3,138 research outputs found

    Post Register Allocation Spill Code Optimization

    Get PDF
    A highly optimized register allocator should provide an efficient placement of save/restore code for procedures that contain calls. This paper presents a new approach to placing callee-saved save and restore instructions that generalizes Chow\u27s shrink-wrapping technique (Chow 1988). An efficient, profile-guided, hierarchical spill code placement algorithm is used to analyze the structure of a procedure to calculate the minimum dynamic execution count locations to place callee-saved save and restore code. The algorithm is implemented in the Gnu Compiler Collection and has been tested on the SPEC CPU2000 Integer Benchmark suite. Results show that the technique reduces the number of dynamic load and store instructions by 15% compared to saving and restoring at procedure entry and exit while Chow\u27s shrink-wrapping technique reduces dynamic load and store instructions by only 1% compared to saving and restoring at procedure entry and exit. The dynamic number of calleesaved save and restore instructions inserted with this new approach is never greater than the number produced by Chow\u27s shrink-wrapping technique or the placement at procedure entry and exit

    On the Complexity of Spill Everywhere under SSA Form

    Get PDF
    Compilation for embedded processors can be either aggressive (time consuming cross-compilation) or just in time (embedded and usually dynamic). The heuristics used in dynamic compilation are highly constrained by limited resources, time and memory in particular. Recent results on the SSA form open promising directions for the design of new register allocation heuristics for embedded systems and especially for embedded compilation. In particular, heuristics based on tree scan with two separated phases -- one for spilling, then one for coloring/coalescing -- seem good candidates for designing memory-friendly, fast, and competitive register allocators. Still, also because of the side effect on power consumption, the minimization of loads and stores overhead (spilling problem) is an important issue. This paper provides an exhaustive study of the complexity of the ``spill everywhere'' problem in the context of the SSA form. Unfortunately, conversely to our initial hopes, many of the questions we raised lead to NP-completeness results. We identify some polynomial cases but that are impractical in JIT context. Nevertheless, they can give hints to simplify formulations for the design of aggressive allocators.Comment: 10 page

    Survey on Combinatorial Register Allocation and Instruction Scheduling

    Full text link
    Register allocation (mapping variables to processor registers or memory) and instruction scheduling (reordering instructions to increase instruction-level parallelism) are essential tasks for generating efficient assembly code in a compiler. In the last three decades, combinatorial optimization has emerged as an alternative to traditional, heuristic algorithms for these two tasks. Combinatorial optimization approaches can deliver optimal solutions according to a model, can precisely capture trade-offs between conflicting decisions, and are more flexible at the expense of increased compilation time. This paper provides an exhaustive literature review and a classification of combinatorial optimization approaches to register allocation and instruction scheduling, with a focus on the techniques that are most applied in this context: integer programming, constraint programming, partitioned Boolean quadratic programming, and enumeration. Researchers in compilers and combinatorial optimization can benefit from identifying developments, trends, and challenges in the area; compiler practitioners may discern opportunities and grasp the potential benefit of applying combinatorial optimization

    Formal Compiler Implementation in a Logical Framework

    Get PDF
    The task of designing and implementing a compiler can be a difficult and error-prone process. In this paper, we present a new approach based on the use of higher-order abstract syntax and term rewriting in a logical framework. All program transformations, from parsing to code generation, are cleanly isolated and specified as term rewrites. This has several advantages. The correctness of the compiler depends solely on a small set of rewrite rules that are written in the language of formal mathematics. In addition, the logical framework guarantees the preservation of scoping, and it automates many frequently-occurring tasks including substitution and rewriting strategies. As we show, compiler development in a logical framework can be easier than in a general-purpose language like ML, in part because of automation, and also because the framework provides extensive support for examination, validation, and debugging of the compiler transformations. The paper is organized around a case study, using the MetaPRL logical framework to compile an ML-like language to Intel x86 assembly. We also present a scoped formalization of x86 assembly in which all registers are immutable

    Link-time smart card code hardening

    Get PDF
    This paper presents a feasibility study to protect smart card software against fault-injection attacks by means of link-time code rewriting. This approach avoids the drawbacks of source code hardening, avoids the need for manual assembly writing, and is applicable in conjunction with closed third-party compilers. We implemented a range of cookbook code hardening recipes in a prototype link-time rewriter and evaluate their coverage and associated overhead to conclude that this approach is promising. We demonstrate that the overhead of using an automated link-time approach is not significantly higher than what can be obtained with compile-time hardening or with manual hardening of compiler-generated assembly code

    An Advanced Compiler Designed for a VLIW DSP for Sensors-Based Systems

    Get PDF
    The VLIW architecture can be exploited to greatly enhance instruction level parallelism, thus it can provide computation power and energy efficiency advantages, which satisfies the requirements of future sensor-based systems. However, as VLIW codes are mainly compiled statically, the performance of a VLIW processor is dominated by the behavior of its compiler. In this paper, we present an advanced compiler designed for a VLIW DSP named Magnolia, which will be used in sensor-based systems. This compiler is based on the Open64 compiler. We have implemented several advanced optimization techniques in the compiler, and fulfilled the O3 level optimization. Benchmarks from the DSPstone test suite are used to verify the compiler. Results show that the code generated by our compiler can make the performance of Magnolia match that of the current state-of-the-art DSP processors

    Low-latency query compilation

    Get PDF
    Query compilation is a processing technique that achieves very high processing speeds but has the disadvantage of introducing additional compilation latencies. These latencies cause an overhead that is relatively high for short-running and high-complexity queries. In this work, we present Flounder IR and ReSQL, our new approach to query compilation. Instead of using a general purpose intermediate representation (e.g., LLVM IR) during compilation, ReSQL uses Flounder IR, which is specifically designed for database processing. Flounder IR is lightweight and close to machine assembly. This simplifies the translation from IR to machine code, which otherwise is a costly translation step. Despite simple translation, compiled queries still benefit from the high processing speeds of the query compilation technique. We analyze the performance of our approach with micro-benchmarks and with ReSQL, which employs a full translation stack from SQL to machine code. We show reductions in compilation times up to two orders of magnitude over LLVM and show improvements in overall execution time for TPC-H queries up to 5.5 × over state-of-the-art systems

    Model-driven Code Optimization

    Get PDF
    Although code optimizations have been applied by compilers for over 40 years, much of the research has been devoted to the development of particular optimizations. Certain problems with the application of optimizations have yet to be addressed, including when, where and in what order to apply optimizations to get the most benefit. A number of occurring events demand these problems to be considered. For example, cost-sensitive embedded systems are widely used, where any performance improvement from applying optimizations can help reduce cost. Although several approaches have been proposed for handling some of these issues, there is no systematic way to address the problems.This dissertation presents a novel model-based framework for effectively applying optimizations. The goal of the framework is to determine optimization properties and use these properties to drive the application of optimizations. This dissertation describes three framework instances: FPSO for predicting the profitability of scalar optimizations; FPLO for predicting the profitability of loop optimizations; and FIO for determining the interaction property. Based on profitability and the interaction properties, compilers will selectively apply only beneficial optimizations and determine code-specific optimization sequences to get the most benefit. We implemented the framework instances and performed the experiments to demonstrate their effectiveness and efficiency. On average, FPSO and FPLO can accurately predict profitability 90% of the time. Compared with a heuristic approach for selectively applying optimizations, our model-driven approach can achieve similar or better performance improvement without tuning the parameters necessary in the heuristic approach. Compared with an empirical approach that experimentally chooses a good order to apply optimizations, our model-driven approach can find similarly good sequences with up to 43 times compile-time savings.This dissertation demonstrates that analytic models can be used to address the effective application of optimizations. Our model-driven approach is practical and scalable. With model-driven optimizations, compilers can produce higher quality code in less time than what is possible with current approaches
    • …
    corecore