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Although code optimizations have been applied by compilers for over 40 years, much of the 

research has been devoted to the development of particular optimizations. Certain problems with 

the application of optimizations have yet to be addressed, including when, where and in what 

order to apply optimizations to get the most benefit. A number of occurring events demand these 

problems to be considered. For example, cost-sensitive embedded systems are widely used, 

where any performance improvement from applying optimizations can help reduce cost. 

Although several approaches have been proposed for handling some of these issues, there is no 

systematic way to address the problems. 

This dissertation presents a novel model-based framework for effectively applying 

optimizations. The goal of the framework is to determine optimization properties and use these 

properties to drive the application of optimizations. This dissertation describes three framework 

instances: FPSO for predicting the profitability of scalar optimizations; FPLO for predicting the 

profitability of loop optimizations; and FIO for determining the interaction property. Based on 

profitability and the interaction properties, compilers will selectively apply only beneficial 

optimizations and determine code-specific optimization sequences to get the most benefit. We 

implemented the framework instances and performed the experiments to demonstrate their 

effectiveness and efficiency. On average, FPSO and FPLO can accurately predict profitability 

90% of the time. Compared with a heuristic approach for selectively applying optimizations, our 

model-driven approach can achieve similar or better performance improvement without tuning 

the parameters necessary in the heuristic approach. Compared with an empirical approach that 

experimentally chooses a good order to apply optimizations, our model-driven approach can find 

similarly good sequences with up to 43 times compile-time savings. 

This dissertation demonstrates that analytic models can be used to address the effective 

application of optimizations. Our model-driven approach is practical and scalable. With model-

driven optimizations, compilers can produce higher quality code in less time than what is 

possible with current approaches. 
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Min Zhao, Ph.D. 

University of Pittsburgh, 2006
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1.0  INTRODUCTION 

This dissertation addresses the effective application of code optimizations. Although compilers 

have applied optimizations for over 40 years, certain properties of optimizations are still not well 

understood. This dissertation describes a model-based framework for determining optimization 

properties, which are then used to drive the application of optimizations to get the most benefit. 

1.1 MOTIVATION 

The field of code optimization has been extremely successful over the past 40 years.  As new 

languages and new architectures have been introduced, new optimizations have been developed 

to target and exploit both the software and hardware innovations. Various reports from research 

and commercial projects have indicated that the performance of software can be improved by 20 

to 40% with aggressive optimization [38]. 

Most of the success in the field has come from the development of particular 

optimizations, such as Partial Redundancy Elimination [6] and Path Sensitive Optimization [5]. 

However, it has long been known that there are various problems with the application of 

optimizations. First, optimizations may degrade performance in certain circumstances. For 

example, Briggs and Cooper reported improvements ranging from +49% to –12% for their 

algebraic reassociation optimization [6]. However, so far there is no efficient way to determine 

the profitability of optimizations to avoid the performance degradation. Second, optimizations 

enable and disable other optimizations so the order of applying optimizations can have an impact 

on performance [15], [46], [51]. Also, the optimization configuration can impact the 

effectiveness of optimizations (e.g., how many times to unroll a loop or tile size) [36], [14], [26]. 

However, typically, compilers apply optimizations in a predetermined order and assume a fixed 
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optimization configuration. The choice of the order and optimization configuration is guided by a 

compiler writer’s expertise and used for all programs. In some compilers, especially high-

performance compilers for parallel computing systems, the choice can also be directed by users’ 

specifications [19]. It is unrealistic to expect that a single choice of order and optimization 

configuration can achieve the best performance for every program. Because of these problems, 

optimizing compilers are not achieving the potential benefits of applying optimizations. 

Instead of trying to understand and solve the problems, the compiler community has 

ignored them for the most part because there were performance improvements. However, a 

number of events are forcing these problems to be considered.  First, because of the continued 

growth of embedded systems and the use of high level languages in writing software for 

embedded systems, there is a need for high quality optimizing compilers that can handle the 

challenges offered by embedded systems. For example, resource constraints are more severe than 

in desktop computers and thus optimizing compilers must be able to intelligently apply 

optimizations to better satisfy these constraints. Furthermore, embedded systems have irregular 

resources (i.e., irregular register file), and thus optimizing compilers must be able to consider 

these resources and apply optimizations to exploit them. Also, embedded systems are very cost-

sensitive. Any performance improvement can help reduce cost. Another event that has brought 

these problems to focus is the trend toward dynamic optimization. Dynamic optimization 

requires that we understand optimizations in order for optimizations to be effective. It is unclear 

when and where to apply optimizations dynamically and how aggressive optimizations can be 

and still be profitable after factoring in the cost of applying optimizations.  Lastly, as new 

optimizations continue to be developed, the incremental performance improvement is shrinking. 

The question is whether the field has reached its limit or the problems that have been ignored 

simply limit the progress. We believe the latter is true. 

To systematically tackle these problems, we need to identify and study the properties of 

optimizations, especially those that target the application of optimizations. For example, to 

selectively apply only beneficial optimizations, we need to determine the impact of applying an 

optimization at a particular code point given the resources of the targeted platform (i.e., 

profitability property). To efficiently determine a code-specific optimization sequence, we also 

need to detect the disabling and enabling interferences among optimizations (i.e., the interaction 

property).  
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There are a number of challenges in determining the properties of optimizations. First, 

optimization properties depend on many factors, including 1) the specific code being compiled, 

2) the semantics and implementation of optimizations, and 3) the target machine resources. For 

example, the profitability of a given optimization varies widely as a function of the input 

program and machine resources. These factors have different characteristics. To determine 

optimization properties with accuracy, all factors need be characterized and formalized. Also, for 

different optimizations, the factors that dominantly impact optimization properties are different. 

For example, loop behavior dominates data cache performance [36]. Thus, for loop 

optimizations, the cache is the dominant resource impact and can be used as an indicator for 

overall profitability. The knowledge of the dominant factors is important in determining 

optimization properties. 

Previous research on optimization properties has been very limited [15]. However, more 

recently, there has been a flurry of research activity focusing on studying optimization 

properties. There are generally two approaches. One approach is through formal techniques. 

These include developing formal specifications of optimizations, analytic models, and proofs 

through model checking and theorem proving. This approach has been used to prove the 

soundness and correctness of optimizations [33], [35], [39]. Work has also been done to 

automatically generate the implementation of optimizations and detect interactions among 

optimizations through formal specifications [50], [51], [28], [32]. Another approach uses 

experimental techniques. That is, after actually performing optimizations, the properties are 

experimentally determined (e.g., executing the code to evaluate performance for determining 

profitability). The empirical approach has been used to determine the correctness of an optimizer 

through comparing the unoptimized and optimized code [23]. It has also been used to determine 

the profitability and interactions of optimizations to find a good order and configuration to apply 

optimizations [1], [15], [26], [46], [48]. 

Although the empirical approach can be effective in addressing some of the problems 

with the application of optimizations, a major disadvantage is its high cost and scalability [15]. 

For example, to search for good optimization sequences, the empirical approach may involve 

dynamic measures (e.g., dynamic instruction count or cycle count). And thus, the execution of 

the program is required. It may take hours, or even days, to find a good optimization sequence 
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for a program [30]. Ideally, we need a systematic approach for addressing the effective 

application of optimizations, which is practical, efficient and scalable [55]. 

1.2 OVERVIEW OF THIS RESEARCH 

This research presents an effective model-driven approach to address the problems with the 

application of optimizations. It develops a general framework that uses analytic models to study 

optimization properties. With the framework, it presents instances that determine profitability 

and the interaction properties. Given code context, machine resources and the optimization, 

profitability can be accurately predicated and the interactions among a set of optimizations can 

be automatically detected. 

This research develops different techniques for effectively applying optimizations based 

on optimization properties. Profitability is used to apply only beneficial optimizations to avoid 

performance degradation. Profitability can also be used to evaluate candidate sequences in 

searching for a good order to apply optimizations. The interaction property is used to determine a 

code-specific optimization sequence. The search space is greatly reduced by using the disabling 

and enabling interactions among optimizations. 

Using the general framework, this research presents two framework instances, FPSO and 

FPLO, for predicting the profitability of scalar and loop optimizations. To predict profitability, 

models of machine resources, optimizations and code are developed. We analyzed the machine 

resources and found that the registers, computation (i.e., functional units) and cache are the most 

important factors that impact performance. We developed a model for each machine resource to 

describe the configuration and the cost to use the resource. For scalar and loop optimizations, the 

resources that dominantly impact profitability are different. Thus, FPSO considers registers and 

computation, and FPLO considers cache. We studied the semantics of optimizations and 

developed models for a set of scalar optimizations and loop optimizations. These optimization 

models specify how the optimizations change the code and thus impact the use of machine 

resources. We also automatically extract code models from the program to express those code 

characteristics that are changed by optimizations and impact the use of machine resources. In 
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FPSO and FPLO, there is a profitability engine that uses the models to predict the profit of 

applying an optimization at any code point where the optimization is applicable. 

This research also presents a framework instance, FIO for detecting the interaction 

property. To automatically detect interactions among a set of optimizations, the models of 

optimizations and code are developed. An optimization specification language, SpeLO, is 

designed to express (1) the conditions under which an optimization can be safely applied and (2) 

the actions of applying the optimization in the code. An optimization model using SpeLO is 

developed for each optimization. As part of FIO, there is an interaction engine that uses these 

models to generate the specific enabling, disabling and post conditions for each optimization at a 

program point. These enabling and disabling conditions are then matched with the post 

conditions of other optimizations to determine the interaction property. 

Our framework instances have been developed, implemented and experimentally 

evaluated. We compare our model-driven approach with a heuristic approach for selectively 

applying optimizations. Our model-driven approach can perform as good as, or even better than, 

the heuristic approach without having to tune parameters necessary in the heuristic approach. We 

compare our model-driven approach with an empirical approach that searches for code-specific 

optimization sequences. Our model-driven approach can find similarly good sequences as the 

empirical approach with much less compile-time. 

This research demonstrates that the analytic models can be used to effectively address the 

problems with the application of optimizations. Our model-driven approach is practical and 

scalable. With model-driven optimizations, compilers can produce higher quality code in less 

compile-time than what is possible with current approaches.  

1.3 ORGANIZATION OF THIS DISSERTATION 

The remainder of this dissertation is organized as follows. Chapter 2.0 presents prior work on 

tackling the problems with the application of optimizations. We categorize the previous research 

efforts by the models used in their approaches. The relationship of this research and prior work is 

also discussed. Chapter 3.0 discusses the overall design of our framework. It describes the 

components and uses of the framework. Chapter 4.0 presents the framework instance, FPSO, for 
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predicting the profitability of scalar optimizations. In this chapter, models for code, scalar 

optimizations and machine resources are presented. The profitability engine is also described to 

show how to use models to make a prediction. The experimental results shown in this chapter 

demonstrate the prediction accuracy and the usefulness of FPSO. Similarly, Chapter 5.0 presents 

the framework instance, FPLO, for predicting the profitability of loop optimizations. Chapter 6.0 

presents the framework instance, FIO, for automatically detecting the enabling and disabling 

interactions among optimizations, considering code context. It describes the code model, 

optimization models and the interaction engine. It also shows how to use the interaction property 

to determine a code-specific optimization sequence. We compare our model-driven approach 

with an empirical approach for searching for code-specific optimization sequences. The 

experimental results demonstrate that our model-driven approach is practical and scalable. 

Conclusions, limitations and directions for future research are discussed in Chapter 7.0 . 



7 

2.0  BACKGROUND AND RELATED WORK 

In the past 40 years, much of the research in the compiler community has been devoted to the 

development of particular optimizations (e.g., path sensitive optimization [5]) and program 

analysis techniques (e.g., demand-driven data flow analysis [16]). Since this dissertation is 

focused on using models to study optimization properties and effectively apply optimizations, 

this related work section describes techniques that explore the effective application of 

optimizations. In this section, we discuss these related approaches. We categorize them 

according to the models used in the approaches. We also discuss the optimization properties and 

the problems that have been addressed in each approach. Lastly, the relationship of this research 

and prior work is discussed.  

2.1 PRIOR WORK 

As stated in Chapter 1.0 , due to the problems with the application of optimizations and the use 

of fixed strategies for handling these problems (e.g., always applying applicable optimizations, 

using a fixed order to apply optimizations), traditional compilers do not achieve the potential 

benefits from optimizations. There have been several approaches to address some of these 

problems. Table 2.1 categorizes these approaches. In the table, each row represents a class of 

approaches that uses similar models to explore the effective application of optimizations. For 

each row, there are four columns. The first column gives a name for these approaches. The 

second column indicates optimization properties that were studied in these approaches. The third 

column shows models that were used. The last column gives the uses of these approaches. To 

facilitate the discussion, we first describe the terminology used in the table. 
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• A code model represents code characteristics that are changed by optimizations and 

affect the use of machine resource and the code conditions needed before applying 

optimizations to maintain program semantics. 

• An optimization model expresses the changes made by an optimization on code 

characteristics and the pre-and post conditions of the optimization. 

• An analytic resource model estimates the cost to use a resource by analyzing the code 

characteristics. 

• An experimental resource model estimates the cost to use a resource by 

experimentally executing the program. 

Table 2.1: Approaches to explore the effective application of optimizations 

Approach Properties Models Uses 

Empirical 
Profitability 
Interaction 
Code size 

No Order optimizations 
Configure optimizations 

OSE Profitability Analytic resource model Configure optimizations 

Jalapeño Profitability Experimental resource model Select optimization levels 

Profitability 
Code model 

Loop optimization models 
Analytic resource model Unimodular 

Interaction Heuristic & experimental 

Order optimizations 
Configure optimizations 
Combine optimizations 

Analytic 
interaction Interaction Optimization models Detect interaction 

Profitability 
Code model 

Loop & scalar optimization models 
Analytic resource models This 

research 
Interaction Code model 

Optimization models 

Profit-driven optimization 
Order optimizations 
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2.1.1 Empirical 

The representation of an empirical approach is shown in the second row of Table 2.1. In this 

approach, optimizers search the optimization space, apply optimizations, and then evaluate 

performance by executing the optimized code. The properties of optimizations are determined by 

performing optimizations and experimentally evaluating their performance. For example, the 

interactions among optimizations are detected by applying an optimization on the code and 

recomputing the data flow needed for the analysis of other optimizations. This approach has been 

used to discover a code-specific optimization sequence [1], [15], [29], [30], [31] and to select an 

optimization configuration [17], [26]. 

Cooper et al. [1], [15] proposed a compiler framework, called an adaptive optimizing 

compiler, which explores different orders to apply optimizations at compile time. In their system, 

the traditional fixed-order optimizer is replaced with a pool of optimizations, a steering algorithm 

and an explicit objective function. An objective function is the criteria to optimize the code; for 

example, improving performance, reducing the code size or reducing energy consumption. The 

steering mechanism uses a search algorithm (e.g., a genetic algorithm) to select an optimization 

sequence to transform the code. The compiler evaluates the performance of the optimization 

sequence by executing the optimized code. The results serve as an input to the steering algorithm 

to refine future choices. Through repeated experimentation, the steering algorithm discovers a 

good optimization sequence, given the source code, the available optimizations, and the target 

machine. They performed a large experimental study using a prototype adaptive compiler. Their 

findings indicate that for the cost of 200 to 4550 compilations and executions, they can find 

sequences that are 15 to 25% better than a fixed-order sequence.  

In a similar approach, the select-best-from function in VISTA [29], [30], [31] selects an 

optimization sequence that maximizes the objective function (i.e., reducing the code size or 

improving the performance). In this approach, an algorithm is designed to carefully and 

aggressively prune the search space and thus make exhaustive enumeration feasible for 98% of 

the functions in their benchmark suite. However, most of their benchmarks are from MiBench 

[34] and have relatively small functions.   

Knijnenburg et al. [17], [26] propose an iterative compilation approach to explore 

optimization configurations. They implement a compiler that traverses the optimization space for 
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different configurations of loop unrolling, loop tiling and padding. They apply optimizations 

with different configurations and execute the transformed code to choose the best optimization 

configuration.   

Compared with other approaches, the empirical approach evaluates the properties of 

optimizations via execution, which is its major disadvantage (i.e., high overhead) [15], [46]. As 

Triantafyllis et al. [46] point out, the adaptive optimizing compiler’s proof-of-concept 

experiment, which involved a small kernel of code, took about a year to complete. Moreover, an 

optimizer that uses search techniques must be able to remove optimizations when the candidate 

of sequence or configuration is not desirable. This removal may also have high time or space 

overhead. 

2.1.2 OSE (Analytic Resource Model-based) 

Triantafyllis et al. [46], [47] propose an approach to discover a best optimization configuration 

based on an analytic resource model (shown in the third row of Table 2.1). In this approach, the 

profitability of optimizations is determined by using this analytic resource model. They present 

an Optimization-Space Exploration (OSE) compiler.  To search the optimization space, OSE 

prunes the search space in advance and searches within a small number of promising 

optimization configurations. After applying optimizations with a candidate configuration, OSE 

uses an analytic resource model (i.e., static estimator) to evaluate the performance of the 

optimized code. In their approach, the code and optimizations are not modeled. Thus, OSE still 

needs to apply optimizations to get the optimized code and to remove optimizations when not 

desirable. Because of the high compile-time overhead, they apply their techniques only to hot 

code segments. 

2.1.3 Jalapeño (Experimental Resource Model-based) 

Arnold et al. [2] propose an approach to select an optimization level based on an experimental 

resource model, shown in the fourth row of Table 2.1. In this approach, the profitability of 

optimizations is determined by integrating parameters achieved from offline experiments. They 

present the adaptive optimization in the Jalapeño JVM. Optimizations are grouped into several 
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levels. When deciding at which optimization level a method should be recompiled, they use a 

simple benefit-cost analysis: they estimate the profitability of each optimization level as a 

constant based on offline measurements and they use a function of method size to estimate the 

cost of recompilation. This approach is simple and can be used to select the optimization level at 

run time. However, it neglects many aspects of optimization behavior. For example, the benefits 

of an optimization level should be varied according to code context. Also, for an optimization 

level, the order of applying optimizations impacts the effectiveness of this optimization level.  

2.1.4 Unimodular (Analytic Model-based) 

As shown in the fifth row of Table 2.1, other researchers have explored the use of code, 

optimization and analytic resource models to determine the profitability of optimizations. In this 

approach, the interactions among optimizations are determined by heuristics and experiments. 

This approach has been used for discovering a best sequence of optimizations [52], [42], [53], 

optimization configuration [14], [11], [55], [25], [43] and combining optimizations [12], [13]. 

Sarkar [42] describes the IBM ASTI optimizer in the IBM XL FORTRAN compilers for 

RS/6000 and PowerPC uniprocessors and symmetric multiprocessors. ASTI automatically 

selects a sequence of loop optimizations for a given input program and a target processor to 

improve utilization of the memory hierarchy and instruction–level parallelism. The selection is 

based on an analytic memory cost model and optimization models of loop optimizations. Wolf 

and Lam [52] propose an algorithm that finds a sequence of loop optimizations to improve the 

locality of a loop nest. The algorithm is based on two components: a mathematical formulation 

of reuse and locality (i.e., analytic cache model) and a loop optimization theory that unifies the 

various transformations as unimodular matrix transformations (i.e., optimization models for loop 

optimizations). Wolf et al. [53] present a compiler algorithm that intelligently searches the 

various optimizations, using analytic models of resource and optimizations to select the sequence 

of optimizations leading to the best performance. The analytic resource model they use estimates 

total machine cycles taking into account cache misses, software pipelining, register pressure and 

loop overhead. All of these approaches use heuristics to decide which optimizations should be 

considered first, according to the potential enabling interactions. They check the applicability of 

further loop optimizations to explore the interactions experimentally. 
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Another model-based approach derives a best optimization configuration. Coleman et al. 

[14] and Sarkar et al., [43] present algorithms for choosing the best tile size based on the 

optimization model for loop tiling and the resource model for cache. Chandramouli et al. [11] 

and Kandemir et al. [25] choose the configuration for other optimizations, including data 

reconstructing optimizations. Yotov et al. [55] use an analytic model to choose an optimization 

configuration and compare with the empirical approach in ATLAS (a system for generating a 

dense numerical linear algebra library, called the BLAS).  

Click et al. [12], [13] propose a model-based approach to combine optimizations. They 

formalize the optimizations as monotone analysis frameworks. When applying a monotone 

analysis framework to a specific program, a set of equations (i.e., code model) can be derived 

directly from the program. The equations have a maximal solution, called the Greatest Fixed 

Point. To combine optimizations, monotone analysis frameworks are combined and a new 

framework is produced. Also, the new code model can be derived by applying the resulting 

framework. If the new code model is still monotonic and its maximal solution is better than the 

combined maximal solution of individual code models, the combination yields better results.  

Although these model-based approaches can be very efficient, they have some problems. 

First, they do not always achieve good performance. Yotov et al. [55] showed that their analytic 

model-based approach has an average of 7% performance decrease compared to the empirical 

approach. Second, these approaches are not integrated into a general framework that is 

applicable to other optimizations (e.g., scalar optimizations) and machine resources (e.g., 

registers). 

2.1.5 Analytic Interaction 

As shown in sixth row of Table 2.1, researchers have explored the use of models (i.e., 

specification language) to specify optimizations and to analytically study the interaction property 

of optimizations [28], [50], [51], [32]. 

Knuth and Bendix [28] proposed an approach to detect the interaction property of 

optimizations. They express optimizations as a set of rewrite rules. Their algorithm detects 

potential conflicts and resolves them by introducing new rewriting rules, derived from the 

existing set. Unfortunately their procedure is difficult to generalize. 
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Whitfield and Soffa [50], [51] describe a framework that enables the exploration, both 

analytically and experimentally, of the interaction property of optimizations. They proposed a 

specification language, Gospel, to express the pre- and post conditions of optimizations. They 

detect the existence of interactions by examples and prove the non-existence of interactions 

among optimizations. However, they can not automatically detect the interactions among 

optimizations based on code context. 

Lacey [32] introduces a specification language, TRANS, for automatically generating the 

implementation of optimizations and formally analyzing optimizations. TRANS combines 

elements of rewriting, temporal logic and logic programming. TRANS is used to prove the 

soundness of optimizations and detect disabling interaction for a certain class of optimizations. 

However, their algorithm for detecting disabling interaction is limited since it can not handle all 

the optimizations described by TRANS. 

 

2.2 PRIOR WORK AND THIS RESEARCH 

In comparison with empirical approaches, the model-based approaches are very efficient in 

addressing the effective application of optimizations. Yet, none of the previous model-based 

work has been integrated into a general framework that can be used for studying different 

properties of optimizations and is applicable to a wide range of optimizations and machine 

resources.  

This research (shown in the seventh row of Table 2.1), presents a general framework that 

uses models to determine the properties of optimizations, including profitability and the 

interaction property. The framework can also be extended to study other optimization properties, 

such as the impact of optimizations on code size and power consumption. The framework 

includes a variety of models, including 1) code models, 2) optimization models for scalar and 

loop optimization, and 3) resource models for cache, registers and computation. Thus, it is 

applicable to both scalar and loop optimizations. It also considers several machine resources, 

which can be combined to determine overall profit. 
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Another difference between this research and previous model-based approaches is that 

the interaction property of optimizations is determined by models instead of heuristics and 

experiments. This research presents an automatic technique that considers code context to 

determine the enabling and disabling interactions of a set of optimizations without actually 

applying optimizations on the code. 

Based on optimization properties, the framework can handle the problems with the 

application of optimizations. For example, the framework can be used to perform profit-driven 

optimization, which selectively applies only profitable optimizations to avoid performance 

degradation. The framework can also be used to determine a code-specific order of applying 

optimizations to get the most benefit. 

 



15 

3.0  OVERALL DESIGN OF THE MODEL-BASED FRAMEWORK 

As described in Section 1.0 , properties of optimizations are difficult to determine because they 

depend on a number of factors, including code, optimizations and resources. Furthermore, 

several resources may impact overall performance. Thus, our approach is to develop models that 

can express the characteristics of these factors. For example, to determine the profitability of an 

optimization, we require models that are useful for predicting the impact of the optimization on 

performance. Performance is generally affected by registers, computation and cache. So, we need 

resource models for each of them, as well as the models for code and optimizations. 

 

Figure 3.1: Overall design of model-based framework 
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Figure 3.1 shows the overall design of our model-based framework. In the framework, 

there are three types of analytic models (code, optimization and resource models). The code 

model is generated automatically by the optimizer. The models of optimizations and resources 

are developed by a compiler writer. As part of the framework, there is an engine that processes 

the models and determines optimization properties. Based on these properties, techniques are 

designed to make decisions for optimizers on when, where and in what order to apply 

optimizations to get the most benefit. The models in the framework are plug-and-play 

components. When new models for code, optimizations or machine resources are needed, they 

can be developed and easily added into the framework. Note our framework uses optimization 

properties to decide how to effectively apply optimizations. Thus, to determine the properties of 

optimizations, we do not require exact numbers but numbers “accurate enough” that the right 

decisions as to when and what optimizations to apply can be made. 

In this chapter, we first describe the components of the framework, including code 

models, optimization models, resource models and the engine. Also, we discuss the framework’s 

uses in effectively applying optimizations. 

3.1 COMPONENTS OF THE FRAMEWORK 

3.1.1 Code Models 

The code model expresses characteristics of a code segment needed to determine optimization 

properties. For example, to predict profitability, the code model needs to represent the code 

characteristics that are changed by an optimization and impact the use of a machine resource. 

Because several resources impact overall performance, there is a code model for each machine 

resource. For example, there is a register code model to express live range information because 

live ranges can be changed by an optimization and impact register uses. There is a computation 

code model to specify the frequency of the occurrence for operations. There is also a code model 

for cache to specify the iteration space and array reference sequence. For determining the 

interaction property, we require the code model to represent the code characteristics that are 
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needed for verifying the pre-conditions of an optimization and are changed by the actions of an 

optimization. 

The code models are extracted from an intermediate representation of the program. The 

code models are automatically generated by the optimizer for an optimization or a complete 

function. When safe conditions for applying an optimization are detected, the code models for 

the optimization are automatically generated by the optimizer to determine profitability. For 

profitability, we assume that data flow information is available to determine if an optimization is 

legal. If legal, we then predict the profit of applying the optimization. However, we could also do 

the reverse: we could determine the hot regions of the code and the profitability of an 

optimization in a region and if the transformation is profitable, use data flow analysis (in 

particular, demand-driven data flow analysis [16]) to determine if the optimization is legal. The 

code model can also be generated for a complete function before determining optimization 

properties.  

3.1.2 Optimization Models 

Optimization models are written by the compiler engineer when developing a new optimization. 

For predicting profitability, an optimization model expresses the semantics (i.e., effect) of an 

optimization, from which the impact of the optimization on each resource can be determined. For 

detecting the interaction property, an optimization model represents the conditions under which 

an optimization can be safely applied and the code modifications that implement the 

optimization.  

The effect of an optimization is determined from the code changes that the optimization 

introduces. Optimizations can cause non-structural and structural code changes, which can be 

expressed by editing changes on a control flow graph. The edits are insert/delete a statement 

(including its operation and operators), insert/delete a block and insert/delete an edge. All 

optimization code changes can be expressed with these edits [4]. Thus, the code changes of an 

optimization can be described as a series of basic edits. For example, constant propagation can 

be represented as “delete variable v at statement s; insert constant c at statement s”. 

To determine the profit of an optimization on a resource, we may need a model that 

represents the impact of other optimizations on the resource. For example, to determine the 
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register profit, an optimization model for the register allocator must be developed. The 

characteristics of the register allocator that need to be modeled are whether the allocator is local 

or global and how it spills the live ranges (i.e., how the additional loads and stores are inserted 

into the code).  A model for the register allocator can be developed that approximates a particular 

register allocation scheme; for example, graph coloring [10] or linear scan [40]. In this 

dissertation, we are interested in the profit of optimizations on registers rather than the impact of 

different register allocation schemes. Hence, we only need a representative optimization model 

for register allocation, such as one for graph coloring. 

In this research, optimizations models are developed for a number of scalar and loop 

optimizations. They are copy propagation (CPP), constant propagation (CTP), dead code 

elimination (DCE), loop invariant code motion (LICM), partial redundancy elimination (PRE), 

global value numbering (VN), branch chaining (BRC), branch elimination (BRE), register 

allocation, loop tiling (LPT), loop interchange (LPI), loop unrolling (LPU), loop reversal (LPR), 

loop fusion (LPF), and loop distribution (LPD).  

3.1.3 Resource Models 

The profitability of optimizations depends on several machine resources, including registers, 

functional units and cache. Our framework has a model for each resource, which describes the 

resource configuration and benefit/cost information in using the resource. A resource model is 

developed based on a particular platform. For example, to determine the register profit, we need 

to know the number of available hardware registers and the cost of memory accesses (i.e., loads 

and stores). When considering functional units, the computational operations available in the 

architecture and their execution latencies are needed. The enabling and disabling interactions 

exist because an optimization may create or destroy the conditions of applying another 

optimization. Thus, no resource models are needed for detecting the interaction.  
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3.1.4 Engine 

The models in the framework are descriptive and provide the information needed to determine 

optimization properties. The other important component of our framework is the engine, which 

uses the models to determine optimization properties.  

To predict profitability, the engine inputs the code, optimization and resource models 

after an optimization is detected to be safe. The engine uses information in the models to 

compute the profit. The profit can be computed for one resource or for combined resources. 

From an optimization model, the engine determines the code model changes caused by the 

application of the optimization. It then applies these changes to the code model and generates a 

new code model that represents the effect of the optimization. Finally, it uses the resource model 

to determine the impact of the changes on the resource. The engine can also use profile 

information (e.g., the basic block frequencies) in computing the profits. 

For example, assume the register profit of an optimization is desired. The engine inputs 

the register code model, an optimization model, a register allocation model and a register 

resource model. Then it determines the changes on the live ranges (i.e., the register code model) 

based on the optimization model. Since an optimization model expresses the semantics of the 

optimizations as basic edits, the engine takes the edits and computes the changes on the live 

ranges using an incremental dataflow algorithm [41]. The engine then uses a register allocation 

model to determine how the spills (i.e., loads and stores) are changed according to these live 

range changes. Finally, the engine computes the profit associated with the change in the spills. 

To detect the interactions among a set of optimizations, the engine inputs the 

optimization models and the code model. It then generates the specific enabling, disabling and 

post conditions for each optimization opportunity at a program point. It then matches the 

enabling and disabling conditions with the post conditions among all the optimization 

opportunities and determines the interaction property. 
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3.2 USES OF THE FRAMEWORK 

As previously discussed, there are several problems with the application of optimizations. Our 

model-based framework can be used to address these problems based on optimization properties. 

First, using our framework, the optimizer can perform profit-driven optimization. Once 

the optimizer finds that an optimization is applicable, it generates the code models involved in 

the optimization and triggers the engine to predict the profit of the optimization. When the 

engine is triggered, it takes the code models, optimization models and resources models, updates 

the code models and determines the profit on resources under consideration. Based on whether 

there is a benefit or not, the optimizer applies the optimization accordingly. In this way, 

performance can be improved by avoiding applying optimizations when they are not profitable. 

Secondly, using our framework, the optimizer can determine code-specific optimization 

sequences. There are several ways that the optimization properties can be used to decide the 

order to apply optimizations for the most benefit. One is to use profitability. Previous work 

showed the effectiveness of using genetic algorithm to discover code-specific optimization 

sequences [15], [29], [30]. However, they experimentally evaluated the candidate sequences: 

They performed optimizations and executed the optimized code to evaluate. Thus, the search 

time is large. Using our framework, we can predict the profitability of optimizations in a 

sequence without applying optimizations and executing the code. The search time can be reduced 

by avoiding effort and time to perform the optimizations and execute the optimized code. To 

determine the order of applying optimizations, the interaction property can be used. The 

interaction can help prune the search space by knowing what optimizations are legal after 

applying an optimization (through enabling and disabling relationships). According to an 

evaluation function (e.g., the number of optimizations), we can select one optimization from the 

legal optimizations. We can construct a good optimization sequence to maximize the evaluation 

function. We also can combine profitability with the interaction property and use profitability as 

the evaluation function to determine the optimization sequences. 

Our framework also has other uses. For example, an optimizer can use the framework to 

find a good configuration of an optimization. Instead of different optimization sequences, 

different optimization configurations are evaluated, and the one with the best performance is 

determined and used.  
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4.0  FPSO: PREDICTING PROFITABILITY OF SCALAR OPTIMIZATIONS 

In this chapter, we describe a framework instance, called FPSO, for predicting the profitability of 

scalar optimizations, including Partial Redundancy Elimination (PRE), Loop Invariant Code 

Motion (LICM) and Value Numbering (VN). Because scalar optimizations have negligible effect 

on cache (i.e., loop behavior dominates data cache performance [36]), we consider only two 

machine resources: registers and computation (i.e., functional units). Figure 4.1 shows the 

overall structure of FPSO. There are three kinds of analytic models in FPSO. Code models 

include models for representing live ranges and operations in the code. An optimizations model 

is developed for each scalar optimization, such as PRE and Register Allocation (RA).  Machine 

resource models include models for expressing the machine configuration and the cost of using 

registers and functional units. The profitability engine in FPSO uses the model to predict the 

impact of optimizations on registers and computation.  

 

Figure 4.1: Structure of FPSO 
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The impact of PRE, LICM and VN on computation is clear: They insert or delete 

operations at some program points. Their impact on registers is more complicated and depends 

on code context. Sometimes they may introduce register spills, while in other cases they may 

decrease the number of spills.  

 

PRE increases the number of register spills by one,  
if there are 7 hardware registers. 
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Figure 4.2: An example of PRE impacting registers 

Figure 4.2 shows an example where PRE increases register pressure by introducing one 

more spill. The PRE algorithm is lazy code motion, which inserts the computation as late as 

possible [27]. In the figure, the code before and after applying PRE are given in (a) and (b). 

Figure (c) shows the live ranges after applying PRE. In (b), PRE moves the use of a and b at 

statement 10 up in the code. Because a and b are used after statement 10, their live ranges remain 

the same (shown in (c)). PRE also introduces a new live range for the temporary variable, v. 

Thus, if there are seven hardware registers, the inserted live range will cause a spill to memory. 

However, if a and b were not used after statement 10, their live ranges would be shortened. In 

that case, the total number of live ranges would be decreased by one, leading to fewer spills. 

In the following sections, we present the components of FPSO. We describe (1) code 

models for registers and computation, (2) optimization models for PRE, LICM, VN and register 

allocation, (3) resource models, and (4) the profitability engine. We use an example to show how 

FPSO works in determining profitability of VN. Experimental results are given in Section 4.6. 
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4.1 CODE MODELS FOR REGISTERS AND COMPUTATION 

The register code model represents the code as live ranges of global and local variables 

(including temporaries and parameters). We express a live range by x
mnLR ],...,[ , where x is a 

variable name and [n,…,m] is the range of statements over which x is defined and referenced. 

The live range of a variable is not necessarily contiguous. For example, in Figure 4.2 (c), after 

PRE, the live range of v consists of two parts and can be expressed as vLR ]10'..6 ,4..3[ , where 

[6’..10] is a shorthand notation to represent a contiguous range. When a variable v is defined 

outside a loop at n and used inside the loop at m, we use [n,…,m] to represent its live range for 

simplicity. However, v’s live range includes the whole loop. 

 

The computation code model expresses the frequency of occurrence for each operation in the 

code. For an operation, op, its frequency is represented as a sequence opBBB nfff ,...,, 21 , where 

fBi is the number of op in block Bi and op appears in blocks B1, B2, … Bn. 

4.2 OPTIMIZATION MODELS 

All optimization code changes can be expressed with basic edits. For example, a code movement 

can be expressed as a deletion of the statement at the source location and an insertion of a 

statement at the destination location. Thus, an optimization model expresses the semantics (i.e., 

effect) of the optimization as a series of basic edits. We represent a basic edit by its action and 

code location. For example, we express “insert a statement x  a + b at code location S” by 

“ Saddbax @ OP   ,  USE DEFInsert >< ”. In some cases, only a part of a statement is involved 

in a basic edit. For example, to replace a statement “x  a + b” at location S with a statement “x 

 v”, only the use variables and the operations are involved in the replacement. We represent 

the replacement by: 

 “ Saddba @ OP   , USEDelete >< ”  

“ Scopyv @ OP   USEInsert >< ”. 
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For clarity, we use Ss to represent the source location and Sd for the destination location in 

a code movement. Also, we express the new code location as S’. We next describe the 

optimization models for partial redundancy elimination, loop invariant code motion, value 

numbering and register allocation. 

4.2.1 PRE Optimization Model 

PRE inserts and deletes computations using a flow graph representation of a program. After 

PRE, each path contains no more occurrences of the computation than what is in the original 

code. The PRE algorithm that we model is lazy code motion (LCM), which takes register 

pressure into account by hoisting an expression no earlier than necessary [27]. Although LCM 

considers register pressure, there are still cases where PRE introduces more register spills (as 

shown in Figure 4.2).  

PRE has three semantic actions that create code changes:  

• Insert a statement: insert the redundant expression EXP and introduce a temporary v 

to hold the result of EXP at a destination code location; 

• Replace the computation: replace EXP with a copy from the temporary v at the source 

code position; and 

• Update each same expression T (that has the same operation and operands as EXP): 

replace T’s destination with the temporary and insert a copy statement after it.  

The PRE optimization model expresses these code changes (given in Figure 4.3). In the 

figure, lines 2 and 3 show that an assignment from the expression EXP to a temporary v is 

inserted at a new code location Sd’. The variables of EXP are inserted as uses and the temporary 

v is inserted as the definition with the operation op at Sd’, where Sd’ is a new code location 

immediately after Sd. Lines 5 and 6 show that at the source code location Ss, the expression EXP 

is deleted and a copy from the temporary v is inserted. The definition variable is unchanged. 

Finally, lines 8 to 12 express the code changes of updating the same expressions. For each 

expression T that has the same computation as EXP at the code location Sw, the destination w is 

replaced by the temporary v and a copy from v to w is inserted at the new location Sw’ 

immediately after Sw. 
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Figure 4.3: PRE optimization model 

After PRE, the temporary v can be propagated and copy statements can be deleted by 

applying copy propagation, which is modeled separately (see Appendix A). 

4.2.2 LICM Optimization Model 

LICM moves a statement from a loop body to the outside of the loop. There are certain 

conditions that must be met to safely apply LICM. An example of LICM is shown in Figure 4.4, 

where the invariant statement “a  b + 1” is moved out of the loop body because each of its 

operands is either defined outside of the loop or a constant. 

The semantic action of LICM is simply a code movement. The optimization model for 

LICM is shown in Figure 4.5. At a new code location Sd’, which is immediately after the 

destination code location Sd (i.e., the loop preheader), an invariant statement is inserted (as given 

in lines 2 and 3). Line 5 shows that at the source location Ss (i.e., inside the loop), the invariant 

statement is deleted. 

# Eliminate the partial redundant expression EXP (y op z) at Ss  

1: Insert a statement: 
2: 1' += dd SS  
3: '@ OP   ,   USE DEFInsert dSopzyv ><  

4: Replace the computation: 
5: sSopzy @ OP   , USEDelete ><  
6: sScopyv @ OP   USEInsert ><  

7: Update the same expressions: 
8: wSzopyEXPwTT  at  )  (←   | ∀ =  
9:  wSw @   DEFDelete ><  
10:  wSv @   DEFInsert ><  
11:  1' += ww SS  
12:  '@ OP     USE DEFInsert wScopyvw ><  
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(a) Code before LICM 
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(b) Code after LICM  
Figure 4.4: An example of LICM 

 

 
Figure 4.5: LICM optimization model 

4.2.3 VN Optimization Model 

The goal of VN is to find and remove redundant expressions that are equivalent based on their 

values (unlike PRE which considers lexically equivalent expressions). It assigns an identifying 

number to each expression in a particular way and then uses the number to find and remove 

redundant computations. 

We model dominator-based VN, which is a global technique that uses hashing to discover 

redundant computations and to fold constants [8]. It works on Static Single Assignment (SSA) 

intermediate code. An example of VN is shown in Figure 4.6. Because the expression “d0 + c0” 

# Move a loop invariant statement x  y op z   
1: Insert a statement: 
2: 1' += dd SS  
3: '@ OP   ,   USE DEFInsert dSopzyx ><  

4: Delete the statement: 
5: sSopzyx @ OP   ,  USE DEFDelete ><  
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at statement 4 has the same value number as “a0 + c0” at statement 2, it is redundant and can be 

replaced by the destination of  “a0 + c0”. Thus, statement 4 is replaced by a copy from b0 to e0.  

 

 1: a0  1 
2: b0  a0 + c0

3: d0  1 
4: e0  d0 + c0 
5: f0  e0 +2 

6: e1  1 
 

7: e2  Φ  (e0, e1)
8: g0  e2 + c0 

(a) Code before VN 

1: a0  1 
2: b0 a0 + c0 

3: d0  1 
4: e0  b0 
5: f0  b0 +2 

6: e1  1 
 

7: e2 Φ (e0, e1) 
8: g0  e2 + c0 

(a) Code after VN  
Figure 4.6: An example of VN 

VN has three actions for a basic block: 1) remove redundant or meaninglessΦ -

instructions (Φ -instruction is a pseudo-assignment that introduces a new definition point at the 

merge point in the control-flow graph [7]); 2) simplify computation (constant folding) or remove 

the redundant computation; and 3) adjust the inputs of Φ -instructions in successor blocks. When 

converting SSA to non-SSA intermediate code, some Φ -instructions should be replaced by copy 

instructions in predecessor blocks. Because the inputs of theΦ -instructions have been adjusted, 

they do not show where they were originally defined (i.e., where the copy should be inserted). A 

general algorithm can be used to replace the Φ -instructions with copy instructions [7]. To 

accurately predict the impact of VN, the replacement algorithm should be modeled.  

A simplification is to incrementally add the copy statements as VN progresses. In our 

VN, we replace the redundant computations with copy statements (instead of removing them) 

and retain the inputs of Φ -instructions when processing each basic block. We then use Φ -

instructions to keep the useful copy statements and remove the useless ones. In this way, no copy 

statements will be inserted when converting SSA to non-SSA code.  
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Figure 4.7: VN optimization model 

The VN optimization model, given in Figure 4.7, describes the code changes from VN. In 

the figure, VN[x] is the value number of x, where x can be a variable, an expression or a Φ -

instruction. Each value number is a variable name. For an expression, its value number is the 

variable name of the first occurrence of the expression in this path in the dominator tree. 

In Figure 4.7, lines 2 and 3 show that if an expression EXP (y op z) at Ss is redundant, it is 

replaced by a copy from its value number v. That is, the variables of EXP are deleted as uses 

with the operation op at Ss. The expression’s value number v is inserted as a use with the 

operation copy at Ss. Also, all uses of the defined variable x are replaced by v (expressed in lines 

5 to 7). In the example shown in Figure 4.6, at statement 4, the redundant expression d0 + c0 is 

deleted and a copy from its value number b0 is inserted. At statement 5, the definition variable e0 

is used and is replaced by b0. 

Replace a redundant statement x  y op z with x  VN[x] at Ss  
1:    Replace the computation: 
2: sSopzy @ OP  , USEDelete ><  
3: sScopyv @ OP   USEInsert ><  

4:    Replace all uses of x with its value number v: 
5: uSxu at   of use is  |u ∀  
6:  uSx @   USEDelete ><  
7:  uSv @   USEInsert ><  

Fold constant a statement x  y op z at Ss 
8:    Delete the computation: 
9: sSopzy @ OP  , USEDelete ><  

Delete a redundant Φ -instruction x  Φ (x1, x2, …)  
10:  Replace all uses of x with its value number v: 
11:  at   of use is |u ∀ uSxu  
12:  uSx @  USEDelete ><  
13:  uSv @ USEInsert ><  

Delete a useless copy instruction x  y at Ss 
14:  Delete the copy instruction: 
15: sScopyyx @ OP     USE DEFDelete ><  
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In our VN algorithm, we also find statements for constant folding. Line 9 in Figure 4.7 

shows if an expression EXP (y op z) at Ss can be simplified by constant folding, EXP is deleted. 

As given in lines 11 to 13, if a redundant Φ -instruction is deleted, all the uses of the defined 

variable x are replaced by the value number v. Thus, at the statement Su where the defined 

variable x is used, x is deleted as a use and v is inserted as a use. The last line in Figure 4.7 

models the deletion of a useless copy statement that is inserted in the step of replacing the 

computation. Here, the variable y is deleted as a use and the defined variable x is deleted as a 

definition with the operation copy at the location Ss. 

4.2.4 Register Allocation Optimization Model 

To determine the register profit of scalar optimizations, we need a model for register allocation. 

By applying register allocation, hardware registers are assigned to live ranges. If the number of 

hardware registers is not enough for all live ranges, the register allocator selects live ranges to 

spill to memory, which impacts overall performance. Thus, to predict the impact of optimizations 

on registers, we need to compute spills for the original live ranges and the live ranges changed by 

the optimization and compare them. This is a time consuming process. Instead, we use an 

incremental approach that computes how spills are changed due to each live range change. Our 

register allocation model reflects this incremental approach. 

We model a global graph coloring register allocator. Figure 4.8 shows the register 

allocation optimization model. For each changed live range c
mnLR ],...,[ , we determine how spills 

are changed. As given in lines 1 to 7, if c
mnLR ],...,[ is inserted or lengthened, it may introduce one 

more spill. Within the range [n,...,m], if the insertion of a new live range causes the number of 

live ranges to exceed the number of available hardware registers (HR), we select a live range to 

spill to memory, which introduces more loads and stores. We use all
mnLR ],...,[ to represent the live 

ranges in [n,...,m]. To select a live range to spill, we choose the one that has the least number of 

uses and definitions within the range, under the assumption that the register allocator typically 

performs well. Thus, we need to represent all variables’ uses and definitions within the range. 

Suppose, s
mnLR ],...,[ is selected to be spilled. If there is no definition of s before a use of s or there 
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is no use of s within the range [n,...,m], a store or load is inserted at the boundary of [n,...,m]. If 

the boundary of [n,...,m] is within a loop, a store or load is inserted outside the loop. Otherwise, 

at all the uses or definitions of s within [n,...,m], a load or store will be inserted.  Alternatively, if  
c

mnLR ],...,[  is deleted or shortened, it may decrease one spill (shown in lines 8 to 14). This 

register allocation model is input to the profitability engine (see Section 4.4) to predict the 

impact of the other optimizations on registers. 

 
Figure 4.8: Register allocation optimization model 

4.2.5 Other Scalar Optimizations 

We also develop optimization models for copy propagation, constant propagation and dead code 

elimination. These models are given in Appendix A. 

# Determine how spill changes for every live range change c
mnLR ],...,[  

1: IF )(Inserted ],...,[
c

mnLR  ∪  )(Lengthened ],...,[
c

mnLR  

2:  IF ||  || ],...,[],...,[ HRLRLR c
mn

all
mn >+  

3:   Select { s
mnLR ],...,[ }  MEM 

4:   ],...,[∈∩at  of definition is |∀ mnSSs dd dd  
5:    dSstore @ OPInsert ><  
6:   ],...,[∈∩at  of use is |∀ mnSSs uu uu  
7:    uSload @ OPInsert ><  
8: ELSE  
9:  IF ||   ≤ |  | ],...,[],...,[ HRLRLR c

mn
all

mn −  

10:   Select { s
mnLR ],...,[ }  MEM 

11:   ],...,[∈∩at  of definition is |∀ mnSSs dd dd  
12:    dSstore @ OPDelete ><  
13:   ],...,[∈∩at  of use is |∀ mnSSs uu uu  
14:    uSload @ OPDelete ><  
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4.3 RESOURCE MODELS FOR REGISTERS AND COMPUTATION  

A resource model expresses the resource configuration and the cost to use the resource. It is built 

for a specific platform by a compiler writer.  

Our resource model for registers specifies the number of available hardware registers and 

the cost of memory accesses (i.e., loads and stores). Thus, the compiler writer needs to specify 

how many hardware registers are available in the platform. For example, there are eight 

hardware registers that can be allocated for a byte-type variable on an Intel IA-32 machine. The 

compiler writer also needs to specify the average access time for a memory access. When there 

are not enough hardware registers to allocate variables, loads and stores (i.e., memory access) are 

inserted into the code. Because these loads and stores may be caches misses or cache hits, our 

resource model uses the average memory access time to represent the cost of registers. 

Our resource model for computation describes the computational operations available in 

the architecture and their execution latencies. Thus, the compiler writer needs to specify what 

operations are available in the platform (using a form of intermediate representation), such as a 

move between registers or an add operation. The compiler writer also needs to give the execution 

latency for each operation. Some operations need the average latency, such as loads and stores. 

Our resource model for computation in an Intel IA-32 machine (using Mach SUIF intermediate 

representation [44]) is shown in Appendix B. 

Resource models will be used by the profitability engine when computing the profit of 

applying an optimization. For example, to compute the register profit, the profitability engine 

uses the number of hardware registers to decide whether inserting or deleting a live range will 

increase or decrease spills. According to the cost of memory accesses, the profitability engine 

computes the cost of increasing spills or the benefit of decreasing spills (i.e., the register profit).  

 

4.4 PROFITABILITY ENGINE 

The profitability engine inputs code models, optimization models and resource models. It can 

also integrate profile information from offline experiments (e.g., execution frequency of basic 
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blocks). It then determines the changes on code models (for both registers and computation) and 

generates the optimized code models. Finally, it computes the register and computation profits 

and combines them. 

Table 4.1: Incremental computation of the new register code model 

Code Change Incrementally compute the new register code model 

Insert a use of 
variable v at 
statement s 

IF  v is  live at post-s THEN no change; 
ELSE /* lengthen v’s live range*/ 
 The original live range v

mnLR ],...,[  changes to      

⎪⎩

⎪
⎨
⎧

=
otherwise

 usesother  dominate-post s

][

],...,[
],...,[ ∪ ],...,[ v

.,sn,...,m,..

v
snv

snmn LR

LR
LR  

Insert a definition of 
variable v at 
statement s 

IF  v is not  live at post-s  THEN no change; 
ELSE /* shorten  v’s live range*/ 
The original live range v

mnLR ],...,[  changes to 

⎪⎩

⎪
⎨
⎧

=
otherwise

definitionother  dominate-post s

],...,,...,[

],...,[
],..., [ ∩],...,[ v

msn

v
msv

msmn LR

LR
LR  

Delete a use of 
variable v at 
statement s 

IF  v is  live at post-s and v is not only use in a loop THEN no change; 
ELSE /* shorten v’s live range*/ 
The original live range v

snLR ],...,[  changes to 

⎪⎩

⎪
⎨
⎧

=
otherwise

 usesother  dominate-post m

][

],...,[
,...][ ∩ ],...,[ v

n,...m,...

v
mnv

nsn LR

LR
LR  

Delete a definition of 
variable v at 
statement s 

IF  v is not  live at post-s THEN no change; 
ELSE /* lengthen  v’s live range*/ 
The original live range v

msLR ],...,[ changes to  

⎪⎩

⎪
⎨
⎧

=
otherwise

definitionother  dominate-post n

],...,[...,

],...,[
]...,[ ∪],...[ v

mn

v
mnv

mms LR

LR
LR  

Delete an edge from 
block Bs to block Bd 

Delete all uses of any variable that is live at the beginning of Bd from 
the Bs and all predecessors of Bs where the variable is no longer live 
by any path. 

Insert an edge from 
block Bs to block Bd 

Insert all uses of any variable that is live at the beginning of Bd to the 
Bs and all predecessors of Bs. 
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An optimization model expresses the semantics of optimizations by basic edits. From an 

optimization model, the engine determines how the optimization changes the register code model 

with an incremental dataflow algorithm [41]. Table 4.1 shows how to incrementally compute the 

new register code model (i.e., live ranges) for each edit. Each row in the table represents an edit 

and shows how the profitability engine incrementally updates the register code model for this 

edit, considering code context. There are six basic edits shown in the table.  

In Table 4.1, post-s means the point immediately after statement s. We use n to represent 

a statement where there is a definition of the variable v and use m to represent a statement where 

there is a use of the variable v. For example, the effect on the live ranges from inserting a use of 

v (1st row of the table) depends on the current code. If v is already live at post-s, there is no 

change. Otherwise, the original live range v
mnLR ],...,[ , is lengthened. If the inserted use at 

statement s is the last use (i.e., s post-dominates other uses), the new live range for v 

becomes v
snLR ],...,[ . Otherwise, the new live range consists of the original live range and a range 

to the use statement s. This range is represented as v
smnLR ],...,,...,[ . Similarly, the profitability 

engine updates the register code model for inserting a definition, deleting a use, deleting a 

definition, inserting an edge and deleting an edge. 

Table 4.2: Updates of the computation code model 

Code Change Update the computation code model 

Insert an  operation op at 

block Bs 

The original operation list opBBBB ns ffff ,...,,...,, 21  

changes to  opBBBB ns ffff ,...,1,...,, 21 +  

Delete an  operation op 

at block Bs 

The original operation list opBBBB ns ffff ,...,,...,, 21  

changes to opBBBB ns ffff ,...,1,...,, 21 −  

 

The engine also infers how an optimization changes the computation code model. Table 

4.2 shows the basic changes on computation code model and how the profitability engine 

updates the computation code model for each basic change. As shown in Table 4.2, the code 
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changes from an optimization can be classified as either inserting an operation or deleting an 

operation. If an operation op is inserted at a block Bs, the number of op in block Bs (i.e., Bsf ) is 

increased by one. If an operation op is deleted at a block Bs, Bsf is decreased by one. Thus, the 

engine can determine the impact of an optimization on computation. 

For example, the impact of PRE on computation can be determined by the engine, as 

shown in Figure 4.9. To insert a statement, the operation op is inserted at block Bd (the 

destination code location Sd is in block Bd). To replace the computation, the operation op is 

deleted at block Bs and a copy is inserted at block Bs (the source location Ss is in block Bs). 

Finally, to update the same expression T at the code location Sw, a copy is inserted in block Bw, 

where Sw is in block Bw. 

 
 # Eliminate the partial redundant expression EXP (y op z) at Ss  

Insert a statement at block Bd: 
op

BBBB nd ffff ,...,,...,, 21  op
BBBB nd ffff ,...,1,...,, 21 +  

Replace the computation at block Bs: 
op

BBBB ns ffff ,...,,...,, 21  op
BBBB ns ffff ,...,1,...,, 21 −  

copy
BBBB ms ffff ,...,,...,, 21  copy

BBBB ms ffff ,...,1,...,, 21 +  

Update the same expressions at block Bw: 
wSzopyEXPwTT at  )  (←   |   ∀ =  

copy
BBBB mw ffff ,...,,...,, 21  copy

BBBB mw ffff ,...,1,...,, 21 +  

 
Figure 4.9: Impact of PRE on computation code model 

 
After determining the changes on the code models, the engine generates the optimized 

code model and computes the profit for the resource under consideration. For example, to 

compute the profit for registers, the engine computes the benefit/cost in terms of spills (i.e., loads 

and stores) based on the register allocation model. That is, for each live range change, the engine 

determines the impacted region and compares the total number of live ranges with the available 

hardware registers. If the total number of live ranges is larger than the available hardware 

registers, inserting a live range will introduce one more spill. To select a live range to spill to 

memory, the engine records the uses and definitions of all variables in the region and chooses the 
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one that has the least number of uses and definitions. The benefit/cost associated with the spill is 

the profit of the optimization on registers. 

Table 4.3: Computing profit on registers (Rtotal) and computation (Ctotal) 

Optimization Compute the profit on registers and computation 

PRE: eliminate a 
redundant expression 

))1,()1,(       

),(),((  
),(),(  

),(),(
exp

++++

+∑+
++

+=

++=

winsertusewinsertdef

winsertdefwdeletedef
w

sinsertusesdeleteuse

dinsertdefdinsertuse

updatepreplacecominsertstattotal

SvRSwR

SvRSwR
SvRSEXPR

SvRSEXPR

RRRR

 

∑+
++

=

++=

w
winsert

sinsertsdelete

dinsert

updatepreplacecominsertstattotal

BcopyC
BcopyCBopC

BopC

CCCC

),(
),(),(

),(         
exp

 

LICM: 
move an invariant 

statement 
),(),(  

),(),(

sdeletedefsdeleteuse

dinsertdefdinsertuse

deletestatinsertstattotal

SxRSEXPR

SxRSEXPR
RRR

++

+=
+=

 

),(),(         sdeletedinsert

deletestatinsertstattotal
BopCBopC

CCC
+=

+=
 

VN: eliminate a 
redundant expression 

)),(),((  
),(),(

uinsertuseudeleteuse
u

sinsertusesdeleteuse

replaceusepreplacecomtotal

SvRSxR
SvRSEXPR

RRR

+∑+
×+=

+=

α  

),(),(         sinsertsdelete

replaceusepreplacecomtotal

BcopyCBopC

CCC

×+=

+=

α
 

VN:  fold constant a 
statement 

),( sdeleteuse

deletecomptotal

SEXPR

RR

=

=
 

),(         sdelete

deletecomptotal

BopC

CC

=

=
 

 

To compute the overall profit of an optimization, Ptotal, the engine needs to combine the 

register profit, Rtotal and computation profit, Ctotal. To compute Rtotal, the engine sums the register 
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profit associated with every step in the optimization model. Similarly, to compute Ctotal, the 

engine sums the computation profit for every step.  

Table 4.3 shows how the profitability engine computes Rtotal and Ctotal for PRE, LICM 

and VN. For example, to compute the profit of eliminating a redundant expression in VN (3rd 

row in Table 4.3), the engine needs to compute the register profit, which includes the register 

profit of replacing the computation preplacecomR  and updating of the uses of the defined 

variable replaceuseR . Further, preplacecomR  is computed by deleting a use, 

),( sdeleteuse SEXPR and inserting a use, ),( sinsertuse SvR . The engine also needs to compute the 

computation profit of replacing the computation preplacecomC  (i.e., removing the computation 

and inserting a copy). However, the inserted copy statement may be deleted later as a useless 

statement if it is not an argument of an Φ -instruction (described in Section 4.2.3). The engine 

also considers the deletion. Thus, the engine multiplies ),( sinsertuse SvR and ),( sinsert BcopyC by 

a factor of α . α  is the ratio that a copy statement will stay in the code (i.e., not deleted in the 

later phase of VN), which is a number between zero and one. We determine α  by profiling. 

To combine the profits for registers and computation, they must have the same metric. If 

the computation profit considers the frequency of a node, the register profit also needs to 

consider the execution frequency of the loads or stores. 

4.5 AN EXAMPLE OF PROFIT-DRIVEN VN 

To illustrate how FPSO works, we show an example of profit-driven VN applied to a code 

segment, shown in Figure 4.10 (a). Figure 4.10 (b) gives the corresponding register code model, 

where all the live ranges are expressed. 

VN processes each block in the dominator tree. The first block processed is B1. Since 

none of the expressions in B1 has been seen, the value number of the defined variables and the 

expressions are the defined variables themselves. For example, VN[u0] is u0 and VN[a0+b0] is 

u0. 
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 1: u0  a0 + b0 
2: v0  c0 + d0 
3: w0  e0 + f0 

4: x0  c0 + d0 
5: y0  c0 + d0 

6: u1  a0 + b0
7: x1  e0 + f0 
8: y1  e0 + f0 

9: u2  Φ  (u0, u1)  
10: x2  Φ  (x0, x1) 
11: y2  Φ  (y0, y1) 
12: z0  u2 + y2 
13: u3   a0 + b0

(a) Code before VN 

B1 

B2 B3 

B4 

1: u0  a0 + b0 
2: v0  c0 + d0 
3: w0  e0 + f0 

4: x0 v0 
5: y0  c0 + d0 

6: u1  a0 + b0
7: x1  e0 + f0 
8: y1  e0 + f0 

9: u2  Φ  (u0, u1)  
10: x2  Φ  (x0, x1) 
11: y2  Φ  (y0, y1) 
12: z0  u2 + y2 
13: u3   a0 + b0  

(c) Code after 1st elimination 

B1 

B2 B3 

B4 

1: u0  a0 + b0 
2: v0  c0 + d0 
3: w0  e0 + f0 

4: x0  v0 
5: y0  w0 

6: u1  u0 
7: x1  w0 
8: y1  w0 

9: u2  Φ  (u0, u1)  
10: x2  Φ  (x0, x1) 
11: y2  Φ  (y0, y1) 
12: z0  u0 + x2 
13: u3   u0  

(e) Code after VN 

B1 

B2 B3 

B4 

(b) Register code model before VN 

00 ,
]13..0[
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00 ,
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00 ,
]8..0[
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]13[]12..9[]9..6[]9..1[
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0
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0
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]10[]10..7[]10..4[

xxx LRLRLR

210
]12..11[]11..8[]11..5[

yyy LRLRLR

0
]12[

zLR

(d) Register code model after 1st elimination 

00 ,
]13..0[

baLR

00 ,
]5..0[

dcLR

00 ,
]8..0[
feLR

3210
]13[]12..9[]9..6[]9..1[

uuuu LRLRLRLR  
0

]42[
v

..LR

0
]3[

wLR

210
]10[]10..7[]10..4[

xxx LRLRLR
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]12..11[]11..8[]11..5[

yyy LRLRLR

0
]12[

zLR

(f) Register code model after VN 

00 ,
]1..0[

baLR

00 ,
]2..0[

dcLR

00 ,
]3..0[
feLR

30
]13[]13..1[

uu LRLR

0
]4..2[

vLR

0
]7..3[

wLR

210
]12..10[]10..7[]10..4[

xxx LRLRLR  
0

]12[
zLR

 
Figure 4.10: An example of model-driven VN 
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The next block processed is B2. Since the expression c0 + d0 is defined in block B1, the 

first redundant expression, x0  c0 + d0, is found. The optimizer calls the engine to predict the 

profit of eliminating this redundancy. The engine computes the profit on both registers and 

computation. To predict the profit on registers, the engine first takes the register code model 

(shown in Figure 4.10 (b)) and the VN optimization model. The engine generates the optimized 

code model using the incremental dataflow algorithm (shown in Table 4.1). In this case, c0 and 

d0 are deleted as uses. Because c0 and d0 are live after statement 4, there is no change on the 

register code model for the deletions. Also, v0 is inserted as a use. Thus, the live range of v0 is 

lengthened from 0
]2[

vLR to 0
]4..2[

vLR . Figure 4.10 (d) shows the updated register code model after 

replacing this redundancy. 

Using the register allocation optimization model, the engine determines how the spills 

change based on the live range updates. For this example, there is no spill change from deleting 

c0 and d0.  But inserting v0 will increase the spills by one if the number of hardware registers is 

less than 8. Indeed, the number of live ranges at statement 3 changes from 7 to 8. Choosing 

which variable to spill depends on the register allocator’s spill strategy. In our register allocation 

model, we select the one that has the fewest number of uses and definitions, which is u0. This 

introduces a store before statement 2 and a load after statement 4. The cost associated with the 

inserted load and store is the register profit as predicted by the engine. 

The profit on computation is more easily predicted, which includes the benefit of 

removing an add statement and the cost to insert a copy statement. To compute the overall profit, 

the engine uses the functions described in the previous section. If the overall profit is positive, 

redundancy elimination is applied. Otherwise, it is not applied. 

There are 6 redundant expressions that can be eliminated in this example. For every 

redundant expression, the profitability engine is triggered to predict the profit of applying the 

redundancy elimination. Figure 4.10 (e) shows the code after VN (assuming all 6 redundant 

expressions are profitable). The register code model after VN is shown in Figure 4.10 (f), where 

all the live ranges are changed except for 0
]12[

zLR . 
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4.6 EXPERIMENTAL RESULTS 

To evaluate FPSO, we implemented optimization models for six optimizations, including PRE, 

LICM, VN, copy propagation (CPP), constant propagation (CTP) and dead code elimination 

(DCE). We integrated FPSO into the Mach SUIF compiler [44]. Mach SUIF was chosen as each 

optimization in Mach SUIF is implemented and applied as a single pass. Thus, we can 

incorporate our models for experimentation proposed. We used the DCE pass from Mach SUIF, 

and implemented PRE, LICM, VN, CPP and CTP. 

For the experiments, we used several programs from MiBench [34], MediaBench [21] 

and SPEC2K to show FPSO works for a variety of programs. We ran our experiments on a dual-

processor AMD Athlon MP 1800 1.4 GHz machine and a Pentium III 1.4G machine, running 

RedHat Linux. The experimental results show the same trend for both machines. We report the 

results on the Pentium III machine in this chapter. The results for the AMD Athlon are given in 

Appendix C. We performed node profiling on training data sets to get the basic block frequency 

counts that were used by the engine. In all experiments, each benchmark was run three times on 

a lightly loaded machine and the average execution time was computed to factor out system 

effects. 

We show the experimental results of FPSO for two uses. First, we show that profitability 

is useful for selectively applying optimizations. Second, we show that profitability is also useful 

in searching for code-specific optimization sequences. 

4.6.1 Selectively Applying Optimizations 

Always applying an applicable optimization can sometimes lead to a performance degradation. 

Such a simple heuristic of “always applying” is not sufficient in making decisions about when to 

apply an optimization. Work has been done to develop heuristics to decide when to apply 

optimizations [20]. Heuristics can work well in general. However, heuristics tend to be ad hoc 

and focus specifically on a single or a small class of optimizations. Heuristics also require tuning 

parameters to select appropriate threshold values. The success of a heuristic can depend on these 

values and the best choice can vary for different optimizations and code contexts. Instead of 
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using heuristics, we can determine the profitability of an optimization and selectively apply 

profitable optimizations using FPSO. 

In the following sections, we present an approach that uses heuristics to decide when to 

apply optimizations. We compare it with our profit-driven approach. We compare the two 

approaches in terms of prediction accuracy, performance improvement and compile-time 

overhead. The experimental results show that FPSO is accurate in predicting profitability, which 

is useful for deciding when to apply optimizations. 

4.6.1.1 A heuristic approach 

Previous work used heuristics to decide when to apply optimizations, such as register pressure 

sensitive redundancy elimination, which sets upper limits on allowable register pressure and 

performs redundancy elimination within these limits [20]. We implemented a similar heuristic. 

We set the upper limit on allowable live ranges at the places where the redundant expressions 

will be moved. Redundancy elimination is performed only when the number of live ranges is 

within the limit. In VN, we eliminate full redundancies and there is no code movement. Thus, the 

heuristic described here is not useful for VN. In this section, we show the experimental results 

for heuristic-driven PRE and LICM. 

One challenge with a heuristic-driven approach is how to select a limit that can achieve 

good performance across all benchmarks. Our experiments show that different benchmarks need 

different limits to achieve the best performance. Figure 4.11 and Figure 4.12 show the run-time 

performance improvement of heuristic-driven PRE and LICM over the baseline. The baseline 

compiler applies register allocation and simple instruction scheduling. Also, to enable more 

opportunities for PRE and LICM, we apply copy propagation, constant propagation and dead 

code elimination before PRE and LICM. We varied the limit on register pressure from zero to 

sixteen. For PRE, if the limit is zero, only full redundancies are eliminated. In practice, the limits 

are usually chosen to be the number of available hardware registers. Hence, eight may be a good 

limit because there are eight hardware registers that can be allocated for a byte-type variable on 

the Intel IA-32. Zero, four and sixteen are used to examine stricter or higher limits. 
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Figure 4.11: Improvement of heuristic-driven PRE with different limits 
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Figure 4.12: Improvement of heuristic-driven LICM with different limits 

From the figures, we can see that different benchmarks need different limits to perform 

the best. For example, for PRE, gzip can achieve an improvement of 5.25% when the limit is set 

to sixteen, while mcf needs the limit set to zero to achieve the best improvement of 3.01%. Also, 

some benchmarks are sensitive to the limit (e.g., bitcount), while others are not (e.g., mcf). 

Further, we see that different optimizations may need different limits for the same benchmarks. 

For example, gzip needs the limit set to sixteen for PRE but needs the limit set to four for LICM. 

If we fix the limit, then we can not always achieve the best improvement with a heuristic. 
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4.6.1.2 Comparing prediction accuracy 

To use FPSO, we must ensure it has good prediction accuracy. We evaluated the prediction 

accuracy by considering only registers. We did not evaluate the accuracy of the computation 

profit because the computation is exact in terms of instruction count, given relative node 

frequencies from a profile. If the relative frequencies in the profile do not match what happens in 

an actual run, then there can be an inaccuracy in predicting the computation profit. However, this 

inaccuracy is a property of the profile – not of the models that compute the computation profit. 

For deciding whether an optimization should be applied, a correct prediction is one in 

which we predict there is a benefit/cost for registers (i.e., if register profit is positive, it indicates 

a spill reduction; otherwise, it shows a spill increase) and actual execution has the same result. 

For those cases where the actual execution shows there was no impact on registers, we consider 

the prediction to be correct. The accuracy prediction is measured by how often we make a 

correct prediction. To validate the prediction accuracy, we checked every prediction and 

compared the value predicted with the actual execution (i.e., we use the number of memory 

accesses before and after applying an optimization to reflect the spill changes). 

 

Table 4.4: Prediction accuracy of H-PRE and P-PRE 

Heuristic-8 PRE Profit-driven PRE Benchmark 
TP accuracy% TP accuracy% 

gzip 43 79.07% 48 89.58% 
vpr 290 80.34% 303 96.04% 
mcf 51 88.23% 51 86.27% 

parser 239 75.73% 293 87.87% 
vortex 513 79.72% 530 81.13% 
bzip2 58 81.03% 56 78.57% 
twolf 484 76.03% 475 91.12% 

bitcount 5 100% 5 100% 
dijkstra 2 100% 2 100% 

FFT 3 33% 3 100% 
jpeg 58 96.55% 58 100% 
sha 5 100% 5 100% 

average -- 82.48% -- 92.55% 
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Table 4.5: Prediction accuracy of H-LICM and P-LICM 

Heuristic-8 LICM Profit-driven LICM Benchmark 
TP accuracy% TP accuracy% 

gzip 53 88.68% 45 84.44% 
vpr 251 75.70% 230 94.35% 
mcf 68 76.47% 52 82.69% 

parser 89 79.78% 75 90.67% 
vortex 361 77.56% 346 87.57% 
bzip2 92 82.60% 88 89.77% 
twolf 367 77.93% 345 88.70% 

bitcount 3 66.67% 3 100% 
dijkstra 5 40% 5 80% 

FFT 23 86.96% 23 95.65% 
jpeg 82 97.56% 79 100% 
sha 21 76.19% 21 95.24% 

average -- 77.18% -- 90.76% 
 

Table 4.4 and Table 4.5 show the prediction accuracy of PRE and LICM. In the tables, 

“TP” is the total number of predictions and “accuracy%” is the prediction accuracy for both 

heuristic-driven and profit-driven approaches. In the heuristic-driven PRE and LICM, we set the 

limit to eight. 

As Table 4.4 shows, in some cases heuristic-driven PRE had a different number of 

predictions than profit-driven PRE because of the interactions among PRE instances. The 

prediction accuracy for heuristic-driven PRE varies from 75% to 100%, with an average of 

82.5%. Compared with heuristic-driven PRE, profit-driven PRE makes more correct predictions 

generally, with the prediction accuracy from 78% to 100% (average 92.6%). Profit-driven PRE 

considers the impact on register pressure in a more precise way. In some cases, such as mcf, 

although the prediction accuracy of P-PRE is lower than H-PRE, P-PRE achieves a better 

performance benefit than H-PRE because P-PRE also considers computation (shown in Figure 

4.14). 

A similar trend can be seen in Table 4.5 for LICM. The prediction accuracy for heuristic-

driven LICM varies from 40% to 97%, with an average of 77%. Profit-driven LICM has a higher 

prediction accuracy, varying from 82% to 100% (average 91%). Because profit-driven PRE and 
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LICM can make more correct predictions than the heuristic-driven approach, the performance 

improvement of P-PRE and P-LICM is generally better than heuristic-8 PRE and heuristic-8 

LICM. 

Table 4.6 shows the prediction accuracy of FPSO for profit-driven VN. It varies from 

81% to 100%, with an average of 87%. In some cases, there is no applicable VN, so no accuracy 

is reported (i.e., bitcount, dijkstra and sha). 

Table 4.6: Prediction accuracy of P-VN 

Profit-driven VN Benchmark 
TP accuracy% 

gzip 30 93.33% 
vpr 77 87.01% 
mcf 35 82.86% 

parser 32 84.38% 
vortex 71 94.37% 
bzip2 48 87.5% 
twolf 101 81.19% 

bitcount 0 -- 
dijkstra 0 -- 

FFT 4 75% 
jpeg 1 100% 
sha 0 -- 

average -- 87.29% 
 

On average, FPSO made inaccurate predictions about 10% of the time. The inaccuracy is 

primarily from a simplified assumption used in the register optimization model about how the 

register allocator spills registers. The model assumes that the allocator will select the spill 

priority based solely on the number of uses and definitions in a live range. However, Mach 

SUIF’s register allocator also uses the number of conflicting edges in the interference graph to 

make spill decisions. Even without detailed implementation information, our models achieve 

good accuracy. If more accuracy is needed, the models can be improved by incorporating more 

implementation information. Also, in FPSO, the prediction inaccuracy does not accumulate, 

which is important in predicting the profitability of a sequence of optimizations.  The engine 

incrementally updates the code models. The incremental update is accurate. That is, the updated 
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code model is the same as performing the optimization and reconstructing the code models. The 

inaccuracy of the prediction only comes from computing the profit associated with every update 

in an optimization. Thus, the prediction of an optimization does not impact the prediction 

accuracy of later optimizations. 

4.6.1.3 Comparing performance improvement 

Using FPSO, we can determine the profitability of an optimization and selectively apply 

profitable optimizations without setting threshold limits. The cases where optimizations degrade 

performance can be avoided. In this section, we first compare profit-driven PRE and LICM with 

always applying PRE and LICM and the heuristic-driven PRE and LICM. We then compare 

profit-driven VN and always applying VN. 

Figure 4.13 and Figure 4.14 show the comparisons of four PRE approaches, in terms of 

the improvement in the dynamic number of memory accesses and run-time performance over the 

baseline. The comparison on the number of memory accesses shows how these approaches 

impact the use of registers. It also helps to explain the run-time performance difference. In the 

figures, A-PRE is the improvement of always applying PRE when it is applicable. Heuristic-

driven PRE is described as above and has two versions based on the register pressure allowed. 

Best-heuristic is the best case among the limits for each benchmark, while Heuristic-8 uses a 

fixed limit of eight. Lastly, P-PRE is the performance benefit of profit-driven PRE. Figure 4.15 

and Figure 4.16 show the comparisons with the same configurations except for LICM. 

As Figure 4.13 shows, the problem with always applying PRE when it is applicable is it 

may increase register pressure and incur more spills. In most cases, A-PRE increases the number 

of memory accesses. For example, in vpr, A-PRE increases the memory accesses by 5.11%. Both 

the heuristic approach and P-PRE can avoid the unprofitable instances of PRE, thus decreasing 

the memory accesses. However, P-PRE considers the registers in a more accurate way (as 

demonstrated by the prediction accuracy in Section 4.6.1.2).  It improves the memory access 

count more than the heuristic approach. For example, in gzip, the best-heuristic, which is 

unattainable, increases the memory access by 1.1%, while P-PRE decreases the memory accesses 

by 0.82%. Due to the mispredictions, P-PRE increases the memory accesses more than the 

heuristic approach for mcf and bzip2. 
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Figure 4.13: Memory access improvement for PRE 
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Figure 4.14: Run-time performance improvement for PRE 

Figure 4.14 shows the run-time performance improvement for different PRE approaches 

over the baseline. Both H-PRE and P-PRE achieve performance benefits over always applying 

PRE. However, the choice of the limits in heuristic-PRE is very important (as described in 

Section 4.6.1.1). For example, in vortex, when the limit is set to 4, H-PRE improves performance 

by 5.61%. While when the limit is 8, H-PRE improves performance by 4.89%. P-PRE considers 

both register pressure and computation to predict the profitability of PRE. Thus, in the case 

where P-PRE increases memory accesses more than H-PRE (mcf), P-PRE still improves the 

overall run-time performance. P-PRE consistently performs as good as or better than the Best-

Heuristic for PRE, except for bzip2, where predictions are sometimes incorrect. In the cases 

where P-PRE decreases the number of memory accesses, it improves the run-time performance 
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more (e.g., gzip, twolf and jpeg). That is, the performance benefit comes from the careful 

consideration of register pressure. On a register limited machine, like the Intel IA-32, it is 

particularly important to consider the register pressure as these results indicate. 

Figure 4.15 and Figure 4.16 show a comparison of the different approaches for applying 

LICM. As shown in Figure 4.15, A-LICM can increase register pressure greatly. For example, in 

sha, A-LICM increases the memory accesses by 19.17%. Heuristic LICM and profit-driven 

LICM selectively choose profitable LICM instances to apply. Thus, in sha, Best-Heuristic LICM 

decreases the memory accesses by 0.74% and P-LICM decreases the accesses by 1.24%. 
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Figure 4.15: Memory access improvement for LICM 
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Figure 4.16: Run-time performance improvement for LICM 
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Figure 4.16 shows the run-time performance improvement for different LICM 

approaches over the baseline. From the figure, we can see that overall performance of A-LICM 

can be improved by not applying unprofitable LICMs. Although the heuristic-driven LICM 

achieves a performance improvement over always applying LICM, it is important to choose the 

right limit. For example, in vortex, with a register pressure limit of eight, the heuristic-driven 

LICM is worse than always applying LICM. While in the Best-Heuristic (where the limit is 

sixteen), it is better than always applying LICM. P-LICM can perform at least as well as the 

best-heuristic LICM in most cases, without tuning the parameters used in H-LICM. However, in 

one case (gzip), due to incorrect predictions, P-LICM has worse performance than the heuristic-

driven approach. 
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Figure 4.17: Memory access improvement for VN 
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Figure 4.18: Run-time performance improvement for VN 
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Figure 4.17 and Figure 4.18 show the improvement of memory accesses and run-time 

performance of profit-driven VN over the baseline, compared to always applying VN. Unlike 

PRE and LICM, we did not apply other optimizations (e.g., copy propagation or constant 

propagation) before VN because VN eliminates redundancies by value, not by name. Constant or 

copy propagation cannot enable more opportunities for VN. Always applying VN degraded 

performance in some cases because of the increased register pressure caused by eliminating 

some redundancies, as shown in Figure 4.17. For example, for vortex, A-VN increases the 

memory accesses by 1.46% and thus, the run-time performance was degraded by 1.37%. 

However, using FPSO, P-VN can selectively apply only profitable redundancy elimination, 

achieving a performance benefit. For vortex, P-VN decreases the memory accesses by 0.91%, 

and thus, improves run-time performance by 1.28% over the baseline. 

From these figures, we see that FPSO is useful for a variety of optimizations, whether the 

optimization operates on SSA or non-SSA intermediate code formats. In comparison with the 

always applying approach, our profit-driven approach achieved a better performance 

improvement. The performance degradation from always applying optimizations was avoided. In 

comparison with the heuristic approach, our profit-driven approach performed as good as the 

Best-Heuristic approach, which is unattainable in practice.  We conclude that our model-based 

approach can be effectively used to explore and determine the profitability of optimizations. The 

profitability property is useful in deciding when to apply optimizations. 

4.6.1.4 Comparing compile-time overhead 

Because our approach uses models to make decisions, we investigated how compile-time is 

impacted. We need to ensure that evaluating the models does not overly increase compile-time. 

Table 4.7, Table 4.8 and Table 4.9 show the compile-time for different optimization strategies 

for PRE, LICM and VN. In the tables, the compile-time for all compilation passes, including the 

front-end, optimizations and back-end passes (“Full Compile-time”), and for the optimization 

pass under consideration (“One Pass Compile-time”) are shown. In Table 4.7 and Table 4.8, 

there are three columns for compile-time comparison. The first column shows the compile-time 

of always applying approach. The second one gives the percentage of the compile-time increased 

by the heuristic approach over always applying approach. The third column shows the 

percentage of compile-time increased by the profit-driven approach over always applying 
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approach. In Table 4.9, we compare the compile time of always applying VN and profit-driven 

VN. 

Table 4.7: Compile-time for PRE 

Full Compile-time One Pass Compile-time 
Benchmark 

A-PRE H over A P over A A-PRE H over A P over A 

gzip 44.99 9.18% 17.63% 10.44 36.78% 65.90% 
vpr 142.46 52.23% 61.86% 37.61 77.45% 103.56% 
mcf 21.84 37.36% 48.49% 4.68 57.39% 72.91% 

parser 106.74 25.10% 34.00% 26.7 69.06% 94.23% 
vortex 518.5 19.11% 29.64% 88.49 56.78% 79.76% 
bzip2 35.58 22.85% 27.15% 10.77 68.25% 86.56% 
twolf 767.27 46.05% 58.24% 199.49 90.29% 104.82% 

bitcount 6.59 7.13% 10.93% 1.79 56.98% 61.45% 
dijkstra 1.15 11.30% 13.91% 0.29 24.14% 48.28% 

FFT 4.61 8.89% 13.02% 1.07 41.12% 55.14% 
jpeg 35.08 40.34% 53.62% 7.49 80.32% 104.74% 
sha 3.04 10.53% 15.13% 0.66 21.21% 36.36% 

average -- 24.17% 31.97% -- 56.65% 76.14% 
 

From Table 4.7, the full compile-time for A-PRE varies from approximately 1.2 seconds 

to 767.3 seconds. The compile-time shown for the heuristic approach is the average for the 

different limits. It increases from 7% to 52% over A-PRE, with an average of 24%. The 

heuristic-driven PRE has to compute and update live range information, which causes the 

compile-time increase. The compile-time for profit-driven PRE increased over A-PRE by 11% to 

62%, with an average of 32%. Because P-PRE considers computation and register pressure in a 

more precise way than the heuristic-driven PRE, it incurs a modest overhead increase. Table 4.7 

also shows compile-time for only the PRE optimization pass. The one pass compile-time for A-

PRE varies from approximately 0.3 seconds to 199.49 seconds. The compile-time for H-PRE 

increases from 21% to 90% over A-PRE, with an average of 57%. The compile-time for P-PRE 

increases over A-PRE by 36% to 105%, with an average of 76%. 

Similar compile-time trends can be seen for A-LICM, H-LICM and P-LICM in Table 4.8. 

The full compile-time for A-LICM varies from approximately 1.2 seconds to 579.9 seconds. The 
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heuristic-driven LICM increases compile-time over A-LICM from 5% to 38% (average 21%) 

and profit-driven LICM increases compile-time over A-LICM by 7% to 56% (average 28%). The 

one pass compile-time for A-LICM varies from approximately 0.35 seconds to 165.49 seconds. 

The compile-time for H-LICM increases from 11% to 88% over A-LICM, with an average of 

49%. The compile-time for P-PRE increases over A-PRE by 14% to 132%, with an average of 

68%. 

Table 4.8: Compile-time for LICM 

Full Compile-time One Pass Compile-time 
Benchmark 

A-LICM H over A P over A A-LICM H over A P over A 

gzip 45.97 23.65% 27.65% 12.94 57.26% 69.63% 

vpr 127.84 18.80% 27.35% 32.36 58.19% 79.49% 

mcf 20.51 32.42% 9.10% 4.73 49.89% 72.94% 

parser 106.08 21.86% 30.82% 29.53 58.42% 88.93% 

vortex 511.8 11.34% 15.48% 98.87 36.41% 47.25% 

bzip2 34.63 22.81% 30.26% 11 57.55% 79.55% 

twolf 579.97 37.73% 55.50% 165.49 88.14% 132.64% 

bitcount 6.63 4.52% 7.39% 1.88 16.49% 25.53% 

dijkstra 1.19 7.56% 10.08% 0.35 11.43% 14.29% 

FFT 4.58 35.37% 41.48% 1.21 60.33% 85.12% 

jpeg 25.26 20.23% 28.82% 6.38 56.99% 70.82% 

sha 2.78 7.63% 25.90% 0.81 38.27% 54.32% 

average -- 21.16% 28.32% -- 49.11% 68.38% 

 

From Table 4.9, the full compile-time for A-VN varies from 1.7 seconds to 512 seconds. 

The profit-driven VN increases the compile-time over always applying VN from 12% to 18%, 

with an average of 15%. The one pass compile-time for A-VN is from 0.25 to 21 seconds. The P-

VN increase compile-time over A-VN from 22% to 49%, with an average of 32%. Compared 

with P-PRE and P-LICM, the compile-time increased by P-VN is smaller. One reason is that 

there are fewer instances of VN than PRE and LICM (shown in the next section). The overhead 
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of the profit-driven approach depends on how many instances of the optimization appear in the 

code and the impact of every instance. 

 

Table 4.9: Compile-time for VN 

Full Compile-time One Pass Compile-time 
Benchmark 

A-VN P over A A-VN P over A 

gzip 47.02 15.82% 6.82 26.83% 

vpr 127.93 14.88% 18.17 26.25% 

mcf 25.98 15.97% 3.61 22.44% 

parser 97.2 17.78% 13.56 33.48% 

vortex 511.68 14.72% 61.95 27.44% 

bzip2 28.59 17.59% 3.47 48.99% 

twolf 284.34 16.93% 40.4 34.16% 

bitcount 7.33 12.55% 1.81 26.52% 

dijkstra 1.67 13.17% 0.25 24.00% 

FFT 5.66 17.49% 0.84 44.05% 

jpeg 29.11 15.94% 4.27 37.24% 

sha 3.58 12.29% 0.55 27.27% 

average -- 15.43% -- 31.56% 

 

As the tables show, the increase in compile-time of our profit-driven approach is modest 

and about the same as the heuristic-driven approach. These small increases show that our 

approach is feasible and efficient. However, our prototype has several implementation artifacts 

that negatively impact performance; a production implementation could decrease the compile-

time further. We conclude that the compile-time increase is worth the benefit of applying the 

optimizations more effectively without tuning parameters. 



53 

4.6.2 Searching for Code-specific Optimization Sequences 

It is known that the order to apply optimizations can have an impact on performance. However, 

traditional compilers typically choose a fixed order to apply optimizations. It is almost 

impossible that this single order can work best for every application.  

Previous work has focused on experimentally searching for code-specific optimization 

sequences. Almagor et al. presented the promising results of using a genetic algorithm to find 

effective optimization sequences [1]. However, the profitability of a sequence of optimizations is 

evaluated by experimentation. That is, they perform the optimizations in a sequence and execute 

the optimized code to evaluate a candidate sequence. Thus, it is very costly to find an effective 

sequence, even for small kernel applications.  

Instead of executing the code, we can predict the profitability of a sequence of 

optimizations using FPSO. The compile-time overhead will be greatly reduced because the time 

spent to execute the code can be avoided. 

In our experiments, we compared three approaches (i.e., fixed-order approach, empirical 

approach and model-based approach) to find a good order of applying optimizations. The fixed 

order that we used in our experiments is “VN, CPP, CTP, DCE, PRE, CPP, LICM, CPP, CTP, 

DCE”. The choice of the order was based on the interactions studied in Whitfield and Soffa’s 

work [50]. Their study can order some of optimizations, for example constant propagation 

should apply before dead code elimination. However, the order for other optimizations can not 

be decided. According to code context, different order maybe needed for the best performance.  

The genetic algorithm that we used has a similar configuration as in Almagor’s work [1]. 

We performed the search on each file using 10 generations. Each generation had a population of 

20 sequences. Every sequence had ten optimization passes, chosen from these six optimizations. 

At each generation, the best 10% of the sequence survive without any change. The rest of the 

new generation is created by the crossover operation, followed by the character-by-character 

mutation with the mutation rate is 5%. A hash table is maintained to keep track of the sequence 

evaluated to avoid evaluating the same sequence twice. For the empirical approach, we ran the 

code with the train input set to evaluate the candidate sequences. For our approach, we used 

FPSO to predict profitability. 
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In the following sections, we show the compile-time and performance improvement 

comparison among the three approaches: fixed-order approach, empirical approach and model-

based approach.  

4.6.2.1 Comparing compile-time overhead 

Our approach uses models to predict the profit of a sequence of optimizations (instead of 

executing the code). Thus, the compile-time can be greatly reduced.  We investigated the 

compile-time for the empirical approach and our model-based approach. Figure 4.19 shows the 

compile-time for both approaches in hours. 
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Figure 4.19: Compile-time of the experimental and model-based approaches 

From Figure 4.19, the compile-time for the empirical approach varies from 

approximately 0.24 to 55.6 hours. The empirical approach has to perform the optimizations and 

execute the code to evaluate the sequences. For benchmarks with a long execution time, (e.g., 

SPEC2K benchmarks), most of the compile-time was spent on executing the code. For example, 

the empirical approach spent 55.6 hours to find effective sequences for mcf, among which 53.4 

hours were for executing the code. 

The compile-time for our model-based approach varies from 0.19 hours to 18.5 hours. 

For the SPEC2K benchmarks, the compile-time for our model-based approach is much smaller 

than the empirical approach, with up to 17 times compile-time savings. For example, for mcf, our 
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model-based approach spent 3.1 hours to find good sequences, while the empirical approach 

spent 55.6 hours. On the other hand, for the benchmarks from Mibench and Mediabench, the 

compile-time savings of our model-based approach is not much. For example, our approach used 

0.99 hours to find good sequence for bitcount while the empirical approach used 1.21 hours.  

4.6.2.2 Comparing performance improvement 

Using the genetic algorithm, we can find an effective optimization sequence for each file. Thus, 

by applying those sequences, the program should have better performance than a fixed-order 

sequence. 
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Figure 4.20: Performance of three approaches 

Figure 4.20 shows the performance improvement for the three approaches over the 

baseline. Performance was measured by the number of instructions executed. As the figure 

shows, the problem with the fixed-order approach is that the fixed order may not be a good order 

for some files. The genetic algorithm, on the other hand, can find the code-specific sequences. In 

most cases, the empirical and model-based approaches improve performance more than the 

fixed- order approach. For example, in dijkstra, the fixed-order approach improves performance 

by 9.9% while the empirical approach and the model-based approach have improvement of 
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14.0% and 13.7%. From the figure, we can see that our model-based approach can achieve 

similar improvements as the empirical approach. 

As experimental results given in this section show, the compile-time of the empirical 

approach to search for code-specific optimization sequences is huge for large benchmarks (e.g., 

SPEC2K benchmarks), which makes the empirical approach not scalable. Our model-based 

approach is practical and scalable: It can find good sequences for large benchmarks with much 

less compile-time. We conclude that the profitability property is useful in searching for code-

specific optimization sequences.  
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5.0  FPLO: PREDICTING PROFITABILITY OF LOOP OPTIMIZATIONS 

In this chapter, we describe a framework instance, called FPLO, for predicting the profitability of 

loop optimizations. Because loop behavior dominates data cache performance [37], we consider 

cache performance as our indicator for overall performance of loop optimizations. 

As the disparity between processor and main memory speed increases by approximately 

50 percent per year, the use of caches with high hit rates has become critical for performance 

[18]. Data caches are designed to exploit locality, and naturally, they work best for programs that 

have high locality. Some optimizations are designed to improve cache performance by 

rearranging code to have better locality. Other optimizations are not designed specifically for this 

purpose and may negatively impact cache performance and overall performance. We need to 

determine the profit of an optimization on cache performance and overall performance.  

In the following sections, we describe the code model, loop optimization models and 

cache resource model. Next, we describe the profitability engine that uses the models to make 

predictions. Lastly, we show the experimental results.  

5.1 CODE MODEL FOR CACHE 

To predict the cache profit of loop optimizations, we need to express those code characteristics 

that affect the cache, which are a loop’s header and the sequence of array references in a loop 

body. Loop headers give the total number of memory accesses for an array reference. The loop 

organization and array reference pattern determine how the memory accesses are ordered. 

Different orders result in different data reuse and amounts of cache misses. 

Our code model for cache represents the loop nests in the code as a sequence of loop 

nests, 〉〈 K,ln,ln 21  . The order of loop nests in the sequence is as they appear in the code. Each 
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loop nest ln   is represented as 〉〈∫∫∫
−

R
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step
ub

lb
step
ub

N lb
step
ub

 
011

L , where  
011
∫∫∫

− lb
step
ub

lb
step
ub

N lb
step
ub
L  corresponds 

to the loop headers and 〉〈R  is the array reference sequence. For convenience, we put a number 

under each loop header to express its order in the loop nest. 

A loop header, ∫
lb

step
ub

, consists of a lower bound (lb), upper bound (ub), and iteration step 

(step). The array reference seqeuence, 〉〈R , consists of all array references in a loop body in the 

order that they appear textually in the code. An array reference refers to an array element and 

includes the name of the array and its access function (subscript). Because optimizations usually 

change the access functions (and not the name of the array), we use an equation, 

CIARef +×= , to represent the access function of an array reference. A is the access matrix, I  

is the loop index vector and C  is the constant vector [22]. This equation can be written as: 

        
1

0

1

0

)1)(1(0)1(

)1(000

1

0

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
×

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−−

−

− dN-Ndd

N

d C

C

I

I

AA

AA

sub

sub
MM

L

MOM

L

M  

Although we consider only perfect loop nests, our technique can be extended to handle 

non-perfect nested loops by including the loop index I in every array reference. 

for ( i=0; i<N; i++)              
for ( j=0; j<N; j++)              

a[i] = a[i] + b[j][i]*c[i][j]+c[i+1][j];   

(a) Original loop nest 

( ) ( ) ( ) ( ) ( )aaccccbbaa
NN

CACACACACA ,,,,,,,,, 2211
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1

1

1 0
1

1

∫∫
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(b) Code model for the loop nest 

 

 

Figure 5.1: A loop nest and its code model 

Figure 5.1 shows an example of a loop nest and its code model, where (Aa, Ca) represent 

the access matrix and constant vector of the array reference a[i] (same for the array references b 

and c). 
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5.2 OPTIMIZATION MODELS 

Loop optimizations change the loop headers and array references. Thus, our optimization model 

for a loop optimization captures these changes. We use an impact function, 

〉〈=〉〈 KK ,ln,ln,ln,lnf 2121opt ''  ) ( , to map an original sequence of loop nests to a new sequence.  

We develop an optimization model for each loop optimization considered in this 

research. In the following sections, we present our models for loop interchange, unrolling, tiling, 

reversal, fusion, and distribution [3].  

5.2.1 Loop Interchange  

Loop interchange exchanges the position of two loops in a loop nest. The optimization model for 

loop interchange is illustrated in Figure 5.2. The impact function, finterchange, maps an original 

loop nest to a new loop nest, according to the semantics of loop interchange. Essentially this 

function exchanges lb, ub and step of loop i with that of loop j. It also changes the array 

reference sequence 〉〈R by a function )( 〉〈Rg . This function determines the new array reference 

sequence for the transformed loop by applying h(r) on every reference r in 〉〈R . Function h(r) 

computes a new array reference by exchanging column i and j in the access matrix A from r's 

reference equation. l(A) handles the column interchange. The constant vector, C, for r is 

unchanged. 

Consider the example in Figure 5.1. Using the model in Figure 5.2, we determine the new 

loop nest. The new header is determined by exchanging lb, ub, and step for loop li and lj. The 

new array reference sequence, 〉〈=〉〈 ',...,',','' 4210 rrrrR , is determined by changing the access 

matrix of every array reference in 〉〈R . For example, the access matrix of a[i] is changed from 

[ ]01  to [ ]10  and b[j][i] is changed from ⎥
⎦

⎤
⎢
⎣

⎡
0
1

1
0

 to ⎥
⎦

⎤
⎢
⎣

⎡
10
01

 . 
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Figure 5.2: Loop interchange optimization model 

5.2.2 Loop Unrolling 

Loop unrolling duplicates a loop’s body a number of times [3]. It is commonly understood that 

loop unrolling has little impact on data cache performance when register pressure is not 

considered. However, we model loop unrolling to demonstrate the effectiveness of our models. 

The optimization model for loop unrolling is shown in Figure 5.3.  
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Figure 5.3: Loop unrolling optimization model 

The impact function funrollling maps an original loop nest to two nested loops (one for the 

unrolled loop and one for possible leftover iterations) according to the semantics of loop 
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unrolling. In the unrolled loop nest, the step of the innermost loop is changed to Ustep ×  (U is 

the unroll factor) and the array reference sequence, 〉〈R , is changed by a function g, which 

combines 〉〈〉〈〉〈〉〈 − 121 ,,,, URRRR L  together. A reference 〉〈 iR  is determined by applying the 

function ),( irh on every array reference, r, in 〉〈R . Function ),( irh  models how the access 

matrix and constant vector of a reference are changed. It keeps the access matrix unchanged and 

applies ),( iCl  on the constant vector. Essentially, ),( iCl  changes C by adding i to those 

dimensions that have the innermost loop control variable. In the loop nest for the leftover 

iterations, the lower bound of the innermost loop is changed to U
U

ub
×⎥⎥

⎤
⎢⎢
⎡ +1  and the array 

reference sequence, 〉〈R , is unchanged. 

Using the example from Figure 5.1, suppose that the unroll factor is two. With the model 

from Figure 5.3, the unrolled loop's header becomes, ∫∫
−−

0 0
2

1

1 0
1

1 NN
, from the rolled loop's header, 

∫∫
−−

0 0
1

1

1 0
1

1 NN
, by doubling the step of the innermost loop. The array reference sequence for the 

unrolled loop is 〉〈 9,,5,,10, rrrr LL , where r5 to r9 is determined by keeping the access matrix 

and changing the constant vector of r0 to r4 in 〉〈R .  For example, r6 (b[j+1][i]) has the same 

access matrix ⎥
⎦

⎤
⎢
⎣

⎡
0
1

1
0

  as 1r  (b[j][i]) , but a different constant vector ⎥
⎦

⎤
⎢
⎣

⎡
0
1

. Second, we determine 

the loop nest for the leftover iterations. Its loop header is ∫∫
×⎥⎥
⎤

⎢⎢
⎡

−−

0 2
2

1
1

1 0
1

1

N

NN
 and its array reference 

sequence is unchanged. 

5.2.3 Loop Tiling 

Loop tiling improves cache reuse by dividing an iteration space into tiles and transforming the 

loop nest to iterate over them [3]. The optimization model for loop tiling is shown in Figure 5.4. 
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Figure 5.4: Loop tiling optimization model 

The impact function, ftiling, maps an original loop nest to a new loop nest by changing its 

loop header by function g and changing its array reference sequence 〉〈R by function f. 

Essentially, function g adds ∫∫
−+ NnN n

n

n

lb
ts
ub
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ts
ub

1

1

1

1
L to the outermost and changes lower bound and 

upper bound of loops to be tiled. (The input to the model specifies the number of loops to be 

tiled, n, their index in the header sequence tntt ,,2,1 L and their tile size, ntststs ,,, 21 L .) The 

lower bound of lti changes to the control variable of lN+ti-1 (represented as xi). The upper bound 

of lti changes to a function h(i),  which gets the minimum number of original upper bound and 

( 1−+ ii tsx ). On the other hand, function )( 〉〈Rf changes the access matrix (A) by function l(A) 

of every array reference in 〉〈R , where function l(A) adds n columns of zero to A’s first n 

columns. The constant vector (C) does not change. 

For the example in Figure 5.1, if we tile li and lj with tile size 64, using the model shown 

in Figure 5.4, we get the new loop header as ∫∫∫∫
+−+−−−

0 1
1

)631,1min(

1 2
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)632,1min(

2 0
64
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x
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. The 

access matrix of every array reference is changed; e.g., b[j][i] is changed from ⎥
⎦

⎤
⎢
⎣

⎡
0
1

1
0

 to 

⎥
⎦

⎤
⎢
⎣

⎡
0100
1000

 . 
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5.2.4 Other Loop Optimizations 

We also develop impact function for loop reversal, loop fusion and loop distribution. The 

detailed optimization models for these optimizations are described in Appendix A. 

5.3 CACHE MODEL 

We use a cache model to estimate the cache cost of executing a loop nest. This model indicates 

how a given reference pattern affects cache misses (and hits) under the assumption of a single 

issue in-order pipelined processor with a blocking cache. To improve locality, we want to reduce 

the number of cache misses, and in evaluating the impact of an optimization, we want to know 

whether the number of cache misses is decreased by the optimization. 

Because some array references may access the same cache line in the same or different 

iteration (due to group temporal or spatial reuse), we group references to avoid over estimating 

the number of cache misses when a reference may access a cache element that has been 

previously loaded. We adapt Mckinley et al.’s RefGroup algorithm [37] to formulate RefSet 

using our code model representation to calculate group spatial and temporal reuse with respect to 

the innermost loop.  We consider two references 1r (A1, C1) and 2r  (A2, C2) that refer to the 

same array that belongs to the same RefSet if: 

1) 21  A A = , ki∀ (ik is the row index of the none-zero elements in the last column of 

A1) 121 ][][ −×= Nkk steppi-CiC  (p is a positive integer and 2≤p , 1−Nstep  is the 

iteration step of the innermost loop) , and all other ip ( kp ii ≠ ),   ][][ 21 pp iCiC = or 

2) 21  A A = , )10 ( ][][ 21 d-iiCiC <≤= , and clsdCdC <−−−  ]1[]1[ 21 ( cls is the cache 

line size, and d is the dimension of the array. 

Condition 1 accounts for group temporal reuse, and condition 2 accounts for group spatial reuse.  

Once we account for group reuse, we can calculate the cache misses of a representative 

array reference, say Rα, in a RefSet. Initially, we used McKinley et al.’s cache cost model. While 

their model accurately estimated cache misses under some circumstances, it did not have 

sufficient overall accuracy needed to achieve good results for all of our optimization models. The 
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reason is that it handles cache conflict misses in a simple manner and did not accurately reflect 

all possible sources of conflict misses.  

Cache conflicts are difficult to predict and estimate [45]. From our own experiments, we 

found that cache conflict misses can vary widely with slight variations in the problem input size. 

Ghosh et al. [18] proposed a precise algorithm, Cache Miss Equation (CME), to generate a set of 

equations for cold and replacement misses. The solutions to these equations represent all 

compulsory and conflict misses. However, finding all reuse vectors and setting up complete 

cache miss equations is very complex. Instead, our goal was to develop a more feasible and 

practical model that tailors Ghosh's scheme to our specific problem of predicting the impact of 

loop optimizations on cache performance. We simplified Ghosh's model to calculate the cache 

misses of Rα. Table 5.1 explains the terms that are used in computing the cache misses of an 

array reference, Rα. 

Table 5.1: Terms used in cache model 

Term Meaning 

TI Total number of iterations in the loop nest 

cls Cache line size 

FP Footprint of Rα (i.e., how many different elements Rα access over all iterations)

CRT Fraction of Rα’s self temporal-reuse that cannot be realized (realizing a reuse 

means a reuse can result a cache hit) 

CRS Fraction of Rα’s self spatial-reuse that cannot be realized 

 

We estimate the cache misses of Rα to be: 

))1(1())1(()( CRSCRS
cls

CRTCRT
TI
FPTIRCM +−××+−××=α    (1) 

We compute CRS and CRT in a way similar to the CME approach by solving a set of equations 

that sets the cache block address of Rα equal to that of other references within its reuse distance 

to find possible conflicts. The reuse distance is the number of iterations between a reuse and its 

previous access. For example, in Figure 5.1, b[j][i]’s spatial reuse distance is N, because an 

access in iteration ( )ji,  can be spatially reused by another access in iteration ( )ji ,1+ , which is 

N iterations behind. With this approach, we take into account the cache conflicts in an accurate 

manner. We illustrate how to compute CRS and CRT for b[j][i] in Figure 5.1. Suppose that we 
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have direct-mapped cache. First according to b[j][i]’s spatial reuse distance N,  we set up a set of 

equations to get CRS for b[j][i], including: 

])][[(])][[(  ]1,0[ tjicAddrijbAddrNt +=−∈∀      (2) 

])][1[(])][[( ]1,0[ tjicAddrijbAddrNt ++=−∈∀      (3) 

])][[(])][[(    ],1[ itjbAddrijbAddrNt +=∈∀      (4) 

])[(])][[( iaAddrijbAddr =         (5) 

The solutions to every equation represent all the iterations where b[j][i] conflicts with another 

reference. Because of direct mapping, the total number of iterations that b[j][i] will be evicted by 

another reference will be the union of these solution sets. We compute CRS by dividing the total 

number of conflict iterations by the total number of iterations. As b[j][i] has no temporal reuse, 

CRT equals one. 

5.4 PROFITABILITY ENGINE 

The profitability engine inputs the code model for cache, loop optimization models and cache 

model to predict the profitability of loop optimizations. 

When a loop optimization is applicable, the optimizer extracts the loop nests from the 

original code and expresses them using the code model (described in section 5.1). The optimizer 

then triggers the engine. When the engine is triggered, it inputs the code model, optimization 

models and cache model. It applies the optimization model on the code model and generates a 

new code model that represents the optimized code. Finally, the engine applies the cache model 

on the original and optimized code models. With a cache configuration, the cache model 

estimates the cache misses according to the representation of the code model. The engine outputs 

the profit of applying a loop optimization by determining the difference between cache misses of 

the original and optimized code models. 
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5.5 EXPERIMENTAL RESULTS 

To evaluate FPLO, we implemented the models and extensively tested them using a number of 

loop benchmarks that were commonly used in other researches [22]. There are two types of 

benchmarks: those with a single loop nest (alv, irkernel, lgsi, smsi, srsi, tfsi, tomcat3, biquad_N, 

lms, gdevcdj and pegwit) and those with multiple loop nests (adi, aps, eflux, tomcat, vpenta, and 

bmcm). The benchmarks have from one to nine loop nests and from four to thirty two array 

references in a loop nest. 

In the compiler infrastructure we used for scalar optimizations, Mach SUIF [44], there 

are no loop optimizations implemented. Thus, we implemented a stand-alone tool for FPLO, 

which inputs the cache code model, loop optimization models and cache resource model and 

outputs the profit of applying an optimization. Based on the output from the tool, we manually 

apply loop optimizations. To experimentally evaluate our approach, we measured the actual 

execution behavior by simulating the code using SimpleScalar sim-outorder microarchitecture 

simulator [9]. We simulate a processor pipeline with in-order single issue and a critical-word 

first non-blocking cache. The processor has a two entry load-store queue and can sustain up to 

two cache misses before stalling. This model is similar to several popular embedded processors, 

including MIPS' 4Kp (R4000), ARM's 94x series, and IBM's PowerPC 405. The cache that is 

used in our simulation is a direct-mapped data cache with 32-byte block size. Using a small 

cache with scaled working sets allows us to investigate the impact of different sized working sets 

without suffering the high simulation times required for large data sets. The performance 

numbers that we present will scale to other cache configurations and working set sizes. 

We first present the prediction accuracy of FPLO. Then we compare our profit-driven 

approach with an approach that always applies an optimization if applicable. We also show other 

uses of FPLO in selecting the most beneficial loop optimizations. Finally, we present the 

compile-time overhead of FPLO.  

5.5.1 Model Accuracy 

To use FPLO to drive the application of loop optimizations, we must ensure that it has good 

prediction accuracy, as we did for scalar optimizations. To measure the prediction accuracy, we 
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ran the original benchmarks and optimized ones with our simulation framework and compared 

the predictions from FPLO against the simulation results.  

First, we compared the predictions of cache miss reductions against the simulation 

results. When replaced by a simpler cache model [36], FPLO could not make correct predictions 

in some cases. With our cache model, FPLO predicted more accurately. Figure 5.5 shows an 

example of how FPLO with different cache models compares with the simulation results for loop 

interchange on irkernel with varying trip counts. With a simple cache model, wrong predictions 

about whether to apply interchange were made in some cases. For example, when the trip count 

equals 128, FPLO with a simple cache model predicts that interchange reduces the number of 

cache misses by 8224. But the simulation result showed that interchange increased the number of 

cache misses by 3937. Using our cache model, FPLO correctly predicted the trend of cache 

misses increased to 3810. Other benchmarks and other optimizations showed a similar trend. 
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Figure 5.5: Loop interchange on irkernel with different cache models 

We computed prediction accuracy for FPLO integrated with our cache resource model. If 

an optimization improves cache performance shown in the simulation results, and our model 

predicted that the optimization should be applied, then we consider this to be a correct 

prediction. If the simulation result does not match our predicted result, then it is a misprediction. 

Prediction accuracy captures how often FPLO gives the correct prediction.  Table 5.2 shows 

prediction accuracy for the single nest benchmark loops with varying trip counts. For each 

benchmark, the trip count was varied from 50 to 200. From the table, the prediction accuracy 
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ranged from 81.6% to 100% across all benchmarks and optimizations with an average of 97%. 

Although there is high accuracy across all optimization models, loop reversal has the lowest 

accuracy. The reason is that loop reversal has a minimal impact on data cache locality (i.e., the 

cache miss reduction of applying reversal is very small), and as such, it is difficult to predict its 

benefit.  Although FPLO chose not to apply loop reversal in these cases, this choice did not 

degrade the effectiveness of FPLO because the benefit of applying reversal was so small that it 

can be ignored (see Figure 5.6). 

Table 5.2: Prediction accuracy for single-loop nest benchmarks 

Benchmark Interchange Tiling Reversal 

alv 100% 100% 97.4% 
irkernel 98.7% 100% 93.4% 

lgsi 100% 100% 82% 

smsi 100% 100% 86.8% 

srsi 100% 100% 86.8% 

fsi 100% 97.4% 100% 

tomcat3 98.7% 92.1% 93.4% 

biquad_N 89.5% 88.2% 100% 

gdevcdj 100% 100% 97.4% 

lms 97.4% 100% 94.7% 

pegwit 100% 100% 81.6% 

average 99% 98% 92% 

 

We also investigated the prediction accuracy of FPLO for the benchmarks with multiple 

loop nests.  Table 5.3 shows the choices made with our models and how the choices compare 

with actual performance as reported by simulation. For each optimization in the table, there are 

three columns. The first column, A, indicates on how many loop nests in a benchmark an 

optimization is applicable. The second column, M, indicates the number of loops for which our 

framework predicts a benefit to applying an optimization. The final column, S, indicates the 

number of loops in a benchmark in which an optimization should have been applied (i.e., it had 

an actual performance improvement). As an example, consider loop reversal for vpenta. On this 

benchmark, there are eight loops where reversal could be applied and FPLO predicted to apply it 
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in seven cases. The simulation results indicate that the optimization had a benefit on seven loops. 

In all cases in the table where there are mispredictions, our model selected the same set of loop 

nests for optimization as the simulation results, except for the one case where there was a 

misprediction. Although not shown in the table, our model also always made the correct choice 

for loop unrolling, fusion, and distribution. 

Table 5.3: Prediction accuracy for multi-loop nest benchmarks 

Interchange Tiling Reversal 
Benchmark 

A M S A M S A M S 

adi 2 0 0 2 0 0 2 0 1 
aps 1 1 1 1 1 1 3 1 1 

eflux 5 5 5 5 1 1 6 2 3 

tomcat 6 5 5 6 3 2 9 7 6 

vpenta 3 3 3 3 2 2 8 7 7 

bmcm 2 2 2 2 2 2 4 3 3 

5.5.2 Comparing with Always-applying Approach 

Always applying an applicable optimization can lead to a performance degradation in some 

cases. Such a simple heuristic of “always applying” is not sufficient in making decisions about 

when to apply an optimization. Figure 5.6 shows how always applying an optimization can lead 

to significant performance penalties. This figure shows the percentage change in performance 

(i.e., cycle count) when always applying an optimization versus not applying the optimization. 

Several benchmarks were run with varying trip counts to explore the effect of different 

configurations of a loop on whether to apply an optimization or not. For the benchmarks where 

the configuration was varied, only two trip counts are shown. One trip count comes directly from 

the benchmark, while the other is at a point that has significant conflict cache misses. 

The figure demonstrates that across all benchmarks and optimizations that we considered, 

applying loop optimizations has significantly different performance impacts based on both a 

specific loop nest and the exact configuration of a loop nest. For example, loop interchange has a 

performance impact that varies from a 120% degradation to a 55% improvement. Also, for a 

specific configuration of a loop nest (i.e., different trip counts), the impact varies. In the case of 
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interchange for the lgsi benchmark, there is a 4% performance degradation for a trip count of 98 

and a 8.3% performance improvement for a trip count of 128.  Although the figure does not 

show loop unrolling, distribution, or fusion, we used our models to predict their impact. First, as 

expected, loop unrolling had no benefit on data cache locality. Of course, it had other non-cache 

related benefits such as reducing the total number of branch tests, improving the scheduling 

window and changing register pressure. Second, loop distribution had a 17.8% degradation when 

applied to alv with a trip count of 100 and a 1.2% improvement when applied to alv with a trip 

count of 128. Finally, on tomcat3, loop fusion had a very small benefit (0.8%) for a trip count of 

100 and a 2.8% degradation for a trip count of 128. Optimizations may improve the performance 

for one trip count while degrade the performance for another. This trend for the single loop nest 

benchmarks is also true for the complex benchmarks with multiple loop nests. Here, interchange 

has a performance range from a 2.5% degradation to a 55% improvement. Tiling shows a similar 

trend, with the aps having a 26.2% performance improvement and vpenta having a 1% 

performance degradation. 

As this figure shows, the strategy of always applying an applicable loop optimization is a 

dangerous one that may indeed lead to significant performance degradations.  Of course, in some 

cases, this strategy works, but it is hard to know when it will work and when it will not.  Instead 

of blindly applying an optimization, a more selective approach can be taken using FPLO. It can 

be used to predict when to apply an applicable optimization without actually applying it. 

Using our profit-driven approach, the cases where performance is degraded can be 

avoided, which can have a significant effect. Figure 5.7 shows the performance improvement of 

selectively applying an optimization over always applying it. The improvement is relative to 

always applying the optimization and demonstrates the effect of selectivity. For the single nest 

benchmarks, a performance improvement implies that an optimization was not applied. For 

example, the benchmark alv with a trip count of 100, selectively deciding not to apply loop 

interchange has twice the performance of applying it. When performance is not improved both 

always applying and selectively applying an optimization had the same effect. 

For interchange on the single nest benchmarks, optimization selectivity has a 

performance improvement of 0 to 120%. The large improvements in this case are due to the large 

degradations from always applying interchange (see Figure 5.6). Although loop tiling shows a 

slight improvement due to selectivity, it does not have as much an improvement as interchange 
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because the degradation from always applying the optimization is less. Reversal is similar to the 

tiling case. Distribution and fusion also showed improvements when applied with selectivity. 

With selectivity, unrolling was not applied since it does not have any benefit to cache 

performance. For all single nest benchmarks and optimizations considered, a selective approach 

using FPLO never results in a performance degradation over always applying an optimization.  

Indeed, the model captures the points at which an optimization is harmful as well as the points at 

which an optimization is helpful.  

The rightmost bars in the figure show the effect of selectivity on benchmarks with 

multiple loop nests. In these cases, interchange with selectivity has a small performance 

improvement for adi and tomcat. A similar trend is true for loop reversal.  However, in the case 

of loop reversal, two points (eflux and adi) are shown where our model mispredicts the benefit of 

applying an optimization and results in a small performance degradation over always applying 

reversal. The situation is different for tiling where selectivity has a significant difference. For 

eflux, tomcat, and vpenta, there is a performance improvement of 1.12.  

While Figure 5.7 shows the advantage of selectively applying an optimization, it does not 

show the actual improvement in execution time due to selectivity. Figure 5.8 shows how cycle 

count is improved. For the single nest benchmarks, performance is improved by deciding not to 

apply an optimization when it would be harmful and by applying an optimization when it would 

help. In Figure 5.8, the cases with multiple loop nests are very compelling with selectivity 

resulting in a cycle count improvement over always applying an optimization for some cases. 

Consider the tomcat benchmark and the tiling optimization. Tiling results in a 15.5% 

improvement in cycle count by selectively applying the optimization to some loop nests and not 

to others within the same program. In comparison, always applying tiling achieved only a 5.4% 

improvement in cycle count.  

 



72 

-10%

-5%

0%

5%

10%

alv (1
00)

alv  (1
28)

irk
ernel (1

00)

irk
ernel (1

28)

lgs i (9
8)

lgsi (1
28)

smsi (1
24)

smsi (1
28)

srsi
 (1

94)

srsi
 (1

28)

tfs
i (4

2)

tfs
i(1

28 )

tomca
t3(100)

tomca
t3 (1

28)

biquad_N(90)

biquad_N(128)

gdevc
dj(1

00)

gdevc
dj(1

28)

lm
s(1

6)

lm
s(1

28)

pegwit(1
00 )

pegwit(1
28 ) ad i

aps
eflu

x

tomca
t

vpenta
bmcm

interchange tiling reversal

 
Figure 5.6: Performance impact of always-applying approach 
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Figure 5.7: Improvement of profit-driven approach vs. always-applying 
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Figure 5.8: Performance impact of profit-driven approach 
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5.5.3 Choosing the Best Optimization 

Not only can FPLO be used to decide whether an optimization should be applied or not, but it 

can also be used to select among several applicable optimizations. We can use FPLO to predict 

the profit of applying each optimization on a loop and then select the one with the maximum 

benefit, which is useful for constructing the good optimization sequences. Choosing the best 

optimization is particularly interesting in our single nest benchmarks when varying the trip 

count. Here, the trip count (the loop configuration) has a big impact on which optimization is the 

most beneficial. Figure 5.9 shows the accuracy and distribution of optimizations selected for 

each single nest benchmark with the trip count varied from 50 to 200. The figure shows the 

percentage of times that a particular optimization was chosen as the best one to apply. When all 

optimization models predicted a performance degradation (or no benefit), our model decided not 

to apply any optimization (the "not applying" case in the figure). 
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Figure 5.9: Accuracy and distribution of the most beneficial optimizations 

For several of the benchmarks, only a couple of choices were made. For example, in alv, 

loop distribution was applied for 11% of the trip counts. For the other 89% of the trip counts, no 

optimization was applied. The benchmarks tfsi and tomcat3 are interesting since they have three 

different choices. In tfsi, loop reversal, interchange, and tiling were applied, with tiling being 

applied the most often. For tomcat3, loop interchange was most often the best optimization, 

followed by fusion. 

The figure also shows the accuracy of the choices made by our models (in parenthesis 

below each benchmark name). For most of the benchmarks, the accuracy was above 96%. For 

the others, such as smsi and srsi, the accuracy was lower due to mispredictions from our loop 
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reversal model. For example, in smsi, the model predicted no benefit to loop reversal, yet there 

was a very small actual benefit. Notice that from Table 5.2 we see that reversal had an accuracy 

of 86%, and as described earlier, the actual benefit was so small that our model did not capture it. 

Here, the performance improvement due to reversal was minimal. 

5.5.4 Compile-time Overhead for Prediction 

FPLO uses models to make predictions and thus the cost of predicting profitability needs to be 

evaluated. Thus, we need to evaluate the compile-time overhead, as done earlier. Table 5.4 

shows for several loop benchmarks the compile time overhead (in milliseconds) of our tool. 

From the table, we see that the overhead depends on the loop configuration and the array 

references. For example, irkernel is a triple loop nest with five references and srsi is a double 

loop nest with 25 references. The compile-time overhead is high in these programs due to their 

complexity. On average, our compile-time for predicting is reasonable.  

Table 5.4: Compile-time overhead for prediction (millisecond) 

Benchmark Interchange Tiling Reversal 

alv (100) 24 29 23 
irkernel (100) 2150 2637 2140 

lgsi (98) 40 49 38 

smsi (124) 118 137 117 

srsi (194) 541 630 541 

tfsi (42) 8 10 7 

tomcat3 (100) 136 160 137 

biquad_N (90) 30 36 29 

gdevcdj (100) 11 15 11 

lms (16) 1 1 1 

pegwit (100) 7 10 6 

 

In this section, we described FPLO for predicting the profitability of loop optimizations.  

Our experimental results demonstrate the predication accuracy and the usefulness of FPLO. On 

average, with our accurate cache model FPLO can make correct predictions for 97% of the time. 
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Using FPLO, compilers can selectively apply loop optimizations. Thus, the performance 

degradation cases in always-applying approach were avoided. FPLO can also be used to select 

the most beneficial optimization among a set of optimizations, which will be useful in 

constructing a good optimization sequence. 
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6.0  FIO: DETERMINING THE INTERACTION PROPERTY 

In this chapter, we present the framework instance, FIO, for automatically determining the 

interactions among a set of optimizations, considering code context. The key idea of our 

technique is to model the pre- and post conditions of optimizations and code context, and 

determine how the pre-conditions of one optimization interact with the post conditions of another 

optimization. In our approach, there is no need to actually apply the optimization on the code or 

to recompute data and control flow information after each optimization. 

To understand how FIO works, we present an overview of our approach in Figure 6.1. 

The figure shows the components of FIO and how FIO detects the interactions among a set of 

optimizations. 

 
Figure 6.1: Overview of FIO 
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In Figure 6.1, the code model is extracted from the code and automatically generated by 

the optimizer. Its representation is the control flow graph with explicit data and control 

dependence information, which is needed to verify the pre-conditions of optimizations and 

determine the changes by the actions of optimizations. A specification language, SpeLO, is 

designed to express the conditions under which an optimization can be safely applied and the 

actions of the optimization. Compiler writers use SpeLO to develop models for optimizations. As 

part of FIO, there is an interaction engine, which uses models to determine the interaction 

property. In the first step, the interaction engine inputs the code and optimization models to 

generate the specific enabling, disabling and post conditions for each optimization at a program 

point. In the second step, these enabling and disabling conditions are matched with the post 

conditions of other optimizations to determine the enabling and disabling interactions. The 

output of our framework is the interactions among optimizations.   

In the following sections, we describe the code model of FIO. We then present the 

specification language, SpeLO. A number of optimization models are described, followed by the 

interaction engine. We also describe how to use the interaction property to determine a code-

specific optimization sequence. Finally, we show experimental results.  

6.1 CODE MODEL FOR INTERACTION 

The code model for interaction analysis represents the dependences for each statement in the 

code. We represent a dependence by >< posdirtypeSS ds ,,,, . There are four types of 

dependencies, including flow, anti-, output, and control dependencies [54]. A flow dependence is 

a dependence between statement Ss that defines a variable and statement Sd that uses the 

definition. An anti-dependence exists between statement Ss that uses a variable that is then 

defined in statement Sd. An output dependence defines a dependence between a statement Ss that 

defines (or writes) a variable that is later defined (or written) by Sd. A control dependence exists 

between a control statement Ss and all of the statements Sd under its control. The dir records the 

direction of the dependence, which can be forward, backward or equivalent, represented by <, >, 

or =, respectively. The direction is needed in optimizations for parallelization. The pos records 
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the position of dependence between Ss and Sd. Except for the dependences, we also need the 

control flow graph for the code model to verify the path related information. 

6.2 A SPECIFICATION LANGUAGE 

In prior work, a number of specification languages have been introduced to specify optimizations 

and formally analyze the properties of optimizations. Whitfield and Soffa [50] presented a 

specification language, Gospel, to specify a class of scalar and loop optimizations. Gospel has 

been used to automatically generate the implementation of optimizations and detect the 

interactions among optimizations. Lerner et al. [35] introduced a domain specific language, 

Cobalt, for automatically checking the correctness of optimizations. Lacey [33] introduced a 

specification language, TRANS, to prove the soundness of optimizations and detect the disabling 

interaction among optimizations. Both Cobalt and TRANS are based on temporal logic. 

 

 
Figure 6.2: The format of SpeLO specification 

 
We design a specification language, SpeLO, to specify optimizations for determining the 

interaction property. Our SpeLO language extends Gospel by introducing path related 

conditions, and thus, we can express path based optimizations such as PRE. The format of a 

SpeLO specification is shown in Figure 6.2. The PRECONDITION section contains the code 

pattern and dependence conditions needed before applying an optimization to maintain the 

semantics. The ACTION section consists of a series of primitive operations to perform an 

optimization. In SpeLO, an elementId starting with S represents a statement, an L represents a 

OptName 
PRECONDITION 

Code_Pattern 
[Quantifier ElementId: mem_list, element_format_list;]+ 

Depend 
[Quantifier ElementId [pos]: mem_list, condition_list;]* 

ACTION 
[primitive_operation;] * 
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loop, and a B represents a block. B(Si) represents the block of Si. The general form of the code is 

three-address code with loop structure information. A basic three-address code statement has the 

form:   

dst := opnd1 opcode opnd2 

The names (e.g., opnd1, or opcode) are used to specify the attributes of the operands or operator. 

6.2.1 SpeLO PRECONDITION Section 

Previous research demonstrated that dependence relationships can be used to efficiently 

determine the applicability of optimizations [24]. Thus, we use the code pattern and dependence 

conditions to specify the conditions under which an optimization is applicable. Our approach is 

the same as Gospel [50]. There are two parts in the pre-condition section. 

Code_Pattern: This part identifies the code pattern of program elements such as a 

statement or loop. If the element is a statement, then the code pattern expresses the statement’s 

operator and operands required.  If the element is a loop, then the code pattern expresses the 

particular loop’s header, trip count, etc. needed. The quantifier can be one of ANY, ALL or NO 

with the following meaning: 

• ANY returns the set of matching elements and each element is considered separately; 

• ALL returns the set of matching elements and all elements are considered together; 

• NO returns a null set if there is no matching element. 

The mem_list specifies a predefined set to which the element belongs, such as a path or a 

loop. Format expressions are used to give the specific format of the code element and can be 

combined in element_format_list using AND and OR. To help in generating the enabling and 

disabling conditions, SpeLO requires that all the combined expressions are in disjunctive normal 

format (DNF).  

Depend: The second part of the PRECONDITION section specifies the necessary data 

and control dependence conditions for applying the optimization. The quantifier operators can be 

one of ANY, ALL or NO. The condition_list consists of the condition expressions combined by 

AND and OR operators in DNF. A condition expression can be a dependence condition in the 

form of type(Ss, Sd, dir). As in code model, the dependence type can be flow, anti-, output or 

control dependence. The direction, dir, can be forward, backward, equivalent or any. A condition 
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expression can also be a predefined condition, such as in_any_path(Si, Sj, Sk), which means a 

statement Si should appear in a path from Sj  to Sk, and in_every_path(Si, Sj, Sk), which means a 

set of statements Si should appear in every path from Sj  to Sk. A position tag can also be specified 

in a dependence rule to show whether the position of the dependence should be checked or not. 

6.2.2 SpeLO ACTION Section 

The ACTION section describes the modifications on code or code properties (e.g., value 

number) of applying optimizations. We decompose these effects on code into four primitive 

operations (move, add, delete and modify). The semantics of the primitive operations are shown 

in Table 6.1, which are similar to Gospel [50]. The effect on code properties can be assigning a 

new value to the property, hash the properties, etc. There can also be some conditions associated 

with the actions. In Section 6.3.3, we describe the optimization model for global value 

numbering, whose ACTION section expresses the modification on the value number of the 

statements and has conditions associated with the actions. 

Table 6.1: Semitics of primitive operations 

Operation Parameter Semantics 

Move (Obj, After_Obj) move Obj to the place after After_Obj 

Add (Obj_Description, After_Obj) add an Obj with Obj_Description after After_Obj 

Delete (Obj) delete Obj 

Modify (Obj, Obj_Description) modify Obj with the Obj_Description  

6.3 OPTIMIZATION MODELS 

Optimization models for interaction analysis express the conditions under which an optimization 

can be safely applied and the actions of the optimization. We describe the optimization model for 

dead code elimination, partial redundancy elimination and value numbering, using SpeLO. 
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6.3.1 Dead Code Elimination 

Figure 6.3 presents a SpeLO specification for dead code elimination (DCE). Because DCE 

requires no path specific conditions, the optimization model of DCE is the same as what is in 

Gospel [50]. To facilitate the discussion of the example (shown in Section 6.5), we describe DCE 

optimization model. The specification uses two variables Si and Sj whose values are statements. 

The Code_Pattern section specifies the code pattern consisting of any statement, which is a copy 

statement or binary expression operation (i.e., +, -, *, /).  Si will have its value as such a 

statement if it exists. The Depend section ensures that there is no statement that is flow 

dependent on Si. 

If an Si is found that meets the code pattern, and no Sj is found that meets the specified 

requirements, then the operation expressed in the ACTION section is performed. The action is to 

delete the statement Si.  

 
Figure 6.3: DCE optimization model 

6.3.2 Partial Redundancy Elimination  

Figure 6.4 presents the optimization model of partial redundancy elimination (PRE). The first 

line in Figure 6.4 shows when we find that a statement Si is a binary expression operation, there 

is a possible PRE opportunity. We need to find all the same expressions Sj, executed on a path to 

Si without a redefinition between them (lines 2 and 3). We also find some definitions Sp of this 

statement where there is a path that does not include the same expressions found (line 4). In this 

specification, common subexpression elimination is a separate optimization from PRE.  We save 

DCE 
PRECONDITION 

Code_Pattern 
1: ANY Si: Si.opcode = copy OR Si.opcode = binary_exp; 

Depend 
2: NO Sj: flow_dep(Si, Sj, any); 
ACTION 
3: Delete (Si); 
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the immediate predecessors of the statement on the path that does not include the same 

expression, which will be the places to insert the computation. At the same time, we must make 

sure that at these insertion places, the expression is anticipated (i.e., the block of statement Si 

post-dominates the insertion place), as shown in line 5 of Figure 6.4.  

When applying PRE, we insert the computation at the insertion places and before the 

same expressions Sj and replace the same expressions Sj and the statement Si with the assignment 

(lines 6 to 9 in Figure 6.4). 

 
Figure 6.4:  PRE optimization model 

6.3.3 Value Numbering 

Figure 6.5 presents the optimization model of global value numbering (VN), which operates on 

SSA code [8]. We separate the optimization into two passes. First, we assign a value number to 

each assignment statement. Second, we remove the redundancy based on the value number. The 

PRE 

PRECONDITION 

Code_Pattern 

1: ANY Si: Si.opcode = binary_exp; 

2: ALL Sj:  mem(path(Entry, Si)), Sj.opcode = Si.opcode AND 

Sj.opnd1 = Si.opnd1 AND Sj.opnd2 = Si.opnd2; 

Depend 

3: NO Sk: anti_dep(Sj, Sk, =) AND flow_dep(Sk, Si, =); 

4: ALL Sp: flow_dep(Sp, Si, =) AND  

¬in_every_path(Sj, Sp, Si, save pred(Si)  ∧ ¬ in_any_path(pred(Si), Sj, Si) to Bq) 

5: NO Bl: mem(Bq), ¬post_dom(B(Si), Bl); 

ACTION 

6: Add ((new_temp= Si.opnd1 Si.opcode Si.opnd2), Bq); 

7: Add (new_temp=Si.opnd1 Si.opcode Si.opnd2), Sj); 

8: Modify (Sj, (Sj.dst = new_temp)); 

9: Modify (Si, (Si.dst = new_temp)); 
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first pass is a preparation for the pass that uses the code property (i.e., value number). Thus, it is 

always performed in the beginning and not involved in selecting a good order for optimizations.  

 
Figure 6.5: VN optimization model 

In the first pass, the specification uses two variables Si and Sj whose values are 

statements. The Code_Pattern section specifies the code pattern consisting of any statement, 

which is an assignment or Ø-operation (as shown in line 1 of Figure 6.5). The Depend section 

finds all the statements that Si is flow dependent on. The ACTION section specifies the 

modification on the code property, value number, which is initialized to the destination operator 

of the statement. Associated with the actions, there are conditions. For example, if the value 

numbers for all Sj are the same and Si is an Ø-operation, Si is a useless Ø-operation, as shown in 

VN 
Pass 1: Assigning a value number 
PRECONDITION 

Code_Pattern 
1: ANY Si: Si.opcode = Ø OR Si.opcode = assign 

Depend 
2: ALL Sj: flow_dep (Sj, Si) 
ACTION 

// useless Ø-operation 
3: IF ((Si.opcode = Ø) AND (equal (Sj.VN)))   
4:  Si.VN = Sj.VN; 

// redundant Ø-operation or assign 
5: ELSE IF (hash (Sj.VN, Si.opcode) != NULL) 
6:  Si.VN = hash (Sj.VN, Si.opcode); 
7: ELSE 
8:  hash (Sj.VN, Si.opcode, Si.VN); 

Pass 2: Redundancy elimination 
PRECONDITION 

Code_Pattern 
9: ANY Si: Si.opcode = binary_exp 

Depend 
10: ALL Sj: Sj.VN = Si.VN 
ACTION 
11: Delete (Sj); 



84 

line 3 of Figure 6.5. Then, we assign the value number of Si to be Sj’s value number. If there is an 

item that has the same operation and operators as Si in the hash table, Si is a redundant 

computation and assigned the hashed value as its value number. Otherwise, we insert an item 

into the hash table. In the second pass, the redundancy is eliminated based on the value number. 

6.3.4 Other Optimizations 

We also develop optimization models for CPP, LICM, CTP, branch chaining (BRC), branch 

elimination (BRE), loop interchange (LPI), and loop fusion (LPF). Their optimization models are 

shown in Appendix A. 

 

6.4 INTERACTION ENGINE 

The interaction engine of FIO inputs the code model and optimization models and determines the 

enabling and disabling interactions among optimizations. Here, we focus on the interactions 

among scalar optimizations; our technique also works for loop optimizations. The algorithm to 

detect the enabling and disabling interactions among scalar optimizations is shown in Figure 6.6. 

The algorithm for detecting the interactions of loop optimizations is similar, but the element 

checked is a loop instead of a statement. 

Lines 1 and 2 in Figure 6.6 show the data structures used in the algorithm. SetTable is 

used to store the set of objects, ObjSet, which matches the element_format_list or condition_list 

for each rule in the optimization specification. OptTable stores the information about each 

optimization opportunity. Each element in OptTable includes an identifier, optimization type, 

whether the optimization is applicable or not, the list of enabling conditions, the list of disabling 

conditions and the list of post conditions. 

As shown in Figure 6.6, the interaction engine uses two steps to detect the interactions 

among a set of optimizations. In the first step, from line 3 to line 13, the interaction engine 

executes a loop over every statement in the code model and every optimization specification and 
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generates the enabling, disabling and post conditions for each possible optimization opportunity. 

The optimization opportunities are identified by looking for the code pattern and dependence 

relations in the code model. In the second step, from line 14 to line 17, the interaction engine 

matches the enabling and disabling conditions of an optimization with the post conditions of 

other optimizations to compute the enabling and disabling interactions. The interaction engine 

outputs a list of interaction relations, represented by “<O1 … On> Enable/Disable Oj”. The next 

two sections describe in detail the algorithm for the interaction engine. 

 

 
Figure 6.6: The overview algorithm for the interaction engine 

Data Structure 

      // SetTable records ObjSet found that matches the condition 

1:  SetTable: structure (Quantifier, ElementId, ObjSet) 

// OptTable records the optimization opportunities 
2:  OptTable: structure (OptId, OptType, Applicable, Enable, Disable, Post) 
Algorithm 

//Step1: generating specific conditions 
3: foreach statement S in the code model { 
4:   foreach optimization O under consider { 
5:    if (check_code_pattern (S, O) = = match | possible) { 
6:    check_depend (S, O); 
7:     foreach related opt in OptTable { 
8:     if (opt.enable is empty) 
9:       opt.applicable = true; 
10:      else 
11:      opt.applicable = false; 
12:     generate_postcondition(S, O); 
13:  } } } } 

//Step2: matching the conditions 
14:  foreach opt in the OptTable { 
15:   postcondition_match(opt.enable); 
16:   postcondition_match(opt.disable); 
17:  } 
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6.4.1 Generating Specific Conditions 

For each optimization and program point, the interaction engine checks the conditions described 

in the PRECONDITION section and generates the specific enabling and disabling conditions. 

Because there are two parts, Code_Pattern and Depend, in the PRECONDITION section, we 

have two functions, check_code_pattern and check_depend (as shown in line 5 and line 6 of 

Figure 6.6).  

Table 6.2 shows how to generate enabling and disabling conditions for checking 

conditions described in Code_Pattern (i.e., function check_code_pattern). Each row in the table 

shows a different case when checking the conditions. There are three columns for each row. The 

first column shows a case. The second and the third columns show the enabling and disabling 

conditions generated for the case. The condition expressions in Code_Pattern are combined by 

AND and OR operators in DNF. Without loss of generality, we represent a condition expression 

as (A AND B OR C) in our discussion. 

Table 6.2: Generating enabling and disabling conditions for check_code_pattern 

Case Enabling conditions Disabling conditions 

Match True 

(delete S) 

∨ (¬A ∧ ¬ C) 

∨ (¬B ∧ ¬ C) 

Possible match 
A 

if A not mach 

(delete S) 

∨ (¬A ∧ ¬ C) 

∨ (¬B ∧ ¬ C) 

 

As shown in Table 6.2, there are two cases when comparing a statement with the 

conditions specified in Code_Pattern: 

Case 1: The statement matches the conditions specified in Code_Pattern. The interaction 

engine stores the statement in SetTable by calling SetTable_insert with (Quantifier = ANY, 

ElementId = ElementId in the rule, ObjSet = {StatId}). It also creates an optimization 

opportunity in OptTable by calling OptTable_insert with (OptId = cur_opt ++, OptType = O). It 

then generates enabling and disabling conditions. As shown in second row of Table 6.2, the 
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enabling condition is true. The disabling conditions include a condition to delete the statement 

and the conditions to modify the operands or operation to not match element_format_list. The 

table shows a general form of the disabling conditions. “¬A ∧ ¬C” means modifying the 

statement to not match the conditions A and C. 

Case 2: The statement can be modified (by other optimizations) to match the conditions 

specified in Code_Pattern. It is possible that the statement can be modified by other optimization 

code changes, making this optimization applicable. For example, constant folding requires that 

both operands are constant. But if the statement has a variable operand, it is still possible to 

perform constant folding on this statement if the operand can be changed to a constant by 

constant propagation. In the case that the operands or the operation can be changed by another 

optimization to match the code pattern, the interaction engine stores the statement in the SetTable 

and creates an optimization opportunity in OptTable. Here it generates both disabling and 

enabling conditions, as shown the third row of Table 6.2. The disabling conditions are the same 

as case 1. The enabling conditions are the conditions in which the code model does not match 

with the code pattern. When it is impossible that any code change by another optimization 

matches the code pattern, the interaction engine does not create an optimization opportunity. 

The quantifier (ANY or ALL) specified in the code pattern does not change the 

generation of the enabling and disabling conditions. When the quantifier is ANY, the generator 

will create an optimization opportunity for each statement that matches or possibly matches with 

the code pattern. 

After checking the conditions specified in Code_Pattern, the interaction engine needs to 

check the conditions given in the Depend section, as shown in Table 6.3. The table shows the 

enabling and disabling conditions generated for different cases. Each row represents a case for 

matching the conditions with code context. There are four columns. The first column shows the 

quantifier of the conditions. The second column indicates whether the matching objects can be 

found or not. The third and the fourth columns give the enabling and disabling conditions 

generated. We still use (A AND B OR C) to represent a general condition in our discussion. 
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Table 6.3: Generating enabling and disabling conditions for check_depend 

Quantifier Match Enabling Conditions Disabling Conditions 

ALL Yes True 
(delete obj1) ^ ... ^ (delete objn) 

∨ (insert A AND B)* 
∨ (insert C)* 

ALL No 
(insert A AND B)* 

∨ (insert C)* 
None 

ANY Yes True 

(delete obji) 
∨ (insert A AND B)* 

∨ (insert C)* 
for every element  in OptTable 

ANY No 
(insert A AND B)* 

∨ (insert C)* 
None 

NO Yes 
(delete obj1) ^ ... ^ (delete objn) 
∨ (delete depi) if depi not match 

(insert A AND B) 
∨ (insert C) 

NO No True 
(insert A AND B) 

∨ (insert C) 
 

The second row in Table 6.3 shows the first case, where the quantifier of this condition is 

ALL and there are objects that match the condition. Because this is a match case, the enabling 

condition is true. The disabling conditions generated show that if deleting all of these matching 

objects, the application of this optimization will be destroyed. The disabling conditions also 

include inserting a dependence that matches the conditions, (insert A AND B)* or (insert C)*. 

The stars on these disabling conditions show that the dependencies need to be updated before the 

interaction engine can determine whether other optimizations disable this optimization because 

of this condition. In most cases, we do not need to update the code model. However, there are 

two cases when it is needed. In one case, a statement is inserted by an optimization. We need to 

temporarily update the dependencies (i.e., the code model). For example, considering the 

following code: 

S1: a = b; 

S2: d = a + 3; 

… 

S6: c = a + 6;   newly inserted 
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Suppose O1 is an optimization opportunity of copy propagation applied to statement S1. It 

is applicable for this code segment. Another optimization Oi inserts a statement S6 that is flow 

dependent on S1, which will match the disabling condition of O1. However, it is unknown 

whether S6 has other definitions or there is redefinition of b between S1 and S6. So it cannot be 

decided whether O1 is applicable after inserting this dependence. Thus, the code model needs to 

be updated to determine the interactions. The other case that needs to update the code model is 

when the interaction engine considers a combination of optimizations, which will be discussed in 

Section 6.4.2. 

The third row in Table 6.3 shows the case where the quantifier of this condition is ALL 

and there is no matching object. The interaction engine needs to generate the enabling 

conditions, showing that dependencies can be inserted to match the condition A AND B or match 

the Condition C. 

Other cases are similar. One major difference is that when the quantifier of the condition 

is ANY and there are matching objects, it needs to generate an optimization opportunity in 

OptTable for each object and store OptId into ObjSet. The reason is that the objects defined by 

ANY quantifier should be considered separately. 

The enabling condition is combined with the other enabling conditions generated for the 

previous rules by the AND operator, while the disabling condition is combined by the OR 

operator. Finally we standardize all the enabling and disabling conditions to DNF in order to 

match them with the post conditions.  

When an enabling condition is deleting dependence, the generator needs to follow the 

output dependences to generate all enabling conditions. For example, consider the following 

code: 

S1: a = b; 

S2: b = 2; 

S3: b = 3; 

S4: d = a + 3; 

In order to perform copy propagation at S1, it needs to delete the anti-dependence 

between S1 and S2 and the output dependence between S2 and S3 as well.  

After checking conditions specified in the PRECONDITION section, the interaction 

engine needs to generate the specific post conditions for an optimization opportunity, as shown 
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in line 12 of Figure 6.6. The primitive operations in the ACTION section specify the code 

modifications of the optimizations. The interaction engine decomposes them when generating the 

specific post conditions. It also generates the post conditions that describe the changes on 

dependences after applying the optimization. 

Table 6.4 shows how to generate specific post conditions for each primitive operation in 

a SpeLO ACTION section. Each row in the table represents a primitive operation. There are two 

columns for each primitive operation. The first one gives the code modifications. The second one 

gives the modification on the dependence.  

For example, the move operation can be decomposed to delete the object at its original 

place and insert the new object at a new place. Deleting an object needs to delete all its 

dependences. Inserting an object will insert the dependences that relate to the new object at the 

new place. 

Table 6.4: Generating post conditions for primitive operations 

Operation Code Modifications Dependence Modifications 

Move 
delete (Obj) 

insert (NewObj, After_obj) 

delete_dep (any_type, any_stat, Obj, any_dir) 
insert_dep (any_type, any_stat, NewObj, any_dir) 
insert_dep (any_type, NewObj, any_stat, any_dir) 

Add insert(Obj, After_obj) 
insert_dep (any_type, Obj, any_stat, any_dir) 
insert_dep (any_type, any_stat, Obj, any_dir) 

Delete delete (Obj) delete_dep (any_type, any_stat, Obj, any_dir) 

modify_opnd(Obj,opnd, new_opnd) 

delete_dep (any_type, any_stat, Obj, any_dir) 
where dep_position = opnd 

insert_dep (any_type, any_stat, Obj, any_dir) 
where dep_position = new_opnd 

insert_dep (any_type, Obj, any_stat, any_dir) 
where dep_position = new_opnd 

Modify 

modify_opcode(Obj, new_opcode) -- 
 

6.4.2 Matching Conditions  

In the first step, the interaction engine generates an optimization table, OptTable, which has all 

the possible optimization opportunities (including their disabling, enabling and post conditions). 
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In this step, the interaction engine determines the interactions among these optimizations by 

matching the enabling and disabling conditions of each optimization with the post conditions of 

other optimizations in OptTable. 

The algorithm for matching Oi’s enabling and disabling (E/D) conditions with the post 

conditions is shown in Figure 6.7. Because the E/D conditions are already in DNF, we represent 

them using the general form (A AND B OR C). 

 
Figure 6.7: Matching Oi’s E/D conditions with post conditions 

 
As Figure 6.7 shows, the interaction engine checks each post condition of other 

optimizations. It finds all optimizations whose post conditions match the condition A, B, or C. 

Then the set of optimizations whose post conditions match conditions A and B enable/disable Oi 

together. The optimization whose post conditions match condition C enables/disables Oi. 

Matching the post condition with condition A (or others) is straightforward. The condition action 

(i.e., delete, insert, delete_dep, insert_dep, modify_opnd, or modify_opcode) and the object (e.g., 

statement, or dependence) are compared. For example, if A is <delete S3>, the post condition that 

deletes S3 matches with A. If A is <delete_dep, type, Si, Sj, dir, other_condition>, the post 

// Suppose the general form of E/D conditions of Oi is (A AND B OR C) 
1: foreach optimization Oj (Oj ≠ Oi)  { 
2:  foreach postcondition Pj of Oj { 

 // match Pj with the condition A 
3:   if (Pj match A) { 
4:    if ((A has a star) && (update_match(Oj, Oi)) 
5:     Oj  {match1}; 
6:    elseif (A has no a star) 
7:     Oj  {match1}; 
8:   } 

  // same for conditions B and C to get {match2} and {match3} 
9: } } 
10: foreach Oa in {match1} {  
11:  foreach Ob in {match2} { 
12:   { Oa + Ob } (E/D) Oi; 
13: }} 
14: foreach Oc in{match3} { { Oc }  (E/D) Oi; } 
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condition that deletes the same type of dependence between Si and Sj with the same direction as 

well as meets the other condition can match A. The other condition specifies other requirements 

for this dependence, such as the statement should be in a path. 

In Section 6.4.1, we discussed that in one case when an optimization’s enabling or 

disabling condition (a star condition) cannot fully determine the enabling and disabling 

interactions, the interaction engine needs to update the code model to determine their 

interactions, by calling update_match. Another case is when the interaction engine considers the 

interactions of a combination of optimizations with other optimizations, in which it also needs to 

update the control flow and dependencies. In these cases, the interaction engine creates a new 

element in OptTable which represents the combination of O2O1. It then applies O2’s post 

conditions to temporarily update the code model and checks the conditions specified in O1’s 

dependence section under the modified code model. The interaction engine generates the 

enabling and disabling conditions for this combination. According to whether O1 is applicable 

after O2 is applied, the interaction engine determines whether O2 enables or disables O1. The 

engine considers how the enabling and disabling conditions of this combination interact with the 

post conditions of other optimizations to determine the interactions of a combination of 

optimization with other optimizations. 

6.5 AN EXAMPLE OF DETERMINING THE INTERACTION 

In this section, we use an example to show how FIO automatically determines the enabling and 

disabling interactions for two optimizations, dead code elimination (DCE) and copy propagation 

(CPP). The code is shown in Figure 6.8(a). The optimizer generates the code model, as shown in 

Figure 6.8(b). The code model describes the dependences in the code. Each dependence is 

expressed as <Si, Sj, type, dir, pos>. For example, there is a flow dependence between S1 and S2. 

It has equal direction. The dependence exists on the first operand. Thus, this dependence can be 

represented as <S1, S2, flow, =, 1>. The optimizer inputs the code model and optimization model 

for DCE and CPP into the interaction engine, which determines the interactions among these two 

optimizations. 
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Figure 6.8: An example of determining the interaction 

 

When the engine is triggered, it first generates the specific enabling, disabling and post 

conditions for every possible optimization opportunity in the code. Figure 6.8(c) shows all the 

possible optimizations, generated by the engine. Here, we only show the details of the conditions 

for two optimizations, O13 and O21 in Figure 6.8(d). O13 is a dead code elimination that operates 

on S3. O13 is applicable for this code segment. Thus, the enabling condition for O13 is true. There 

are three disabling conditions for destroying the application of O13. The first one is deleting S3. 

The second one is modifying its operation. The third one is inserting a flow dependence that has 

S3 as the source. The post conditions for O13 show how it changes the code model, which 

S1: b = 0; 
S2: a = b; 
S3: b = 3; 
S4: c = a + 2; 
S5: print c; 

(a) Code 

<S1, S2, flow, =, 1> 
<S1, S3, output, =, 0> 
<S2, S4, flow, =, 1> 
<S2, S3, anti, =, 1> 
<S4, S5, flow, =, 1> 

(b) Code model 

<O13, DCE, S3, applicable> 
<E13,  true> 
<D13,  <delete S3> {conditions that disable DCE at S3} 

∨ <modify_opcode, S3, ≠, copy/binary_arith>  
∨ <insert_dep, flow, S3, any, any> > 

<Post13, <delete S3> {postconditions of applying DCE at S3} 
∧ <delete_dep, anti, S2, S3, => 
∧ <delete_dep, output, S1, S3, =>> 

<O21, CPP, S2, not applicable> 
<E21, <delete_dep, anti, S2, S3, =>> {conditions for enabling} 
<D21,  <delete S2> {conditions that disable CPP at S2} 

∨ <modify_opcode, S2, ≠, copy>  
∨ <modify_opnd, S2, dst, ≠, var > 
∨ <modify_opnd, S2, opnd1, ≠, var> 
∨ <delete_dep, flow, S2, S4, => 
∨ <insert_dep, flow, S2, any, =>* 
∨ <insert_dep, flow, any, S4, =, any ≠ S2> 
∨ <insert_dep, anti, S2, any, =, in_any_path(S2, S4)>> 

<Post21, <delete S2>{postconditions of applying CPP at S2} 
∧ <delete_dep, flow, S1, S2, => 
∧ <modify_opnd, S4, opnd1, S2.opnd1> 
∧ <delete_dep, flow, S2, S4, => 
∧ <insert_dep, flow, S1, S4, =>> 

 
(d) Detailed conditions for O13 and O21 

<O11, DCE, S1, not app> 
< O12, DCE, S2, not app>  
< O13, DCE, S3, app> 
< O14, DCE, S4, not app> 
< O21, CPP, S2, not app> 

(c) Output of first step 

<O13> Enable O21 
 

(e) Interactions 



94 

includes deleting S3, deleting the anti-dependence between S2 and S3 and deleting the output 

dependence between S1 and S3. Similarly, the enabling, disabling and post conditions are 

generated for O21 according to the CPP specification. 

In the second step, the interaction engine compares the enabling and disabling conditions 

with the post conditions of other optimizations and determines the interactions. For example, the 

engine needs to determine the enabling interaction for O21. There is only one condition needed 

for O21 to be applicable, i.e., <delete_dep, anti, S2, S3, =>. When the interaction engine checks 

each condition in O13’s post conditions, it finds that O13 changes the dependency by deleting the 

anti-dependence between S2 and S3. This condition matches with the enabling condition of O21. 

Thus, O13 enables O21, shown in Figure 6.8(e). 

6.6 USING INTERACTION TO ORDER OPTIMIZATIONS 

FIO can be used to determine a good order to apply a set of optimizations. Instead of blindly 

searching the optimization space, we can determine what optimizations are legal after applying 

an optimization based on the interaction property. We design an algorithm to construct a code-

specific optimization sequence using the interaction. Our algorithm is shown in Figure 6.9. 

In the algorithm, worklist is initialized to the applicable optimizations and seq is 

initialized to the empty sequence.  We evaluate every optimization in worklist by some 

evaluation function, Eval(O). Then we select Ok with the largest Eval value as the next 

optimization in the sequence. As shown in line 7 of Figure 6.9, we modify worklist according to 

what optimizations are disabled by this optimization Ok, and what optimizations are enabled by 

Ok. We require that when Ok along with other optimizations together disable Om and only if all 

the other optimizations are already in the sequence, then we can remove Om from worklist. For 

the enabling, we also require that optimizations already in seq do not disable Om, and then we 

can add Om to worklist. As discussed in Section 6.4.2, we also consider the interactions between 

the individual optimization and the combination of two optimizations.  Thus we add the 

combination of two optimizations that are enabled by this optimization. We evaluate worklist 

until it becomes empty. And then we achieve the best sequence that maximizes the evaluation 

function. 
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Figure 6.9: Determining a good optimization sequence using interaction 

The evaluation function, Eval(O) can be to maximize the number of optimizations in the 

sequence. We use the weighted number of optimizations enabled and disabled by the 

optimization (line 9 of Figure 6.9). We can also use profitability as the evaluation function (line 

10 of Figure 6.9), which combines profitability and the interaction property to search for code-

specific optimization sequence. 

There are some other possible search algorithms that can use interactions in finding code-

specific optimization sequences. The more complicated the search algorithm, the longer search 

time it may take. Our experimental results show that this simple constructive algorithm achieves 

good optimization sequences. 

6.7 EXPERIMENTAL RESULTS 

To evaluate FIO, we compare three approaches to apply optimizations: a fixed-order approach, 

an empirical approach that uses a genetic algorithm to search for effective optimization 

sequences [1] and our model-driven approach. We performed two sets of experiments. One used 

Algorithm 
1: worklist = {all applicable optimization instances}; 
2: seq = {}; 
3: while (worklist ≠ empty) { 
4:  Evaluate (worklist); 
5:  select Ok that Eval(Ok) is the best; 
6:  seq = seq + { Ok }; 
7:  worklist = worklist  –  { Ok }  

– { Om | Disable({Ok, …}, Om) ∧ {Ok, …} ⊆ seq } 
+ { Om | Enable({Ok, …}, Om) ∧ {Ok, …} ⊆ seq   

∧ ¬∃ (Op ∈ seq ∧ Disable(Op, Om))} 
+ { Om1Om2 | Enable({Ok, …}, Om1Om2) ∧ {Ok, …} ⊆ seq }; 

8:            } 
9:          Eval(Ok) = a ∗ |Enable(Ok)| – b ∗ |Disable(Ok)|; or 
10:        Eval(Ok) = profitability (Ok); 
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the number of optimizations applied as the evaluation function in the search. The other used 

profitability as the evaluation function. We ran our experiments on an Intel Pentium IV 2.4GHz 

machine, with 512MB of memory running RedHat Linux.  

There are eight optimizations in our experiments, including CPP, CTP, DCE, PRE, 

LICM, VN, branch chaining (BRC) and branch elimination (BRE). The fixed-order sequence 

that we used is “VN, BRC, BRE, CPP, CTP, DCE, PRE, LICM, VN, BRC, BRE, CPP, CTP, 

DCE, PRE, LICM”. The selection of the fixed order was based on the study of interactions 

among these optimizations [50]. The empirical approach used in the experiments has the 

following configuration. We performed a search for each function of a program using 10 

generations. Each generation had a population of 20 sequences. Every sequence had 16 

optimization passes, choosing from eight optimizations. At each generation, the best 10% of the 

sequences survive without any change. The rest of the new generation is created by the crossover 

operation, followed by the character-by-character mutation with the mutation rate is 5%. This 

configuration is the same as the experiments in Section 4.6.2, only here search is for each 

function. 

6.7.1 Evaluation Function: the Number of Optimizations 

In the first set of our experiments, the evaluation function is the number of optimizations applied. 

In the empirical approach, the optimizations in a sequence are performed on the code. Then, the 

number of optimizations applied is measured to evaluate the sequence. In our model-driven 

approach, we construct a code-specific optimization sequence as described in Section 6.6. The 

evaluation function is the number of optimizations enabled and disabled by an optimization. We 

compare three approaches (the fixed-order approach, the empirical approach and our model-

driven approach) in terms of compile-time overhead and performance improvement. We also 

show the memory requirements for our approach.  

6.7.1.1 Compile-time overhead 

For each sequence, the genetic algorithm determines the interactions by applying the 

optimizations and recomputing the data flow needed for other optimizations. In our approach, the 

interaction engine is used to determine the optimization property and thus the good sequences. 
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By determining the interaction property, the time to find a good order is greatly reduced. The 

compile-time comparison among the fixed-order, the empirical (i.e., GA approach) and our 

model-driven approaches is shown in Table 6.5. 

From the table, the compile-time for the fixed-order approach is small. It varies from 0.05 

minutes to 2.34 minutes. The compile-time for the GA approach varies from 3 minutes to 5.5 

hours, while the compile-time for our model-driven approach is from 0.4 to 65 minutes. In the 

GA approach, each function is compiled for 200 sequences and evaluated by the number of 

optimizations applied. The compile-time for the GA approach is related to the average compile-

time for each function. For example, there are 106 functions in gzip and the average compile-

time for a function is about 0.8 seconds. Adding the GA search time, it took 327 minutes for the 

GA approach to find code-specific sequences for gzip. In our approach, we use FIO to identify 

all the possible optimization opportunities in a function and determine their interactions. Then 

we use these interactions to find a good order to apply these optimization instances. The 

compile-time of our approach depends on the time for the interaction engine to determine the 

interactions and the search time using the interactions. As the number of the optimization 

opportunities in each function increases, the compile-time of our approach increases. For 

example, on average, there are about 957 optimization opportunities for a function in mpeg while 

about 423 in gzip. Thus, the average time for the interaction engine to determine the optimization 

interactions for mpeg is 20 seconds while it takes 10 seconds for gzip. This is why the interaction 

engine took more time for mpeg than for gzip in our approach. 

Table 6.5: Compile-time overhead of three approaches (minutes) 

Benchmarks Fixed-order Empirical Model-driven 

adpcm.rawcaudio 0.05 3.01 0.89 

mpeg2.enc 1.92 308.96 65.25 

bitcount 0.15 16.84 1.03 

dijkstra.large 0.05 8.21 0.36 

FFT 0.11 10.13 1.02 

gzip 1.52 327.60 35.33 

mcf 0.53 41.7 4.02 

bzip2 2.34 250.35 29.67 



98 

6.7.1.2 Performance improvement 

Besides compile-time, we also compare performance of three approaches. Next, we first show 

the comparison on the number of optimizations applied and then the run-time performance using 

dynamic instruction counts.  

In Table 6.6, the number of optimizations applied is shown for the fixed-order, empirical 

and model-driven approaches. For example, for adpcm, using the fixed order sequence, 146 

optimizations are applied. Using the sequences found by the GA approach, 155 optimizations are 

applied. While using the sequences found in our approach, 155 optimizations are applied. On 

average, the number of optimizations applied in our approach is 2.7% less than the empirical 

approach. 

Table 6.6: Comparing the number of optimization applied 

Benchmarks Fixed Empirical Model-based 

adpcm.rawcaudio 146 155 155 

mpeg2.enc 10009 11686 11031 

bitcount 302 335 326 

dijkstra.large 113 154 148 

FFT 251 291 283 

gzip 5138 5589 5493 

mcf 2020 2280 2218 

bzip2 3509 3883 3802 

 

In Figure 6.10, we compare the performance improvement of three approaches over the 

unoptimized code (only register allocation is applied). In the figure, the performance 

improvement is measured using dynamic instruction count. The empirical approach and model-

driven approach use a code-specific order to apply optimizations. Thus, they improve the 

performance more than the fixed-order approach. For example, for bitcount, by applying fixed-

order sequences, there is an improvement of 22.2%. While using the sequences found by the 

empirical and model-driven approaches, the improvement is 24.5% and 24.1% respectively. In 

most cases, our approach achieves similar performance improvements as the empirical approach, 

yet compile-time is much lower. 
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Figure 6.10: Comparing performance improvement 

6.7.1.3 Memory requirement 

In our approach, FIO needs tables to store the data and control dependence information and 

information about each optimization opportunity and their interactions. We measured the 

memory requirements of FIO to ensure the information can be stored in memory.  

Table 6.7: Memory requirement of our approach (KB) 

Benchmarks Min Max Average 

adpcm.rawcaudio 22 1102 710 

mpeg2.enc 1 9714 601 

bitcount 1 164 58 

dijkstra.large 9 98 43 

FFT 1 888 205 

gzip 1 3417 289 

mcf 4 1646 227 

bzip2 1 3938 527 

 

Table 6.7 shows the minimum, maximum and average memory requirements for the 

functions in each benchmark. For example, there are 3 functions in adpcm. They required 1102 
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KB, 1004 KB and 22 KB memory. These three functions needed 710 KB memory on average. 

Most of the memory consumed is for storing information about each optimization opportunity 

and their interactions. As the number of optimization opportunities in each procedure increases, 

the memory requirements also increase. For the largest procedure putpict (in mpeg2), it has 7321 

optimization opportunities and required 9714 memory. From the table, we can see that the 

memory requirements of FIO are reasonable and the information generated in FIO can be 

sufficiently stored in memory. 

From these experimental results, we can see that our model-driven approach achieves the 

similarly good sequences as in the empirical approach with much less compile-time, using 

reasonable memory. 

6.7.2 Evaluation Function: Profitability 

In the second set of our experiments, the evaluation function is profitability. In the empirical 

approach, the optimizations in a sequence are performed on the code. Then, the code is executed 

to evaluate the profitability of the sequence. In our model-driven approach, we construct a code-

specific optimization sequence as described in Section 6.6. The evaluation function used is the 

profitability of optimizations, predicted by FPSO. We compare compile-time and performance of 

three approaches (the fixed-order approach, the empirical GA approach and our model-driven 

approach). 

6.7.2.1 Compile-time overhead 

When using profitability as the evaluation function, the empirical approach needs to apply 

optimizations and execute the code to evaluate the profitability. For the SPEC benchmarks (i.e., 

gzip, mcf, and bzip2), the test input was used to execute the code. In our approach, the interaction 

property is detected by FIO and profitability is determined by FPSO. Thus, the compile-time to 

search for a good order is greatly reduced. The compile-time overhead of these three approaches 

is shown in Table 6.8. 

 

 

 



101 

Table 6.8: Compile-time overhead of three approaches (minutes) 

Benchmarks Fixed-order Empirical Model-driven 

adpcm.rawcaudio 0.05 5.41 1.14 

mpeg2.enc 1.92 726.67 82.24 

bitcount 0.15 18.97 1.66 

dijkstra.large 0.05 11.63 0.68 

FFT 0.11 13.20 1.81 

gzip 1.52 1180.67 53.82 

mcf 0.53 74.64 19.54 

bzip2 2.34 2618.79 58.68 

 

From the table, the compile-time for the fixed-order approach is the same as in Table 6.5. 

It varies from 0.05 minutes to 2.34 minutes. Because the empirical approach needs to execute the 

code, its compile-time is large, varying from 5 minutes to 43.6 hours.  Using our approach, the 

compile-time is greatly reduced compared with the empirical approach. It varies from 0.7 to 82 

minutes. In the empirical approach, each function is compiled for 200 sequences and evaluated 

by executing the code. The compile-time for the empirical approach is related to the compile-

time and execution time for each function. For example, there are 106 functions in gzip. The 

average compile-time for a function is about 0.8 seconds. The execution time for test input is 

about 2.4 seconds. Adding the GA search time, it took 1181 minutes for the GA to find code-

specific sequences for gzip. In our approach, we use FIO to determine the interactions among 

optimizations and FPSO to predict the profitability of optimizations. The compile-time of our 

approach depends on the time for FIO to determine the interaction property and the time for 

FPSO to predict profitability. For example, for mpeg, the average compile-time for FIO to 

determine the optimization property is about 20 second and the compile-time for FPSO to 

determine profitability is about 6 seconds. Thus, it took 82.24 minutes for our approach to 

determine good optimization sequences for mpeg. 

6.7.2.2 Performance improvement 

Besides compile-time, we also compare performance of three approaches, as shown in Figure 

6.11. In the figure, the performance improvement is measured using dynamic instruction count.  
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Figure 6.11: Comparing performance improvement 

In the figure, the empirical approach and our model-driven approach improve the 

performance more than the fixed-order approach. For example, by applying fixed-order 

sequences, there is an improvement of 22.2% for bitcount. While using the sequences found by 

the empirical and model-driven approaches, the improvement is 24.6% and 24.5% respectively. 

Comparing with the results in Figure 6.10 (the number of optimizations applied as the evaluation 

function), both the empirical approach and our model-driven approach have better performance. 

For example, the empirical approach improves performance by 10.8% for adpcm if using the 

number of optimizations as the evaluation function. However, if profitability is used as the 

evaluation function, the empirical approach improves performance by 12.1%.  

In most cases, our model-driven approach achieves similar performance improvements as 

the empirical approach. In some cases, performance of our model-driven approach is even better 

than the empirical approach. For example, for adpcm, using the empirical approach, the 

improvement is 12.1%, while using our model-driven approach, the improvement is 12.6%. This 

is because an optimization is not applied if it is predicted as unprofitable by FPSO in our 

approach. 
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6.7.2.3 Memory requirement 

Similarly as in Section 6.7.1.3, we measured the memory requirements of our approach to ensure 

the information can be stored in memory. Here, not only the dependence and the optimization 

table, but also the code models for determining profitability need to be stored.  

 
Table 6.9: Memory requirement of our approach (KB) 

Benchmarks Min Max Average 

adpcm.rawcaudio 23 1131 723 

mpeg2.enc 2 9815 659 

bitcount 1 181 66 

dijkstra.large 10 106 51 

FFT 1 985 232 

gzip 2 3476 332 

mcf 5 1675 253 

bzip2 2 4328 582 

 

Table 6.9 shows the minimum, maximum and average memory requirements for the 

functions in each benchmark. For example, there are 3 procedures in adpcm. They required 1131 

KB, 1014 KB and 23 KB memory. These three procedures needed 723 KB memory on average. 

The information needed for determining profitability is small. Thus, comparing with the results 

in Table 6.7, the memory requirements do not increase much. For example, here the smallest 

function in adpcm needs 23KB memory, while it needs 22KB memory without determining 

profitability. From the table, we can see that the memory requirements of our approach are 

reasonable and the information can be sufficiently stored in memory. 

Our experiments show that the interaction property is very useful in finding code-specific 

optimization sequences. Comparing with the empirical approach, our model-driven approach can 

find similarly good optimization sequences in much less compile-time. Our techniques make the 

search for good order to apply optimizations practical.  
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7.0  CONCLUSIONS 

Compilers apply code optimizations to improve the quality of generated code (e.g., running 

faster, consuming less memory or less power). However, it is known that there are problems with 

the application of optimizations that keep compilers from achieving the full potential benefit of 

optimization. For example, optimizations may degrade performance in certain circumstances. 

Also, optimizations enable and disable each other. The order to apply optimizations impacts 

performance. So far there is no systematic and efficient way to decide when, where and in what 

order to apply optimizations to be effective. The continued growth of embedded systems, the 

application of dynamic optimizations and the shrinking performance gains from developing new 

optimizations demand us to handle these long-standing problems.  

Most prior work has focused on developing heuristics or empirical approaches to handle 

some of these application problems. However, heuristics tend to be ad hoc and focus specifically 

on a single or a small class of optimizations. Heuristics also require tuning parameters to select 

appropriate threshold values. The major disadvantage of an empirical approach is its high cost. 

Although there has been some work that uses the models to explore the application problems, the 

work is very limited; it works for a small set of optimizations and a single machine resource. 

Ideally, we need a general, effective and efficient model-driven approach, which uses models to 

determine the optimization properties and to intelligently apply optimizations. 

7.1 SUMMARY OF CONTRIBUTIONS 

The benefits of this dissertation are twofold. The theoretical benefits include developing a 

foundation that determines two optimization properties: profitability and interaction. The 
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practical benefits include developing an optimizing compiler that uses model-driven techniques 

developed in the framework to effectively apply optimizations.  

Effectively applying optimizations is hampered by the difficulties in understanding the 

properties of optimizations. This research presents a novel model-based framework to determine 

optimization properties. The focus is to accurately predict profitability and automatically detect 

the interaction property without applying optimizations or executing the code. The scope of this 

research covers a wide range of optimizations and machine resources. 

This dissertation presents framework instances, FPSO and FPLO, to predict the 

profitability of scalar and loop optimizations. FPSO and FPLO include models of code, 

optimizations and machine resources. For machine resources, FPSO considers registers and 

functional units and FPLO considers data cache. In FPSO and FPLO, there is a profitability 

engine that uses models to predict the profit of applying an optimization at any code point where 

the optimization is applicable.  

This dissertation also describes a framework instance, FIO, to detect the interactions 

among a set of optimizations. A specification language, SpeLO, is developed to express the 

conditions under which an optimization can be safely applied and the actions of the optimization. 

Optimization models are developed using SpeLO. The code model in FIO is the control flow 

graph with explicit data and control dependence information. As part of FIO, there is an 

interaction engine that uses models to generate the specific enabling, disabling and post 

conditions for each optimization at a program point. These enabling and disabling conditions are 

then matched with the post-conditions of other optimizations to determine the enabling and 

disabling interactions. 

By determining these optimization properties, compilers will apply optimizations more 

effectively. Compilers can perform profit-driven optimization, which applies only profitable 

optimizations. Also, compilers can determine a code-specific order or configuration to apply 

optimizations with practical compile-time overhead. 

We implemented our framework instances and performed experiments to evaluate their 

effectiveness and efficiency. We evaluated prediction accuracy of FPSO and FPLO. On average, 

they can make correct predictions about 90% of the time. We compared our profit-driven 

approach with other two approaches. One approach always applies applicable optimizations. The 

other uses a heuristics to decide whether an optimization should be applied. The model-driven 
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approach and the heuristic approach achieved better performance improvement than the always-

applying approach. The model-driven approach is practical because it does not require tuning the 

parameters necessary in the heuristic approach. For FIO, we compared the model-driven 

approach with other two approaches for searching for code-specific optimization sequences. One 

approach uses a fixed order to apply optimizations. The other approach experimentally searches 

for good order to apply optimizations to get the most benefit. The model-driven approach and the 

empirical approach can find similarly good optimization sequences. Thus, they achieve similar 

improvement, better than the fixed order approach. However, compile-time of the model-driven 

approach is greatly reduced, when compared with the empirical approach (up to 43 times better). 

The model-driven approach is scalable.  

This dissertation demonstrates that analytic models can be used to address the effective 

application of optimizations. Our model-driven approach is practical and scalable. With model-

driven optimizations, compilers can produce higher quality code in less time than what is 

possible with current approaches. 

7.2 LIMITATIONS 

This dissertation has several limitations, including limitations of the models, limitations of what 

can be automatically generated and limitations in the experiments. 

This research covers a number of machine resources, including cache, registers and 

computation without code scheduling. Our resource models are most suitable for the Intel IA-32 

and other processors where there are few registers or with in-order single issue pipeline. 

However, other machine resources such as computation with code scheduling are important and 

need to be modeled. The optimizations considered in this research include a number of scalar and 

loop optimizations. However, there are other important optimizations that have not been studied, 

such as procedure inlining and code scheduling. Our specification language, SpeLO, can specify 

a wide range of scalar and loop optimizations, including path-based optimizations. However, 

some optimizations cannot be expressed by SpeLO, for example conditional constant 

propagation [49]. In conditional constant propagation, a program needs to be symbolically 
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executed, which cannot be expressed using the current SpeLO specification. Modeling more 

machine resources and optimizations is deferred to future work.  

In this research, code models are automatically generated by the optimizer. However, 

optimization models are developed separately and manually by a compiler writer. To predict 

profitability, the compiler writer needs to express the semantics of optimizations using basic 

edits. To determine the interaction property, the compiler writer requires to represent the 

conditions under which an optimization can be applied and the actions of the optimization, using 

SpeLO. When the profitability and interaction properties are needed, the compiler writer needs to 

write optimization models based on different specifications. A unifying specification is needed 

that optimization models can be uniformly developed. A tool is also needed to automatically 

generate optimization models based on the unifying specification and provide the compiler writer 

a simpler interface to use our framework. 

Regarding the experiments, there are two major limitations. First, due to the restrictions 

of the compiler infrastructure we use, Mach SUIF [44], we ran experiments on the Intel IA-32 

machines. We have not investigated how our approach applies to other machine architectures. 

Secondly, some empirical investigation would have to be undertaken to compare our model-

driven approach with other approaches, such as the Optimization-Space Explore compiler [46], 

where only analytic resource models are used for effectively applying optimizations. 

Experiments are needed to show the compile-time advantages of modeling code and 

optimizations in our approach. 

7.3 FUTURE WORK 

There are a number of open research problems related to this research. Although only 

profitability and interaction were studied in this dissertation, our model-based framework can be 

used to study other optimization properties. Also, although we focus on profit-driven 

optimization and finding a code-specific order to apply optimizations, there are other uses of our 

framework. In the future, we can extend the work in the following ways. 

1) Modeling more resources.  In this dissertation, the resources that we model are 

cache, registers and computation without code scheduling. Our models for the 
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registers are more suitable for the Intel IA-32 and other processors where there 

are few registers. In the future, we may need to model resources based on 

different machine architectures. For example, we may need to predict the profit on 

computation with code scheduling. To do so, a code model (e.g., dependence 

graph), a resource model, and an optimization model for code scheduling are 

needed. Also, the profitability engine should be able to infer the changes of an 

optimization on the computation code model directly from the optimization 

model. For some architecture, we may also need to combine all the resources 

(cache, registers and computation) to make more accurate predictions.  

2) Modeling more optimizations. In this dissertation, we developed models for 

several scalar and loop optimizations. Although they cover a wide range of 

optimizations, there are some other important optimizations (e.g., procedure 

inlining, code scheduling) needed to be studied. Also the optimizations studied in 

this work are global optimizations. We may also need to model the inter-

procedural optimizations.  

3) Determining other optimization properties. In this dissertation, we focus on two 

optimization properties, profitability and interaction. Our framework can also be 

used to study other optimization properties. For example, we can study the impact 

of optimizations on code size and power consumption. In this work, we combined 

the profitability and interaction to find a code-specific order to apply 

optimizations. In the future, we may also need to combine the profitability and 

interaction properties with other optimization properties to find a way to apply 

optimizations to balance multiple constraints. For example, in embedded systems, 

in addition to performance, memory and power consumption are also important. 

We need to consider the impact of optimizations on all these factors and 

determine a way to apply optimizations to balance these constraints. Another 

optimization property that needs to be studied is the cost of applying 

optimizations, which includes the cost for applicability analysis and the actions to 

perform the optimizations. The cost of applying optimizations is important for 

deciding when and how to apply dynamic optimizations.  
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4)  Using optimization properties for other applications. Profit-driven optimization 

and finding a code-specific order of applying optimizations are two applications 

experimentally evaluated in this dissertation. There are other applications for our 

framework. For example, we can find a code-specific configuration to apply 

optimizations similarly as finding effective optimization order. Another 

interesting application is to reconfigure the hardware. Based on the optimization 

properties determined in the framework, we can choose a hardware configuration 

(e.g., cache configuration) that fits better the application. 

5) Develop software tools to enable the automatic generation of models and model-

based optimizations. In this dissertation, optimization models are developed 

separately and manually by a compiler writer. Work can be done to design a 

unifying specification language to express optimizations and resources, from 

which all the models could be automatically created. A tool and algorithm are also 

needed to automatically generate the implementation of model-based 

optimizations.  
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APPENDIX A OPTIMIZATION MODELS 

A.1 SCALAR OPTIMIZATION MODELS 

Optimization Optimization Model 

Copy Propagation 

# Propagate  x  y 

Modify the statement: 
dS@x    USEDelete ><  

dS@  y  USEInsert ><  

Delete the statement: 
sScopyyx @ OP    USE DEFDelete ><  

 

Constant Propagation 

# Propagate  x  const 

Modify the statement: 
dS@x    USEDelete ><  

 

Dead Code 
Elimination 

# Eliminate the dead code x  EXP (y op z) at Ss  

Delete a statement: 
sSopzyx @ OP   ,   USE DEFDelete ><  

 

Loop Invariant Code 
Motion 

# Move a loop invariant statement x  y op z   
Insert a statement: 

1' += dd SS  
'@ OP   ,   USE DEFInsert dSopzyx ><  

Delete the statement: 
sSopzyx @ OP   ,  USE DEFDelete ><  

 
 

 



111 

 

Optimization Optimization Model 

Partial Redundancy 
Elimination 

# Eliminate the partial redundant expression EXP (y op z) at Ss  

Insert a statement: 
1' += dd SS  

'@ OP   ,   USE DEFInsert dSopzyv ><  
Replace the computation: 

sSopzy @ OP   , USEDelete ><  
sScopyv @ OP   USEInsert ><  

Update the same expressions: 
wSzopyEXPwTT  at  )  (←   | ∀ =  

wSw @   DEFDelete ><  
wSv @   DEFInsert ><  

1' += ww SS  
'@ OP     USE DEFInsert wScopyvw ><  

 

Value Numbering 

#Replace a redundant statement x  y op z with x  VN[x] at Ss  

Replace the computation: 
sSopzy @ OP  , USEDelete ><  

sScopyv @ OP   USEInsert ><  
Replace all uses of x with its value number v: 

uSat  x of use is u |u ∀  
uSx @   USEDelete ><  

uSv @   USEInsert ><  

#Fold constant a statement x  y op z at Ss 
Delete the computation: 

sSopzy @ OP  , USEDelete ><  

#Delete a redundant Φ -instruction x  Φ (x1, x2, …)  
Replace all uses of x with its value number v: 

 Sat  x of use is u|u ∀ u  
uSx @  USEDelete ><  

uSv @ USEInsert ><  

#Delete a useless copy instruction x  y at Ss 
Delete the copy instruction: 

sScopyyx @ OP     USE DEFDelete ><  
 



112 

 

A.2 LOOP OPTIMIZATION MODELS 

 

 

 

Optimization Optimization Model 

Loop 
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Optimization Optimization Model 

Loop unrolling 
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A.3 OPTIMIZATION MODEL FOR INTERACTION 

Optimization Optimization Model 

copy 
propagation 

CPP 
PRECONDITION 

Code_Pattern 
ANY Si: Si.opcode = copy AND type(Si.opnd1) = var AND type(Si.dst) = var; 

Depend 
ALL Sj, pos: flow_dep(Si, Sj, =); 
NO Sk: flow(Sk, Sj, =) AND (Sk != Si); 
NO Sp: mem(Sp, path(Si, Sj)), anti_dep(Si, Sp, =); 

ACTION 
Modify (operand(Sj, pos), Si.opnd1); 

Delete (Si); 

dead code 
elimination 

DCE 
PRECONDITION 

Code_Pattern 
ANY L; 

Depend 
ANY Sk: mem(Sk, L), NOT flow_dep(Sk, Sk) AND NOT anti_dep(Sk, Sk) 

AND NOT flow_dep(L.head, Sk) 
NO Sm: mem(Sm, L) AND Sm != Sk, flow_dep(Sm, Sk) OR anti_dep(Sk, Sm) 

OR out_dep(Sm, Sk) OR out_dep(Sk, Sm)  
OR anti_dep(Sm, Sk) OR ctr_dep (Sm, Sk) 

ACTION 
Move (Sk, L.preheader); 

loop invariant 
code motion 

LICM 
PRECONDITION 

Code_Pattern 
ANY Si: Si.opcode = copy AND type(Si.opnd1) = var AND type(Si.dst) = var; 

Depend 
ALL Sj, pos: flow_dep(Si, Sj, =); 
NO Sk: flow(Sk, Sj, =) AND (Sk != Si); 
NO Sp: mem(Sp, path(Si, Sj)), anti_dep(Si, Sp, =); 

ACTION 
Modify (operand(Sj, pos), Si.opnd1); 

Delete (Si); 
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Optimization Optimization Model 

partial 
redundancy 
elimination 

PRE 

PRECONDITION 

Code_Pattern 

ANY Si: Si.opcode = binary_exp; 

ALL Sj:  mem(path(Entry, Si)), Sj.opcode = Si.opcode AND 

Sj.opnd1 = Si.opnd1 AND Sj.opnd2 = Si.opnd2; 

Depend 

NO Sk: anti_dep(Sj, Sk, =) AND flow_dep(Sk, Si, =); 

ALL Sp: flow_dep(Sp, Si, =) AND ¬in_every_path(Sj, Sp, Si, save pred(Si)   

∧ ¬ in_any_path(pred(Si), Sj, Si) to Bq) 

NO Bl: mem(Bq), ¬post_dom(B(Si), Bl); 

ACTION 

Add ((new_temp= Si.opnd1 Si.opcode Si.opnd2), Bq); 

Add (new_temp=Si.opnd1 Si.opcode Si.opnd2), Sj); 

Modify (Sj, (Sj.dst = new_temp)); 

Modify (Si, (Si.dst = new_temp)); 

constant 
propagation 

CTP 
PRECONDITION 

Code_Pattern 
ANY Si: Si.opcode = copy AND type(Si.opnd1) = const AND type(Si.dst) = var; 

Depend 
ALL Sj, pos: flow_dep(Si, Sj, =); 
NO Sk: flow(Sk, Sj, =) AND (Sk != Si); 

ACTION 
Modify (operand(Sj, pos), Si.opnd1); 

branch 
chaining 

BRC 
PRECONDITION 

Code_Pattern 
ANY Si: Si.opcode = jmp AND B(Si) – Si = Ø; 

Depend 
ALL Sj: ctrl_dep(Sj, Si, =); 

ACTION 
Modify (Sj.target, Si.target); 

Delete (Si); 
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Optimization Optimization Model 

global value 
numbering 

VN 
Pass 1: Assigning a value number 
PRECONDITION 

Code_Pattern 
ANY Si: Si.opcode = Ø OR Si.opcode = assign 

Depend 
ALL Sj: flow_dep (Sj, Si) 

ACTION 
// meaningless Ø-operation 
IF ((Si.opcode = Ø) AND (equal (Sj.VN)))   

Si.VN = Sj.VN; 
// redundant Ø-operation or assign 
ELSE IF (hash (Sj.VN, Si.opcode) != NULL) 

Si.VN = hash (Sj.VN, Si.opcode); 
ELSE 

hash (Sj.VN, Si.opcode, Si.VN); 

Pass 2: Redundancy elimination 
PRECONDITION 

Code_Pattern 
ANY Si: Si.opcode = binary_exp 

Depend 
ALL Sj: Sj.VN = Si.VN 

ACTION 
Delete (Sj); 
 

branch 
elimination 

BRE 
PRECONDITION 

Code_Pattern 
ANY Si: Si.opcode = branch; 

Depend 
ALL Sj: ctrl_dep(Sj, Si, =); 
ALL Sp: flow_dep(Sp, Sj, =) AND type(Sp.opnd1) = const; 

ACTION 
IF match(Sp.opnd1, Si.opcode) 

Modify (Sj.target, Si.target); 

ELSE 

Modify (Sj.target, Si.fall_through); 

Delete (Si); 
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Optimization Optimization Model 

loop 
interchange 

LPI 
PRECONDITION 

Code_Pattern 
// find tightly nested loops 
ANY L1, L2, L3: tight_loop(L1, L2, L3); 

Depend 
// perfectly nested without flow dependence with <, > 
no L1.head: flow_dep(L1.head, L2.head); 
no L2.head: flow_dep(L2.head, L3.head); 
no Sm, Sn: mem(Sm, L3) AND mem(Sn, L3), flow_dep(Sn, Sm, (<,>)); 

ACTION 
move (L1.head, L3.head); 
move (L1.end, L3.end.prev); 
 

loop fusion 

LPF 
PRECONDITION 

Code_Pattern 
// find adjacent loops with equivalent heads 
ANY L1, L2: adjacent_loop(L1, L2) AND L1.initial = L2.initial AND  

L1.final = L2.final AND L1.lcv = L2.lcv; 
Depend 

// No dependence with backward direction 
no Sn, Sm: mem(Sn, L1) AND mem(Sm, L2), flow_dep(Sn, Sm, any) OR  

out_dep(Sn, Sm, any) OR anti_dep(Sn, Sm, any); 
// No definition reaching prior to loops 
no Si, Sj, Sk: mem(Sj, L1) AND mem(Sk, L2), flow(Si, Sj, any) AND  

anti_dep(Sj, Sk, any) AND (Si ≠ Sk); 
ACTION 

modify(L1.head.opr1, L2.head.label); 

modify(L2.end.opr1, L1.end.label); 

delete(L1.end); 

delete(L2.head); 
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APPENDIX B RESOURCE MODEL FOR COMPUTATION 

Table B.1:  Computation resource model for an Intel IA-32 machine using Mach SUIF 

representation 

Operation Latency 

CVT 1 
LDA 1 

LDC 1 

ADD 1 

SUB 1 

NEG 1 

MUL 3 

DIV 19 

REM 19 

MOD 19 

ABS 1 

MIN 1 

MAX 1 

NOT 1 

AND 1 

IOR 1 

XOR 1 

ASR 1 

LSL 1 

LSR 1 

ROT 1 
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Operation Latency 

MOV 1 
STR 2 

MEMCOPY 1 

SEQ 1 

SNE 1 

SL 1 

SLE 1 

BTRUE 1 

BFALSE 1 

BEQ 1 

BNE 1 

BGT 1 

BLE 1 

BLT 1 

JMP 1 

JMPI 1 

MBR 1 

RET 1 
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APPENDIX C EXPERIMENTAL RESULTS FOR ATHLON MACHINE 

C.1 HEURISTIC-DRIVEN APPROACH 

Table C.1: Improvement of heuristic-driven PRE and LICM with different limits 

Heuristic-driven PRE Heuristic-driven LICM Benchmark 
0 4 8 16 0 4 8 16 

gzip 3.50 3.75 3.78 4.10 2.90 3.29 5.40 3.27 
vpr 1.22 0.75 1.81 1.83 - -0.38 0.52 0.69 
mcf 2.37 2.35 2.31 2.22 2.50 2.62 2.58 2.47 

parser 1.25 1.50 1.70 1.35 2.55 2.86 1.99 2.23 
vortex 4.73 5.25 4.66 3.86 4.88 5.69 4.99 5.28 
bzip2 7.35 7.52 8.19 7.91 7.02 7.35 6.70 4.57 
twolf 1.07 0.88 1.14 0.02 0.52 0.38 2.14 1.91 

bitcount 6.8 6.8 8.69 9.53 6.35 6.35 8.99 10.2
dijkstra 3.1 3.5 3.6 0 3.2 0 0 -3.1 

FFT 1.12 1.21 1.69 1.23 2.13 1.93 2.85 -0.3 
jpeg 9.13 9.16 10.0 8.69 10.1 10.5 9.5 9.23 
sha 8.64 10.7 8.2 8.2 9.34 11.2 8.24 7.33 
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C.2 PERFORMANCE BENEFIT OF PROFIT-DRIVEN PRE, LICM, AND VN 
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Figure C.1: Dynamic instruction count improvement of PRE 
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Figure C.2: Run-time performance improvement of PRE 
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Figure C.3: Dynamic instruction count improvement of LICM 
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Figure C.4: Run-time performance improvement of LICM 
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Figure C.5: Dynamic instruction count improvement of VN 
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Figure C.6: Run-time performance improvement of VN 
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C.3 COMPILE-TIME OVERHEAD 

Table C.2: Compile-time for PRE 

Full Compile-time One Pass Compile-time Benchmark 
A-PRE H over A P over A-PRE H over P over A 

gzip 42 7.48% 16.14% 9.14 35.26% 61.34% 
vpr 128.38 50.33% 68.25% 36.32 76.35% 101.18% 
mcf 20.89 38.82% 46.00% 3.96 59.39% 71.15% 

parser 100.67 22.18% 35.40% 25.72 66.68% 91.23% 
vortex 490.48 17.30% 29.08% 83.23 55.82% 76.96% 
bzip2 33.77 26.15% 30.59% 9.97 70.15% 88.91% 
twolf 755.55 43.87% 57.13% 192.19 89.93% 102.12% 

bitcount 6.33 7.03% 10.65% 1.23 57.19% 63.24% 
dijkstra 1.13 10.93% 13.86% 0.23 25.66% 49.32% 

FFT 4.59 9.12% 13.93% 1.01 42.23% 56.18% 
jpeg 34.34 39.89% 51.78% 6.18 79.13% 101.43% 
sha 2.99 10.59% 15.88% 0.59 24.26% 38.39% 

average -- 23.64% 32.39% -- 56.84% 75.12% 

 

Table C.3: Compile-time for LICM 

Full Compile-time One Pass Compile-time Benchmark 
A-LICM H over P over A A- LICM H over P over A

gzip 47.8 23.51% 27.80% 13.45 59.36% 70.13% 
vpr 128 14.84% 25.78% 33.52 56.92% 75.42% 
mcf 20.8 32.69% 39.28% 4.93 46.23% 71.35% 

parser 109.3 22.11% 26.43% 30.15 59.27% 86.39% 
vortex 492.1 11.24% 15.63% 90.18 38.21% 49.51% 
bzip2 38.59 25.81% 33.89% 13.14 55.65% 76.15% 
twolf 591 38.37% 55.04% 160.14 89.04% 130.49% 

bitcount 6.82 4.32% 7.54% 1.68 19.58% 28.13% 
dijkstra 1.13 7.55% 10.12% 0.31 12.49% 16.38% 

FFT 4.66 34.37% 40.49% 1.31 61.13% 84.62% 
jpeg 25.23 21.23% 29.03% 6.23 57.69% 73.18% 
sha 2.89 18.98% 26.61% 0.89 39.76% 56.23% 

average -- 21.25% 28.14% -- 49.61% 68.17% 
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Table C.4: Compile-time for VN 

Full Compile-time One Pass Compile-time benchmark 
A-LICM P over A A- LICM P over A 

gzip 46.93 15.77% 6.15 28.13% 
vpr 127.06 15.14% 17.98 26.52% 
mcf 25.57 15.02% 3.13 22.64% 

parser 96.25 18.02% 14.16 32.85% 
vortex 508.94 14.73% 60.52 26.94% 
bzip2 28.35 17.39% 3.25 49.39% 
twolf 283.35 16.83% 40.12 35.08% 

bitcount 7.25 13.12% 1.81 25.25% 
dijkstra 1.89 13.19% 0.23 25.02% 

FFT 5.54 18.24% 0.89 43.35% 
jpeg 30.11 16.65% 4.72 38.04% 
sha 3.12 12.19% 0.53 28.13% 

average -- 15.52% -- 31.78% 
 

C.4 MODEL VERIFICATION 

The prediction accuracy for PRE, LICM and VN is the same as what are reported in Table 4.4, 

Table 4.5 and Table 4.6. 
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