7 research outputs found

    Heterogeneous distribution of exocytotic microdomains in adrenal chromaffin cells resolved by high-density diamond ultra-microelectrode arrays

    Get PDF
    Here we describe the ability of a high-density diamond microelectrode array targeted to resolve multi-site detection of fast exocytotic events from single cells. The array consists of nine boron-doped nanocrystalline diamond ultra-microelectrodes (9-Ch NCD-UMEA) radially distributed within a circular area of the dimensions of a single cell. The device can be operated in voltammetric or chronoamperometric configuration. Sensitivity to catecholamines, tested by dose–response calibrations, set the lowest detectable concentration of adrenaline to ∼5 μm. Catecholamine release from bovine or mouse chromaffin cells could be triggered by electrical stimulation or external KCl-enriched solutions. Spikes detected from the cell apex using carbon fibre microelectrodes showed an excellent correspondence with events measured at the bottom of the cell by the 9-Ch NCD-UMEA, confirming the ability of the array to resolve single quantal secretory events. Subcellular localization of exocytosis was provided by assigning each quantal event to one of the nine channels based on its location. The resulting mapping highlights the heterogeneous distribution of secretory activity in cell microdomains of 12–27 μm(2). In bovine chromaffin cells, secretion was highly heterogeneous with zones of high and medium activity in 54% of the cell surface and zones of low or no activity in the remainder. The ‘non-active’ (‘silent’) zones covered 24% of the total and persisted for 6–8 min, indicating stable location. The 9-Ch NCD-UMEA therefore appears suitable for investigating the microdomain organization of neurosecretion with high spatial resolution

    Microelectronics-Based Biosensors Dedicated to the Detection of Neurotransmitters: A Review

    Get PDF
    Dysregulation of neurotransmitters (NTs) in the human body are related to diseases such as Parkinson's and Alzheimer's. The mechanisms of several neurological disorders, such as epilepsy, have been linked to NTs. Because the number of diagnosed cases is increasing, the diagnosis and treatment of such diseases are important. To detect biomolecules including NTs, microtechnology, micro and nanoelectronics have become popular in the form of the miniaturization of medical and clinical devices. They offer high-performance features in terms of sensitivity, as well as low-background noise. In this paper, we review various devices and circuit techniques used for monitoring NTs in vitro and in vivo and compare various methods described in recent publications

    A Low-Power, Highly Stabilized Three-Electrode Potentiostat Using Subthreshold Techniques

    Get PDF
    Implantable micro- and nano- sensors and implantable microdevices (IMDs) have demonstrated potential for monitoring various physiological parameters such as glucose, lactate, CO2 [carbon dioxide], pH, etc. Potentiostats are essential components of electrochemical sensors such as glucose monitoring devices for diabetic patients. Diabetes is a metabolic disorder associated with insufficient production or inefficient utilization of insulin. The most important role of this enzyme is to regulate the metabolic breakdown of glucose generating the necessary energy for human activities. Diabetic patients typically monitor their blood glucose levels by pricking a fingertip with a lancing device and applying the blood to a glucose meter. This painful process may need to be repeated once before each meal and once 1- 4 hour after meal. Patients may need to inject insulin manually to keep the blood glucose level at 3.9-6.7 mmol [mili mol] /liter. Frequent glucose measurement can help reduce the long term complication of this disease which includes kidney disease, nerve damage, heart and blood vessel diseases, gum disease, glaucoma and etc. Having an implanted close loop insulin delivery system can help increase the frequency of glucose measurement and the accuracy of insulin injection. The implanted close loop system consists of three main blocks: (1) an electrochemical sensor in conjunction with a potentiostat to measure the blood glucose level, (2) a control block that defines the level of insulin injection and (3) an implanted insulin pump. To provide a continuous health-care monitoring the implantable unit has to be powered up using wireless techniques. Minimizing the power consumption associated with the implantable system can improve the battery life times or minimize the power transfer through the human body. The focus of this work is on the design of low-power potentiostats for the implantable glucose monitoring system. This work addresses the conventional structures in potentiostat design and the problems associated with these designs. Based on this discussion a modification is made to improve the stability without increasing the complexity of the system. The proposed design adopts a subthreshold biasing scheme for the design of a highly-stabilized, low-power potentiostats

    Towards Single Bacterium Detection: A Microelectronic/Microfluidic Hybrid System Based on a CMOS Technology

    Get PDF
    RÉSUMÉ Cette thèse porte sur le développement d'un biocapteur hybride CMOS microfluidique capable de détecter des bactéries pathogènes une à une en temps réel basé sur un principe de spectroscope impédimétrique. Le biocapteur proposé se compose d'une matrice de capteurs qui comportent une matrice de microélectrodes, desmultiplexeurs à commande numérique, et des circuits de détection intégrés sur une puce de silicium CMOS. Cette recherche propose une nouvelle structure de microélectrodes qui permet à une structure de microélectrodes face à face à haute densité intégrable par post-traitement d’une puce CMOS. Au lieu d’être créée par le dépôt et la gravure de couches métalliques supplémentaires, la structure de microélectrodes face à face est construite en exploitant un empilement de couches métalliques disponible avec la technologie CMOS adoptée. Les détecteurs sont obtenus en construisant des microcanaux qui traversent le substrat. Ces microcanaux passent entre les microélectrodes face à face. Lorsque les fluides où se trouvent les échantillons traversent le microcanal, le système détecte de façon continue les changements d'impédance entre les microélectrodes induits par le passage de chaque bactérie . Cette thèse étudie le processus de microfabrication qui permet de libérer la matrice de microélectrodes et de fabriquer les microcanaux traversant le substrat. Les techniques dites de FIB (pours Focused Ion Beam) et de DRIE (pour Deep Reactive Ion Etching) sont utilisées. Les forces et faiblesses de chaque technologie sont analysées et des recettes de processus optimisés sont étudiées. La matrice de microélectrodes a été réalisée avec succès par les deux technologies. Comme preuve de concept, plusieurs microcanaux traversant le substrat sont également formés en utilisant la technologie FIB. Cette thèse propose également un nouveau circuit de détection. Réalisé grâce à la micro-électronique, ce circuit est capable de détecter les changements d'impédance causés par le passage d’une seule bactérie dans un milieu conducteur. Sans conditionnement de signaux et de circuit de traitement complexes, tels que des amplificateurs de haute précision, des filtres ou des convertisseurs analogue à numérique ou numérique à analogique, les circuits de détection sont conçus pour offrir une bonne sensibilité et une configurabilité qui permet de l'adapter aux différentes conditions de détection. Une technique de mise en boîtier biocompatible est également mise en oeuvre pour encapsuler le capteur intégré tout en fournissant des interfaces fluidiques et électriques pour l'injection d'échantillons et de signaux électriques. Une nouvelle approche pour améliorer la sélectivité de détection basée sur l’utilisation de bactéries magnétotactiques est également proposée dans cette thèse. Sous le contrôle d’un champ magnétique extérieur, les bactéries magnétotactiques sont utilisées comme bio-transporteurs, qui peuvent chercher activement et capturer les bactéries pathogènes cibles afin de les amener à la zone de détection. Une puce microfluidique est fabriquée grâce à des techniques de prototypage rapide afin de valider les idées proposées et de fournir des guides de conception d'une puce plus avancés. Les résultats de microfabrication et les résultats des tests préliminaires montrent que l'intégration monolithique des technologies CMOS et microfluidique est possible et qu’elle permet la réalisation de microélectrodes face à face dans une plate-forme capable de détecter le passage d’une seule bactérie en isolation.----------ABSTRACT This thesis reports on the development of a CMOS Microfluidic hybrid biosensor technology that is proposed to detect single pathogenic bacterium in real time based on impedimetric spectroscopy. The proposed biosensor consists of a CMOS silicon die that incorporates a microelectrode array, digitally controlled multiplexers, and sensing circuits. This research proposes a novel microelectrode structure, which is obtained by first manufacturing high density face to face microelectrodes on a CMOS die, possible by a relatively simple CMOS post-processing. Instead of deposition and patterning of additional metal layers, the face to face microelectrode array is constructed by stacking metal and via layers of the adopted CMOS technology. By constructing through substrate microchannels in between pairs of face to face microelectrodes, when a fluid sample flows through the microchannel, the microelectrodes on the wall detect the impedance change induced by bacterium in the fluid in a continuous way. This thesis investigates the microfabrication process of releasing microelectrode arrays and constructing through substrate microchannels. FIB (Focused Ion Beam) and DRIE (Deep Reactive Ion Etching) technologies are utilized. The strength and weakness of each technology are analyzed and optimized process recipes are investigated. Microelectrode array were successfully released using both process technologies. As a proof of concept, several through substrate microchannels were also formed by using the FIB technology. This thesis also proposes a novel sensing microelectronic circuit, which is able to sense the impedance change caused by a single bacterium in a conductive medium. The system does not require complex signal conditioning and processing circuits, such as high precision amplifiers, filters or ADC/DAC. The proposed simple sensing structure offer high sensitivity, reliability and configurability. A dedicated biocompatible packaging is also implemented to encapsulate the CMOS die and provide a microchamber, fluidic and electrical interfaces for sample injection and signal interfaces. A new approach to achieve detection selectivity or specificity assisted by magnetotactic bacterium is also proposed in this thesis. Under the control of an external magnetic field, the viii magnetotactic bacteria are used as bio-carriers, which can actively search and capture some target pathogenic bacteria and bring them to the sensing area. A microfluidic chip is fabricated by rapid prototyping techniques to validate the proposed idea and to provide design guides for a more advanced and highly integrated CMOS chip. The achieved microfabrication results and preliminary testing results show that the monolithic integration of CMOS and microfluidic technology, especially the face to face microelectrode structure is a suitable platform for single bacterium detection and analysis

    High-Density Neurochemical Microelectrode Array to Monitor Neurotransmitter Secretion

    Get PDF
    Neuronal exocytosis facilitates the propagation of information through the nervous system pertaining to bodily function, memory, and emotions. Using amperometry, an electrochemical technique that directly detects electroactive molecules, the sub-millisecond dynamics of exocytosis are revealed and the modulation of neurotransmitter secretion due to neurodegenerative diseases or pharmacological treatments can be studied. The method of detection using amperometry is the exchange of electrons due to a redox reaction at an electrochemically sensitive electrode. As electroactive molecules, such as dopamine, undergo oxidation, electrons are released from the molecule to the electrode and an oxidation current is generated and recorded. Despite the significance of traditional single-cell amperometry, it is a costly, labor-intensive, and low-throughput, procedure. The focus of this dissertation is the development of a monolithic CMOS-based neurochemical sensing system that can provide a high-throughput of up to 1024 single-cell recordings in a single experiment, significantly reducing the number of experiments required for studying the effects of neurodegenerative diseases or new pharmacological treatments on the exocytosis process. The neurochemical detection system detailed in this dissertation is based on a CMOS amplifier array that contains 1024 independent electrode-amplifier units, each of which contains a transimpedance amplifier with comparable noise performance to a high-quality electrophysiology amplifier that is used for traditional single-cell amperometry. Using this novel technology, single exocytosis events are monitored simultaneously from numerous single-cells in experiments to reveal the secretion characteristics from groups of cells before and after pharmacological treatments which target the modulation of neurotransmitters in the brain, such as drugs for depression or Parkinson\u27s disease
    corecore