loaded

:effect if loaded then ¬alive

:observe loaded)

The turkey is initially alive, but it is unknown whether the gun is loaded. Shooting
unloads the gun and causes the turkey to be dead if it is loaded. In addition, shooting
causes to know whether the gun was loaded. The task is to infer whether the turkey is
dead after the shooting, depending whether or not the firing of the gun was perceived.
InHPX this is possible, because sensing yields the value of a fluent before the action
takes place. That is, if the action is executed at t = 0 then in the resulting state t = 1,
knowledge about the loaded-ness at t = 0 is produced, even if this differs from the
loaded-ness in the resulting state t = 1. According to Definition 3.2 about initial
knowledge we have

h0 = ⟨{}, {⟨alive, 0⟩}⟩

TheHPX transition function (3.7) evaluates as:

Ψ(shoot,h0) ={h+
1 ,h

−
1 }, where

h+
1 =eval(⟨⟨shoot, 0⟩ , {⟨alive, 0⟩} ∪ {⟨loaded, 0⟩}⟩

h−
1 =eval(⟨⟨shoot, 0⟩ , {⟨alive, 0⟩} ∪ {⟨¬loaded, 0⟩}⟩

The eval function calls cause (3.13), and in the case of h+
1 this correctly generates

knowledge that the turkey is dead after shooting, i.e. h+
1 |= ⟨¬alive, 1⟩. In the case of

h−
1 cause correctly generates knowledge that the turkey is still alive after shooting:

h−
1 |= ⟨alive, 1⟩.

The example illustrates that the temporal dimension of knowledge is required in scenarios
where the temporal details of sensing and physical action effects play a role. More
examples can be found in areas like narrative interpretation or forensic reasoning, where
information about the past is gained e.g. through the statement of a witness.
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Incompleteness ofHPXHPXHPX
In Section 3.3 we show that the computational complexity of solving the plan-existence
problem is in NP, and hence one level below the ΣP

2 complexity of the same problem in
the PWS-based Aksemantics. The price to pay for this is that HPX is not complete
wrt. PWS-based approaches. Even thoughHPX ’s postdiction mechanism allows it to
solve more problems than other approximate theories which are also in NP, there are
still problems where no solution can be found. Intuitively, these are problems where
knowledge is generated because the same fluent in different possible worlds obtains the
same value. Consider Example 7.2 as a minimal example where knowledge is generated
with a PWS-based approach but not withHPX . Example 7.2 shows that there are cases
whereHPX is incomplete. However, it also shows that in many cases it is possible to
work around this issue with an alternative domain modeling.

Implementation as ASP and its Limitations

Answer Set Programming is a general approach to solve NP-complete search problems,
like the planning problem with the h-approximation. ASP solvers like clingo (Gebser
et al., 2012b) employ highly efficient algorithms and can act as workhorse to solve
planning problems without the need to implement a planner in a traditional programming
language like C++.
Also, using ASP as reasoning engine for planners is a relatively well-understood method.
In particular, the Negation as Failure (NaF) semantics of ASP is a convenient alternative
to circumscription for realizing the non-monotonicity of action theory (see Section 2.1.3).
Finally, the use of ASP allows us to formally prove that the results obtained by the solver
are actually sound wrt. the underlyingHPX theory. Such a proof is very circumstantial
for planners which are implemented in traditional programming languages like C++
because those programming language typically have a much more complex semantics.
However, we identify two limitations of the ASP formalization which both are caused
by the fact that ASP uses no quantification. Lee and Palla (2009) show that there are
ways to express quantification in Answer Set Programs using an extended First-Order
ASP semantics, but this only works for certain canonical cases. So far we did not find a
possibility to solve the following problems:

• In the operational semantics we are able to express that inertial(l, t,h) holds if
there exists no condition literal in an effect proposition which would cause l to hold
(see 3.10). We found no simple solution to capture the ∃-quantification over condi-
tion literals with Answer Set Programming. Instead we use the kNotSet(l, t, b)
predicate to represent that a literal l is inertial and implement rules (F3a) – (F3c)
to capture a similar behavior as in the operational semantics. However, this way of
implementing inertia is only correct in combination with rule (2) which forbids
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Example 7.2 Incompleteness ofHPX
Consider the following action which sets a fluent f to ¬f if f is true.

(:action falsify(f) :effect if f then ¬f)

Assume that initially it is unknown whether f of ¬f holds and compare how the
execution of this action affects knowledge in (1) a PWS-based approach and (2) in
HPX :

1. If f is initially unknown, then in a PWS-based approach the agent’s knowl-
edge state is represented by two possible worlds which we denote by Σ0 =
{{f}, {¬f}}. If action falsify(f ) is applied to Σ0, then its effect proposition
if f then ¬f is applied to both possible worlds resulting in a successor state
Σ1. Informally:

Σ0 = {{f}, {¬f}} Σ1 = {{¬f}, {¬f}}
falsify(f)

That is, the first possible world {f} in state Σ0 becomes {¬f} in the successor
state Σ1. Since a fluent literal is known to hold if it is true in all possible worlds,
a PWS-based semantics correctly represents that ¬f is known to hold after
executing falsify(f ).

2. With the h-approximation, the initial state would be h0 = ⟨∅, ∅⟩. Applying
falsify(f ) evaluates as follows:

Ψ(falsify(f),h0) = {⟨⟨falsify(f), 0⟩ , ∅⟩}

That is, the agent does not acquire any new information about f after executing
falsify(f). The only way to generated knowledge inHPX is either through
sensing or one of the inference mechanisms IM.1 – IM.5 of which none applies
in this case.

To see how one can work around the incompleteness problem consider the following
non-conditional action falsify2:

(:action falsify2(f) :effect ¬f)

In practice the outcome of falsify and falsify2 is identical in that ¬f will always
hold after execution. HPX correctly generates knowledge if falsify2 is used instead
of falsify.
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that two effect propositions (EPs) with the same effect literal can not be applied
simultaneously.

• In the operational semantics, positive postdiction is realized with the function
addpdpos(h) which involves a ∀-quantification over effect propositions. There is no
simple way of modeling this in terms of ASP, and therefore the ASP formalization
of positive postdiction (rule T6b) also relies on restriction (2) (two EPs with the
same effect literal can not be applied simultaneously).

The restriction that two similar effect propositions can not be applied simultaneously is
not necessary in the operational semantics. Therefore the ASP implementation will not
generate solutions in cases where two or more similar EPs are applied simultaneously,
even though the operational semantics does.

Semantics of Online Planning and Abductive Explanation

Based on the offline ASP formalization we present extensions which makeHPX capable
of performing incremental online planning with abductive explanation.
However, the semantics of the execution monitoring mechanism itself is not modeled
in our theory. This would require one to model the system architecture depicted in
Figure 5.1 in terms of an operational or model-theoretic semantics on top of the original
HPX semantics. This is a research endeavor on its own and out of scope for this thesis.
However, due to its inherent postdiction capabilitiesHPX could serve as a basis for an
execution monitoring semantics.
Another point for discussion concerns the abductive explanation extension presented in
Section 5.2. A problem is that there may be multiple explanations for unexpected world
property changes. For example, in the second use case (Section 6.2) the closing of a
door was explained by the occurrence of an exogenous action: an external agent, the
person “George”, closed the door. However, the door could also have been closed by an
air breeze and without additional external knowledge it is impossible to determine which
explanation is true.
If the explanation is wrong, and if the action which is used in the explanation has a
conditional effect then this causes additional problems because false knowledge about
the conditions of the action could be postdicted. In the scenario from Section 6.2 for
example, a conditional effect is that George can open a door if he is in a room adjacent
to the door. For the bathroom door this is either the corridor or the bathroom. Consider
that the closing of the door is detected, and the explanation that George closed the door
from the corridor has been chosen. Then the system will postdict that George is in the
corridor since this is a condition which must hold for George to open the door. However,
if in reality George closed the door from the bathroom then this postdiction is wrong.
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A partial solution is to restrict exogenous actions to have only one effect literal and no
conditions. In that case, even though explanations about the occurrence of actions may
be wrong they do not have side-effects on knowledge.

7.2. Future Work

Though HPX is already capable of solving many problems in practical applications
there are many possible improvements in both theory and application ofHPX .

An Elaborate Temporal Semantics for Ak

In Section 3.4 we defineATQS
k , the temporal query semantics for the action languageAk.

This extended semantics serves the purpose to provide a formal semantic grounding and
to define soundness of HPX . However, its current definition is limited in that it only
considers sequences of actions. Conditional plans and concurrency are not supported
so far. A generalization to address non-boolean fluent values is also useful. Elaborating
ATQS

k with these extensions could result in a theory which serves as a benchmark for
other temporal epistemic formalisms such as EFEC (Miller et al., 2013),1 in a similar
way in which Ak became a benchmark for non-temporal epistemic action formalisms.

Ramifications and Static Causal Laws

Ramifications concern the side-effects of actions. For example, if a robot carries an
object and the robot moves, then the object moves with the robot. This side-effect can
in principle be modeled in the current version of HPX , but in order to achieve this,
the action specifications have to be modeled in a very circumstantial and elaboration
intolerant manner. A solution to this so-called ramification problem is using Static Causal
Laws (SCL) (see e.g. (Turner, 1999)). SCL are constructs of the form if l1, . . . , ln then
lscl which state that if literals l1, . . . , lnare initiated, lscl is also initiated.2

One way to include SCL in HPX is to compile them into the effect propositions of
actions. For instance, the following action represents a simple move-action:

(:action move
:parameters (?r - Robot ?from ?to - Location)
:effect (and !at(?r, ?from) at(?r, ?to)))

1In a personal conversation with Rob Miller he mentioned that a temporal epistemic framework like
ATQS

k would be useful to define soundness of temporal theories like EFEC (Miller et al., 2013). This
underpins our observation that ATQS

k can play an important benchmark role in the area of epistemic
action theory.

2For a detailed description of the semantics of SCL we refer to (Turner, 1999).
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A SCL which represents that the object held by the robot is always at the robot’s location
could be written in a PDDL-style as:3

(:scl-holdObject
:parameters (?r - Robot ?o - Object ?loc - Location)
:scl (and holding(?r,?o) at(?r, ?loc)) -> at (?o,loc))

Integrating the SCL into the above action would create an additional action:

(:action move-holdObject
:parameters (?r - Robot ?from ?to - Location ?o - Object)
:effect (and !at(?r, ?from)

at(?r, ?to)
(if holding(?r,?o) then (and !at(?o,?from) at(?o,?to)))))

An extension to HPX would mean to automatize the generation of additional action
definitions such that SCL are considered. Tu et al. (2007) have shown how to integrate
SCL within the 0-approximation semantics ofAk, but it is unclear how this automation is
to be be realized wrt.HPX ’s postdiction rules and the temporal dimension of knowledge.

Resources, Functional Fluents, Quantities and Simple
Arithmetics
Resources are quantities, like e.g. the remaining power of a battery. In the presented
HPX framework, quantities have to be modeled in a circumstantial way. Values have
to be discretized and this causes a huge number of objects in the domain specification.
Epistemic planning systems like MAPL (Brenner and Nebel, 2009) or PKS (Petrick
and Bacchus, 2004) do not have this limitation and show how this problem can be
solved. A first step towards modeling quantities and resources is to introduce functional
fluents. HPX only allows one to model binary fluents, and currently functional fluents
have to be emulated with binary fluents as follows: let the number of energy states be
discretized into 100 values, and a binary predicate hasEnergy represents the robot’s
energy level. Then to state that the robot’s current energy level is e.g. 78 one has to write
hasEnergy(robot, 78), ¬hasEnergy(robot, 1) . . ., ¬hasEnergy(robot, 77), . . .,
¬hasEnergy(robot, 79), . . ., ¬hasEnergy(robot, 100). With a functional fluent
semantics the same could be written with a single statement: hasEnergy(?r) = 78.
A second step is to combine functional fluents with simple arithmetics. This allows one
to natively model basic mathematical operations with quantities, such as the usage of
energy. As an example consider how the following energy-consuming move action is
modeled:

3There is a semantics difference between axioms in PDDL 1.0 (McDermott et al., 1998) and SCL as
described e.g. in (Tu et al., 2007): SCL are always “triggered” by an action, while axioms are laws
that hold universally. For details consider (McCain and Turner, 1995).
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(:action move-consume
:parameters (?r - Robot ?from ?to - Location)
:vars ?startE = hasEnergy(?r)

?consumption = consumes(?r, ?form, ?to)
:effect (and !at(?r, ?from) at(?r, ?to)

!hasEnergy(?r,?startE)
hasEnergy(?r,?startE-?consumption)))

The syntax is similar to that of MAPL (Brenner and Nebel, 2009). the :vars section
represents variable assignment. Instead of having ?startE in the parameters of the
action, ?startE is obtained by evaluating the functional fluent hasEnergy(?r). Hence,
the number of instantiations of the action operator does not grow with the number
of discretized energy values any more. Similarly, ?consumption is a variable which
represents the amount of energy that the robot requires for the particular instantiation of
the drive action. In the effect specification there is a arithmetic “-” operation to compute
the remaining energy.
A future research aspect is to implement and to define a functional fluent semantics with
arithmetics, which would make it possible to model action operators like the energy-
consuming move action. Of particular interest is the epistemic aspect of resources which
involves postdiction of functional fluent values.

Deadlock Detection

The weak planning approach which we pursued in the Smart Home scenario (Section
6.2) has the practical advantage of a fast system reaction time, i.e. actions can already
be executed even if every possible path to the goal has not been computed yet. The
disadvantage of weak planning is that an agent might run into a deadlock. For instance,
consider an agent which has the task to find an object in a building. Assume that it can
execute a sensing action to determine whether the object is in the same room as the agent.
Consider further that there are doors connecting the rooms, which are automatically
closing after the agent moves through them, but there are some doors that can only be
opened from one side. Then, if the agent passes such a door, the way back is blocked.
Finding a method to efficiently analyze a domain to find and avoid deadlocks is an
important research question, for instance for robotic rescue and exploration tasks in
unknown environments.

“True” Concurrency and Durative Actions

HPX is capable to model concurrent action execution, but this is only possible under the
assumption that actions have the same duration. This causes a “patchy” system behavior
in practice: consider the driving of a robot R1 and the opening of a door D. Opening the
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door will usually take about 3 seconds, while the driving of R1 can take much longer. If
the open-ness of the door is the condition for another action, e.g. for a second robot R2
which is about to move through that door, then R2 would have to wait until the first robot
finishes its driving, even though the door may already be open. The reason for this is that
the state transition is only complete if both concurrent actions are finished. A solution
to this is the consideration of the duration of actions, which would allow one to realize
“true” concurrency. However, it is unclear how this affects the complexity of the planning
problem, and whether computation times remain acceptable for practical applications if
considering time.

Performance Optimizations

The planning problem for HPX is in a lower complexity class than for PWS-based
approaches. However, since the problem is still in NP it is commonly considered to
be intractable. The use cases presented in Chapter 6 have shown that even though the
HPX planner is capable of performing assistance tasks in real-world environments,
its computation time (e.g. 23.65 sec. for plan repair) is not acceptable for a seamless
integration in a Smart Home or other real-world applications where a quick response to
planning queries is required.
However, the highly optimized Contingent Planner CFF (Hoffmann and Brafman, 2005)
for example shows that despite its even higher complexity computation times are in many
cases tolerable (see Table 6.2).
This leads to the hypothesis that a planner based on theHPX theory can be even faster
than CFF or other PWS-based approaches, due to the lower computational complexity.
We make three propositions to achieve this:

1. Optimize the ASP solving parameters and order of LP rules.
ASP is fully declarative in the sense that the order in which the LP rules are stated
does not affect the solutions. However, it is well known that the order in which the
rules of an LP are stated can have an effect on the computational performance (see
e.g. (Gebser et al., 2012b)). A way to optimize a Logic Program is to find a rule
ordering which is more efficient in practice.

In addition to the optimization of the order of LP rules, the solving process can also
be optimized by adjusting the parameters of the LP solver properly. Solvers like
clingo (Gebser et al., 2012b) provide different heuristics and so-called “nogood-
learning” mechanisms and other parameters which can be adjusted such that they
are more appropriate for the individual LP to solve. So far we have only tried the
standard settings.

2. Perform planning during plan execution.
For the online setup described in Section 6.2 we interleaved planning and plan
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execution such that (1) a plan is generated, (2) the plan is executed until a sensing
result revealed the plan to be invalid or until the goal is achieved, (3) if the goal is
not achieved then the plan is repaired, (4) the repaired plan is executed until the
plan becomes invalid or the goal is achieved, (5) the plan is repaired, etc.. Since in
this interleaving execution takes a considerable amount of time, the plan extension
can be shifted to take place during plan execution. That is, the solver could already
extend its search space and pre-compute other plans which might solve the problem
while the robot is executing the previous plan. This would lead to faster plan repair
phases because parts of the search space can already be precomputed during the
action execution phase.

3. Implement heuristics in terms of ASP.
CFF and other PDDL-based planners like MBP (Cimatti et al., 2003) are very
performant because they heavily rely on heuristics related to the specifics of action
planning. Since ASP solvers are much more general than dedicated action planners,
their heuristics have to be be more general as well. This means that they can not
exploit certain specifities which only occur in action planning. We believe that
identifying such specifities and encoding them as heuristics in the Logic Program is
a promising way to improve the computational performance of ASP based planners
in general.

Heuristics which depend on the individual planning problem can also help to
improve performance. For instance, one could reduce the search space of a
navigation problem by not allowing that a door is opened and then immediately
closed again. One can be even more restrictive by stating that whenever a door
is opened, then the agent must move through the door. Similar approaches can
be found in literature (e.g. the control constructs employed in the TALplanner
by Kvarnström (2005)) and it was shown that this can drastically reduce the
computation time.

Elaboration Tolerant Abnormality Detection – A Partial
Solution to the Qualification Problem

The Qualification Problem (McCarthy and Hayes, 1969) is the problem of considering
all conditions and qualifications under which an action has a certain effect. For instance,
the driving of a robot is only successful if there is no obstacle blocking the way, but in an
open world one can not model every possible obstacle for a drive-action.
A well-known partial solution to this problem is to consider abnormalities e.g. (Kvarn-
ström, 2005; Patkos, 2010). In this work, we proposed to model an abnormality fluent for
each action which represents whether the action will succeed. For example, the use case
in Section 6.1 involves an action open door which is only successful if an abnormality
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fluent ab open is false. At the current state ofHPX this requires the domain-designer
to manually specify abnormality fluents and respective effect propositions of actions.
On the one hand, this is sensible because the domain-designer can himself decide which
actions are unreliable, even on the level of the individual effect propositions. On the
other hand, this method is not elaboration tolerant, because the domain-designer has to
model abnormalities himself. A future research question is how to semi-automatize the
integration of abnormalities in action effects such the domain designer can control the
abnormality modeling to an appropriate extend.
A related issue refers to dynamic abnormalities. For instance, there may be an obstacle
blocking the drive-action of a robot, but if this obstacle is a moving object (e.g. the family
dog) then it might move after some time and the abnormality does not exist anymore. In
general, if an action is unsuccessful then it may make sense to try again some time later.
A solution to this problem can be to model abnormalities with a “decay”, i.e. knowledge
about abnormalities ceases after a certain time.

Integration in a General Cognitive Robotics Framework

So far,HPX is a stand-alone online planner with support for abductive explanation.
An interface to an established Robotic Frameworks like ROS4 would allow one to
seamlessly useHPX as a reasoning tool in a huge number of robotic applications. For
this reason,HPX is currently being integrated in the ExpCog (Suchan and Bhatt, 2013)
Cognitive Robotics framework.
ExpCog is aimed at integrating logic-based and cognitively-driven agent-control ap-
proaches, qualitative models of space and the ability to apply these in the form of
planning, explanation and simulation in a wide-range of robotic-control platforms and
simulation environments. In addition to its primary experimental function, ExpCog is
also geared toward educational purposes. ExpCog provides an easy to use toolkit to
integrate qualitative spatial knowledge with formalisms to reason about actions, events,
and their effects in order to perform planning and explanation tasks with arbitrary robot
platforms and simulators. As demonstrators, support has been included for systems
including ROS, Gazebo, iCub. The core integrated agent-control approaches include
logic-based approaches like Situation Calculus, Fluent Calculus, or STRIPS, as well
as cognitively-driven approaches like Belief-Desire-Intention. Furthermore, additional
robot platforms and control approaches may be seamlessly integrated.

Explore Other Applications

This thesis focuses on the application ofHPX in Cognitive Robotics. However, there
are several other domains where a temporal epistemic theory is useful. An example is

4http://www.ros.org, accessed on 30th July 2013
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narrative interpretation and forensic reasoning. For Instance, consider a criminal case
where a witness states observations she made in the past. To reason abut this information
one needs a theory likeHPX which explicitly models time. Existing action theories are
not capable of performing such temporal reasoning.

7.3. Summary
Epistemic action formalisms provide the theoretical backbone for deliberation tasks in
Cognitive Robotics and related applications. However, existing formalism are either
based on a possible-world-semantics, therefore suffering from a combinatorial explo-
sion of state variables or they are approximations, incapable of performing postdictive
reasoning.
This thesis fills this gap and shows that it is possible to implement postdictive reasoning
without the need for an exponential number of state variables. The key is a temporal
dimension of knowledge, which has the interesting side-effect of making the theory more
expressive.
We only identified two approaches (Miller et al., 2013; Vlaeminck et al., 2012) which
have a comparable temporal expressiveness. However, both approaches do not have a
semantic grounding and soundness or completeness results wrt. other epistemic action
theories.
In addition to the theoretical results, the thesis demonstrates the theory’s applicability in
practice by presenting its implementation and integration in a robotic framework.
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A
Soundness of ASP Implementation wrt.HPXHPXHPX

Semantics

This appendix contains results for the soundness relations between the ASP implementa-
tion ofHPX and its operational semantics (see Table 4.1).
Section A.1 provides notational conventions and in Section A.2 we depict the general
proof structure.
Section A.3 contains the main soundness proof for state transitions. It shows that if
knowledge about a pair ⟨l, t⟩ (denoted by knows(l, t, n+1, b) atoms) is generated by the
occurrence of actions in the ASP implementation then knowledge is also generated by the
HPX -transition function, i.e. ∃h′ ∈ Ψ(A,h) : h′ |= ⟨l, t⟩. This relies on several other
Lemmata which have a similar form and which are also stated and proven throughout the
appendix: Section A.4 proves soundness of the application of effect propositions, Section
A.5 proves soundness of sensing results and Section A.6 proves auxiliary Lemmata.

A.1. Notational Conventions
We presume the following notational conventions.

• maxS and maxB are constants denoting the maximal plan depth and width respec-
tively. 0 ≤ n ≤ maxS, 0 ≤ b ≤ maxB and 0 ≤ b′ ≤ maxB denote variables for steps
and branches respectively.

• D is a domain description with the initial h-state h0

• LP (D) is the Logic Program of a domain descriptionD without the plan-generation
rule (F7) and without the goal statements generated by translation rule (T8)

• SP
D is a Stable Model of LP (D) ∪ P where P is a set of occ(a, n, b) atoms with

0 ≤ n < maxS such that
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– ∀a, n, b :

occ(a, n, b) ∈ SP

D ⇒ uBr(n, b)

.1

– ∀n, b :

uBr(n, b) ∈ SP

D ⇒ ∃a : occ(a, n, b) ∈ SP
D


2

• An,b = {a|occ(a, n, b) ∈ SP
D } is a set of actions applied at a transition tree node

with the “coordinates” ⟨n, b⟩.

The main proofs in this appendix concern implications which we mark by writing them
in a gray box. Below the gray box we state and justify substitutions and generalizations
we make and then we state the resulting implication in the next gray box. For example:

p(x)⇒ q(x)

We substitute p(x) by x > 10 and q(x) by x > 0.

x > 10⇒ x > 0

A.2. Proof Overview and Structure

The core soundness theorem to be proven is Theorem 4.1 which states that the model-
theoretic interpretation of state transitions is sound wrt. the actual state transitions defined
in the operational semantics.
The proof of this theorem involves several Lemmata which are implications of the
following form:

∀n, b, b′ : hasChild(n, b, b′, S)⇒
∃h ∈ Ψ(An,b,h(n, b, S)) :

∀x ∈ X :

q(x, n+ 1, b′) ∈ S ⇒ pop(x,h)

 (A.1)

where X is a finite set of symbols, q(x, n+ 1, b′) denote atoms in the Stable Model S of
a Logic Program and pop(x,h) is a relation between x and the h-state h (typically some
form of entailment).
For example, for Lemma (A.2) X is the set of all pairs of literals and time steps. In that
case, q(x, n + 1, b′) corresponds to knows(l, t, n + 1, b′) and pop(x,h) corresponds to
h |= ⟨l, t⟩.

1This restriction reflects the mechanics of the plan generation rule (F7) which only generates occ(a, n, b)
atoms if uBr(n, b) ∈ SP

D .
2This restricts that there are no “gaps” in a plan, i.e. for all nodes in used branches there occurs at

least one action. Note that this restriction is met for all occ/3 atoms which are generated by the plan
generation rule (F7).
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To prove implications of the form (A.1) we first eliminate the hasChild(n, b, b′, S)
premise by considering two different cases where hasChild(n, b, b′, S) becomes true.
This case distinction also helps to eliminate the ∃ quantification over h-states.
What remains are simple implications of the following form for each case.

∀x ∈ X :

q(x, n+ 1, b′) ∈ S ⇒ pop(x,h)


(A.2)

We prove the implications by complete induction over x, where X is a finite set. The
induction consists of one or more base steps and induction steps. In the following we
will demonstrate this induction. Therefore we consider two formalisms: first we provide
a Logic Program with a similar structure as an HPX -Logic Program and second we
define an operational semantics with a similar structure as the HPX semantics. Then
we present a soundness proof for the two formalisms.

Logic Program

Let LP1 be the following Logic (sub-)Program:

q(X)← u(X). (A.3a)
q(X)← q(Y ), X ̸= Y, v(X, Y ). (A.3b)
q(X)← q(Y ), X ̸= Y,w(X, Y ). (A.3c)

where variables X and Y range over the set X . Let S be a Stable Model of a LP that
contains LP1 and which does not have any other rules with a predicate q in the head,
except those defined in LP1. Then it follows by the Stable Model semantics that (A.4) is
true.

∀x, y ∈ X :

q(x) ∈ S


⇐


u(x) ∈ S


(A.4a)

∀x, y ∈ X :

q(x) ∈ S


⇐


{q(y), v(x, y)} ⊆ S ∧ x ̸= y


(A.4b)

∀x, y ∈ X :

q(x) ∈ S


⇐


{q(y), w(x, y)} ⊆ S ∧ x ̸= y


(A.4c)

The other direction of the implication (A.5) must also hold because the Logic Program
does not contain any other rules with a q/1 predicate in the head.

∀x, y ∈ X :

q(x) ∈ S ⇒ 
u(x) ∈ S


∨

{q(y), v(x, y)} ⊆ S ∧ x ̸= y


∨

{q(y), w(x, y)} ⊆ S ∧ x ̸= y


(A.5)
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Set-theoretic Semantics

The set-theoretic semantics involves functions which set the properties of h. Assume
that the following implications are defined by the set-theoretic semantics:

∀x, y ∈ X :pop(x,h)⇐

uop(x,h)


(A.6a)

∀x, y ∈ X :pop(x,h)⇐

pop(y,h) ∧ vop(x, y,h) ∧ x ̸= y


(A.6b)

∀x, y ∈ X :pop(x,h)⇐

pop(y,h) ∧ wop(x, y,h) ∧ x ̸= y


(A.6c)

A-priori relation between Logic Program and set-theoretical semantics

Assume that we have proven equivalence relations between the ASP implementation and
the operational semantics as depicted in Table A.1.

ASP implementation Operational semantics
u(x) ∈ S ⇔ uop(x,h)

v(x, y) ∈ S ⇔ vop(x, y,h)
w(x, y) ∈ S ⇔ wop(x, y,h)

Table A.1.: Relation between example Logic Program and example operational semantics

Lemma and Inductive Proof

A notion of soundness between the ASP implementation and the operational semantics is
defined with respect to q(x) ∈ S and pop(x,h). The general form of a soundness Lemma
is as follows:3

Lemma A.1 (Soundness lemma in general form)

∀x ∈ X :

q(x) ∈ S ⇒ pop(x,h)


(A.7)

Proof:
The hypothesis is that (A.7) holds for arbitrary x ∈ X . The relations depicted in Table
A.1 allow us to perform a structural induction as follows.

Base step For the base step we consider those x for which pop(x) is produced by LP
rule A.3a. To this end we substitute q(x) with the body of A.4a and prove (A.8).

3The Lemma is a simplified version of implication (A.2), where we omit the n+ 1 and b′ parameters for
simplicity.
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∀x ∈ X :

u(x) ∈ S ⇒ pop(h, x)


(A.8)

It follows from Table A.1 that u(x) ∈ S ⇒ uop(x,h). Therefore to show that (A.8) holds it
is sufficient to show that (A.9) holds.

∀x ∈ X :

uop(x,h)⇒ pop(h, x)


(A.9)

It directly follows from (A.6a) that implication (A.9) holds.

Induction step 1 For the first induction step we consider those x for which pop(x)
is produced by LP rule A.3b. To this end we substitute q(x) with the body of A.4b and
prove (A.10).

∀x ∈ X :

{q(y), v(x, y)} ⊆ S ∧ x ̸= y


⇒ pop(h, x)


(A.10)

It follows from Table A.1 that v(x, y) ∈ S ⇒ vop(x, y,h). Therefore to show that (A.10)
holds it is sufficient to show that (A.11) holds.

∀x ∈ X :

q(y) ∈⊆ S ∧ x ̸= y ∧ vop(x, y,h)


⇒ pop(h, x)


(A.11)

Note that we presume that x ̸= y. For this reason we can use the induction hypothesis and
assume that q(y)⇒ pop(y,h). Hence, to prove that (A.11) holds it is sufficient to show that
(A.12) holds.

∀x ∈ X :

pop(h, y) ∧ x ̸= y ∧ vop(x, y,h)


⇒ pop(h, x)


(A.12)

According to (A.6b) implication (A.12) is clearly true.

Induction step 2 For the second induction step we consider those x for which pop(x)
is produced by LP rule A.3c. That is, we show that (A.13) holds

∀x ∈ X :

{q(y), w(X, Y )} ⊆ S ∧ x ̸= y


⇒ pop(h, x)


(A.13)

This case is analogous to induction step 1.

Completeness of induction The induction is complete because we have considered
all rules in the Logic Program which can possibly produce an atom q/1. In other words,
the induction is complete because (A.5) holds.
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A.3. Soundness of Knowledge Atoms

Lemma A.2 is the main soundness lemma. It directly shows that the main soundness
Theorem 4.1 from Section 4.6 holds.

Lemma A.2 (Soundness for knowledge atoms for single state transitions)

∀n, b, b′ : hasChild(n, b, b′, SP
D )⇒

∃h ∈ Ψ(An,b,h(n, b, S
P
D )) :

∀l, t : (knows(l, t, n+ 1, b′) ∈ SP
D ⇒ h |= ⟨l, t⟩

 (A.14)

For the proof of Lemma (A.2) we first distinguish whether or not ∃l′ : sRes(l′, n, b, b′) ∈
SP
D . This makes it easy to argue under which circumstances hasChild(n, b, b′, SP

D ) is
true and eliminates the ∃-quantification over h. Presuming that hasChild(n, b, b′, SP

D )
holds under certain circumstances and having eliminated the ∃-quantifications we perform
induction over the structure of implications which produce pairs ⟨l, t⟩:
To this end, we perform several base steps to show that (A.14) holds for some ⟨l, t⟩. Then
we perform induction steps where we show that that given (A.14) holds for some fixed
⟨l′, t′⟩ it also holds for pairs ⟨l, t⟩ with ⟨l′, t′⟩ ≠ ⟨l, t⟩.
We consider Lemma A.6 which identifies all ten rules in theHPX -Logic Program that
have a knows/4 predicate in their head and hence eventually produce a knows(l, t, n+
1, b′) atom. As discussed in Lemma A.6, the ten LP rules correspond to implications
(A.15) which are universally quantified over l, t, n, b′.

From these implications, (A.15a), (A.15f), (A.15j) and (A.15k) produce knowledge
concerning pairs ⟨l, t⟩ independently from knowledge about other pairs ⟨l′, t′⟩ for fixed
n, b′. That is, to produce knows(l, t, n+ 1, b′) these implications do not directly depend
on an atom knows(l′, t′, n+ 1, b′) in their body. For each of these rules we perform one
base step.

The implications which cover initial state constraints (A.15b), (A.15c), forward inertia
(A.15d), backward inertia (A.15e), causation (A.15g), positive postdiction (A.15h)
and negative postdiction (A.15i) generate knows(l, t, n + 1, b′) atoms dependently on
knows(l′, t′, n + 1, b′) atoms, where ⟨l′, t′⟩ ̸= ⟨l, t⟩. We consider these rules for the
induction steps where we may assume that soundness is given for knows(l′, t′, n+ 1, b′)
atoms.
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knows(l, t, n+ 1, b′) ∈ SP
D ⇐


t = 0 ∧ n = −1 ∧ b′ = 0 ∧ l ∈ VP


(A.15a)

knows(l, t, n+ 1, b′) ∈ SP
D ⇐ (A.15b)

∃C ∈ ISC :

t = 0 ∧ n = −1 ∧ b′ = 0∧

l ∈ C ∧ ∀l+ ∈ C \ l : knows(l+, 0, 0, 0) ∈ SP
D


knows(l, t, n+ 1, b′) ∈ SP
D ⇐ (A.15c)

∃C ∈ ISC :

t = 0 ∧ n = −1 ∧ b′ = 0∧

l ∈ C ∧ ∃l+ ∈ C \ l ∧ knows(l+, 0, 0, 0) ∈ SP
D


knows(l, t, n+ 1, b′) ∈ SP
D ⇐ (A.15d)

knows(l, t− 1, n+ 1, b′) ∈ SP
D∧

kNotSet(l, t− 1, n+ 1, b′) ∈ SP
D ∧ t ≤ n+ 1


knows(l, t, n+ 1, b′) ∈ SP

D ⇐ (A.15e)
knows(l, t+ 1, n+ 1, b′) ∈ SP

D∧
kNotSet(l, t, n+ 1, b′) ∈ SP

D ∧ t < n+ 1


knows(l, t, n+ 1, b′) ∈ SP
D ⇐ knows(l, t, n, b′) ∈ SP

D (A.15f)

knows(l, t, n+ 1, b′) ∈ SP
D ⇐ kCause(l, t, n+ 1, b′) ∈ SP

D (A.15g)

knows(l, t, n+ 1, b′) ∈ SP
D ⇐ kPosPost(l, t, n+ 1, b′) ∈ SP

D (A.15h)

knows(l, t, n+ 1, b′) ∈ SP
D ⇐ kNegPost(l, t, n+ 1, b′) ∈ SP

D (A.15i)

knows(l, t, n+ 1, b′) ∈ SP
D ⇐ (A.15j)

∃b : sRes(l, n, b, b′) ∈ SP
D ∧ t = n


knows(l, t, n+ 1, b′) ∈ SP

D ⇐ (A.15k)
∃b : (sRes(l′, n, b, b′) ∈ SP

D∧
knows(l, t, n, b) ∈ SP

D ) ∧ n ≥ t


The induction is complete because we consider all rules in the Logic Program which can
eventually generate a knows/4 -atom. That is, all possible knows(l, t, n+ 1, b′) atoms
are reached for arbitrary n, b.
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Proof:
(A.14)

Transition function (3.7):
Ψ(An,b,h(n, b, S

P
D )) =


k∈sense(A,h(n,b,SP

D ))

eval(

α′,κ(n, b, SP

D ) ∪ k

)

where α′ = α(n, b, SP
D ) ∪ {⟨a, t⟩ |a ∈ An,b ∧ t = now(h(n, b, SP

D ))}

∀n, b, b′ : hasChild(n, b, b′, SP
D )⇒

∃h ∈


k∈sense(A,h(n,b,SP
D ))

eval(

α′,κ(n, b, SP

D ) ∪ k

) :

∀l, t : (knows(l, t, n+ 1, b′) ∈ SP
D ⇒ h |= ⟨l, t⟩

 (A.16)

with t ≤ n and α′ = α(n, b, SP
D ) ∪ {⟨a, t⟩ |a ∈ An,b ∧ t = now(h(n, b, SP

D ))}

According to Lemma A.13:
now


h(n, b, SP

D )

= n

∀n, b, b′ : hasChild(n, b, b′, SP
D )⇒

∃h ∈


k∈sense(A,h(n,b,SP
D ))

eval(

α′,κ(n, b, SP

D ) ∪ k

) :

∀l, t : (knows(l, t, n+ 1, b′) ∈ SP
D ⇒ h |= ⟨l, t⟩

 (A.17)

with t ≤ n and α′ = α(n, b, SP
D ) ∪ {⟨a, n⟩ |a ∈ An,b}

To prove that (A.17) holds, we perform induction for pairs ⟨l, t⟩. To this end, we first
determine cases under which hasChild(n, b, b′, SP

D ) becomes true and we eliminate the
∃ quantification over h-states. We distinguish two cases.

Case 1: ∃l′ : (sRes(l′, n, b, b′) ∈ SP
D) (With Sensing Result)

We prove that (A.17) holds if sensing results are obtained. That is, we consider cases
where (A.18) holds.

∃l′ : (sRes(l′, n, b, b′) ∈ SP
D ) (A.18)

The following formulae are universally quantified over those n, b, b′ for which (A.18)
holds. The case distinction allows us to simplify (A.17) and we make the following
substitutions for this case.
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Recall (A.17):

hasChild(n, b, b′, SP
D )⇒

∃h ∈


k∈sense(A,h(n,b,SP
D ))

eval(α′,κ(n, b, SP
D ) ∪ k) :

∀l, t : (knows(l, t, n+ 1, b′) ∈ SP
D ⇒ h |= ⟨l, t⟩


Case distinction (A.18) and definition of hasChild (4.3):

∃l′ : (sRes(l′, n, b, b′) ∈ SP
D )⇒ hasChild(n, b, b′, SP

D )

∃h ∈


k∈sense(A,h(n,b,SP
D ))

eval(α′,κ(n, b, SP
D ) ∪ k) :

∀l, t : (knows(l, t, n+ 1, b′) ∈ SP
D ⇒ h |= ⟨l, t⟩

 (A.19)

with t ≤ n and α′ = α(n, b, SP
D ) ∪ {⟨a, n⟩ |a ∈ An,b}

We eliminate the ∃-quantification by generalizing (A.19) as follows:
The case distinction (A.18) states that there exists at least one literal l′ for which
sRes(l′, n, b, b′) ∈ SP

D . In the following we consider an arbitrary literal ls such that:

sRes(ls, n, b, b′) ∈ SP
D (A.20)

That is, we presume that the following formulae are implicitly universally quantified over ls

for which (A.20) holds.
Further, according to Lemma A.10:

sRes(ls, n, b, b′) ∈ SP
D


⇒


sense(A,h(n, b, SP

D )) =

{⟨ls, n⟩}, {


ls, n


}


Hence, in order to show that (A.19) holds, it is sufficient to show that (A.21) holds.

∀l, t :


knows(l, t, n+ 1, b′) ∈ SP
D

⇒


eval(α′,κ(n, b, SP

D ) ∪ ⟨ls, n⟩) |= ⟨l, t⟩


(A.21)
with t ≤ n and α′ = α(n, b, SP

D ) ∪ {⟨a, n⟩ |a ∈ An,b}

We prove (A.21) by induction over the structure of implications (A.15) which generate
knows/4 atoms for pairs ⟨l, t⟩.
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Base Steps for Case 1

1. Initial Knowledge: {⟨l, t⟩ |knows(l, t, n+ 1, b′) is produced by (T2)}
Implication (A.15a) generates knowledge for step 0 only, i.e. according to (A.15a)
it must hold that if an atom knows(l, t, n + 1, b′) is generated then n + 1 = 0.
However, since by Definition 4.1 we consider n ≥ 0, (T2) can not produce an atom
knows(l, t, n+ 1, b); this case does not apply.

2. Inertia of knowledge: {⟨l, t⟩ |knows(l, t, n+ 1, b) is produced by (F3f)}
Recall the LP rule (F3f):

knows(L,T ,N ,B)← knows(L,T ,N − 1 ,B), N ≤ maxS.

In the following we show that (A.21) holds for knows(l, t, n+ 1, b′) produced by
(F3f).

Recall (A.21):

∀l, t : (knows(l, t, n+ 1, b′) ∈ SP
D ⇒ eval(


α′,κ(n, b, SP

D ) ∪ ⟨ls, n⟩

) |= ⟨l, t⟩)

with t ≤ n and α′ = α(n, b, SP
D ) ∪ {⟨a, n⟩ |a ∈ An,b}

To prove (A.21) for those ⟨l, t⟩ for which an atom knows(l, t, n + 1, b′)
is produced by Logic Programming rule (F3f) we consider the following
implication (A.15f):

knows(l, t, n+ 1, b′) ∈ SP
D ⇐ knows(l, t, n, b′) ∈ SP

D

We substitute knows(l, t, n+ 1, b′) in (A.21) with the body of (A.15f) and
obtain (A.22).

knows(l, t, n, b′) ∈ SP
D ⇒ eval(


α′,κ(n, b, SP

D )

) |= ⟨l, t⟩ (A.22)

with t ≤ n and α′ = α(n, b, SP
D ) ∪ {⟨a, n⟩ |a ∈ An,b}

By Lemma A.4:

∀l, t, n, b, b′ :

knows(l, t, n, b′) ∈ SP

D ∧ (∃l′ : sRes(l′, n, b, b′) ∈ SP
D )


⇒ b = b′

According to case distinction (A.18) we consider only cases where b = b′.

Consequently we consider only those cases where b = b′. In theses cases the rest of the
proof is analogous to the Case 1 where ¬∃l′, b′ : sRes(l′, n, b, b′) ∈ SP

D . (In that case it also
holds that b = b′.)
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3. Sensing {⟨l, t⟩ |knows(l, t, n+ 1, b) is produced by (F5k)}
Recall the LP rule (F5k):

knows(L,N − 1, N,B′)← sRes(L,N − 1, B,B′), s(N)

In the following we show that (A.21) holds for those knows(l, t, n+1, b′) produced
by (F5k).

Recall (A.21):

∀l, t : (knows(l, t, n+ 1, b′) ∈ SP
D ⇒ eval(


α′,κ(n, b, SP

D ) ∪ ⟨ls, n⟩

) |= ⟨l, t⟩)

with t ≤ n and α′ = α(n, b, SP
D ) ∪ {⟨a, n⟩ |a ∈ An,b}

We prove (A.21) for those ⟨l, t⟩ for which an atom knows(l, t, n+ 1, b′) is
produced by Logic Programming rule (F5k), respectively by the following
implication (A.15j):

knows(l, t, n+ 1, b′) ∈ SP
D ⇐ (sRes(l, n, b, b′) ∈ SP

D ∧ t = n)

We substitute knows(l, t, n + 1, b′) in (A.21) with the body of (A.15j) and
obtain (A.24).

∀l, t : sRes(l, n, b, b′) ∈ SP
D ⇒ eval(


α′,κ(n, b, SP

D ) ∪ ⟨ls, t⟩

) |= ⟨l, t⟩ (A.23)

with t ≤ n and α′ = α(n, b, SP
D ) ∪ {⟨a, n⟩ |a ∈ An,b}

Recall that by (A.20), ls is an arbitrary literal such that sRes(ls, n, b, b′) ∈ SP
D .

By Lemma A.11:

(sRes(l, n, b, b′) ∈ SP
D ∧ sRes(ls, n, b, b′) ∈ SP

D )⇒ l = ls

That is, in the following we consider l = ls.

∀t : sRes(ls, n, b, b′) ∈ SP
D ⇒ eval(


α′,κ(n, b, SP

D ) ∪ ⟨ls, t⟩

) |= ⟨ls, t⟩ (A.24)

with t ≤ n and α′ = α(n, b, SP
D ) ∪ {⟨a, n⟩ |a ∈ An,b}

By Lemma B.7:

eval(

α′,κ(n, b, SP

D ) ∪ ⟨ls, t⟩

) |= ⟨ls, t⟩

The base step is proven for knowledge about ⟨l, n⟩ generated by rule (F5k) (sensing) where
∃l′ : sRes(l′, n, b, b′) ∈ SP

D .
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4. Inheritance {⟨l, t⟩ |knows(l, t, n+ 1, b′) is produced by (F5m)}
Recall the LP rule (F5m):

knows(L, T,N,B′)←sRes( , N − 1, B,B′), neq(B,B′),

knows(L, T,N − 1, B), N ≥ T

In the following we show that (A.21) holds for those knows(l, t, n+1, b′) produced
by (F5k).

Recall (A.21):

∀l, t :


knows(l, t, n+ 1, b′) ∈ SP
D

⇒


eval(α′,κ(n, b, SP

D ) ∪ ⟨ls, n⟩) |= ⟨l, t⟩


with t ≤ n and α′ = α(n, b, SP
D ) ∪ {⟨a, n⟩ |a ∈ An,b}

We prove (A.21) for those ⟨l, t⟩ for which an atom knows(l, t, n + 1, b′) is
produced by Logic Programming rule (F5m), respectively by the following
implication (A.15k):

knows(l, t, n+ 1, b′) ∈ SP
D ⇐

∃l′ : {sRes(l′, n, b, b′), knows(l, t, n, b)} ⊆ SP
D ∧ n+ 1 ≥ t


We substitute knows(l, t, n + 1, b′) in (A.21) with the body of (A.15j) and
obtain (A.25).

∀l, t :

∃l′ : {sRes(l′, n, b, b′), knows(l, t, n, b)} ⊆ SP

D ∧ n+ 1 ≥ t

⇒

eval(α′,κ(n, b, SP
D ) ∪ ⟨ls, n⟩) |= ⟨l, t⟩

 (A.25)

with t ≤ n and α′ = α(n, b, SP
D ) ∪ {⟨a, n⟩ |a ∈ An,b}

With (4.5): ∀ ⟨l, t⟩ : knows(l, t, n, b) ∈ SP
D ⇒ h(n, b, SP

D ) |= ⟨l, t⟩

We consider t ≤ n anyways and can ignore the term n+ 1 ≥ t.

∀l, t :

∃l′ : sRes(l′, n, b, b′) ∈ SP

D ∧ h(n, b, SP
D ) |= ⟨l, t⟩


⇒

eval(α′,κ(n, b, SP
D ) ∪ ⟨ls, n⟩) |= ⟨l, t⟩

 (A.26)

with t ≤ n and α′ = α(n, b, SP
D ) ∪ {⟨a, n⟩ |a ∈ An,b}
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By Lemma B.7: ∀ ⟨l, t⟩ : ⟨l, t⟩ ∈ κ(n, b, SP
D )⇒ eval(α′,κ(n, b, SP

D )) |= ⟨l, t⟩

Hence, it is sufficient to show that (A.27) holds.

∀l, t :

∃l′ : sRes(l′, n, b, b′) ∈ SP

D ∧ h(n, b, SP
D ) |= ⟨l, t⟩


⇒


⟨l, t⟩ ∈ κ(n, b, SP

D )
 (A.27)

with t ≤ n and α′ = α(n, b, SP
D ) ∪ {⟨a, n⟩ |a ∈ An,b}

With (4.5):
h(n, b, SP

D ) |= ⟨l, t⟩ ⇒ ⟨l, t⟩ ∈ κ(n, b, SP
D )

The base step is proven for knowledge generated by rule (F5m) (inheritance).

Induction Steps for Case 1

1. Initial State Constraints: {⟨l, t⟩ |knows(l, t, n+ 1, b′) is produced by (T3)}
Implications (A.15b) and (A.15c) generates knowledge for step 0 only, i.e. if
an atom knows(l, t, n + 1, b′) is generated then n + 1 = 0. However, since by
Definition 4.1 we consider n ≥ 0, (T2) can not produce an atom knows(l, t, n+
1, b); this case does not apply.

2. Forward inertia: {⟨l, t⟩ |knows(l, t, n+ 1, b) is produced by (F3d)}
Recall the Logic Programming rule (F3d):

knows(L, T,N,B)←knows(L, T − 1, N,B),

kNotSet(L, T − 1, N,B), complement(L,L), T ≤ N.

In the following we show that (A.19) holds for those knows(l, t, n+ 1, b′) which
are produced by (F3d).

Recall (A.21):

∀l, t : (knows(l, t, n+ 1, b′) ∈ SP
D ⇒ eval(


α′,κ(n, b, SP

D ) ∪ ⟨ls, n⟩

) |= ⟨l, t⟩)

with t ≤ n and α′ = α(n, b, SP
D ) ∪ {⟨a, n⟩ |a ∈ An,b}
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We prove (A.19) for those ⟨l, t⟩ for which an atom knows(l, t, n+ 1, b′) is produced by
Logic Programming rule (F3d), respectively by the following implication (A.15d):

knows(l, t, n+ 1, b′) ∈ SP
D ⇐

{knows(l, t− 1, n+ 1, b′), kNotSet(l, t− 1, n+ 1, b′)} ⊆ SP
D ∧ t ≤ n

We substitute knows(l, t, n+1, b′) in (A.21) with the body of (A.15d) and obtain (A.28).

{knows(l, t− 1, n+ 1, b′), kNotSet(l, t− 1, n+ 1, b′)} ⊆ SP
D ∧ t ≤ n⇒

eval(

α′,κ(n, b, SP

D ) ∪ ⟨ls, n⟩

) |= ⟨l, t⟩

(A.28)

with t ≤ n and α′ = α(n, b, SP
D ) ∪ {⟨a, n⟩ |a ∈ An,b}

We can eliminate t ≤ n since this is considered anyways. Further, recall that
by the recursive definition of eval (3.17):

eval(

α′,κ(n, b, SP

D ) ∪ ⟨ls, n⟩

) =

evalOnce(eval(

α′,κ(n, b, SP

D ) ∪ ⟨ls, n⟩

))

{knows(l, t− 1, n+ 1, b′), kNotSet(l, t− 1, n+ 1, b′)} ⊆ SP
D ⇒

evalOnce(h′) |= ⟨l, t⟩
(A.29)

with t ≤ n and h′ = eval(

α′,κ(n, b, SP

D ) ∪ ⟨ls, n⟩

) where α′ = α(n, b, SP

D ) ∪
{⟨a, n⟩ |a ∈ An,b}

Considering evalOnce(h′) = pdneg(pdpos(cause(back(fwd(h′))))) (B.2)
and its constituent functions (3.11), (3.12), (3.13), (3.14), (3.15), in particular
addfwd (3.11), it follows that:

⟨l, t⟩ ∈ addfwd(h
′)⇒ evalOnce(h′) |= ⟨l, t⟩

Hence, to show that (A.29) holds, it is sufficient to show that (A.30) holds:

{knows(l, t− 1, n+ 1, b′), kNotSet(l, t− 1, n+ 1, b′)} ⊆ SP
D ⇒

⟨l, t⟩ ∈ addfwd(h
′)

(A.30)

with t ≤ n and h′ = eval(

α′,κ(n, b, SP

D ) ∪ ⟨ls, n⟩

) where α′ = α(n, b, SP

D ) ∪
{⟨a, n⟩ |a ∈ An,b}
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Consider Lemma A.3:

∀l, l′, t, n, b′, ls :

{kNotSet(l, t− 1, n, b′), sRes(ls, t− 1, n, b′)} ⊆ SP

D∧
knows(l′, t− 1, n, b′) ∈ SP

D ⇒

l′, t− 1


∈ κ′

⇒ inertial(l, t− 1,h′)

Due to the induction hypothesis we may assume that

knows(l′, t−1, n, b′) ∈

SP
D ⇒ ⟨l′, t− 1⟩ ∈ κ′ is true, and hence we can substitute kNotSet(l, t−

1, n, b′) ∈ SP
D with inertial(l, t− 1,h′).

knows(l, t− 1, n+ 1, b′) ∈ SP
D ∧ inertial(l, t− 1,h′)⇒

⟨l, t⟩ ∈ addfwd(h
′)

(A.31)

with t ≤ n and h′ = eval(

α′,κ(n, b, SP

D ) ∪ ⟨ls, n⟩

) where α′ = α(n, b, SP

D ) ∪
{⟨a, n⟩ |a ∈ An,b}

Again, the induction hypothesis allows us to assume that:

knows(l, t− 1, n+ 1, b′) ∈ SP
D

⇒ ⟨l, t− 1⟩ ∈ κ(h′)

⟨l, t− 1⟩ ∈ κ(h′) ∧ inertial(l, t− 1,h′)⇒
⟨l, t⟩ ∈ addfwd(h

′)
(A.32)

with t ≤ n and h′ = eval(

α′,κ(n, b, SP

D ) ∪ ⟨l′, n⟩

) where α′ = α(n, b, SP

D ) ∪
{⟨a, n⟩ |a ∈ An,b}

Consider the definition of addfwd (3.11):

addfwd(h
′) = {⟨l, t⟩ | ⟨l, t− 1⟩ ∈ κ(h′) ∧ inertial(l, t− 1,h′) ∧ t ≤ now(h′)}

By the definition of now (3.5), the definition of An,b (see Definition 4.1) and
the fact that ¬∃ ⟨a, t⟩ ∈ α′ : t > n (see (4.5b) it holds that

now(h′) = n+ 1

Since We have shown for Case 2 (A.18) that if knowledge is produced by forward inertia
rule (F3d) the soundness Lemma (A.14) holds.

3. Backward inertia: {⟨l, t⟩ |knows(l, t, n+ 1, b) is produced by (F3e)}
This case is analogous to the case of forward inertia.
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4. Causation: {⟨l, t⟩ |knows(l, t, n+ 1, b) is produced by (F4a)}
Recall (F4a):

knows(L,T ,N ,B)← kCause(L,T ,N ,B)

We show that (A.19) holds for those knows(l, t, n+ 1, b′) which are generated by
(F4a).

Recall (A.19):

∀l, t : (knows(l, t, n+ 1, b′) ∈ SP
D ⇒ eval(


α′,κ(n, b, SP

D ) ∪ ⟨ls, n⟩

) |= ⟨l, t⟩)

with t ≤ n and α′ = α(n, b, SP
D ) ∪ {⟨a, n⟩ |a ∈ An,b}

We prove (A.19) for those ⟨l, t⟩ for which an atom knows(l, t, n+ 1, b′) is produced by
Logic Programming rule (F4a), respectively by the following implication (A.15g):

knows(l, t, n+ 1, b′) ∈ SP
D ⇐ kCause(l, t, n+ 1, b′) ∈ SP

D (A.33)

Since kCause/4 atoms are only produced by LP rules generated by translation rule
(T6a) we have according to (T6a):

kCause(l, t, n+ 1, b′) ∈ SP
D ⇔

∃ep :

e(ep) = l ∧ c(ep) = {lc1, . . . , lck} ∧ apply(ep, t− 1, b′) ∈ SP

D ∧ n ≥ t∧
{knows(lc1, t− 1, n+ 1, b′), . . . , knows(lck, t− 1, n+ 1, b′)} ⊆ SP

D


(A.34)
To show that (A.19) holds for those ⟨l, t⟩ produced by LP rule (F4a) we prove (A.35).

kCause(l, t, n+ 1, b′) ∈ SP
D ⇒ eval(


α′,κ(n, b, SP

D ) ∪ ⟨ls, n⟩

) |= ⟨l, t⟩ (A.35)

with t ≤ n and α′ = α(n, b, SP
D ) ∪ {⟨a, n⟩ |a ∈ An,b}

Due to the inductive definition of eval (3.17):

eval(

α′,κ(n, b, SP

D ) ∪ ⟨ls, n⟩

) =

evalOnce(eval(

α′,κ(n, b, SP

D ) ∪ ⟨ls, n⟩

))

kCause(l, t, n+ 1, b′) ∈ SP
D ⇒ evalOnce(h′) |= ⟨l, t⟩ (A.36)

with t ≤ n and h′ = eval(

α′,κ(n, b, SP

D ) ∪ ⟨ls, n⟩

) where α′ = α(n, b, SP

D ) ∪
{⟨a, n⟩ |a ∈ An,b}
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Considering evalOnce(h′) = pdneg(pdpos(cause(back(fwd(h′))))) (B.2)
and its constituent functions (3.11), (3.12), (3.13), (3.14), (3.15) it follows
that

⟨l, t⟩ ∈ addcause(h
′)⇒ evalOnce(h′) |= ⟨l, t⟩

Hence, to show that (A.36) holds, it is sufficient to show that (A.37) holds:

kCause(l, t, n+ 1, b′) ∈ SP
D ⇒ ⟨l, t⟩ ∈ addcause(h

′) (A.37)

with t ≤ n and h′ = eval(

α′,κ(n, b, SP

D ) ∪ ⟨ls, n⟩

) where α′ = α(n, b, SP

D ) ∪
{⟨a, n⟩ |a ∈ An,b}

Consider the equivalence for kCause/4 atoms (A.34):

kCause(l, t, n+ 1, b′) ∈ SP
D ⇔

∃ep :

e(ep) = l ∧ c(ep) = {lc1, . . . , lck} ∧ apply(ep, t− 1, b′) ∈ SP

D ∧ n ≥ t∧
{knows(lc1, t− 1, n+ 1, b′), . . . , knows(lck, t− 1, n+ 1, b′)} ⊆ SP

D


∃ep :

e(ep) = l ∧ c(ep) = {lc1, . . . , lck} ∧ apply(ep, t− 1, b′) ∈ SP

D ∧ n ≥ t∧
{knows(lc1, t− 1, n+ 1, b′), . . . , knows(lck, t− 1, n+ 1, b′)} ⊆ SP

D


⇒ ⟨l, t⟩ ∈ addcause(h
′)

(A.38)

with t ≤ n and h′ = eval(

α′,κ(n, b, SP

D ) ∪ ⟨ls, n⟩

) where α′ = α(n, b, SP

D ) ∪
{⟨a, n⟩ |a ∈ An,b}
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By the induction hypothesis:

{knows(lc1, t− 1, n+ 1, b′), . . . , knows(lck, t− 1, n+ 1, b′)} ⊆ SP
D

⇒ {⟨lc1, t− 1⟩ , . . . , ⟨lcn, t− 1⟩} ⊆ κ(h′)

∃ep :

e(ep) = l ∧ c(ep) = {lc1, . . . , lck} ∧ apply(ep, t− 1, b′) ∈ SP

D ∧ n ≥ t∧
{⟨lc1, t− 1⟩ , . . . , ⟨lcn, t− 1⟩} ⊆ κ(h′)


⇒ ⟨l, t⟩ ∈ addcause(h

′)
(A.39)

with t ≤ n and h′ = eval(

α′,κ(n, b, SP

D ) ∪ ⟨ls, n⟩

) where α′ = α(n, b, SP

D ) ∪
{⟨a, n⟩ |a ∈ An,b}

By Lemma A.8:

(apply(ep, t− 1, b′) ∈ SP
D ∧ sRes(ls, n, b, b′) ∈ SP

D ∧ t− 1 ≤ n) ⇒ apply(ep, t− 1, b)

By Lemma A.7:

apply(ep, t− 1, b) ∈ SP
D ⇒ ⟨ep, t− 1⟩ ∈ ϵ(h′)

∃ep :

e(ep) = l ∧ c(ep) = {lc1, . . . , lck} ∧ ⟨ep, t− 1⟩ ∈ ϵ(h′) ∧ n ≥ t∧
{⟨lc1, t− 1⟩ , . . . , ⟨lcn, t− 1⟩} ⊆ κ(h′)


⇒ ⟨l, t⟩ ∈ addcause(h

′)

(A.40)

with t ≤ n and h′ = eval(

α′,κ(n, b, SP

D ) ∪ ⟨ls, n⟩

) where α′ = α(n, b, SP

D ) ∪
{⟨a, n⟩ |a ∈ An,b}

Consider the definition of addcause (3.13):

addcause(h
′) ={⟨l, t⟩ |∃ ⟨ep, t− 1⟩ ∈ ϵ(h′) :

e(ep) = l ∧ c(ep) = {lc1, . . . , lck}∧
{⟨lc1, t− 1⟩ , . . . , ⟨lcn, t− 1⟩} ⊆ κ(h′)


}

We have shown for Case 2 (A.18) that if knowledge is produced by causation rule (F4a)
the soundness Lemma (A.14) holds.

5. Positive postdiction: {⟨l, t⟩ |knows(l, t, n+ 1, b) is produced by (F4b)}
This case is analogous to the case of causation.

6. Negative postdiction: {⟨l, t⟩ |knows(l, t, n+ 1, b) is produced by (F4c)}
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This case is analogous to the case of causation.

Case 2: ¬∃l′ : (sRes(l′, n, b, b′) ∈ SP
D) (No Sensing Result)

We prove that (A.17) holds if no sensing results are obtained. Therefore we consider
cases where (A.41) holds.

¬∃l′ : (sRes(l′, n, b, b′) ∈ SP
D ) (A.41)

That is, the following formulae are universally quantified over those n, b, b′ for which
(A.41) holds. With the case distinction (A.17) can be simplified further as follows:
Recall (A.17):

∀n, b, b′ : hasChild(n, b, b′, SP
D )⇒

∃h ∈


k∈sense(A,h(n,b,SP
D ))

eval(

α′,κ(n, b, SP

D ) ∪ k

) :

∀l, t : (knows(l, t, n+ 1, b′) ∈ SP
D ⇒ h |= ⟨l, t⟩


with t ≤ n and α′ = α(n, b, SP

D ) ∪ {⟨a, n⟩ |a ∈ An,b}

Case distinction (A.41) and Lemma A.10:

sense(A,h(n, b, SP
D )) = {∅}

Case distinction (A.41) and definition of hasChild (4.3):

hasChild(n, b, b′, SP
D )⇔ b = b′

∀l, t : (knows(l, t, n+ 1, b) ∈ SP
D ⇒ eval(


α′,κ(n, b, SP

D )

) |= ⟨l, t⟩) (A.42)

with t ≤ n and α′ = α(n, b, SP
D ) ∪ {⟨a, n⟩ |a ∈ An,b}

We prove (A.42) by induction over pairs ⟨l, t⟩.

Base Steps for Case 2

1. Initial Knowledge: {⟨l, t⟩ |knows(l, t, n+ 1, b) is produced by (T2)}
This is analogous to Case 1.
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2. Inertia of knowledge: {⟨l, t⟩ |knows(l, t, n+ 1, b) is produced by (F3f)}
Recall (A.42):

∀l, t : (knows(l, t, n+ 1, b) ∈ SP
D ⇒ eval(


α′,κ(n, b, SP

D )

) |= ⟨l, t⟩)

with t ≤ n and α′ = α(n, b, SP
D ) ∪ {⟨a, n⟩ |a ∈ An,b}

We prove (A.19) for those ⟨l, t⟩ for which an atom knows(l, t, n+ 1, b′) is
produced by Logic Programming rule (F3f), respectively by the following
implication (A.15f):

knows(l, t, n+ 1, b) ∈ SP
D ⇐ knows(l, t, n, b) ∈ SP

D

We substitute knows(l, t, n+ 1, b′) in (A.42) with the body of (A.15f) and
obtain (A.43).

knows(l, t, n, b) ∈ SP
D ⇒ eval(


α′,κ(n, b, SP

D )

) |= ⟨l, t⟩ (A.43)

with t ≤ n and α′ = α(n, b, SP
D ) ∪ {⟨a, n⟩ |a ∈ An,b}

By Lemma B.7:

⟨l, t⟩ ∈ κ(n, b, SP
D )⇒ eval(


α′,κ(n, b, SP

D )

) |= ⟨l, t⟩

knows(l, t, n, b) ∈ SP
D ⇒ ⟨l, t⟩ ∈ κ(n, b, SP

D ) (A.44)

with t ≤ n.

By (4.5):

κ(n, b, SP
D ) = {⟨l, t⟩ |knows(l, t, n, b) ∈ SP

D }

We have shown for Case 1 (A.41) that the soundness Lemma (A.14) holds for those ⟨l, t⟩
for which knows(l, t, n+ 1, b) is produced by inertia of knowledge (F3f).

3. Sensing {⟨l, t⟩ |knows(l, t, n+ 1, b) is produced by (F5k)}
If an atom knows(l, t, n+ 1, b) is generated by sensing, then according to Lemma
A.6, (A.60j) it must hold that ∃l′ : sRes(l, n, b, b) ∈ SP

D ∧ t = n. Since this
contradicts the the case distinction (A.41) this case does not apply.

4. Inheritance {⟨l, t⟩ |knows(l, t, n+ 1, b) is produced by (F5m)}
If an atom knows(l, t, n + 1, b) is generated by inheritance, then according to
Lemma A.6, (A.60k) it must hold that ∃l′ : sRes(l′, n, b, b) ∈ SP

D . Since this
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contradicts the the case distinction (A.41) this case does not apply.

Induction Steps for Case 2

1. Initial state constraints: {⟨l, t⟩ |knows(l, t, n+ 1, b) is produced by (T3)}
This is analogous to Case 1.

2. Forward inertia: {⟨l, t⟩ |knows(l, t, n+ 1, b) is produced by (F3d)}
This is analogous to Case 1.

3. Backward inertia: {⟨l, t⟩ |knows(l, t, n+ 1, b) is produced by (F3e)}
This is analogous to the case of backward inertia.

4. Causation: {⟨l, t⟩ |knows(l, t, n+ 1, b) is produced by (F4a)}
This is analogous to Case 1.

5. Positive postdiction: {⟨l, t⟩ |knows(l, t, n+ 1, b) is produced by (F4b)}
This is analogous to the case of causation.

6. Negative postdiction: {⟨l, t⟩ |knows(l, t, n+ 1, b) is produced by (F4c)}
This is analogous to the case of causation.
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Auxiliary Lemmata Related to Knowledge
Inertia

The following Lemma is required in the induction step for proving soundness of forward
inertia (A.28) in Section A.3.

Lemma A.3 (Soundness for inertia in induction step)

∀l, l′, t, n, b′, ls :

{kNotSet(l, t, n, b′), sRes(ls, t, n, b′)} ⊆ SP

D∧
knows(l′, t, n, b′) ∈ SP

D ⇒ ⟨l′, t⟩ ∈ κ′
⇒ inertial(l, t,h′)

(A.45)

with t ≤ n and h′ = eval(

α′,κ(n, b, SP

D ) ∪ ⟨ls, n⟩

) where α′ = α(n, b, SP

D ) ∪
{⟨a, n⟩ |a ∈ An,b}.

Proof:
Consider the rules in anHPX -LP which trigger kNotSet/4 atoms:

kNotSet(L, T,N,B)←not kMaySet(L, T,B), uBr(N,B), s(T ), literal(L). (F3a)

kMaySet(L, T,B)←apply(EP, T,B), hasEff (EP,L) (F3b)

kNotSet(L, T,N,B)←apply(EP, T,B), hasCond(EP,L′), hasEff (EP,L), (F3c)

knows(L′, T,N,B), complement(L′, L′), N >= T.

Since (F3a) and (F3c) are the only rules in the LP with kNotSet/4 in their head, it holds
that:

kNotSet(l, t, n, b)

⇔
kMaySet(l, t, b) ̸∈ SP

D ∧ {uBr(n, b), s(t), literal(l)} ⊆ SP
D


∨

∃ep, lc :


apply(ep, t, b), hasCond(ep, lc), hasEff (ep, l), knows(lc, t, n, b) ⊆ SP

D

∧ n >= t


(A.46)
We make a case distinction according to (A.46) and consider both possibilities which can
trigger an atom kNotSet(l, t, n, b).

1. kNotSet/4 generated by (F3a)
In this case (A.47) holds and we prove (A.48)

kMaySet(l, t, b) ̸∈ SP
D ∧ {uBr(n, b), s(t), literal(l)} ⊆ SP

D


(A.47)
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∀l, l′, t, n, b′, ls :
sRes(ls, t, n, b′) ∈ SP

D∧
kMaySet(l, t, b) ̸∈ SP

D ∧ {uBr(n, b), s(t), literal(l)} ⊆ SP
D

∧

knows(l′, t, n, b′) ∈ SP
D ⇒ ⟨l′, t⟩ ∈ κ′

⇒ inertial(l, t,h′)

(A.48)

with t ≤ n and h′ = eval(

α′,κ(n, b, SP

D ) ∪ ⟨ls, n⟩

) where α′ = α(n, b, SP

D ) ∪
{⟨a, n⟩ |a ∈ An,b}.

Consider rule (F3b). This is the only rule in the LP with kMaySet/3
in the head and therefore it holds that:

kMaySet(l, t, b) ∈ SP
D ⇔ ∃ep : ({apply(ep, t, b), hasEff (ep, l)} ⊆ SP

D )
(A.49)

With rewrite (A.49) as follows:

kMaySet(l, t, b) ̸∈ SP
D ⇔ ∀ep : (apply(ep, t, b) ∈ SP

D ⇒ hasEff (ep, l) ̸∈ SP
D )

∀l, l′, t, n, b′, ls :
sRes(ls, t, n, b′) ∈ SP

D∧
∀ep : (apply(ep, t, b) ∈ SP

D ⇒ hasEff (ep, l) ̸∈ SP
D )


{uBr(n, b), s(t), literal(l)} ⊆ SP

D


knows(l′, t, n, b′) ∈ SP
D ⇒ ⟨l′, t⟩ ∈ κ′

⇒ inertial(l, t,h′)

(A.50)

with t ≤ n and h′ = eval(

α′,κ(n, b, SP

D ) ∪ ⟨ls, n⟩

) where α′ = α(n, b, SP

D ) ∪
{⟨a, n⟩ |a ∈ An,b}.

Consider the definition of inertial (3.10):

inertial(l, t,h′)⇔
∀⟨ep, t⟩ ∈ ϵ(h′) :

(e(ep) = l)⇒

∃lc ∈ c(ep) :


lc, t


∈ κ′

We have shown that (A.48) holds.
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2. kNotSet/4 generated by (F3c)
In this case (A.51) holds and we prove (A.52)

∃ep, l′ : (n >= t∧
apply(ep, t, b), hasCond(ep, l′), hasEff (ep, l), knows(l′, t, n, b) ⊆ SP

D )
(A.51)

∀l, l′, t, n, b′, ls :
sRes(ls, t, n, b′) ∈ SP

D∧
∃ep, l′ :


{apply(ep, t, b′), hasEff (ep, l)} ⊆ SP

D ∧ ∧n >= t

{hasCond(ep, l′), knows(l′, t, n, b′)} ⊆ SP
D

∧

knows(l′, t, n, b′) ∈ SP
D ⇒


l′, t


∈ κ′

⇒ inertial(l, t,h′)

(A.52)

with t ≤ n and h′ = eval(

α′,κ(n, b, SP

D ) ∪ ⟨ls, n⟩

) where α′ = α(n, b, SP

D ) ∪
{⟨a, n⟩ |a ∈ An,b}.

Consider LP rule (2) which restricts that two effect propositions with the same
effect literal may not be applied concurrently:

← apply(EP1, T, B), hasEff (EP1, L), apply(EP2, T, B), hasEff (EP2, L),

EP1 ̸= EP2, br(B), literal(L).

By the definition of integrity constraints in ASP (which we described in
Section 2.2.4) it follows that the following holds:

∀l :

∃ep, lc :


{apply(ep, t, b′), hasEff (ep, l)} ⊆ SP

D∧
{hasCond(ep, lc), knows(lc, t, n, b′)} ⊆ SP

D


⇒

∀ep :


(apply(ep, t, b′) ∈ SP

D ∧ hasEff (ep, l) ∈ SP
D )

⇒

∃lc : {hasCond(ep, lc), knows(lc, t, n, b′)} ⊆ SP

D


∀l, t, n, b′, ls :

sRes(ls, t, n, b′) ∈ SP

D∧
∀ep :


(apply(ep, t, b′) ∈ SP

D ∧ hasEff (ep, l) ∈ SP
D )⇒

∃lc : {hasCond(ep, lc), knows(lc, t, n, b′)} ⊆ SP
D

∧

knows(l′, t, n, b′) ∈ SP
D ⇒


l′, t


∈ κ′

⇒ inertial(l, t,h′)
(A.53)

with t ≤ n and h′ = eval(

α′,κ(n, b, SP

D ) ∪ ⟨ls, n⟩

) where α′ = α(n, b, SP

D ) ∪
{⟨a, n⟩ |a ∈ An,b}.
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Consider Lemma A.7:

∀ep, t : apply(ep, t, b′) ∈ SP
D ⇒ ⟨ep, t⟩ ∈ ϵ(h′)

An Lemma A.12:

hasCond(ep, lc) ∈ SP
D ⇒ lc ∈ c(ep)

hasEff(ep, l) ∈ SP
D ⇒ l = e(ep)

hasCond(ep, lc) ∈ SP
D ⇒ lc ∈ c(ep)

hasEff(ep, l) ∈ SP
D ⇒ l = e(ep)

It further holds that:
knows(lc, t, n, b′) ∈ SP

D ⇒

lc, t


∈ κ′

To show that (A.53) holds, it is sufficient to show that (A.54) holds.

∀l, t, n, b′, ls :

sRes(ls, t, n, b′) ∈ SP

D∧
∀ep :


(⟨ep, t⟩ ∈ ϵ(h′)∧ ⇒ l = e(ep))⇒
∃lc : lc ∈ c(ep) ∧


lc, t


∈ κ′∧

⇒ inertial(l, t,h′)

(A.54)

with t ≤ n and h′ = eval(

α′,κ(n, b, SP

D ) ∪ ⟨ls, n⟩

) where α′ = α(n, b, SP

D ) ∪
{⟨a, n⟩ |a ∈ An,b}.

Consider the definition of inertial (3.10):

inertial(l, t,h′)⇔
∀⟨ep, t⟩ ∈ ϵ(h′) :

(e(ep) = l)⇒

∃lc ∈ c(ep) :


lc, t


∈ κ′

We have shown that (A.52) holds.
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No Knowledge in New Branches

The following Lemma is required in Section A.3, in the base step of the inductive
soundness proof, where it is shown that soundness holds for knowledge generated by
inheritance.

Lemma A.4 (Knowledge does not exist in new branches) :

∀l, t, n, b, b′ :

knows(l, t, n, b′) ∈ SP

D ∧ (∃l′ : sRes(l′, n, b, b′) ∈ SP
D )


→ b = b′

(A.55)

Proof Sketch:

Consider the following integrity constraint (F5i) in the domain independent theory of an
HPX -Logic Program which prevents that sRes/4 are produced in unused branches.

← sRes(L,N,B,B′), uBr(N,B′), literal(L), neq(B,B′) (F5i)

It follows from the integrity constraint (F5i) that

(∃l′ : sRes(l′, n, b, b′) ∈ SP
D ∧ b ̸= b′)⇒ uBr(n, b′) ̸∈ SP

D (A.56)

Hence we can rewrite (A.55) as follows:

∀l, t, n, b, b′ :

knows(l, t, n, b′) ∈ SP

D ⇒ uBr(n, b′) ∈ SP
D


(A.57)

Lemma A.5 shows that (A.57) holds. This proves the Lemma.

No Knowledge in Unused Branches

The following Lemma is required to prove Lemma A.4.

Lemma A.5 (Knowledge does not exist in unused branches) :

∀l, t, n, b :

knows(l, t, n, b) ∈ SP

D ⇒ uBr(n, b) ∈ SP
D


(A.58)

Proof:
This To show that (A.58) is true, we go through all 10 LP rules that generate a knows/4
atom. These are summarized as (bi-)implications in Lemma A.6, Equation (A.60). We
prove (A.58) by complete induction over the structure of (A.60) for l, t, n. For the base
steps, we show that for some of the implications in (A.60) it holds that (A.58) is true. For
the induction steps we show that if (A.58) holds for certain triples ⟨l, t, n⟩ then it holds
for other triples ⟨l′, t′, n′⟩ with ⟨l, t, n⟩ ≠ ⟨l′, t′, n′⟩. The induction is complete because
we consider all implications in (A.60).
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Base Steps

1.
uBr(n, b) ∈ SP

D ⇐
t = 0 ∧ n = 0 ∧ b = 0 ∧ l ∈ VP

 (A.59a)

This is true since by LP fact (F5a) it holds that uBr(0, 0) ∈ SP
D .

2.
uBr(n, b) ∈ SP

D ⇐
∃C ∈ ISC :


t = 0 ∧ n = 0 ∧ b = 0 ∧ l ∈ C∧

∀l+ ∈ C \ l : knows(l+, 0, 0, 0) ∈ SP
D


This is true since by LP fact (F5a) it holds that uBr(0, 0) ∈ SP
D .

3.
uBr(n, b) ∈ SP

D ⇐
∃C ∈ ISC :


t = 0 ∧ n = 0 ∧ b = 0 ∧ l ∈ C∧

∃l+ ∈ C \ l ∧ knows(l+, 0, 0, 0) ∈ SP
D
 (A.59b)

This is true since by LP fact (F5a) it holds that uBr(0, 0) ∈ SP
D .

4.
uBr(n, b) ∈ SP

D ⇐
sRes(l, n− 1, b′, b) ∈ SP

D

 (A.59c)

This is follows directly from LP rule (F5j).

5.

uBr(n, b) ∈ SP
D ⇐

{sRes(l′, n− 1, b′, b), knows(l, t, n− 1, b′)} ⊆ SP
D ∧ n ≥ t

 (A.59d)

This is follows directly from LP rule (F5j).

Induction Steps

1.

uBr(n, b) ∈ SP
D ⇐

{knows(l, t− 1, n, b), kNotSet(l, t− 1, n, b)} ⊆ SP
D ∧ t ≤ n

 (A.59e)

This is true since by induction hypothesis it holds that knows(l, t − 1, n, b) ∈
SP
D ⇒ uBr(n, b) ∈ SP

D .
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2.
uBr(n, b) ∈ SP

D ⇐
{knows(l, t+ 1, n, b), kNotSet(l, t− 1, n, b)} ⊆ SP

D ∧ t ≤ n
 (A.59f)

This is true since by induction hypothesis it holds that knows(l, t + 1, n, b) ∈
SP
D ⇒ uBr(n, b) ∈ SP

D .

3.
uBr(n, b) ∈ SP

D ⇐

Big(knows(l, t, n− 1, b) ∈ SP
D

 (A.59g)

This is true since by induction hypothesis it holds that {knows(l, t, n − 1, b) ∈
SP
D ⇒ uBr(n−1, b) ∈ SP

D . By LP rule (F5c) it holds that uBr(n−1, b) ∈ SP
D ⇒

uBr(n, b) ∈ SP
D .

4.
uBr(n, b) ∈ SP

D ⇐

Big(kCause(l, t, n, b) ∈ SP
D

 (A.59h)

By translation rule (T6a) and by considering that LP rules generated by (T6a) are
the only LP rules with kCause/4 in the head it holds that

kCause(l, t, n, b) ∈ SP
D ⇔

∃ep :

e(ep) = l ∧ c(ep) = {lc1, . . . , lck}∧

apply(ep, t− 1, b) ∈ SP
D ∧ n > t∧

{knows(lc1, t− 1, n, b), . . . , knows(lck, t− 1, n, b)} ⊆ SP
D


Since we can assume by induction hypothesis that for all i ∈ {1, . . . , k}: knows(lci , t−
1, n, b) ∈ SP

D ⇒ uBr(n, b) ∈ SP
D it must hold that (A.59h) is true.

5.
uBr(n, b) ∈ SP

D ⇐
kCause(l, t, n, b) ∈ SP

D

 (A.59i)

This case is similar to (A.59h)

6.
uBr(n, b) ∈ SP

D ⇐
kCause(l, t, n, b) ∈ SP

D

 (A.59j)

This case is similar to (A.59h)
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Occurrence of knows/4 Atoms in a Stable Model

The following Lemma represents a bi-implication which states the necessary and required
set-theoretic conditions under which an atom knows(l, t, n, b) can be contained in the
Stable Model of anHPX -Logic Program.

Lemma A.6 (Knowledge generation in anHPX -Logic Program) Consider the no-
tational conventions from Definition 4.1, i.e. we have a domain D = ⟨VP , ISC,A,G⟩
and a set of atoms P denoting the occurrence of actions, such that SP

D is a Stable Model
of LP (D) ∪ P . Then the following equivalence holds:

knows(l, t, n, b) ∈ SP
D ⇔ 

t = 0 ∧ n = 0 ∧ b = 0 ∧ l ∈ VP


(A.60a)

∨

∃C ∈ ISC :


t = 0 ∧ n = 0 ∧ b = 0 ∧ l ∈ C∧ (A.60b)

∀l+ ∈ C \ l : knows(l+, 0, 0, 0) ∈ SP
D


∨

∃C ∈ ISC :


t = 0 ∧ n = 0 ∧ b = 0 ∧ l ∈ C∧ (A.60c)

∃l+ ∈ C \ l ∧ knows(l+, 0, 0, 0) ∈ SP
D


∨

{knows(l, t− 1, n, b), kNotSet(l, t− 1, n, b)} ⊆ SP

D ∧ t ≤ n


(A.60d)

∨

{knows(l, t+ 1, n, b), kNotSet(l, t, n, b)} ⊆ SP

D ∧ t < n


(A.60e)

∨

knows(l, t, n− 1, b) ∈ SP

D


(A.60f)

∨

kCause(l, t, n, b) ∈ SP

D


(A.60g)

∨

kPosPost(l, t, n, b) ∈ SP

D


(A.60h)

∨

kNegPost(l, t, n, b) ∈ SP

D


(A.60i)

∨

sRes(l, n− 1, b′, b) ∈ SP

D ∧ t = n− 1


(A.60j)

∨

{sRes(l′, n− 1, b′, b), knows(l, t, n− 1, b′)} ⊆ SP

D ∧ n ≥ t


(A.60k)

Proof Sketch:
We investigate the domain independent theory Γhpx defined by LP rules (F1) – (F7)
and the domain dependent theory Γworld generated by translation rules (T1) – (T8). We
identify those rules which have a predicate knows/4 in their head. These rules are those
which define: (a) value propositions (T2) (b) initial state constraints (T3) (c) forward
inertia (F3d) (d) backward inertia (F3e) (e) Inertia of knowledge (F3f) (f) causation
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(F4a) (g) positive postdiction (F4b)(h) negative postdiction (F4c)(i) sensing (F5k) and
(j) inheritance (F5m). The individual disjunctive elements in Equation (A.60) capture if
the body of a rule with a knows/4-head triggers the head to be contained in the Stable
Model.
This is straight forward for rules (F3d), (F3e), (F3f), (F4a),(F4b), (F4c), (F5k) and (F5m)
of the domain independent theory Γhpx. Those relate to the disjunctive elements in (A.60)
as follows:

• (F3d) – (A.60d)

• (F3e) – (A.60e)

• (F3f) – (A.60f)

• (F4a) – (A.60g)

• (F4b) – (A.60h)

• (F4c) – (A.60i)

• (F5k) – (A.60j)

• (F5m) – (A.60k)

LP rules generated by translation rules (T2) and (T3) relate as follows to the disjunctive
elements in (A.60):

• (T2) – (A.60a)

• (T3a) – (A.60b)

• (T3b) – (A.60c)

For the “⇐” direction of (A.60) we argue that according to the Stable Model semantics
(Gelfond and Lifschitz, 1988) the head-atom of an LP rule is contained in the Stable
Model of a Logic Program if its body is “compatible” with the Stable Model, i.e. all of
the rules’ positive body atoms are contained in the Stable Model and all of its negative
body atoms are not. Since all mentioned rules have a head atom knows(l, t, n, b) the
body at least one of the rules’ bodies must be compatible with a Stable Model to trigger
knows(l, t, n, b).
For the “⇒” direction of (A.60) we argue similarly that according to the Stable Model
semantics (Gelfond and Lifschitz, 1988), if an atom is contained in a Stable Model then
there must be at least one rule in the Logic Program of which the positive body atoms
are contained in the Stable Model and all of its negative body atoms are not.
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A.4. Application of Effect Propositions

The following Lemma states that the application of effect propositions is sound. That
is, whenever there exists an atom apply(ep, t, b′) in the Stable Model of anHPX -Logic
Program then there exists a pair ⟨ep, t⟩ in the Effect History ϵ(h) of a corresponding
h-state.

Lemma A.7 (Soundness of application of effect propositions)

∀n, b, b′ : hasChild(n, b, b′, SP
D )⇒

∀h ∈ Ψ(An,b,h(n, b, S
P
D )) :

∀ep, t : (apply(ep, t, b′) ∈ SP
D ∧ t ≤ n)⇒ ⟨ep, t⟩ ∈ ϵ(h)

 (A.61)

Proof:

To prove (A.61) we make a case distinction to eliminate the ∀b′ : hasChild(n, b, b′, SP
D )-

quantification. Specifically, we distinguish between (a) ¬∃l′, b′ : sRes(l′, n, b, b′) ∈ SP
D

and (b) ∃l′, b′ : sRes(l′, n, b, b′) ∈ SP
D . Case (a) can be proven with simple substitutions

and (b) requires a simple induction proof.

In both cases we argue that there are only two rules in the Logic Program with an apply/3
atom in the head. These are (F2a) and (F5n). Hence, if a Stable Model contains apply/3,
then the body of one of (F2a), (F5n) must be compatible with the Stable Model. This is
expressed with (A.62).

∀n, b′, ep, t :
apply(ep, t, b′) ∈ SP

D ⇔
∃a :


{hasEP (a, ep), occ(a, t, b′)} ⊂ SP

D ∧ n = t


(A.62a)

∨ ∃b, l :

{sRes(l, n, b, b′), apply(ep, t, b)} ∈ SP

D ∧ n ≥ t


(A.62b)

Before making any case distinctions we simplify (A.61) as follows:
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(A.61)

Transition function (3.7):
Ψ(An,b,h(n, b, S

P
D )) =


k∈sense(A,h(n,b,SP

D ))

eval(

α′,κ(n, b, SP

D ) ∪ k

)

where α′ = α(n, b, SP
D ) ∪ {⟨a, t⟩ |a ∈ An,b ∧ t = now(h(n, b, SP

D ))}

∀n, b, b′ : hasChild(n, b, b′, SP
D )⇒

∀h ∈


k∈sense(A,h(n,b,SP
D ))

eval(

α′,κ(n, b, SP

D ) ∪ k

) :

∀ep, t : (apply(ep, t, b′) ∈ SP
D ∧ t ≤ n)⇒ ⟨ep, t⟩ ∈ ϵ(h)

 (A.63)

with t ≤ n and α′ = α(n, b, SP
D ) ∪ {⟨a, t⟩ |a ∈ An,b ∧ t = now(h(n, b, SP

D ))}

According to Lemma A.13: now(h(n, b, SP
D )) = n

∀n, b, b′ : hasChild(n, b, b′, SP
D )⇒

∀h ∈


k∈sense(A,h(n,b,SP
D ))

eval(

α′,κ(n, b, SP

D ) ∪ k

) :

∀ep, t : (apply(ep, t, b′) ∈ SP
D ∧ t ≤ n)⇒ ⟨ep, t⟩ ∈ ϵ(h)

 (A.64)

with t ≤ n and α′ = α(n, b, SP
D ) ∪ {⟨a, n⟩ |a ∈ An,b}
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(A.64)

By definition of the eval function (3.17), re-evaluation does not affect the action history of
an h-state. Formally:

∀h ∈


k∈sense(A,h(n,b,SP
D ))

eval(

α′,κ(n, b, SP

D ) ∪ k

) : α(h) = α′

By the definition of effect histories (3.3) it holds that:

∀h ∈


k∈sense(A,h(n,b,SP
D ))

eval(

α′,κ(n, b, SP

D ) ∪ k

) : ϵ(h) = ϵ(α′)

Hence we can eliminate the ∀ quantification over h-states h and (A.64) is rewritten as
follows:

∀n, b, b′ : hasChild(n, b, b′, SP
D )⇒

∀ep, t : (apply(ep, t, b′) ∈ SP
D ∧ t ≤ n)⇒ ⟨ep, t⟩ ∈ ϵ(α′)

(A.65)

where α′ = α(n, b, SP
D ) ∪ {⟨a, n⟩ |a ∈ An,b}.

By (3.3):
ϵ(α′) = {⟨ep, t⟩ |∃ ⟨a, t⟩ ∈ α(h′) : ep ∈ EPa}

∀n, b, b′ : hasChild(n, b, b′, SP
D )⇒

∀ep, t : (apply(ep, t, b′) ∈ SP
D ∧ t ≤ n)⇒ (∃ ⟨a, t⟩ ∈ α′ : ep ∈ EPa)

(A.66)

where α′ = α(n, b, SP
D ) ∪ {⟨a, n⟩ |a ∈ An,b}
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Case 1 - No Sensing Results
We consider the cases where (A.67) holds. That is, the following formulae are universally
quantified over those n, b for which (A.67) is true.

¬∃l′, b′ : sRes(l′, n, b, b′) ∈ SP
D (A.67)

We can now simplify (A.66) as follows:
(A.66)

∀n, b, b′ : hasChild(n, b, b′, SP
D )⇒

∀ep, t : (apply(ep, t, b′) ∈ SP
D ∧ t ≤ n)⇒ (∃ ⟨a, t⟩ ∈ α′ : ep ∈ EPa)

By (A.67) and (4.3):

((¬∃l′ : sRes(l′, n, b, b′) ∈ SP
D ) ∧ hasChild(n, b, b′))⇒ b = b′

That is, the following formulae are universally quantified over those n, b for
which ¬∃l′ : sRes(l′, n, b, b′) and b = b′ holds.

∀ep, t : (apply(ep, t, b) ∈ SP
D ∧ t ≤ n)⇒ (∃ ⟨a, t⟩ ∈ α′ : ep ∈ EPa) (A.68)

where α′ = α(n, b, SP
D ) ∪ {⟨a, n⟩ |a ∈ An,b}

There are two rules in an HPX -Logic Program which have an atom apply(ep, t, b) in
the head, namely (F2a) and (F5n). We argue that apply(ep, t, b) must be an atom in the
Stable Model if the body of one of the rules is compatible with the Stable Model. This
leads to the following case distinction:
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1. Effect propositions triggered by action occurrence (F2a)
Recall (A.68):

∀ep, t : (apply(ep, t, b) ∈ SP
D ∧ t ≤ n)⇒ (∃ ⟨a, t⟩ ∈ α′ : ep ∈ EPa)

where α′ = α(n, b, SP
D ) ∪ {⟨a, n⟩ |a ∈ An,b}

Consider (A.62a):

apply(ep, t, b) ∈ SP
D ⇐ ∃a : ({hasEP (a, ep), occ(a, t, b)} ⊆ SP

D ∧ n = t)

The following formulae are universally quantified over those ep for which
∃a : ({hasEP (a, ep), occ(a, t, b)} ⊂ SP

D ∧ n = t) holds.

(∃a : {hasEP (a, ep), occ(a, n, b)} ⊂ SP
D )⇒ (∃ ⟨a, n⟩ ∈ α′ : ep ∈ EPa) (A.69)

where α′ = α(n, b, SP
D ) ∪ {⟨a, n⟩ |a ∈ An,b}

Since α′ = α(n, b, SP
D ) ∪ {⟨a, n⟩ |a ∈ An,b} it is sufficient to show that

(A.70) holds.

(∃a : {hasEP (a, ep), occ(a, n, b)} ⊂ SP
D )⇒ (∃a ∈ An,b : ep ∈ EPa) (A.70)

where α′ = α(n, b, SP
D ) ∪ {⟨a, n⟩ |a ∈ An,b}

By Definition 4.1:

An,b = {a|occ(a, n, b) ∈ SP
D }

By Lemma A.12:

∀a, ep : (hasEP (a, ep) ∈ SP
D ⇔ ep ∈ EPa)

We have proven that the application of effect propositions is sound if produced by rule (F2a)
(application of EP triggered by action occurrence).
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2. Effect propositions triggered by inheritance (F5n)
Recall (A.68):

∀ep, t : (apply(ep, t, b) ∈ SP
D ∧ t ≤ n)⇒ (∃ ⟨a, t⟩ ∈ α′ : ep ∈ EPa)

where α′ = α(n, b, SP
D ) ∪ {⟨a, n⟩ |a ∈ An,b}

Consider (A.62b):

apply(ep, t, b) ∈ SP
D ⇐ ∃l : ({sRes(l, n, b, b), apply(ep, t, b)} ∈ SP

D∧n >= t)

∃l : sRes(l, n, b, b) ∈ SP
D contradicts the case distinction (A.67), hence no atom

apply(ep, t, b) is produced.

Case 2 - With Sensing Results: We consider the cases where (A.71) holds. That is, the
following formulae are universally quantified over those n, b for which (A.71) is true.

∃l′ : sRes(l′, n, b, b′) ∈ SP
D (A.71)

The case distinction allows us to simplify (A.66). Consider the following substitutions:
Recall (A.66):

∀n, b, b′ : hasChild(n, b, b′, SP
D )⇒

∀ep, t : (apply(ep, t, b′) ∈ SP
D ∧ t ≤ n)⇒ (∃ ⟨a, t⟩ ∈ α′ : ep ∈ EPa)

By (A.71) and (4.3):

∀b′ : (∃l′ : sRes(l′, n, b, b′))⇒ hasChild(n, b, b′) = true

The following formulae are universally quantified over those n, b for which
(A.71) is true.

∀ep, t, b′ : (apply(ep, t, b′) ∈ SP
D ∧ t ≤ n)⇒ (∃ ⟨a, t⟩ ∈ α′ : ep ∈ EPa) (A.72)

where α′ = α(n, b, SP
D ) ∪ {⟨a, n⟩ |a ∈ An,b}

To prove that (A.72) holds, we consider both rules of the HPX -LP with an atom
apply(ep, t, b′) in the head: (F2a) and (F5n). We argue that apply(ep, t, b′) must be an
atom in the Stable Model if the body of one of the rules is compatible with the Stable
Model.
To this end, we perform induction over the structure of (A.62) for b′. For the base
step show that (A.72) holds for those b′ for which an atom apply(ep, t, b′) produced
by rule (F2a). For the induction step we consider rule (F5n) which involves another
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apply(ep, t, b′′) atom: we argue that if (A.72) holds for a b′ and if an atom apply(ep, t, b′′)
is produced by rule (F5n), then (A.72) also holds for the b′′. The induction is complete
because rules (F2a) and (F5n) are the only rules with apply(ep, t, b′) atoms in the head.

1. Base Step: effect propositions triggered by action occurrence (F2a)
Consider (A.62a):

apply(ep, t, b′) ∈ SP
D ⇐ ∃a : {hasEP (a, ep), occ(a, t, b′)} ⊂ SP

D ∧ t = n
(A.73)

Due to Lemma A.9 it holds that ¬∃b′, l′ : (b′ ̸= b ∧ sRes(l′, n, b, b′) ∈ SP
D ∧

occ(a, n, b′) ∈ SP
D ). Hence, we may only consider cases where b′ = b. In this case,

the proof is analogous to the soundness proof for effect propositions triggered by
action occurrence in Case 1.

2. Induction Step: effect propositions triggered by inheritance (F5n)
Recall (A.68):

∀ep, t : (apply(ep, t, b) ∈ SP
D ∧ t ≤ n)⇒ (∃ ⟨a, t⟩ ∈ α′ : ep ∈ EPa)

where α′ = α(n, b, SP
D ) ∪ {⟨a, n⟩ |a ∈ An,b}

Consider (A.62a):

apply(ep, t, b′) ∈ SP
D ⇐ ∃l : ({sRes(l, n, b, b′), apply(ep, t, b)} ∈ SP

D∧n >= t)

The following formulae are universally quantified for those ep for which
∃l : ({sRes(l, n, b, b′), apply(ep, t, b)} ∈ SP

D ∧ n >= t) holds.

(∃l : sRes(l, n, b, b′) ∈ SP
D ∧ apply(ep, t, b) ∈ SP

D ∧ n ≥ t)

⇒ (∃ ⟨a, t⟩ ∈ α′ : ep ∈ EPa)
(A.74)

where α′ = α(n, b, SP
D ) ∪ {⟨a, n⟩ |a ∈ An,b}

Since we perform induction we assume that soundness holds for
apply(ep, t, b). That is,

(apply(ep, t, b) ∈ SP
D ∧ t ≤ n)⇒ (∃ ⟨a, t⟩ ∈ α′ : ep ∈ EPa) (A.75)

We have shown that (A.72) holds for apply/3 produced by the inheritance rule (F5n).
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We have shown that the Lemma holds by proving that (A.61) holds for both cases,
¬∃b′, l′ : sRes(l′, n, b, b′) ∈ SP

D and ∃b′, l′ : sRes(l′, n, b, b′) ∈ SP
D .

Lemma A.8 (Branching of application of effect propositions)

∀l, n, b, b′, ep, t :
({sRes(l′, n, b, b′), apply(ep, t, b)} ⊆ SP

D ∧ t ≤ n) ⇔
({sRes(l′, n, b, b′), apply(ep, t, b′)} ⊆ SP

D ∧ t ≤ n)

(A.76)

Proof:
We distinguish two cases: The⇒ direction directly emerges from the inheritance rule
(F5n). For the⇐ direction we consider two cases:

1. Consider that an atom apply(ep, t, b′) is produced by rule (F2a). In this case it
must hold that {occ(a, n, b′), hasEP (a, ep)} ⊆ SP

D ∧ n = t and by Definition 4.1
it holds that occ(a, n, b′) ∈ SP

D ⇒ uBr(n, b′) ∈ SP
D . However, considering that

sRes(l′, n, b, b′) ∈ SP
D the integrity constraint (F5i) assures that uBr(n, b′) ̸∈ SP

D
and leads to a contradiction. Hence apply(ep, t, b′) can not be produced by (F2a)
if sRes(l′, n, b, b′)SP

D

2. Consider that an atom apply(ep, t, b′) is produced by rule (F5n). Then clearly it
must hold that apply(ep, t, b) ∈ SP

D

Lemma A.9 (Actions do not occur in new branches) :

∀n, b, a :

¬∃b′, l′ : (b′ ̸= b ∧ sRes(l′, n, b, b′) ∈ SP
D ∧ occ(a, n, b′) ∈ SP

D )
(A.77)

Proof: Suppose the contrary is true, i.e. ∃b′, l′ : (b′ ̸= b ∧ sRes(l′, n, b, b′) ∈ SP
D ∧

occ(a, n, b′) ∈ SP
D ). Then by definition 4.1 if must hold that uBr(n, b′) ∈ SP

D . This
again contradicts the integrity constraint (F5i), hence (A.77) must hold.

A.5. Sensing Results

We prove soundness for sensing results: if at a node n, b an atom sRes(l, n, b, b′) is
produced, then the sense-function (3.8) returns a pair ⟨l, t⟩. This is formally expressed
with Lemma A.10:
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Lemma A.10 (Soundness for sensing results)

∀l, n, b, b′ :
sRes(l, n, b, b′) ∈ SP

D ⇒ sense(An,b,h(n, b, S
P
D )) = {⟨l, n⟩ ,


l, n


}

(A.78)

∀n, b, b′ :
(¬∃l : sRes(l, n, b, b′) ∈ SP

D )⇒ (sense(An,b,h(n, b, S
P
D )) = {∅})

(A.79)

Proof:
Consider all rules in anHPX -Logic Program with an sRes/4 atom in the head. These
are:

sRes(F,N,B,B)←occ(A,N,B), hasKP(A,F ), (F5f)
not kw(F,N,N,B)

1{sRes(neg(F ), N,B,B′) : neq(B,B′)}1←occ(A,N,B), hasKP(A,F ), (F5g)
not kw(F,N,N,B)

We need the following auxiliary result. Consider rules (F5d),(F5e) which produce kw/4
atoms. According to the Stable Model semantics, since these rules are the only rules
with kw/4 in their heads the following must hold:

∀f, t, n, b :
kw(f, t, n, b) ̸∈ SP

D ⇒ {knows(f, t, n, b), knows(neg(f), t, n, b)} ∩ SP
D = ∅

(A.80)

To prove that (A.78) holds, we show that for both rules (F5f), (F5g) that if their body
is compatible with the Stable Model SP

D , then ∃ ⟨l, n⟩ ∈ sense(An,b,h(n, b, S
P
D )) must

hold. That is, to show that (A.78) holds we consider (A.80) and show that both (A.81)
and (A.82) hold:

∀f, n, b :
∃a :


{occ(a, n, b), hasKP(a, f)} ⊆ SP

D∧
{knows(f, n, n, b), knows(neg(f), n, n, b)} ∩ SP

D = ∅


⇒
(sense(An,b,h(n, b, S

P
D )) = {⟨l, n⟩ ,


l, n


})

(A.81)

∀f, n, b :
∃a :


{occ(a, n, b), hasKP(a, f)} ⊆ SP

D∧
{knows(f, n, n, b), knows(neg(f), n, n, b)} ∩ SP

D = ∅


⇒
(sense(An,b,h(n, b, S

P
D )) = {⟨l, n⟩ ,


l, n


})

(A.82)
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1. Positive sensing result (A.81)
(A.81)

With Definition 4.1 and Lemma A.12:

∃a :

{occ(a, n, b), hasKP(a, f)} ⊆ SP

D


⇒ (∃a ∈ An,b : KPa = f)

∀f, n, b :
∃a ∈ An,b :


KPa = f∧

{knows(f, n, n, b), knows(neg(f), n, n, b)} ∩ SP
D = ∅


⇒ (sense(An,b,h(n, b, S

P
D )) = {⟨f, n⟩ , ⟨¬f, n⟩})

(A.83)

By (4.5): κ(n, b, SP
D ) = {⟨l, t⟩ |knows(l, t, n, b) ∈ SP

D }

{knows(f, n, n, b), knows(neg(f), n, n, b)} ∩ SP
D = ∅

⇒ {⟨¬f, n⟩ , ⟨f, n⟩} ∩ κ(n, b, SP
D ) = ∅

∀f, n, b :
∃a ∈ An,b : KPa = f∧

{⟨¬f, n⟩ , ⟨f, n⟩} ∩ κ(n, b, SP
D ) = ∅


⇒ (sense(An,b,h(n, b, S

P
D )) = {⟨f, n⟩ , ⟨¬f, n⟩})

(A.84)
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(A.84)

Consider (3.8):

sense(An,b,h(n, b, S
P
D )) =



{{

f, now(h(n, b, SP

D ))

}, {


¬f, now(h(n, b, SP

D ))

}}

if ∃a ∈ An,b : KPa = f∧
f, now(h(n, b, SP

D ))

̸∈ κ(h(n, b, SP

D ))∧
¬f, now(h(n, b, SP

D ))

̸∈ κ(h(n, b, SP

D ))

{∅} otherwise

With (4.5): κ(h(n, b, SP
D )) = κ(n, b, SP

D )
According to now (3.5), (4.3) and (4.5): now(h(n, b, SP

D )) = n

sense(An,b,h(n, b, S
P
D )) =



{{⟨f, n⟩}, {⟨¬f, n⟩}}
if ∃a ∈ An,b : KPa = f∧
⟨f, n⟩ ̸∈ κ(n, b, SP

D )∧
⟨¬f, n⟩ ̸∈ κ(n, b, SP

D )

{∅} otherwise

It follows that (A.84) holds.

2. Negative sensing result (A.82)
This is analogous to the case of the positive sensing result.

The proof for (A.79) is analogous to the proof for (A.78).

Lemma A.11 (Only one sensing result per branch)

∀n, l, b, b′, l′ : ((sRes(l, n, b, b′) ∈ SP
D ∧ sRes(l′, n, b, b′) ∈ SP

D )⇒ l = l′) (A.85)

Proof Sketch:
This directly follows from the integrity constraint (F5h).

A.6. Auxiliary Lemmata

Soundness of auxiliary predicates

The following lemma concerns soundness of auxiliary predicates in the ASP formaliza-
tion ofHPX .
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Lemma A.12 (Soundness for auxiliary predicates) Given the prerequisites described
in Definition 4.1 the following holds:

1. hasEP(a, ep) ∈ SP
D ⇔ ep ∈ EPa

2. hasEff (ep, l) ∈ SP
D ⇔ e(ep) = l

3. hasCond(ep, l) ∈ SP
D ⇔ l ∈ c(ep)

4. hasKP(a, f) ∈ SP
D ⇔ KPa = f

Proof:
This follows directly from observing that the auxiliary predicates hasEP/2, hasEff /2,
hasCond/2, hasKP/2 only appear as facts in the Logic Program LP (D) ∪ P if they
are produced by translation rules (T5) – (T7). There are no other rules which have one of
the auxiliary predicates in their head.

Current Step Number
The following lemma states, that if an h-state is extracted from a Stable Model (denoted
h(n, b, SP

D ), see (4.5)), then the step number of that state (denoted by now(h(n, b, SP
D ),

see (3.5)) equals n.

Lemma A.13 (Current Step Number) Given the prerequisites described in Definition
4.1 the following holds:

now(h(n, b, SP
D ) = n (A.86)

Proof Sketch:
Consider (4.5):

h(n, b, S) = ⟨α(n, b, S),κ(n, b, S)⟩
α(n, b, S) = {⟨a, t⟩ |∃b′, t : (occ(a, t, b′) ∈ S ∧ ancestor(t, b′, n, b, S))}

It follows from the definition of anchestor (4.4) that ∀ ⟨a, t⟩ ∈ α(n, b, S) : t < n. It fol-
lows from the Definition 4.1 that there are no gaps in the plan, i.e. ∀n, b : (uBr(n, b)⇒
∃a : occ(a, n, b)) Then, by the definition of now (3.5) we have now(h(n, b, SP

D ) = n.
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B
Computational Properties ofHPXHPXHPX

This appendix contains proofs concerning the computational complexity and other
properties of HPX . As argued in Section 3.3 we assume that the size of concurrent
conditional plans (CCP) is of polynomial size wrt. D.

B.1. Computational Complexity
We prove Theorem 3.1 pertaining the computational worst-time complexity forHPX :
Let D be a planning domain, then deciding whether

∃p : solves(p,D) (B.1)

holds is in NP.

Proof: The problem of deciding whether an expression of the form ∃uP (u,w) is true or
false is in NP if (1) u runs over words of polynomial length and (2) checking whether
P (u,w) holds is polynomial.
Consider that u = p is a concurrent conditional plan and w = D is a domain specification
such that P (u,w) = solves(p,D). (1) is given by the restriction that only plans of
polynomial size are considered (see argumentation in Section 3.3). To show that (2)
also holds, we prove that determining whether a plan p solves a planning domain D is
polynomial in Lemma B.1. This proves Theorem 3.1.

Lemma B.1 (Solving the projection problem is polynomial) Given a concurrent con-
ditional plan (CCP) p and a domain D. Deciding whether

solves(p,D) (B.2)

holds is polynomial.
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Proof: Reconsider function solves(p,D):

solves(p,D) = ∀h ∈ Ψ(p,h0) : ∀lsg ∈ Gstrong : h |= lsg

∧∃h ∈ Ψ(p,h0) : ∀lwg ∈ Gweak : h |= lwg

To determine whether a plan p solves a problem domain D, we check whether strong
goals holds in all leafs and weak goals hold in at least one leaf of the transition tree.
Checking whether a goal holds in all leafs of the transition tree is linear wrt. the number
of leafs and goal literals. It follows from the transition function (3.7) and the extended
transition function (3.18) that the number of leafs is less or equal to the number of sensing
actions in a plan p. The number of sensing actions and hence the number of leafs is
polynomial due to the restriction that we only consider plans of polynomial size. As of
Lemma B.2, applying the extended transition function (3.18) is polynomial. Thus, to
solve the projection problem we apply a polynomial number of polynomial operations
which is again polynomial.

Lemma B.2 (Applying the extended transition function is polynomial) Given a plan
p and a consistent h-state h, applying the extended transition function Ψ(p,h0) (3.18) is
polynomial.

Proof: In Lemma B.3 we show that applying the transition function (3.7) for a set of
actions is polynomial. The extended transition (3.18) applies the transition function
(3.7) once for each concurrent set of actions in the plan. As plans are restricted to be of
polynomial size, the transition function is applied polynomially often. Consequently,
with the extended transition function we perform a polynomial number of polynomial
operations, which is again polynomial.

Lemma B.3 (Applying the transition function is polynomial) Given a set of actions
A and a consistent h-state h, applying the transition function Ψ(A,h) (3.7) is polynomial.

Proof: Recall the transition function (3.7 ):

Ψ(A,h) =


k∈sense(Aex,h)

eval(⟨α′,κ(h) ∪ k⟩)

The transition function calls the eval function (3.17) and conjoins its result with sensing
results. Conjoining the sensing results is done in constant time and the number of
potential sensing results is |k| ≤ 2. Therefore the computational worst-time complexity
is determined by eval.
To see that eval is polynomial, consider the following: eval(h) calls evalOnce(h) until
h converged. We must therefore show that evalOnce(h) is (i) itself polynomial, and
(ii) called at most polynomially often wrt. h. (i) is shown with Lemma (B.4) and (ii) is
shown with Lemma (B.5).
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Lemma B.4 (Applying evalOnce (B.2) is polynomial) Applying evalOnce(h) (B.2) is
polynomial for an arbitrary h-state h and a domain D.

Proof: evalOnce (B.2) calls the five inference mechanisms (3.11) – (3.15), i.e. fwd,
back, causal, pdpos and pdneg. All atomic operations (like concatenation of sets) in
(3.11) – (3.15) are executed in linear or constant time. Quantifications in (3.11) – (3.15)
are always either over the applied effect propositions, the condition literals in an effect
proposition or over the elements in κ(h) which are all sets of constant size wrt. h and D.
Therefore evalOnce(h) is polynomial wrt. h and D.

Lemma B.5 (Function evalOnce is called constantly often by eval) Let |LD| be the
number of literals in a domain D with the initial h-state h0. Let p be a conditional
plan and h ∈ Ψ(p,h0) be an arbitrary leaf state resulting from applying the extended
transition function. Then evalOnce(h) (B.2) is called at most |LD| · now(h) times by
eval(h) (3.17).

Proof: As of Lemma B.6 it holds for all h-states h ∈ Ψ(p,h0) that the maximum size
of the knowledge history κ(h) is |LD| · now(h). Lemma B.7 proves monotonicity of
evalOnce: that is, for a pair ⟨l, t⟩, if h |= ⟨l, t⟩ then evalOnce(h) |= ⟨l, t⟩. Therefore at
most |LD| · now(h) changes can be made to κ(h) until convergence is achieved. Thus,
evalOnce can only be called at most |LD| · now(h) times.

Lemma B.6 (Maximal size of knowledge history) Let D be a domain with the initial
h-state h0 and p be a concurrent conditional plan. Let |LD| be the number of literals in
D. Then the following holds for the number of elements in the knowledge history:

∀h ∈ Ψ(p,h0) : |κ(h)| ≤ |LD| · now(h) (B.3)

Proof Sketch: The knowledge history κ(h) consists of pairs ⟨l, t⟩, where l ∈ LD. Since
LD is determined by the domain size it is sufficient to show that for all t it holds that
0 ≤ t ≤ now(h). Formally:

∀h ∈ Ψ(p,h0) : ∀ ⟨l, t⟩ ∈ κ(h) : 0 ≤ t ≤ now(h) (B.4)

To prove (B.4) we prove the following more general proposition (B.5).

∀h′ ∈ Ψ(p,h) : ∀ ⟨l, t⟩ ∈ κ(h′) : 0 ≤ t ≤ now(h′) (B.5)

where h is an arbitrary h-state such that 0 ≤ t ≤ now(h). This generalization is valid
because by Definition 3.2 for any initial h-state h0 it holds that 0 ≤ t ≤ now(h0).
To prove (B.4) we perform nested induction. The “outer” induction is over the structure
of a concurrent conditional plan p. Most steps are trivial, except for the second base
step where an “inner” induction is required. The inner induction is over the structure of
knowledge producing mechanisms which we describe in Lemma B.9.
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• Outer base step 1: p = []
This case clearly holds because by the extended transition function (3.18) it holds
that Ψ([],h) = {h}.

• Outer base step 2: p = [a1|| · · · ||an]
In this case we have according to the extended transition function (3.18):Ψ([a1|| · · · ||an],h) = Ψ([a1|| · · · ||an],h)

We consider Lemma B.9 which identifies all mechanisms within Ψ([a1|| · · · ||an],h)
which produce pairs ⟨l, t⟩ and prove inductively that (B.5) holds:

– Inner base step 1: ⟨l, t⟩ ∈ κ(h)
This emerges directly from the premise that 0 ≤ t ≤ now(h).

– Inner base step 2:{⟨l, t⟩} ∈ sense({{a1, . . . , an},h})
By definition of sense (3.8) it holds that t = now(h).

– Inner base step 3:⟨l, t⟩ ∈ addcause(h′)
Consider (3.13): addcause(h′) can not produce a pair ⟨l, t⟩ with t < 1 or
t > now(h′) because by the Definition 3.1 of the effect history ϵ(h′) and the
transition function (3.7) we know that ∀ ⟨ep, t⟩ ∈ ϵ(h′) : t < now(h′) ∧ t ≥
0.

– Inner base step 4,5:⟨l, t⟩ ∈ addpdpos(h′) or ⟨l, t⟩ ∈ addpdneg(h′).
These cases are similar to addcause(h′).

– Inner induction step 1: ⟨l, t⟩ ∈ addfwd(h
′).

Reconsider (3.11):

addfwd(h
′) = {⟨l, t⟩ | ⟨l, t− 1⟩ ∈ κ(h′)∧inertial(l, t−1,h′)∧t ≤ now(h′)}

It holds that ∀t : t ≤ now(h′). By inner induction hypothesis we assume that
t− 1 ≥ 0 and therefore it must hold that t > 0.

– Inner induction step 2: ⟨l, t⟩ ∈ addback(h′).
This is analogous to inner induction step 1.

• Outer induction step 1: p = [p1; p2]

It holds that Ψ([p1; p2],h) =


hi∈Ψ(p1,h)

Ψ(p2,hi) By outer hypothesis we assume

that (a) ∀hi ∈ Ψ(p1,h) : 0 ≤ t ≤ now(hi) and (b) ∀hi ∈ Ψ(p1,h) : ∀h′ ∈Ψ(p2,hi) : 0 ≤ t ≤ now(h′).

• Outer induction step 2: p =if l then p1 else p2 This is similar to outer induc-
tion step 1.

We have shown by induction that (B.5) holds. (B.5) is a generalization of (B.4).
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B.2. Knowledge-persistence and Monotonicity of
Re-evaluation

The following Lemmata capture that knowledge can not get lost, i.e. HPX -agents do
not “forget” knowledge.

Lemma B.7 (Re-evaluation is monotonic) Let D be a domain description with an ini-
tial state h0 and p be a conditional concurrent plan. For all leaf states h ∈ Ψ(p,h0) it
holds that

∀ ⟨l, t⟩ : (h |= ⟨l, t⟩ ⇒ evalOnce(h) |= ⟨l, t⟩) (B.6)

and
∀ ⟨l, t⟩ : (h |= ⟨l, t⟩ ⇒ eval(h) |= ⟨l, t⟩) (B.7)

Proof: The proof of (B.6) follows from a simple syntactic investigation of five IM (3.11)
– (3.15) which are called by evalOnce. Recall the definition of evalOnce (B.2):

evalOnce(h) = pdneg(pdpos(cause(back(fwd(h)))))

Let the following hold for an h-state h = ⟨α,κ⟩:

fwd(h) = h̃fwd = ⟨α(h),κ(h) ∪ addfwd(h)⟩
back(fwd(h)) = h̃back =


α(h),κ(hfwd) ∪ addback(hfwd)


cause(back(fwd(h))) = h̃cause = ⟨α(h),κ(hback) ∪ addcause(hback)⟩

pdpos(cause(back(fwd(h)))) = h̃pdpos = ⟨α(h),κ(hcause) ∪ addpdpos(hcause)⟩
pdneg(pdpos(cause(back(fwd(h))))) = h̃pdneg =


α(h),κ(hpdpos) ∪ addpdneg(hpdpos)


(B.8)

then evalOnce(h) = h̃pdneg .
From (B.8) we extract the following implications:

∀ ⟨l, t⟩ :

⟨l, t⟩ ∈ κ(h)⇒ ⟨l, t⟩ ∈ κ(hfwd)⇒ ⟨l, t⟩ ∈ κ(hback)

⇒⟨l, t⟩ ∈ κ(hcause)⇒ ⟨l, t⟩ ∈ κ(hpdpos)⇒ ⟨l, t⟩ ∈ κ(evalOnce(h))
 (B.9)

It follows by (B.9) that

∀ ⟨l, t⟩ : (⟨l, t⟩ ∈ κ(h)⇒ ⟨l, t⟩ ∈ κ(evalOnce(h))) (B.10)

The definition of the |= operator (3.6b) is :

∀l, t : (h |= ⟨l, t⟩ ⇔ ⟨l, t⟩ ∈ κ(h)) (B.11)

Consequently, ∀ ⟨l, t⟩ : h |= ⟨l, t⟩ ⇒ evalOnce(h) |= ⟨l, t⟩ (B.6) is true.
The proof of (B.7) follows from (B.6) and the recursive definition of eval (3.17).
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Lemma B.8 (Knowledge-persistence for CCP) Consider an h-state h a concurrent
conditional plan p. Then (B.12) holds:

∀l, t,h′ ∈ Ψ(p,h) :

h |= ⟨l, t⟩ ⇒ h′ |= ⟨l, t⟩


(B.12)

Proof: We perform induction over the structure of a CCP p.

1. p = []

In this case Ψ([],h) = {h} and the lemma trivially holds.

2. p = [a1|| . . . ||an]
In this case Ψ([a1|| . . . ||an],h) = Ψ({a1, . . . , an},h). Recall the transition func-
tion (3.7):

Ψ({a1, . . . , an},h) =


k∈sense({a1,...,an},h)

eval(⟨α′,κ(h) ∪ k⟩) (B.13)

If follows trivially that (B.14) holds.

∀l, t, k ∈ sense({a1, . . . , an},h) :

h |= ⟨l, t⟩ ⇒ κ(h) ∪ k |= ⟨l, t⟩


(B.14)

Lemma B.7 shows that eval is monotonic, i.e. (B.15) holds.

∀l, t, k ∈ sense({a1, . . . , an},h) :

h |= ⟨l, t⟩ ⇒ eval(⟨α′,κ(h) ∪ k⟩) |= ⟨l, t⟩


(B.15)

Consequently, (B.13) is true.

3. p = [p1; p2] where p1, p2 are CCP
This follows directly from the induction hypothesis and the extended transition
function (3.18).

4. p = [if l then p1 else p2] where p1, p2 are CCP
This follows directly from the induction hypothesis and the extended transition
function (3.18).

B.3. Knowledge Producing Mechanisms

The following Lemma states that if knowledge is produced then it is either produced by
sensing or one of the five inference mechanisms:
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Lemma B.9 (Knowledge producing mechanisms for single state transitions) Given a
domain D, an h-state h and a set of actions A. Then for all h-states h′ ∈ Ψ(A,h) it
holds that a pair ⟨l, t⟩ can only be contained in the knowledge history κ(h′) if and only
if it was produced by sensing or one of the inference mechanisms IM.1–IM.5 (3.11) –
(3.15). This is formally expressed as follows:

∀ ⟨l, t⟩ : ⟨l, t⟩ ∈ κ(h′)⇔
⟨l, t⟩ ∈ κ(h)

∨ ⟨l, t⟩ ∈ addfwd(h
′)

∨ ⟨l, t⟩ ∈ addback(h′)

∨ ⟨l, t⟩ ∈ addcause(h′)

∨ ⟨l, t⟩ ∈ addpdpos(h′)

∨ ⟨l, t⟩ ∈ addpdneg(h′)

∨{⟨l, t⟩} ∈ sense({A,h})


(B.16)

Proof:
This follows from the constitution of the transition function (3.7) and the re-evaluation
functions. Recall (3.7):

Ψ(A,h) =


k∈sense(A,h)

eval(⟨α′,κ(h) ∪ k⟩)

where eval is recursively defined as follows:

eval(⟨α′,κ(h) ∪ k⟩) =
h if evalOnce(⟨α′,κ(h) ∪ k⟩) = ⟨α′,κ(h) ∪ k⟩
eval(evalOnce(⟨α′,κ(h) ∪ k⟩)) otherwise

Recall evalOnce (refeq:evalOnce):

evalOnce(⟨α′,κ(h) ∪ k⟩) = pdneg(pdpos(cause(back(fwd(⟨α′,κ(h) ∪ k⟩))))

The⇒ direction of (B.16) follows directly from syntactic investigation of Ψ, eval and
the constitution of the inference mechanism functions fwd, back, cause, etc.: each of the
five inference mechanisms calls one add-function (addfwd, addback, addcause, etc.) which
generates additional pairs ⟨l, t⟩. For example fwd(h) = ⟨α(h),κ(h) ∪ addfwd(h)⟩.
By Lemma B.7 it holds that no knowledge is removed from the knowledge history of an
h-state. Hence if for some h-state h it holds that ⟨l, t⟩ ∈ addIM (h), then ⟨l, t⟩ ∈ eval(h)
(where IM is either add,back,cause, etc.). This proves the⇒ direction of (B.16).
The⇐ direction of (B.16) follows from the observation that there is no other operation
within the transition function which generates a pair ⟨l, t⟩.
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C
Soundness ofHPXHPXHPX wrt.ATQSkA

TQS
kA
TQS
k

We prove Theorem 3.3 which states thatHPX is sound wrt. the Ak
TQS semantics. Due

to restrictions in Ak, we forbid that actions can happen concurrently. That is, if an action
has a knowledge proposition then it can not have an effect proposition.
The proof is done by induction over the number of actions. In the remainder of the proof
we use the following notational conventions:

• D is a domain specification.

• αn = [a1; . . . ; an] and αn+1 = [a1; . . . ; an; an+1] are sequences of actions.

• h0 is the initial h-state of D.

• hn ∈ Ψ([a1; . . . ; an],h0) is an h-state which results from applying the extended
transition function on h0. Similar for hn+1.

• δ0 = ⟨u0,Σ0⟩ is an arbitrary valid initial c-state of D.

• δn = ⟨un,Σn⟩ = Φ(an,Φ(an−1, · · ·Φ(a1, δ0))) is a c-state obtained by applying
the Ak transition functions (3.24), (3.26). Similar for δn+1.

• Σ0
n and Σ0

n+1 are the re-evaluated initial k-states as described in Definition 3.6:

Σ0
n = {s0|s0 ∈ Σ0 ∧Res(an, Res(an−1, · · ·Res(a1, s0))) ∈ Σn}

and similar for Σ0
n+1.

• Σt
n and Σt

n+1 are re-evaluated k-states as described in Definition 3.7:

Σt
n =


s∈Σ0

n

Res(at, Res(at−1, · · ·Res(a1, s)))

with 0 ≤ t ≤ n and similar for Σt
n+1 with 0 ≤ t ≤ n+ 1 .
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With the conventions Theorem 3.3 is rewritten as Lemma C.1.

Lemma C.1 (Soundness ofHPX wrt. ATQS
k for sequences of actions)

∀n : ∃hn ∈ Ψ(αn,h0) : ∀l, t :
hn |= ⟨l, t⟩ ⇒ Σt

n |= l

with t ≤ n.

(C.1)

Proof: Induction over the number of actions n. The base step n = 0 is stated in Lemma
C.2. The induction step (n → n + 1) is stated in Lemma C.3. To prove the induction
step we make a case distinction to eliminate the ∃-quantification over hn and then we
perform another inner induction proof over pairs ⟨l, t⟩.

C.1. Base Step: Initial Knowledge
Lemma C.2 considers soundness of knowledge in the initial state (n = 0). Since t ≤ n it
holds that t = 0.

Lemma C.2 (Soundness of the initial state) Let D be a domain description and δ0 =
⟨u0,Σ0⟩ a grounded valid initial c-state of D and h0 be the initial h-state of D. Then
(C.2) holds.

∀l : h0 |= ⟨l, 0⟩ ⇒ Σ0
0 |= l (C.2)

Proof:
Definition 3.2 concerning the initial h-state h0, Definition 3.6 concerning the re-evaluated
initial k-state and the definition of initial knowledge in (Son and Baral, 2001, p. 28,
Definition 3) directly prove the Lemma.
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C.2. Induction Step: Knowledge Gain for Single
State Transitions

The induction step reflects that after the n+ 1-th state transition is performed then there
exists at least one h-state hn+1 resulting from the state transition such that hn+1 |=
⟨l, t⟩ ⇒ Σt

n+1 |= l. This is formalized in Lemma C.3.

Lemma C.3 (Soundness ofHPX wrt. ATQS
k for single state transitions) Let hn ∈Ψ(αn,h0) be an h-state such that (C.3) holds. Then (C.4) holds as well.

∀l, t : (hn |= ⟨l, t⟩)⇒ (Σt
n |= l) (C.3)

∃hn+1 ∈ Ψ(an+1,hn) :

∀l, t : (hn+1 |= ⟨l, t⟩)⇒ (Σt
n+1 |= l)

(C.4)

with t ≤ n+ 1.

Proof:
We fist make some substitutions and generalize over possible sensing results to eliminate
the ∃-quantification over h-states. This allows us to perform induction over pairs ⟨l, t⟩.
(C.4)

Recall theHPX -transition function (3.7).

Ψ(an+1,hn) =


k∈sense({an+1},hn)

eval(⟨αn+1,κn ∪ k)⟩)

where αn+1 = α(hn) ∪ {⟨an+1, now(hn)⟩} and κn = κ(hn). Lemma C.4 states that
now(hn) = n. With this we substitute in (C.4) and obtain (C.5)

∃hn+1 ∈


k∈sense({an+1},hn)

eval(⟨αn+1,κn ∪ k⟩) :

∀l, t : (hn+1 |= ⟨l, t⟩)⇒ (Σt
n+1 |= l)

(C.5)

with t ≤ n+ 1.
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(C.5)

To prove (C.5) we make a generalization which eliminates the ∃-quantification over
hn+1. To this end consider the sense function (3.8) which we rewrite as (C.6).

sense({an+1},hn) =
{{⟨f s, ts⟩}, {⟨¬f s, ts⟩}} if KPan+1 = f s∧

{⟨f s, ts⟩ , ⟨¬f s, ts⟩} ∩ κn = ∅
{∅} otherwise

(C.6)

where ts = now(hn). By Lemma C.4 it holds that ts = n.
Let un denote the state which results from the application of the first n actions on the
initial state u0. This is formally expressed by (C.7).

un = Res(an, Res(an−1, · · ·Res(an, u0))) (C.7)

Since un is a set of fluent symbols there must be one sensing result k ∈
sense({an+1},hn) which corresponds to un. This correspondence is denoted by an
auxiliary boolean function corrSense(k, an+1,hn, un) (C.8).

corrSense(k, an+1,hn, un)⇔
k ∈ sense({an+1},hn)∧
(k = {∅}) ∨ (k = {⟨f s, n⟩} ∧ f s ∈ un) ∨ (k = {⟨¬f s, n⟩} ∧ f s ̸∈ un)

 (C.8)

where f s = KPan+1 . Consequently, in order to show that (C.5) holds it is sufficient to
show that (C.9) holds.

∀l, t, k :

(eval(⟨αn+1,κn ∪ k⟩) |= ⟨l, t⟩)
⇒ (Σt

n+1 |= l)
 (C.9)

with t ≤ n+ 1 and corrSense(k, an+1,hn, un) holds.

To prove (C.9) we perform induction according to the structure of (B.16) in Lemma B.9
over pairs ⟨l, t⟩.
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Let hk
n+1 = eval(⟨αn+1,κn ∪ k⟩ such that corrSense(k, an+1,hn, un holds. Then

(B.16) rewrites as follows:

∀ ⟨l, t⟩ : ⟨l, t⟩ ∈ κ(hk
n+1)⇔


⟨l, t⟩ ∈ κ(hn)

∨{⟨l, t⟩} ∈ sense({an+1},hn)

∨ ⟨l, t⟩ ∈ addfwd(h
k
n+1)

∨ ⟨l, t⟩ ∈ addback(hk
n+1)

∨ ⟨l, t⟩ ∈ addcause(hk
n+1)

∨ ⟨l, t⟩ ∈ addpdpos(hk
n+1)

∨ ⟨l, t⟩ ∈ addpdneg(hk
n+1)


From (B.16) we extract the set of implications (C.10).

∀ ⟨l, t⟩ : ⟨l, t⟩ ∈ κk
n+1 ⇐⟨l, t⟩ ∈ κ(hn) (C.10a)

∀ ⟨l, t⟩ : ⟨l, t⟩ ∈ κk
n+1 ⇐{⟨l, t⟩} ∈ sense({an+1},hn) (C.10b)

∀ ⟨l, t⟩ : ⟨l, t⟩ ∈ κk
n+1 ⇐⟨l, t⟩ ∈ addfwd(h

k
n+1) (C.10c)

∀ ⟨l, t⟩ : ⟨l, t⟩ ∈ κk
n+1 ⇐⟨l, t⟩ ∈ addback(hk

n+1) (C.10d)

∀ ⟨l, t⟩ : ⟨l, t⟩ ∈ κk
n+1 ⇐⟨l, t⟩ ∈ addcause(hk

n+1) (C.10e)

∀ ⟨l, t⟩ : ⟨l, t⟩ ∈ κk
n+1 ⇐⟨l, t⟩ ∈ addpdpos(hk

n+1) (C.10f)

∀ ⟨l, t⟩ : ⟨l, t⟩ ∈ κk
n+1 ⇐⟨l, t⟩ ∈ addpdneg(hk

n+1) (C.10g)

where κk
n+1 = κ(hk

n+1).
Two implications generate knowledge about a pair ⟨l, t⟩ independently from other pairs
⟨l′, t′⟩ with ⟨l, t⟩ ≠ ⟨l′, t′⟩. These are the cases (C.10a) and (C.10b). Since a soundness
proof for these cases does not rely on the induction hypothesis we consider these cases
for the base steps.
The remaining implications (C.10c), (C.10d), (C.10e), (C.10f) and (C.10g) produce ⟨l, t⟩
but rely on knowledge about ⟨l′, t′⟩ with ⟨l, t⟩ ̸= ⟨l′, t′⟩. For example a pair ⟨l, t⟩ is
produced by the forward inertia function addfwd(h

k
n+1) if ⟨l, t− 1⟩ is known to hold in

hk
n+1. These implications are considered in the induction step because proving soundness

relies on the induction hypothesis. The induction is complete because (B.16) is a bi-
implication, i.e. all pairs ⟨l, t⟩ are reached.
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Base Step 1 – (C.10a)

Recall (C.9):
∀l, t, k : (hk

n+1 |= ⟨l, t⟩)⇒ (Σt
n+1 |= l)

with t ≤ n+ 1.

Consider (C.10a):

∀ ⟨l, t⟩ :

hk
n+1 |= ⟨l, t⟩ ⇐ ⟨l, t⟩ ∈ κ(hn)


∀l, t :


(⟨l, t⟩ ∈ κ(hn))⇒ (Σt

n+1 |= l)


(C.11)

with t ≤ n+ 1.

By (C.3) the following holds:

∀l, t :

(⟨l, t⟩ ∈ κ(hn))⇒ (Σt

n |= l)


To show that (C.11) holds it is sufficient to show that (C.12) holds.

∀l, t :

(Σt

n |= l)⇒ (Σt
n+1 |= l)


(C.12)

with t ≤ n+ 1.

Lemma C.5 states that (C.12) is true and we have proven base step 1.
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Base Step 2 – (C.10b)

Recall (C.9):

∀l, t, k : (corrSense(k, an+1,hn, un) ∧ hk
n+1 |= ⟨l, t⟩)⇒ (Σt

n+1 |= l)

with t ≤ n+ 1.

Consider (C.10b):
∀ ⟨l, t⟩ : hk

n+1 |= ⟨l, t⟩ ⇐ ⟨l, t⟩ ∈ κ(hn)

∀l, t, k :

corrSense(k, an+1,hn, un) ∧ {⟨l, t⟩} ∈ sense({an+1},hn)⇒ (Σt

n+1 |= l)


(C.13)
with t ≤ n+ 1.

Reconsider corrSense(k, an+1,hn, un) (C.8):

corrSense(k, an+1,hn, un)⇔
k ∈ sense({an+1},hn)∧
(k = {∅}) ∨ (k = {⟨fs, n⟩} ∧ fs ∈ un) ∨ (k = {⟨¬fs, n⟩} ∧ fs ̸∈ un)


Reconsider the sense function (C.6):

sense({an+1},hn) =


{{⟨fs, n⟩}, {⟨¬fs, n⟩}} if KPan+1 = f s∧

{⟨fs, n⟩ , ⟨¬fs, n⟩} ∩ κn = ∅
{∅} otherwise

Consequently, if {⟨l, t⟩} ∈ sense({an+1},hn) then one of the following cases is true:

1. ⟨l, t⟩ = ⟨fs, n⟩ ∧ fs ∈ un)

2. ⟨l, t⟩ = ⟨¬fs, n⟩ ∧ fs ∈ un)

where fs = KPa.
We have to show that (C.13) holds in both cases. For brevity we show only case 1 (C.14). Case
2 is analogous.

∀l, t :

⟨l, t⟩ = ⟨fs, n⟩ ∧ fs ∈ un) ∧ {⟨l, t⟩} ∈ sense({an+1},hn)⇒ (Σt

n+1 |= l)

(C.14)

with t ≤ n+ 1 and fs = KPa.
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(C.14)

To show that (C.14) holds it is sufficient to show that (C.15) holds.

(fs ∈ un)⇒ (Σn
n+1 |= fs) (C.15)

with t ≤ n+ 1 and fs = KPa.

By transition function for sensing actions (3.26):

(fs ∈ un)⇒

Σn+1 = {s|(s ∈ Σn) ∧ (fs ∈ s)}


It follows that (C.16) holds.

(fs ∈ un)⇒ (∀s ∈ Σn+1 : f
s ∈ s) (C.16)

(∀s ∈ Σn+1 : f
s ∈ s)⇒ (Σn

n+1 |= fs) (C.17)

with t ≤ n+ 1 and fs = KPa.

By Lemma C.6: Σn+1 = Σn+1
n+1

(∀s ∈ Σn+1
n+1 : f

s ∈ s)⇒ (Σn
n+1 |= fs) (C.18)

with t ≤ n+ 1 and f s = KPa.

By (3.29): Σn+1
n+1 =

R
s∈Σn

n+1

es(an+1, s)

Recall that we restrict that sensing actions do not have effect propositions. Since KPan+1 = f s

it holds that an+1 is a sensing action and has no effect propositions. Therefore, by the Ak result
function (3.25):

∀s ∈ Σn
n+1 : Res(an+1, s) = s

And consequently Σn
n+1 = Σn+1

n+1.

(∀s ∈ Σn
n+1 : f

s ∈ s)⇒ (Σn
n+1 |= fs) (C.19)

with t ≤ n+ 1 and f s = KPa.

By definition of |= (3.6): Σn
n+1 |= fs ⇔ (∀s ∈ Σn

n+1 : f
s ∈ s).

This shows that (C.19) is true. Therefore base step 2 (C.11) is true.
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Induction Step 1 – (C.10c)

Recall (C.9):
∀l, t, k : (hk

n+1 |= ⟨l, t⟩)⇒ (Σt
n+1 |= l)

with t ≤ n+ 1.

Consider (C.10c):

∀ ⟨l, t⟩ : hk
n+1 |= ⟨l, t⟩ ⇐ ⟨l, t⟩ ∈ addfwd(h

k
n+1)

∀l, t, k :

⟨l, t⟩ ∈ addfwd(h

k
n+1)⇒ (Σt

n+1 |= l)


(C.20)

with t ≤ n+ 1.

Consider the definition of addfwd (3.11):

addfwd(h
k
n+1) = {⟨l, t⟩ |( ⟨l, t− 1⟩ ∈ κ(hk

n+1)∧
inertial(l, t− 1,hk

n+1) ∧ t ≤ now(hk
n+1))}

By Lemma C.4 it holds that now(hk
n+1) = n+ 1. To prove that (C.20) holds we prove that

(C.21) holds.

∀l, t, k :

⟨l, t− 1⟩ ∈ κk

n+1 ∧ inertial(l, t− 1,hk
n+1)


⇒ (Σt

n+1 |= l)


(C.21)

with t ≤ n+ 1.

Consider the definition of inertial (3.10):

inertial(l, t− 1,hk
n+1)⇔∀⟨ep, t− 1⟩ ∈ ϵ(hk

n+1) :
e(ep) = l


⇒


∃lc ∈ c(ep) :


lc, t− 1


∈ κ(hk

n+1)


To prove that (C.21) holds we prove that (C.22) holds.

∀l, t, k :

⟨l, t− 1⟩ ∈ κk

n+1∧
∀ep :


⟨ep, t− 1⟩ ∈ ϵ(hk

n+1)⇒
(e(ep) ̸= l) ∨ (∃lc ∈ c(ep) :


lc, t− 1


∈ κk

n+1)


⇒ (Σt
n+1 |= l)

 (C.22)

with t ≤ n+ 1.
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(C.22)

By induction hypothesis: (⟨l, t− 1⟩ ∈ κk
n+1)⇒ (Σt−1

n+1 |= l).

By definition of |= (3.23):

Σt−1
n+1 |= l


⇒


∀s ∈ Σt−1

n+1 : s |= l

.

∀l, t, k :


(∀s ∈ Σt−1
n+1 : s |= l)∧

∀ep :

⟨ep, t− 1⟩ ∈ ϵ(hk

n+1)⇒
(e(ep) ̸= l) ∨ (∃lc ∈ c(ep) :


lc, t− 1


∈ κk

n+1)


⇒ (Σt
n+1 |= l)

 (C.23)

with t ≤ n+ 1.

By the definition of effect histories (3.3) and the extended transition function (3.18):

⟨ep, t− 1⟩ ∈ ϵ(hk
n+1)⇒ (ep ∈ EPat)

To show that (C.23) holds it is sufficient to show that (C.24) holds.

∀l, t, k :

∀s ∈ Σt−1

n+1 : s |= l

∧

∀ep ∈ EPat :

(e(ep) ̸= l) ∨ (∃lc ∈ c(ep) :


lc, t− 1


∈ κk

n+1)


⇒ (Σt
n+1 |= l)

 (C.24)

with t ≤ n+ 1.

By definition of re-evaluated k-states (3.29): Σt
n+1 =


s∈Σt−1

n+1

Res(at, s).

By definition of |= (3.23):
 
s∈Σt−1

n+1

Res(at, s) |= l

⇒ (∀s ∈ Σt−1

n+1 : Res(at, s) |= l).

∀l, t, k :

∀s ∈ Σt−1

n+1 : s |= l

∧

∀ep ∈ EPat :

(e(ep) ̸= l) ∨ (∃lc ∈ c(ep) :


lc, t− 1


∈ κk

n+1)


⇒ (∀s ∈ Σt−1
n+1 : Res(at, s) |= l)

 (C.25)

with t ≤ n+ 1.
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Case Distinction

To prove (C.25) we consider two cases for effect propositions ep, namely e(ep) ̸= l and
∃lc ∈ c(ep) :


lc, t


∈ κk

n+1. We show that (C.25) holds in both cases.

1. e(ep) ̸= l (Effect propositions do not have a complementary effect literal.)

(C.25)

We consider only cases where (C.26) holds.

e(ep) ̸= l (C.26)

This simplifies (C.25) to (C.27).

∀l, t :

∀s ∈ Σt−1

n+1 : s |= l

∧

∀ep ∈ EPat : e(ep) ̸= l


⇒ (∀s ∈ Σt−1
n+1 : Res(at, s) |= l)

 (C.27)

with t ≤ n+ 1.

Recall the Ak result function (3.25):

Res(at, s) = s ∪ E+
at(s) \ E

−
at(s) where

E+
at(s) = {f |∃ep ∈ EP

at : e(ep) = f ∧ s |= c(ep)}
E−

at(s) = {f |∃ep ∈ EP
at : e(ep) = ¬f ∧ s |= c(ep)}

We distinguish two cases:

a) l = f ∧ ∀ep ∈ EPat : (e(ep) ̸= ¬f)
In this case E−

at(s) = ∅. Therefore: ∀s ∈ Σt−1
n+1 : (s |= f ⇒ Res(at, s) |= f)

b) l = ¬f ∧ ∀ep ∈ EPat : (e(ep) ̸= f)
In this case E+

at(s) = ∅. Therefore: ∀s ∈ Σt−1
n+1 : (s |= ¬f ⇒ Res(at, s) |= ¬f)

Consequently:

∀l, t :

∀ep ∈ EPat : (e(ep) ̸= l)


⇒


∀s ∈ Σt−1

n+1 : (s |= l⇒ Res(at, s) |= l)
 (C.28)

It follows from (C.28) that (C.27) holds.
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2. (∃lc ∈ c(ep) :

lc, t− 1


∈ κk

n+1) (Effect propositions have a condition literal
which is known not to hold.)

(C.25)

We consider only cases where (C.29) holds.

∃lc ∈ c(ep) :

lc, t− 1


∈ κk

n+1 (C.29)

This simplifies (C.25) to (C.30).

∀l, t, k :

∀s ∈ Σt−1

n+1 : s |= l

∧

∀ep ∈ EPat : (∃lc ∈ c(ep) :

lc, t− 1


∈ κk

n+1)


⇒ (∀s ∈ Σt−1
n+1 : Res(at, s) |= l)

 (C.30)

with t ≤ n+ 1.

Recall the Ak result function (3.25):
Res(at, s) = s ∪ E+

at(s) \ E
−
at(s) where

E+
at(s) = {f |∃ep ∈ EP

at : e(ep) = f ∧ s |= c(ep)}
E−

at(s) = {f |∃ep ∈ EP
at : e(ep) = ¬f ∧ s |= c(ep)}

We distinguish two cases:

a) l = f ∧ ∀ep ∈ EPat : (∃lc ∈ c(ep) :

lc, t− 1


∈ κk

n+1)

By induction hypothesis we derive the following:

∀lc ∈ c(ep) :

(

lc, t− 1


∈ κk

n+1)⇒ Σt−1
n+1 |= lc


In this case clearly ∀s ∈ Σt−1

n+1 : E
−
at(s) = ∅.

Therefore: ∀s ∈ Σt−1
n+1 : (s |= f ⇒ Res(at, s) |= f).

b) l = ¬f ∧ ∀ep ∈ EPat : (∃lc ∈ c(ep) :

lc, t− 1


∈ κk

n+1)
It follows similarly to case a) that E+

at(s) = ∅.
Therefore: ∀s ∈ Σt−1

n+1 : (s |= ¬f ⇒ Res(at, s) |= ¬f)

From a) and b) follows:

∀l, t :

∀ep ∈ EPat : (e(ep) ̸= l)


⇒


∀s ∈ Σt−1

n+1 : (s |= l⇒ Res(at, s) |= l)
 (C.31)

It follows from (C.31) that (C.30) holds.
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Induction Step 2 – (C.10d)

This is analogous to induction step 1 – (C.10c).

Induction Step 3 – (C.10e)

This is analogous to induction step 4 – (C.10f).

Induction Step 4 – (C.10f)

Recall (C.9):
∀l, t, k : (hk

n+1 |= ⟨l, t⟩)⇒ (Σt
n+1 |= l)

with t ≤ n+ 1.

Recall (C.10f):
∀ ⟨l, t⟩ : hk

n+1 |= ⟨l, t⟩ ⇐ ⟨l, t⟩ ∈ addpdpos(h
k
n+1)

∀l, t, k :

⟨l, t⟩ ∈ addpdpos(h

k
n+1)⇒ (Σt

n+1 |= l)


(C.32)

with t ≤ n+ 1.

Consider the definition of addpdpos (3.14):

addpdpos(h
k
n+1) ={⟨lc, t⟩ |∃ ⟨ep, t⟩ ∈ ϵ(hk

n+1) :

lc ∈ c(ep) ∧ ⟨le, t+ 1⟩ ∈ κ(hk
n+1) ∧


le, t


∈ κ(hk

n+1)

∧

∀

ep′, t


∈ ϵ(hk

n+1) :

ep′ = ep ∨ e(ep′) ̸= le


To prove that (C.32) holds we prove that (C.33) holds.

∀l, t, k :

∃ep :


⟨ep, t⟩ ∈ ϵ(hk

n+1) ∧ e(ep) = le∧

l ∈ c(ep) ∧ ⟨le, t+ 1⟩ ∈ κ(hk
n+1) ∧


le, t


∈ κ(hk

n+1)

∧ (∀

ep′, t


∈ ϵ(hk

n+1) : (ep
′ = ep ∨ e(ep′) ̸= le))


⇒ (Σt

n+1 |= l)
 (C.33)

with t ≤ n+ 1.
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(C.33)

By the definition of effect histories (3.3) and the extended transition function (3.18) it holds that:

⟨ep, t⟩ ∈ ϵ(hk
n+1)⇒ (ep ∈ EPat+1)

To prove that (C.33) holds we prove that (C.34) holds.

∀l, t, k :

∃ep :


ep ∈ EPat+1 ∧ ∧e(ep) = le∧

l ∈ c(ep) ∧ ⟨le, t+ 1⟩ ∈ κ(hk
n+1) ∧


le, t


∈ κ(hk

n+1)

∧ (∀ep′ ∈ EPat+1 : (ep′ = ep ∨ e(ep′) ̸= le))


⇒ (Σt
n+1 |= l)

 (C.34)

with t ≤ n+ 1.

By induction hypothesis:
(⟨le, t⟩ ∈ κk

n+1)⇒ (Σt
n+1 |= le)

By definition of |= (3.23): 
Σt
n+1 |= le


⇒


∀s ∈ Σt

n+1 : s |= le


∀l, t :

∃ep :


ep ∈ EPat+1 ∧ e(ep) = le∧

l ∈ c(ep) ∧ (∀s ∈ Σt+1
n+1 : s |= le) ∧ (∀s ∈ Σt

n+1 : s |= le)

∧ (∀ep′ ∈ EPat+1 : (ep′ = ep ∨ e(ep′) ̸= le))


⇒ (Σt
n+1 |= l)

 (C.35)

with t ≤ n+ 1.
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(C.35)

Recall the definition of re-evaluated k-states (3.29):

Σt+1
n+1 =


s∈Σt

n+1

Res(at+1, s)

To show that (C.35) holds it is sufficient to show that (C.36) holds.

∀l, t :

∃ep :


ep ∈ EPat+1 ∧ e(ep) = le∧

l ∈ c(ep) ∧ (∀s ∈ Σt
n+1 : Res(at+1, s) |= le) ∧ (∀s ∈ Σt

n+1 : s |= le)

∧ (∀ep′ ∈ EPat+1 : (ep′ = ep ∨ e(ep′) ̸= le))


⇒ (Σt
n+1 |= l)


(C.36)

with t ≤ n+ 1.

Simplification.

∀l, t :

∃ep :


ep ∈ EPat+1 ∧ e(ep) = le∧

l ∈ c(ep) ∧ (∀s ∈ Σt
n+1 : (Res(at+1, s) |= le ∧ s |= le))

∧ (∀ep′ ∈ EPat+1 : (ep′ = ep ∨ e(ep′) ̸= le))


⇒ (Σt
n+1 |= l)

 (C.37)

with t ≤ n+ 1.

We simplify:
∃ep :


ep ∈ EPat+1 ∧ e(ep) = le ∧ (∀ep′ ∈ EPat+1 : (ep′ = ep ∨ e(ep′) ̸= le))


⇔
∃!ep :


ep ∈ EPat+1 ∧ e(ep) = le



∀l, t :

∃!ep :


ep ∈ EPat+1 ∧ e(ep) = le∧

l ∈ c(ep) ∧ (∀s ∈ Σt
n+1 : (Res(at+1, s) |= le ∧ s |= le))


⇒ (Σt

n+1 |= l)
 (C.38)

with t ≤ n+ 1.
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(C.38)

Recall the |= operator for k-states (3.23):

(Σt
n+1 |= l)⇒ (∀s ∈ Σt

n+1 : s |= l)

∀l, t :

∃!ep :


ep ∈ EPat+1 ∧ e(ep) = le∧

l ∈ c(ep) ∧ (∀s ∈ Σt
n+1 : (Res(at+1, s) |= le ∧ s |= le))


⇒ (∀s ∈ Σt

n+1 : s |= l)
 (C.39)

with t ≤ n+ 1.

For brevity we consider only the case where e(ep) = le = fe. The case for le = ¬fe is similar.
Recall (3.22):

s |= fe ⇔ fe ∈ s

∀l, t :

∃!ep :


ep ∈ EPat+1 ∧ e(ep) = fe∧

l ∈ c(ep) ∧ (∀s ∈ Σt
n+1 : (f

e ∈ Res(at+1, s) ∧ fe ̸∈ s))


⇒ (∀s ∈ Σt
n+1 : s |= l)

 (C.40)

with t ≤ n+ 1.
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(C.40)

Recall the Ak result function (3.25):

Res(at+1, s) = s ∪ E+
at+1

(s) \ E−
at+1

(s) where

E+
at+1

(s) = {f |∃ep ∈ EPat+1 : e(ep) = f ∧ s |= c(ep)}
E−

at+1
(s) = {f |∃ep ∈ EPat+1 : e(ep) = ¬f ∧ s |= c(ep)}

Since we only consider cases with a positive effect literal e(ep) = fe the lower term E−
at+1

(s)
can be neglected. Consequently:

Res(at+1, s) = s ∪ {f |∃ep ∈ EPat+1 : e(ep) = f ∧ s |= c(ep)} (C.41)

We substitute (C.41) in (C.40) and obtain (C.42).

∀l, t :

∃!ep :


ep ∈ EPat+1 ∧ e(ep) = fe ∧ l ∈ c(ep)∧

∀s ∈ Σt
n+1 :

(fe ∈ (s ∪ {f |∃ep′′ ∈ EPat+1 : (e(ep′′) = f ∧ s |= c(ep′′))}) ∧ fe ̸∈ s)


⇒ (∀s ∈ Σt
n+1 : s |= l)


(C.42)

with t ≤ n+ 1.

We simplify:

(fe ∈ (s ∪ {f |∃ep′′ ∈ EPat+1 : (e(ep′′) = f ∧ s |= c(ep′′))}) ∧ fe ̸∈ s)

⇔ (∃ep′′ ∈ EPat+1 : (e(ep′′) = fe ∧ s |= c(ep′′)))

∀l, t :

∃ep! :


ep ∈ EPat+1 ∧ e(ep) = fe ∧ l ∈ c(ep)∧

(∀s ∈ Σt
n+1 : (∃ep′′ ∈ EPat+1 : (e(ep′′) = fe ∧ s |= c(ep′′))))


⇒ (∀s ∈ Σt

n+1 : s |= l)


(C.43)
with t ≤ n+ 1.
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(C.43)

By definition of |= (3.22):

(s |= c(ep′′) ∧ l ∈ c(ep′′))⇒ s |= l

∀l, t :

∃!ep :


ep ∈ EPat+1 ∧ e(ep) = fe ∧ l ∈ c(ep)∧

(∀s ∈ Σt
n+1 : (∃ep′′ ∈ EPat+1 : (e(ep′′) = fe ∧ s |= l)))


⇒ (∀s ∈ Σt

n+1 : s |= l)
 (C.44)

with t ≤ n+ 1.

We simplify.
∃!ep :


ep ∈ EPat+1 ∧ e(ep) = fe ∧ l ∈ c(ep)∧

(∀s ∈ Σt
n+1 : (∃ep′′ ∈ EPat+1 : (e(ep′′) = fe ∧ s |= l)))


⇔
∃!ep :


ep ∈ EPat+1 ∧ e(ep) = fe ∧ l ∈ c(ep)∧

(∀s ∈ Σt
n+1 : s |= l)


∀l, t :


∃!ep :


ep ∈ EPat+1 ∧ e(ep) = fe∧

l ∈ c(ep) ∧ (∀s ∈ Σt
n+1 : s |= l)


⇒ (∀s ∈ Σt

n+1 : s |= l)
 (C.45)

with t ≤ n+ 1.

It is easy to see that (C.45) is true.

Induction Step 5 – (C.10g)

This is analogous to induction step 4 – (C.10f).
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C.3. Additional Lemmata

Number of Steps
The following Lemma C.4 concerns the number of state transitions for an h-state h.

Lemma C.4 (Step number for sequences of actions) Given a domain D with an ini-
tial h-state h0 and a sequence of actions αn = [a1|| · · · ||an]. Then the following holds:

∀h ∈ Ψ(αn,h0) : now(h) = n (C.46)

Proof:
The Lemma follows directly from the extendedHPX -transition function (3.18) and the
HPX -transition function (3.7).

Knowledge Persistence
The following Lemmata state that in the temporal query semantics Ak

TQS , knowledge
itself is persistent (Lemma C.5) an that knowledge about the presence is no affected by
re-evaluation (Lemma C.6).

Lemma C.5 (Knowledge persistence in re-evaluated c-states) Given a domain D, a
valid initial c-state δ0 = ⟨u0,Σ0⟩ a sequence of actions α = [a1, . . . , an, an+1] which
produces re-evaluated k-states Σt

n and Σt
n+1 according to Definition 3.7. Then (C.47)

holds.
Σt

n |= l⇒ Σt
n+1 |= l (C.47)

with 0 ≤ t ≤ n.

Proof: For brevity we only consider positive literals, i.e. l = f . We make a case
distinction concerning sensing and non-sensing actions:

1. If an+1 is a non-sensing action then transition function (3.24) evaluates as
follows: Φ(an+1, ⟨un,Σn⟩) = ⟨un+1,Σn+1⟩ with un+1 = Res(an+1, un) and
Σn+1 = {Res(an+1, sn)|sn ∈ Σn}. With this and Definition 3.6 about re-evaluated
initial k-states we conclude that Σ0

n+1 = Σ0
n. Hence, by Definition 3.7 about re-

evaluated c-states it must be true that for an arbitrary f : If ∀s ∈ Σt
n : f ∈ s then

∀s ∈ Σt
n+1 : f ∈ s and the Lemma is proven for the case of non-sensing actions.

2. If an+1 is a sensing action then transition function (3.26) evaluates as
Φ(an+1, ⟨un,Σn⟩) = ⟨un, {sn|(sn ∈ Σn) ∧ (f ∈ sn ⇔ f ∈ un)}⟩. For this rea-
son Σn ⊇ Σn+1. Hence by Definition 3.6 it must be true that Σ0

n ⊇ Σ0
n+1 and by

Definition 3.7 it must be true that for an arbitrary f : If ∀s ∈ Σt
n : f ∈ s then

∀s ∈ Σt
n+1 : f ∈ s. The Lemma is proven for the case of sensing actions.
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Lemma C.6 (Re-evaluation does not affect knowledge about the presence) Given a
domain D, a valid initial c-state δ0 = ⟨u0,Σ0⟩ and a sequence of actions αn =
[a1; . . . ; an] such that ⟨un,Σn⟩ = Φ(an,Φ(an−1, · · ·Φ(a1, ⟨u0,Σ0⟩))). Let Σn

n =
Res(an, Res(an−1, · · ·Res(a1,Σ0

n))) be a re-evaluated k-state with Σ0
n as the re-

evaluated initial state according to Definition 3.6. Then (C.48) holds.

Σn = Σn
n (C.48)

Proof:
Induction over n. We show that given (C.48) holds (C.49) holds as well.

Σn+1 = Σn+1
n+1 (C.49)

where ⟨un+1,Σn+1⟩ = Φ(an+1,Φ(an, · · ·Φ(a1, ⟨u0,Σ0⟩))) is a c-state resulting
from the application of the transition functions (3.24), (3.26) and Σn+1

n+1 =
Res(an+1, Res(an, · · ·Res(a1,Σ0

n+1)) is a re-evaluated k-state with Σ0
n+1 as the re-

evaluated initial state according to Definition 3.6.
Base Step: Σ0 = Σ0

0. This emerges from Definitions 3.2, 3.6 and 3.7. (Intuitively, if no
action is applied then re-evaluation is not applicable.)
Induction Step: Given that (C.48) holds for one n ≥ 0, then it holds that Σn+1 = Σn+1

n+1.
The re-evaluated c-state after n+ 1 actions is obtained with:

Σn+1
n+1 =


s∈Σ0

n+1

Res(an+1, Res(an, · · ·Res(a1, s))) (C.50)

We distinguish whether an+1 is a sensing or non-sensing action:

1. an+1 is a non-sensing action. In this case, according to the transition function
(3.24) it holds that

∀s : (s ∈ Σn ⇔ Res(an+1, s) ∈ Σn+1)

By definition of re-evaluated initial k-states (3.29) it follows that (C.51) holds.

Σ0
n = Σ0

n+1 (C.51)

Substituting (C.51) in (C.50) yields:

Σn+1
n+1 =


s∈Σ0

n

Res(an+1, Res(an, · · ·Res(a1, s))) (C.52)
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By definition of re-evaluated k-states (3.29) it holds that Σn
n =

s∈Σ0
n

Res(an, · · ·Res(a1, s)) and we can rewrite (C.52) as:

Σn+1
n+1 =


s∈Σn

n

Res(an+1, s) (C.53)

By induction hypothesis we can substitute Σn
n with Σn and have:

Σn+1
n+1 =


s∈Σn

Res(an+1, s) (C.54)

We reformulate (C.54) as follows:

Σn+1
n+1 = {Res(an+1, s)|s ∈ Σn} (C.55)

The transition function (3.24) for non-sensing actions is:

Φ(an+1, ⟨un,Σn⟩) = ⟨un+1,Σn+1⟩
= ⟨Res(an+1, un), {Res(an+1, s)|s ∈ Σn}⟩

It must therefore hold that

Σn+1 = {Res(an+1, s)|s ∈ Σn} (C.56)

It follows from (C.55) and (C.56) that Σn+1
n+1 = Σn+1.

2. an+1 is a sensing action with an arbitrary knowledge proposition KPan+1 = f s.

We make another case distinction:

a) f s ∈ un:

According to 3.29) the re-evaluated k-state Σ0
n+1 is:

Σ0
n+1 = {s ∈ Σ0|Res(an+1, Res(an, · · ·Res(a1, s))) ∈ Σn+1} (C.57)

If an+1 is a sensing action, then Res(an+1, s) = s, and hence:

Σ0
n+1 = {s ∈ Σ0|Res(an, · · ·Res(a1, s)) ∈ Σn+1} (C.58)

Given that an+1 has a the knowledge proposition KPan+1 = f s, and f s ∈ un,
then from transition function (3.26) we can conclude that:

Σn+1 = {s ∈ Σn|f s ∈ s} (C.59)
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Substituting (C.59) in (C.58) yields:

Σ0
n+1 = {s ∈ Σ0|Res(an, · · ·Res(a1, s)) ∈ {s′ ∈ Σn|f s ∈ s′}} (C.60)

By Definition 3.6, the re-evaluated k-state Σ0
n is:

Σ0
n = {s ∈ Σ0|Res(an, · · ·Res(a1, s)) ∈ Σn} (C.61)

With (C.60) and (C.61) we can conclude that:

Σ0
n+1 = {s ∈ Σ0

n|f s ∈ Res(an, · · ·Res(a1, s))} (C.62)

Substituting (C.62) in (C.50) yields:

Σn+1
n+1 =


s∈{s0∈Σ0

n|fs∈Res(an,···Res(a1,s0))}

Res(an+1, Res(an, · · ·Res(a1, s)))

(C.63)
For a sensing actions a, it holds that Res(a, s) = s for an arbitrary state s.
Hence we write:

Σn+1
n+1 =


s∈{s0∈Σ0

n|fs∈Res(an,···Res(a1,s0))}

Res(an, · · ·Res(a1, s)) (C.64)

We rewrite (C.64) and separate the union operator as follows:

Σn+1
n+1 =


s∈Σ0

n

Res(an, · · ·Res(a1, s))

\


s∈{s0∈Σ0
n|fs ̸∈Res(an,···Res(a1,s0))}

Res(an, · · ·Res(a1, s))
(C.65)

With the re-evaluation function (3.28) and the induction hypothesis (C.48)
we have that 

s∈{s0∈Σ0
n|fs ̸∈Res(an,···Res(a1,s0))}

Res(an, · · ·Res(a1, s))

={Res(an, · · ·Res(a1, s))|s ∈ Σ0
n ∧ f s ̸∈ Res(an, · · ·Res(a1, s))}

(3.28)
= {s ∈ Σn

n|f s ̸∈ s}
(C.48)
= {s ∈ Σn|f s ̸∈ s}

(C.66)
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Thus, we can rewrite (C.65) as:

Σn+1
n+1 =


s∈Σ0

n

Res(an, · · ·Res(a1, s)) \ {s ∈ Σn|f s ̸∈ s} (C.67)

With the definition of re-evaluated c-states (3.28) it holds that Σn
n =

s∈Σ0
n

Res(an, · · ·Res(a1, s)) and we can rewrite (C.67) as:

Σn+1
n+1 = Σn

n \ {s ∈ Σn|f s ̸∈ s} (C.68)

By induction hypothesis we substitute Σn
n with Σn and obtain:

Σn+1
n+1 = Σn \ {s ∈ Σn|f s ̸∈ s} (C.69)

Given that f s ∈ un, then the transition function 3.26 for sensing actions is:

Φ(an+1, ⟨un,Σn⟩) = ⟨un+1,Σn+1⟩
= ⟨un, {s ∈ Σn|f s ∈ s}⟩

(C.70)

Extracting Σn+1 from (C.70) yields:

Σn+1 = {s ∈ Σn|f s ∈ s} (C.71)

We rewrite this as:

Σn+1 = Σn \ {s ∈ Σn|f s ̸∈ s} (C.72)

And substitute (C.72) in (C.69) to obtain:

Σn+1
n+1 = Σn+1 (C.73)

b) f s ̸∈ un: Similar to the case where f s ∈ un.

We have shown that for both sensing and non-sensing actions the induction step holds.
This proves the Lemma.
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D
Source Code and Examples

D.1. Foundational Theory of the Offline ASP
Formalization ofHPXHPXHPX

The foundational part of the ASP formalization is provided in Listing D.1. Note that for
brevity we use a predicate l/1 instead of literal/1 to denote literal declarations, and
similarly f/1 instead of fluent/1.

Listing D.1: Foundational theory (Γhapx) of the ASP implementation ofHPX
1 I F1. Auxiliaries (Γaux)
2 s(0..maxS).
3 br(0..maxBr).
4 neq(B,B1) :- B != B1, br(B), br(B1).
5 l(neg(F)):- f(F).
6 l(F):- f(F).
7 complement(neg(F),F) :- f(F).
8 complement(L1,L2) :- complement(L2,L1).
9

10 I F2. Concurrency (Γconc)
11 apply(EP,N,B) :- hasEP(A,EP), occ(A,N,B).
12 :- apply(EP1,T,B), hasEff(EP1,L), apply(EP2,T,B), hasEff(EP2,L),

EP1 != EP2, br(B), l(L).
13 I F3. Inertia (Γin)
14 kNotSet(L,T,N,B) :- not kMaySet(L,T,B), uBr(N,B), s(T),l(L).
15 kMaySet(L,T,B) :- apply(EP,T,B), hasEff(EP,L).
16 kNotSet(L,T,N,B) :- apply(EP,T,B), hasEff(EP,L), hasCond(EP,L1),

knows(L2,T,N,B), complement(L1,L2),s(T).
17 knows(L,T,N,B) :- knows(L,T-1,N,B), kNotSet(L1,T-1,N,B),

complement(L,L1), T<=N.
18 knows(L,T,N,B) :- knows(L,T+1,N,B), kNotSet(L,T,N,B), N > T.
19 knows(L,T,N,B) :- knows(L,T,N-1,B), uBr(N,B), N <= maxS.
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20

21 I F5. Sensing and Branching (Γsense)
22 uBr(0,0).
23 sNextBr(N,B) :- sRes(L,N,B,B1).
24 uBr(N,B) :- uBr(N-1,B), not sNextBr(N-1,B), s(N).
25 kw(F,T,N,B) :- knows(F,T,N,B).
26 kw(F,T,N,B) :- knows(neg(F),T,N,B).
27 sRes(F,N,B,B):-occ(A,N,B),hasKP(A,F),not kw(neg(F),N,N,B),s(N).
28 1{sRes(neg(F),N,B,B1) : neq(B,B1)}1 :- occ(A,N,B), hasKP(A,F),

not kw(F,N,N,B), s(N).
29 :- sRes(L,N,B,B1), uBr(N,B1), l(L), neq(B,B1).
30 :- 2{sRes(L,N,B,B1) :br(B) : l(L)},br(B1),s(N).
31 uBr(N,B1) :- sRes(L,N-1,B,B1), s(N).
32 knows(L,N-1,N,B1) :- sRes(L,N-1,B,B1), s(N).
33 :- 2{occ(A,N,B) : hasKP(A,_)}, br(B),s(N).
34 knows(L,T,N,B1) :- sRes(_,N-1,B,B1), knows(L,T,N-1,B), N>=T.
35 apply(EP,T,B1) :- sRes(_,N,B,B1), apply(EP,T,B), N>=T.
36

37 I F4. Inference Mechanisms (Γinfer)
38 knows(L,T,N,B) :- kCause(L,T,N,B), uBr(N,B).
39 knows(L,T,N,B) :- kPosPost(L,T,N,B), uBr(N,B).
40 knows(L,T,N,B) :- kNegPost(L,T,N,B), uBr(N,B).
41

42 I F6. Plan verification (Γverify)
43 notWG(N,B) :- wGoal(L), uBr(N,B), not knows(L,N,N,B), l(L).
44 allWGAchieved(N) :- not notWG(N,B), uBr(N,B).
45 :- not allWGAchieved(maxS).
46 notSG(N,B) :- sGoal(L), uBr(N,B), not knows(L,N,N,B), l(L).
47 :- notSG(maxS,B), uBr(maxS,B).
48 notGoal(N,B) :- notSG(N,B).
49 notGoal(N,B) :- notWG(N,B).
50

51 I F7. Plan generation and optimization (Γplan)
52 % Sequential Planning:
53 1{occ(A,N,B): a(A)}1 :- uBr(N,B), notGoal(N,B), N < maxS.
54 % Concurrent Planning:
55 % 1{occ(A,N,B) : a(A)} :- uBr(N,B), notGoal(N,B), N < maxS.
56 #minimize {occ(_,_,_) @ 1}.
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D.2. Basic Postdiction Example: Driving Through
a Door

Consider the domain description in Listing D.2.
(:action open_door :effect if ¬jammed then is_open)
(:action drive :effect when is_open in_liv)
(:action sense_open :observe is_open)
(:init ¬is_open)
(:goal weak in_liv)

Listing D.2: Simplified problem of moving through a door

The following plan achieves the weak goal:

p1 = [open_door;
sense_open;

[if open
then [drive]]

Listing D.3: Plan for problem in Listing D.2

According to Definition 3.2 about initial knowledge we have

h0 = ⟨{}, {⟨¬is open, 0⟩}⟩

We will now go investigate how the extended transition fuction (3.18) generates the
transition tree if the plan p1 is applied.

1. For the application of the first action open door the extended transition function
(3.18) rewrites as:

Ψ(p1,h0) =


h1∈Ψ(open door,h0)

Ψ(sense open;if is open then [drive],h1)

(D.1)
Evaluating the application of action open door with the transition function (3.7)
yields that

Ψ(open door,h0) = {h1}
where h1 = ⟨{⟨open door, 0⟩}, {⟨¬is open, 0⟩}⟩

(D.2)

2. For the application of the second action sense open we substitute (D.2) in (D.1)
and the extended transition function (3.18) becomesΨ([sense open; [if is open then [drive]]]h1) =

h2∈Ψ(sense open,h1)

Ψ(if is open then [drive],h2)
(D.3)
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Evaluating sense open with the transition function (3.7) yields that

Ψ(sense open,h1) = {h+
2 ,h

−
2 } where

h+
2 =


{⟨open door, 0⟩ , ⟨sense open, 1⟩},

{⟨¬is open, 0⟩ , ⟨is open, 1⟩ , ⟨is open, 2⟩ ,

⟨¬jammed, 0⟩ , ⟨¬jammed, 1⟩ , ⟨¬jammed, 2⟩}


h−
2 =


{⟨open door, 0⟩ , ⟨sense open, 1⟩},

{⟨¬is open, 0⟩ , ⟨¬is open, 1⟩ , ⟨¬is open, 2⟩ ,

⟨jammed, 0⟩ , ⟨jammed, 1⟩ , ⟨jammed, 2⟩}


(D.4)

3. Now we consider two cases:

a) h+
2 : The extended transition function (3.18) evaluates as

Ψ([if is open then [drive]],h+
2 ) =Ψ([drive]h+

2 ) if h+
2 |= is openΨ([]h+

2 ) if h+
2 ̸|= is open

(D.5)

With definition of the |= operator (3.6) it is easy to see that h+
2 |= is open is

true, so we have that Ψ([if is open then [drive]]h+
2 ) = Ψ([drive]h+

2 ).

b) h−
2 : The extended transition function (3.18) evaluates as

Ψ([if is open then [drive]],h+
2 ) =Ψ([drive]h−

2 ) if h+
2 |= is openΨ([]h−

2 ) if h+
2 ̸|= is open

(D.6)

With definition of the |= (3.6) operator it is easy to see that h−
2 ̸|= is open is

true, so we have that Ψ([if is open then [drive]]h−
2 ) = Ψ([]h−

2 ).

4. a) h+
2 : With the extended transition function (3.18) it is easy to see that

Ψ([drive],h+
2 ) = {Ψ(drive,h+

2 )} (D.7)

Evaluating the application of action drive with the transition function (3.7)
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yields

Ψ(drive,h+
2 ) = {h+

3 } where

h+
3 =


{⟨open door, 0⟩ , ⟨sense open, 1⟩ , ⟨drive, 2⟩},

{⟨¬is open, 0⟩ , ⟨is open, 1⟩ , ⟨is open, 2⟩ , ⟨is open, 3⟩ ,
⟨¬jammed, 0⟩ , ⟨¬jammed, 1⟩ , ⟨¬jammed, 2⟩ , ⟨¬jammed, 3⟩ ,

⟨in liv, 3⟩}


(D.8)
That is, h+

3 |= ⟨in liv, 3⟩, and according to the solves function (3.20) the
goal lwg = in liv the goal is achieved.

b) h−
2 : For this case the extended transition function (3.18) directly produces

Ψ([],h−
2 ) = {h−

2 } (D.9)

This case does not affect the result of the planning problem, since according
to (3.20) this is already solved due to h+

3 |= ⟨in liv, 3⟩.

D.3. Modifications For the Incremental Online ASP
Implementation

The most important extension to the ASP formalization described in Chapter 4 is that
we modify the Logic Program so that it is capable of online planning. To this end, we
partition the Logic Program into #base, #cumulative and #volatile parts and replace
the variable N by the iterator t. We also have to replace the 3-ary apply predicate by a
4-ary apply, because otherwise corresponding atoms would be produced multiple times
during the grounding process. This is forbidden in incremental ASP (see (Gebser et al.,
2011a) for details).

D.3.1. The Foundational Theory for Incremental Online
Planning

The foundational theory for offline planning Γhpx is rewritten as an online planning
theory Γo

hpx, presented in Listing D.4.In many cases modification are trivial: the variable
N is replaced by the iterator t, and the 3-ary apply(ep, t, b) is replaced by a 4-ary
apply(ep, T, t, b). The non-trivial modifications and extensions are described in Section
5.2.2.

Listing D.4: Domain independent part of the online implementation ofHPX (Γo
hpx)

207



APPENDIX D. SOURCE CODE AND EXAMPLES

1 I FO1 Auxiliaries (Γo
aux)

2 #external exec/2.
3 #external sensed/2.
4 #external wGoal/1.
5 #external sGoal/1.
6 #cumulative t.
7 s(t).
8 #base.
9 br(0..maxB).

10 neq(B2,B2) :- B2 != B2, br(B2), br(B2).
11 l(neg(F)):- f(F).
12 l(F):- f(F).
13 complement(neg(F),F) :- f(F).
14 complement(L1,L2) :- complement(L2,L1).
15

16 I FO2. Concurrency (Γo
conc)

17 #cumulative t.
18 apply(EP,t,t,B) :- hasEP(A,EP), occ(A,t,B).
19 :- apply(EP1,T,t,B), hasEff(EP1,L), apply(EP2,T,t,B), hasEff(EP2,L

), EP1 != EP2, br(B).
20 apply(EP,T,t,B) :- apply(EP,T,t-1,B).
21

22 I FO3. Inertia (Γo
in)

23 #cumulative t.
24 kMaySet(L,T,t,B) :- apply(EP,T,t,B), hasEff(EP,L).
25 kNotSet(L,T,t,B) :- not kMaySet(L,T,t,B), uBr(t,B), s(T),l(L).
26 kNotSet(L,T,t,B) :- apply(EP,T,t,B), hasEff(EP,L), hasCond(EP,L1),

knows(L2,T,t,B),complement(L1,L2),s(T), uBr(t,B).
27

28 knows(L,T,t,B) :- knows(L,T-1,t,B), kNotSet(L1,T-1,t,B),
complement(L,L1), s(T), br(B).

29 knows(L,T,t,B) :- knows(L,T+1,t,B), kNotSet(L,T,t,B) , s(T), br(B)
, T < t.

30

31 knows(L,T,t,B) :- knows(L,T,t-1,B), uBr(t,B).
32

33 I FO5. Sensing and Branching (Γo
sense)

34 #base.
35 uBr(0,0).
36 #cumulative t.
37 sNextBr(t-1,B1) :- sRes(L,t-1,B1,B2).
38 uBr(t,B) :- uBr(t-1,B), not sNextBr(t-1,B).
39

40 kw(F,T,t,B) :- knows(F,T,t,B).
41 kw(F,T,t,B) :- knows(neg(F),T,t,B).
42

43 sRes(F,t-1,B,B):- occ(A,t-1,B), hasKP(A,F), br(B), not sensed(neg(
F), t-1), not kw(F, t-1, t-1, B).
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44 1{sRes(neg(F),t-1,B1,B2) : neq(B1,B2)}1 :- occ(A,t-1,B1), hasKP(A,
F), br(B1), not sensed(F,t-1), not kw(F, t-1, t-1, B1).

45

46 :- sRes(L,t-1,B1,B2), uBr(t-1,B2), l(L), neq(B1,B2).
47 :- 2{sRes(L,t-1,B1,B2) :br(B1) : l(L)},br(B2).
48

49 uBr(t,B2) :- sRes(L,t-1,B1,B2).
50 knows(L,t-1,t,B2) :- sRes(L,t-1,B1,B2).
51 :- 2{occ(A,t,B) : hasKP(A,_)}, br(B).
52

53 knows(L,T,t,B2) :- sRes(_,t-1,B1,B2), knows(L,T,t-1,B1), t >= T.
54 apply(EP,T,t,B2) :- sRes(_,t-1,B1,B2), apply(EP,T,t-1,B1), t >= T
55

56 I FO5. Plan verification (Γo
verify)

57 #cumulative t.
58 notWG(t,B) :- wGoal(L), uBr(t,B), not knows(L,t,t,B), l(L).
59 allWGAchieved(t) :- not notWG(t,B), uBr(t,B).
60

61 #volatile t.
62 :- not allWGAchieved(t).
63

64 #cumulative t.
65 notSG(t,B) :- sGoal(L), uBr(t,B), not knows(L,t,t,B), l(L).
66

67 #volatile t.
68 :- notSG(t,B), uBr(t,B).
69

70 #cumulative t.
71 notGoal(t,B) :- notSG(t,B).
72 notGoal(t,B) :- notWG(t,B).
73

74 I FO7. Plan generation (Γo
plan)

75 #cumulative t.
76 1{occ(A,t,B) :a(A)}1 :- uBr(t,B), not executedStep(t), notGoal(t,B

). % Sequential Planning
77 %1{occ(A,t,B) :a(A)} :- uBr(t,B), not executedStep(t), notGoal(t,B

). % Concurrent Planning
78

79 I FO8. Plan execution (Γo
exec)

80 #cumulative t.
81 occ(A,t,B) :- exec(A,t), a(A), uBr(t,B).
82

83 executedStep(t) :- exec(A,t), a(A).
84 executedStep(t) :- sensed(L,t), l(L).
85

86 knows(L,t,t,B) :- sensed(L,t), uBr(t,B), l(L).
87 :- sensed(L1,t), uBr(t,B), knows(L2,t,t,B), complement(L1,L2).
88

89 I FO9. Abductive explanation (Γo
abduct)
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90 #cumulative t.
91 0{exoHappened(A,t-1,B) : hasEP(A,EP) : hasEff(EP,L1) : ea(A)}1 :-

sensed(L1,t), uBr(t,B), knows(L2,t-1,t,B), complement(L1,L2).
92 apply(EP,t-1,t,B) :- hasEP(A,EP), exoHappened(A,t-1,B).

D.3.2. Incremental Modularity of HPX -Logic Programs

The following Equations (D.10) – (D.18) incorporate both the domain-independent and
the domain-specific theory and structures the generated incremental onlineHPX -Logic
Programs according to its #base (B), #cumulative (P [t]) and #volative (Q[t]) part,
so that the resulting Logic Program is described by R[t] = B ∪


0≤j≤t

P [j] ∪Q[t] (2.42)

(see Section 2.2.8).
The base part B is constituted by (D.10), and those LP rules generated by translation
rules (TO1), (TO2), (TO3), (TO5), (TO7), (TO8). Rules (D.10) emerge mostly from
auxiliary definitions Γo

aux.

br(0..maxB) (D.10a)

neq(B2, B2)←B2 ̸= B2, br(B2), br(B2) (D.10b)

l(neg(F ))←f(F ) (D.10c)

l(F )←f(F ) (D.10d)

complement(neg(F ), F )←f(F ) (D.10e)

complement(L1, L2)←complement(L2, L1) (D.10f)

uBr(0, 0) (D.10g)

The cumulative part


0≤j≤t

P [j] is described by equations (D.11) – (D.17), and those LP

rules generated by translation rules (TO4) and (TO6). Equations (D.11) represent rules
concerning concurrency (FO2) – (Γo

conc) (except for s(t), which belongs to Γo
aux).

s(t) (D.11a)

apply(EP, t, t, B)←hasEP (A,EP ), occ(A, t,B) (D.11b)

←apply(EP1, T, t, B), hasEff(EP1, L), (D.11c)

apply(EP2, T, t, B), hasEff(EP2, L),

EP1 ̸= EP2, br(B)

apply(EP, T, t, B)←apply(EP, T, t− 1, B) (D.11d)

Equations (D.12) represent rules concerning inertia (FO3) – (Γ ino).
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kMaySet(L, T, t, B)←apply(EP, T, t, B), hasEff(EP,L) (D.12a)

kNotSet(L, T, t, B)←not kMaySet(L, T, t, B), uBr(t, B), s(T ), l(L) (D.12b)

kNotSet(L, T, t, B)←apply(EP, T, t, B), hasEff(EP,L), (D.12c)

hasCond(EP,L1), knows(L2, T, t, B),

complement(L1, L2), s(T ), uBr(t, B)

knows(L, T, t, B)←knows(L, T − 1, t, B), kNotSet(L1, T − 1, t, B), (D.12d)

complement(L,L1), s(T ), br(B)

knows(L, T, t, B)←knows(L, T + 1, t, B), kNotSet(L, T, t, B), (D.12e)

s(T ), br(B), T < t

knows(L, T, t, B)←knows(L, T, t− 1, B), uBr(t, B) (D.12f)

Equations (D.14) represent rules concerning sensing and branching (FO5) – (Γ senseo).

sNextBr(t− 1, B1)←sRes(L, t− 1, B1, B2) (D.13a)

uBr(t, B)←uBr(t− 1, B), not sNextBr(t− 1, B) (D.13b)

kw(F, T, t, B)←knows(F, T, t, B) (D.13c)

kw(F, T, t, B)←knows(neg(F ), T, t, B) (D.13d)

sRes(F, t− 1, B,B)←occ(A, t− 1, B), hasKP (A,F ), br(B), (D.13e)

not sensed(neg(F ), t− 1),

not kw(F, t− 1, t− 1, B)

1{sRes(neg(F ), t− 1, B1, B2)

: neq(B1, B2)}1←occ(A, t− 1, B1), hasKP (A,F ), br(B1), (D.13f)

not sensed(F, t− 1),

not kw(F, t− 1, t− 1, B1)

←sRes(L, t− 1, B1, B2), uBr(t− 1, B2), (D.13g)

l(L), neq(B1, B2)

←2{sRes(L, t− 1, B1, B2) : br(B1) : l(L)}, (D.13h)

br(B2)

uBr(t, B2)←sRes(L, t− 1, B1, B2) (D.13i)

knows(L, t− 1, t, B2)←sRes(L, t− 1, B1, B2) (D.13j)

←2occ(A, t,B) : hasKP (A, ), br(B) (D.13k)

knows(L, T, t, B2)←sRes( , t− 1, B1, B2), (D.13l)

knows(L, T, t− 1, B1), t ≥ T

apply(EP, T, t, B2)←sRes( , t− 1, B1, B2), (D.13m)

apply(EP, T, t− 1, B1), t ≥ T
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Equations (D.14) represent rules concerning plan verification (FO5) – (Γ verifyo).

notWG(t, B)←wGoal(L), uBr(t, B), not knows(L, t, t, B), l(L) (D.14a)

allWGAchieved(t)←not notWG(t, B), uBr(t, B) (D.14b)

notSG(t, B)←sGoal(L), uBr(t, B), not knows(L, t, t, B), l(L) (D.14c)

notGoal(t, B)←notSG(t, B) (D.14d)

notGoal(t, B)←notWG(t, B) (D.14e)

Equations (D.15) represent rules concerning planning (FO7) – (Γ plano).

1{occ(A, t,B) : a(A)}1←uBr(t, B), not executedStep(t), (D.15a)

notGoal(t, B) (Sequential Planning)

1{occ(A, t,B) : a(A)} ←uBr(t, B), not executedStep(t), (D.15b)

notGoal(t, B)(Concurrent Planning)

Equations (D.16) represent rules concerning action execution (FO8) – (Γ execo).

occ(A, t,B)←exec(A, t), a(A), uBr(t, B) (D.16a)

executedStep(t)←exec(A, t), a(A) (D.16b)

executedStep(t)←sensed(L, t), l(L) (D.16c)

knows(L, t, t, B)←sensed(L, t), uBr(t, B), l(L) (D.16d)

←sensed(L1, t), uBr(t, B), knows(L2, t, t, B), (D.16e)

complement(L1, L2)

(D.16f)

Equations (D.17) represent rules concerning exogenous events and abductive explanation
(FO9) – (Γ exoo).

0{exoHappened(A, t− 1, B) : hasEP (A,EP )

: hasEff(EP,L1) : ea(A)}1←sensed(L1, t), uBr(t, B), (D.17a)

knows(L2, t− 1, t, B),

complement(L1, L2)

apply(EP, t− 1, t, B)←hasEP (A,EP ), (D.17b)

exoHappened(A, t− 1, B)

The volatile part Q[t] is described by equations (D.18). It represents rules for plan
verification (FO5) – (Γ verifyo).

←not allWGAchieved(t) (D.18a)
←notSG(t, B), uBr(t, B) (D.18b)

(D.18c)
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D.4. Problem Specification for Online Planning
Use Case

The following Listing D.5 is the original PDDL-like input for the use case depicted and
discussed in Section 6.2.

Listing D.5: Domain specification for use case in Section 6.2
1

2 ;Types
3 (:types
4 Door
5 Room
6 Agent
7 Person - Agent
8 Robot - Agent)
9

10 ;Fluents
11 (:predicates
12 (hasDoor ?r - Room ?d - Door)
13 (connected ?r1 - Room ?r2 - Room)
14 (inRoom ?ag - Agent ?roo - Room)
15 (open ?d - Door)
16 (abnormal_drive ?r - Robot))
17

18 ;Objects
19 (:objects
20 corr1,bed,couch,office, bath,kit - Room
21 d1,d2,d4 - Door
22 rolland1, rolland2 - Robot
23 fred - Person)
24

25 ; Room layout:
26 ; ; ;-------|----------|--------|
27 ; ; ; (fred)| | bed |
28 ; ; ; couch d2 corr1 d1 |
29 ; ; ; (r1) |---d4-----| (r2) |
30 ; ; ; kit | bath | office |
31 ; ; ;-------|-------------------|
32

33 ; Initial knowledge:
34 (:init
35 inRoom(rolland1,kit)
36 inRoom(rolland2,office)
37 inRoom(fred,couch)
38 hasDoor(corr1, d1)
39 hasDoor(corr1, d2)
40 hasDoor(corr1, d4)
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41 hasDoor(bed, d1)
42 hasDoor(couch, d2)
43 hasDoor(bath, d4)
44 connected(office, bed)
45 connected(bed, office)
46 connected(kit, couch)
47 connected(couch, kit)
48

49 !open(d1)
50 !open(d2)
51 !open(d4)
52 (oneof
53 inRoom(rolland1,corr1)
54 inRoom(rolland1,bed)
55 inRoom(rolland1,office)
56 inRoom(rolland1,couch)
57 inRoom(rolland1,kit)
58 inRoom(rolland1,bath))
59

60 (oneof
61 inRoom(rolland2,corr1)
62 inRoom(rolland2,bed)
63 inRoom(rolland2,office)
64 inRoom(rolland2,couch)
65 inRoom(rolland2,kit)
66 inRoom(rolland2,bath))
67

68 (oneof
69 inRoom(fred,corr1)
70 inRoom(fred,bed)
71 inRoom(fred,office)
72 inRoom(fred,couch)
73 inRoom(fred,kit)
74 inRoom(fred,bath)))
75

76 ;Actions
77 (:action openDoor
78 :parameters (?d - Door)
79 :precondition
80 :effect open(?d))
81

82 (:action close_door_exo exogenous
83 :parameters (?d - Door)
84 :precondition
85 :effect !open(?d))
86

87 (:action self_drive_door
88 :parameters (?p - person ?robo - Robot ?door - Door ?from ?to

- Room)
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89 :precondition (and
90 open(?door)
91 hasDoor(?from, ?door)
92 hasDoor(?to, ?door)
93 inRoom(?p, ?from)
94 !inRoom(?p, ?to)
95 inRoom(?robo, ?from)
96 !inRoom(?robo, ?to))
97 :effect (and
98 inRoom(?robo, ?to)
99 !inRoom(?robo, ?from)

100 inRoom(?p, ?to)
101 !inRoom(?p, ?from)))
102

103 (:action self_drive_direct
104 :parameters (?p - person ?robo - Robot ?from ?to - Room)
105 :precondition (and
106 connected(?from, ?to)
107 inRoom(?p, ?from)
108 !inRoom(?p, ?to)
109 inRoom(?robo, ?from)
110 !inRoom(?robo, ?to))
111 :effect (and
112 inRoom(?robo, ?to)
113 !inRoom(?robo, ?from)
114 inRoom(?p, ?to)
115 !inRoom(?p, ?from)))
116

117 (:action drive_door
118 :parameters (?robo - Robot ?door - Door ?from ?to - Room)
119 :precondition (and
120 open(?door)
121 hasDoor(?from, ?door)
122 hasDoor(?to, ?door)
123 inRoom(?robo, ?from)
124 !inRoom(?robo, ?to))
125 :effect
126 (if !abnormal_drive(?robo) then
127 (and
128 inRoom(?robo, ?to)
129 !inRoom(?robo, ?from))))
130

131 (:action drive_direct
132 :parameters (?robo - Robot ?from ?to - Room)
133 :precondition (and
134 connected(?from, ?to)
135 inRoom(?robo, ?from)
136 !inRoom(?robo, ?to))
137 :effect
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138 (if !abnormal_drive(?robo) then
139 (and
140 inRoom(?robo, ?to)
141 !inRoom(?robo, ?from))))
142

143 (:action senseLocation
144 :parameters (?robo - Robot ?room - Room)
145 :precondition
146 :observe inroom(?robo, ?room))
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List of Symbols

Symbol Name Description Definition

Chapter 3

a Action An action a ∈ A is a triple
⟨EPa, EXCa,KPa⟩.

Section 3.2

f , l Fluent /
literal

A fluent f is a world property and
a literal l is a fluent paired with a
(boolean) value. We use lc to denote
condition liteals of an effect proposi-
tion, le to denote effect literals of an
effect propositions and f s to denote
a fluent which is sensed by a sensing
action.

Section 3.1

D Planning
domain

Denotes a planning domain D =
⟨VP , ISC,A,G⟩

Section 3.2

A Set of
domain
actions

The set of all actions in a planning
domain D. Also denoted AD.

Section 3.2

VP Value
proposition

Denotes a set of literals which are
known to hold in the initial state.

Section 3.1,
(3.1a)
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List of Symbols

ISC Initial state
constraint

Denotes a set of initial state con-
straints C, where C is a set of liter-
als of which exactly one holds in the
initial state.

Section 3.1,
(3.1b)

EXCa Executability
condition of
action a

Denotes a set of literals which an
agent must know to execute an ac-
tion.

Section 3.1,
(3.1e)

EPa Effect
propositions
of action a

Denotes a set of conditional effects
of an action a. An effect proposi-
tion ep ∈ EPa has condition literals
c(ep) = {lc1, . . . , lck} and an effect lit-
eral e(ep) = le.

Section 3.1,
(3.1c)

KPa Knowledge
proposition
of action a

Denotes a fluent f s which is sensed
by the action KPa = f s.

Section 3.1,
(3.1d)

G Goal
proposition

G is a pair of weak and strong goals
defined in a planning domain D

Section 3.1,
(3.1f)

FD, LD Domain
fluents /
domain
literals

The set of domain fluents (resp. do-
main literals) defined by the domain
description D.

Section 3.1

h h-state An h-state h = ⟨α,κ⟩ is a “history”-
aware knowledge state of an HPX -
agent constituted by a knowledge his-
tory κ and an action history α. See
also function h(n, b, S) (4.5) which
maps a Stable Model S to an h-state.

Section 3.2.1

h̃ Intermediate
h-state

An intermediate h-state is an h-state
which is not completely evaluated by
the eval function (3.17).

Definition
3.4

α Action
history

An action history is a set of pairs of
action symbols and time steps. De-
notes the occurrence of past actions
of an h-state. α(h) denotes the action
history of h-state h

Section 3.2.1
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List of Symbols

ϵ Effect
history

An effect history is a set of pairs of
effect proposition symbols and time
steps. Represents which effect propo-
sitions have been applied in the past.
ϵ(h) denotes the effect history of h-
state h

Section
3.2.1,
Definition
3.1

κ Knowledge
history

A knowledge history is a set of
pairs of fluent symbols and time
steps. Represents temporal knowl-
edge about the world. κ(h) denotes
the knowledge history of h-state h

Section 3.2.1

Ψ HPX -
transition
function

Ψ maps a set of actions A and an h-
state h to a set of h-states h′.

Section
3.2.5, (3.7)

p Plan A plan p is a syntactic construct
which defines a course of actions. p
may be concurrent and conditional.

Definition
3.5

Ψ Extended
transition
function

Ψ maps a concurrent conditional plan
and an initial h-state h0 to a set of h-
states h′.

Section
3.2.10,
(3.18)

δ, δtn c-state A c-state δ = ⟨u,Σ⟩ is a combined
state which is constituted by a state u
which reflects an assumed real world
and a k-state Σ which represents an
agent’s knowledge about the world
given that u is the real world. A re-
evaluated c-state δtn is a c-state with
a re-evaluated k-state Σt

n.

δ: Section
3.4.2, δtn:
Definition
3.7, (3.28)

u, s State A state s is a set of fluents f . If f ∈ s
then f holds in s.

Section 3.4.2
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List of Symbols

Σ, Σt
n k-state In the Ak-semantics, a k-state Σ

is a set of states which represents
the knowledge of an agent. A re-
evaluated k-state Σt

n represents the
knowledge of an agent at step n about
hos the world is at step t.

Σ: Section
3.4.2, Σt

n:
Definition
3.7, (3.29)

Φ Ak-
transition
function

Ψ maps an action a and a c-state δ to
a c-state δ′.

Section
3.4.2, (3.24),
(3.26)

Chapter 4

knows(l, t, n, b) Knowledge
predicate

Denotes that at step n in branch b it
is known that l holds (or did hold) at
step t.

Section 4.1

occ(a, n, b) Action
occurrence
predicate

Denotes that action a occurs at step
n in branch b.

Section 4.1

apply(ep, n, b) Effect
proposition
application
predicate

Denotes that an effect proposition ep
is applied at step n in branch b.

Section 4.1

sRes(l, n, b, b′) Sensing
result
predicate

Denotes that the literal l is sensed at
step n in branch b, such that it will
hold in the child branch b′.

Section 4.1

uBr(n, b) Used branch
predicate

Denotes that branch b is a valid
branch at step n. Actions can only
be executed if a branch is valid.

Section 4.1

LP (D) HPX -Logic
Program of a
domain D

Is a conjunction of the domain inde-
pendent theory Γhpx and the domain
specific theory Γworld.

Section 4.2,
(4.1)

Γhpx Domain
independent
part of an
HPX -Logic
Program

Γhpx = Γaux ∪ Γin ∪ Γsen ∪ Γinfer ∪
Γconc∪Γverify∪Γplan is a conjunction
of sets of Logic Programming rules
which constitute the domain indepen-
dent part of anHPX -Logic Program.

Section 4.2,
(4.1)
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List of Symbols

Γworld Domain
specific part
of an
HPX -Logic
Program

Γworld = Γinit ∪ Γact ∪ Γgoal is a
conjunction of sets of Logic Pro-
gramming rules which are generated
by translation rules (T1) – (T8) and
which constitute the domain specific
part of anHPX -Logic Program.

Section 4.2,
(4.1)

kCause(l, t, n, b) Knowledge
by causation
predicate

Denotes that at step n in branch b it
is known by causation that l holds (or
did hold) at step t.

Section 4.3,
(T6a)

kPosPost(l, t, n, b) Knowledge
by positive
postdiction
predicate

Denotes that at step n in branch b it
is known by positive postdiction that
l holds (or did hold) at step t.

Section 4.3,
(T6b)

kNegPost(l, t, n, b) Knowledge
by negative
postdiction
predicate

Denotes that at step n in branch b it
is known by negative postdiction that
l holds (or did hold) at step t.

Section 4.3,
(T6c)

kNotSet(l, t, n, b) Inertia
predicate

Denotes that at step n in branch b it
is known that l is not set at step t,
respectively that l is inertial at step t.

Section 4.4,
(F3)

maxS, maxB Plan size
constants

maxS is a constant which restricts the
maximal plan length and maxB is a
constant which restricts the maximal
plan width.

Section 4.5

h(n, b, S) h-state
function

h(n, b, S) = ⟨α(n, b, S),κ(n, b, S)⟩
is a function that relates a Sta-
ble Model S to an h-state, where
α(n, b, S) extracts the action occur-
rence predicates from a Stable Model
and κ(n, b, S) extracts the knowl-
edge predicates.

Section 4.5

SP
D Stable

Model of
HPX -LP

SP
D is a Stable Model of LP (D)∪P

where P is a set of occ(a, n, b) atoms
which represent a plan.

Section 4.5,
Definition
4.1
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List of Symbols

An,b Action
occurrence
at n, b

An,b = {a|occ(a, n, b) ∈ SP
D } is

a set of actions applied at a transi-
tion tree node with the “coordinates”
⟨n, b⟩.

Section 4.5,
Definition
4.1

Chapter 5

LP (N ) Execution
narrative

LP (N ) is a set of exec/2 and
sensed/2 atoms which reflect which
actions were executed and which
sensing results were obtained.

Section 5.1

sensed(l, t) Sensing
predicate

Denotes that sensing revealed that l
holds at step t.

Section 5.2.2

exec(a, t) Execution
predicate

Denotes that action a was executed at
step t.

Section 5.2.2
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