

MODEL-DRIVEN CODE OPTIMIZATION

University of Pittsburgh

2006

Submitted to the Graduate Faculty of

Arts and Sciences in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

by

Min Zhao

B.E. Computer Science and Engineering, Xi’an Jiaotong University, P.R. China, 1996

M.S. Computer Science, University of Pittsburgh, 2001

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by D-Scholarship@Pitt

https://core.ac.uk/display/12208877?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 ii

UNIVERSITY OF PITTSBURGH

FACULTY OF ARTS AND SCIENCES

This dissertation was presented

by

Min Zhao

It was defended on

August 4, 2006

and approved by

Bruce R. Childers, PhD, Assistant Professor, University of Pittsburgh

Mary Lou Soffa, PhD, Professor, University of Virginia

Youtao Zhang, PhD, Assistant Professor, University of Pittsburgh

Peter Lee, PhD, Professor, Carnige Mellon University

Dissertation Co-adviors: Dr. Bruce R. Childers, Assistant Professor, University of Pittsburgh

and Dr. Mary Lou Soffa, Professor, University of Virginia

 iii

Copyright © by Min Zhao

2006

 iv

Although code optimizations have been applied by compilers for over 40 years, much of the

research has been devoted to the development of particular optimizations. Certain problems with

the application of optimizations have yet to be addressed, including when, where and in what

order to apply optimizations to get the most benefit. A number of occurring events demand these

problems to be considered. For example, cost-sensitive embedded systems are widely used,

where any performance improvement from applying optimizations can help reduce cost.

Although several approaches have been proposed for handling some of these issues, there is no

systematic way to address the problems.

This dissertation presents a novel model-based framework for effectively applying

optimizations. The goal of the framework is to determine optimization properties and use these

properties to drive the application of optimizations. This dissertation describes three framework

instances: FPSO for predicting the profitability of scalar optimizations; FPLO for predicting the

profitability of loop optimizations; and FIO for determining the interaction property. Based on

profitability and the interaction properties, compilers will selectively apply only beneficial

optimizations and determine code-specific optimization sequences to get the most benefit. We

implemented the framework instances and performed the experiments to demonstrate their

effectiveness and efficiency. On average, FPSO and FPLO can accurately predict profitability

90% of the time. Compared with a heuristic approach for selectively applying optimizations, our

model-driven approach can achieve similar or better performance improvement without tuning

the parameters necessary in the heuristic approach. Compared with an empirical approach that

experimentally chooses a good order to apply optimizations, our model-driven approach can find

similarly good sequences with up to 43 times compile-time savings.

This dissertation demonstrates that analytic models can be used to address the effective

application of optimizations. Our model-driven approach is practical and scalable. With model-

driven optimizations, compilers can produce higher quality code in less time than what is

possible with current approaches.

MODEL-DRIVEN CODE OPTIMIZATION

Min Zhao, Ph.D.

University of Pittsburgh, 2006

 v

TABLE OF CONTENTS

LIST OF TABLES ...VIII

LIST OF FIGURES .. IX

ACKNOWLEDGEMENTS ...XI

1.0 INTRODUCTION.. 1

1.1 MOTIVATION .. 1

1.2 OVERVIEW OF THIS RESEARCH .. 4

1.3 ORGANIZATION OF THIS DISSERTATION... 5

2.0 BACKGROUND AND RELATED WORK .. 7

2.1 PRIOR WORK .. 7

2.1.1 Empirical ... 9

2.1.2 OSE (Analytic Resource Model-based)... 10

2.1.3 Jalapeño (Experimental Resource Model-based) 10

2.1.4 Unimodular (Analytic Model-based) .. 11

2.1.5 Analytic Interaction.. 12

2.2 PRIOR WORK AND THIS RESEARCH... 13

3.0 OVERALL DESIGN OF THE MODEL-BASED FRAMEWORK 15

3.1 COMPONENTS OF THE FRAMEWORK.. 16

3.1.1 Code Models .. 16

3.1.2 Optimization Models .. 17

3.1.3 Resource Models ... 18

3.1.4 Engine... 19

3.2 USES OF THE FRAMEWORK... 20

4.0 FPSO: PREDICTING PROFITABILITY OF SCALAR OPTIMIZATIONS 21

4.1 CODE MODELS FOR REGISTERS AND COMPUTATION..................... 23

4.2 OPTIMIZATION MODELS .. 23

4.2.1 PRE Optimization Model ... 24

 vi

4.2.2 LICM Optimization Model .. 25

4.2.3 VN Optimization Model ... 26

4.2.4 Register Allocation Optimization Model .. 29

4.2.5 Other Scalar Optimizations ... 30

4.3 RESOURCE MODELS FOR REGISTERS AND COMPUTATION.......... 31

4.4 PROFITABILITY ENGINE... 31

4.5 AN EXAMPLE OF PROFIT-DRIVEN VN.. 36

4.6 EXPERIMENTAL RESULTS ... 39

4.6.1 Selectively Applying Optimizations .. 39

4.6.1.1 A heuristic approach .. 40

4.6.1.2 Comparing prediction accuracy.. 42

4.6.1.3 Comparing performance improvement.. 45

4.6.1.4 Comparing compile-time overhead... 49

4.6.2 Searching for Code-specific Optimization Sequences 53

4.6.2.1 Comparing compile-time overhead... 54

4.6.2.2 Comparing performance improvement.. 55

5.0 FPLO: PREDICTING PROFITABILITY OF LOOP OPTIMIZATIONS 57

5.1 CODE MODEL FOR CACHE... 57

5.2 OPTIMIZATION MODELS .. 59

5.2.1 Loop Interchange .. 59

5.2.2 Loop Unrolling .. 60

5.2.3 Loop Tiling .. 61

5.2.4 Other Loop Optimizations ... 63

5.3 CACHE MODEL... 63

5.4 PROFITABILITY ENGINE... 65

5.5 EXPERIMENTAL RESULTS ... 66

5.5.1 Model Accuracy .. 66

5.5.2 Comparing with Always-applying Approach... 69

5.5.3 Choosing the Best Optimization .. 73

5.5.4 Compile-time Overhead for Prediction .. 74

6.0 FIO: DETERMINING THE INTERACTION PROPERTY................................. 76

 vii

6.1 CODE MODEL FOR INTERACTION... 77

6.2 A SPECIFICATION LANGUAGE.. 78

6.2.1 SpeLO PRECONDITION Section... 79

6.2.2 SpeLO ACTION Section .. 80

6.3 OPTIMIZATION MODELS .. 80

6.3.1 Dead Code Elimination... 81

6.3.2 Partial Redundancy Elimination... 81

6.3.3 Value Numbering.. 82

6.3.4 Other Optimizations ... 84

6.4 INTERACTION ENGINE.. 84

6.4.1 Generating Specific Conditions ... 86

6.4.2 Matching Conditions .. 90

6.5 AN EXAMPLE OF DETERMINING THE INTERACTION 92

6.6 USING INTERACTION TO ORDER OPTIMIZATIONS........................... 94

6.7 EXPERIMENTAL RESULTS ... 95

6.7.1 Evaluation Function: the Number of Optimizations 96

6.7.1.1 Compile-time overhead .. 96

6.7.1.2 Performance improvement .. 98

6.7.1.3 Memory requirement ... 99

6.7.2 Evaluation Function: Profitability .. 100

6.7.2.1 Compile-time overhead .. 100

6.7.2.2 Performance improvement .. 101

6.7.2.3 Memory requirement ... 103

7.0 CONCLUSIONS .. 104

7.1 SUMMARY OF CONTRIBUTIONS .. 104

7.2 LIMITATIONS.. 106

7.3 FUTURE WORK... 107

APPENDIX A OPTIMIZATION MODELS.. 110

APPENDIX B RESOURCE MODEL FOR COMPUTATION.. 118

APPENDIX C EXPERIMENTAL RESULTS FOR ATHLON MACHINE 120

BIBLIOGRAPHY... 126

 viii

LIST OF TABLES

Table 2.1: Approaches to explore the effective application of optimizations 8

Table 4.1: Incremental computation of the new register code model... 32

Table 4.2: Updates of the computation code model ... 33

Table 4.3: Computing profit on registers (Rtotal) and computation (Ctotal).................................... 35

Table 4.4: Prediction accuracy of H-PRE and P-PRE .. 42

Table 4.5: Prediction accuracy of H-LICM and P-LICM... 43

Table 4.6: Prediction accuracy of P-VN... 44

Table 4.7: Compile-time for PRE... 50

Table 4.8: Compile-time for LICM .. 51

Table 4.9: Compile-time for VN... 52

Table 5.1: Terms used in cache model.. 64

Table 5.2: Prediction accuracy for single-loop nest benchmarks ... 68

Table 5.3: Prediction accuracy for multi-loop nest benchmarks .. 69

Table 5.4: Compile-time overhead for prediction (millisecond) .. 74

Table 6.1: Semitics of primitive operations.. 80

Table 6.2: Generating enabling and disabling conditions for check_code_pattern 86

Table 6.3: Generating enabling and disabling conditions for check_depend 88

Table 6.4: Generating post conditions for primitive operations ... 90

Table 6.5: Compile-time overhead of three approaches (minutes)... 97

Table 6.6: Comparing the number of optimization applied.. 98

Table 6.7: Memory requirement of our approach (KB).. 99

Table 6.8: Compile-time overhead of three approaches (minutes)... 101

Table 6.9: Memory requirement of our approach (KB).. 103

 ix

LIST OF FIGURES

Figure 3.1: Overall design of model-based framework .. 15

Figure 4.1: Structure of FPSO .. 21

Figure 4.2: An example of PRE impacting registers .. 22

Figure 4.3: PRE optimization model .. 25

Figure 4.4: An example of LICM ... 26

Figure 4.5: LICM optimization model.. 26

Figure 4.6: An example of VN ... 27

Figure 4.7: VN optimization model .. 28

Figure 4.8: Register allocation optimization model.. 30

Figure 4.9: Impact of PRE on computation code model... 34

Figure 4.10: An example of model-driven VN... 37

Figure 4.11: Improvement of heuristic-driven PRE with different limits 41

Figure 4.12: Improvement of heuristic-driven LICM with different limits.................................. 41

Figure 4.13: Memory access improvement for PRE... 46

Figure 4.14: Run-time performance improvement for PRE ... 46

Figure 4.15: Memory access improvement for LICM.. 47

Figure 4.16: Run-time performance improvement for LICM... 47

Figure 4.17: Memory access improvement for VN .. 48

Figure 4.18: Run-time performance improvement for VN... 48

Figure 4.19: Compile-time of the experimental and model-based approaches 54

Figure 4.20: Performance of three approaches ... 55

Figure 5.1: A loop nest and its code model .. 58

Figure 5.2: Loop interchange optimization model.. 60

Figure 5.3: Loop unrolling optimization model.. 60

 x

Figure 5.4: Loop tiling optimization model.. 62

Figure 5.5: Loop interchange on irkernel with different cache models.. 67

Figure 5.6: Performance impact of always-applying approach .. 72

Figure 5.7: Improvement of profit-driven approach vs. always-applying 72

Figure 5.8: Performance impact of profit-driven approach .. 72

Figure 5.9: Accuracy and distribution of the most beneficial optimizations................................ 73

Figure 6.1: Overview of FIO .. 76

Figure 6.2: The format of SpeLO specification .. 78

Figure 6.3: DCE optimization model.. 81

Figure 6.4: PRE optimization model ... 82

Figure 6.5: VN optimization model .. 83

Figure 6.6: The overview algorithm for the interaction engine .. 85

Figure 6.7: Matching Oi’s E/D conditions with post conditions... 91

Figure 6.8: An example of determining the interaction.. 93

Figure 6.9: Determining a good optimization sequence using interaction 95

Figure 6.10: Comparing performance improvement .. 99

Figure 6.11: Comparing performance improvement .. 102

 xi

ACKNOWLEDGEMENTS

During the phase of this research I have been aided by a number of people. I take this

opportunity to thank them for the various contributions that they have made to help me reach my

goals.

I would like to express my deepest appreciation and thanks to my co-advisors, Dr. Bruce

R. Childers and Dr. Mary Lou Soffa for their support, encouragement, friendship, and guidance.

Without them, this dissertation would never have happened. I am also grateful to the members of

my thesis committee, Dr. Youtao Zhang and Dr. Peter Lee, for their review and suggestions

concerning this research.

I would also like to thank my fellow graduate students. I am happy to be officemate with

Yuqiang, Naveen, Jonathan and Jason. It is fun and helpful to discuss various research questions

with them.

I would especially like to thank my families. Thanks to my husband, Shuyi, for his

constant love, emotional support and understanding through all the stages of this degree. I give

my deepest appreciation to my son, Raymond, for his unconditional love and being my

motivation to finish. I would like to thank my parents, parents-in-law, and my sister for their love

and overwhelmingly faith in my ability to achieve my goals.

Last, I would like to thank the University of Pittsburgh and the cast of thousands that

make the University of Pittsburgh such a wonderful place to learn. This research has been

supported in part by the National Science Foundation, Next Generation Software, grants CNS-

0305198 and CNS-0203945, and an Andrew Mellon Graduate Fellowship.

1

1.0 INTRODUCTION

This dissertation addresses the effective application of code optimizations. Although compilers

have applied optimizations for over 40 years, certain properties of optimizations are still not well

understood. This dissertation describes a model-based framework for determining optimization

properties, which are then used to drive the application of optimizations to get the most benefit.

1.1 MOTIVATION

The field of code optimization has been extremely successful over the past 40 years. As new

languages and new architectures have been introduced, new optimizations have been developed

to target and exploit both the software and hardware innovations. Various reports from research

and commercial projects have indicated that the performance of software can be improved by 20

to 40% with aggressive optimization [38].

Most of the success in the field has come from the development of particular

optimizations, such as Partial Redundancy Elimination [6] and Path Sensitive Optimization [5].

However, it has long been known that there are various problems with the application of

optimizations. First, optimizations may degrade performance in certain circumstances. For

example, Briggs and Cooper reported improvements ranging from +49% to –12% for their

algebraic reassociation optimization [6]. However, so far there is no efficient way to determine

the profitability of optimizations to avoid the performance degradation. Second, optimizations

enable and disable other optimizations so the order of applying optimizations can have an impact

on performance [15], [46], [51]. Also, the optimization configuration can impact the

effectiveness of optimizations (e.g., how many times to unroll a loop or tile size) [36], [14], [26].

However, typically, compilers apply optimizations in a predetermined order and assume a fixed

2

optimization configuration. The choice of the order and optimization configuration is guided by a

compiler writer’s expertise and used for all programs. In some compilers, especially high-

performance compilers for parallel computing systems, the choice can also be directed by users’

specifications [19]. It is unrealistic to expect that a single choice of order and optimization

configuration can achieve the best performance for every program. Because of these problems,

optimizing compilers are not achieving the potential benefits of applying optimizations.

Instead of trying to understand and solve the problems, the compiler community has

ignored them for the most part because there were performance improvements. However, a

number of events are forcing these problems to be considered. First, because of the continued

growth of embedded systems and the use of high level languages in writing software for

embedded systems, there is a need for high quality optimizing compilers that can handle the

challenges offered by embedded systems. For example, resource constraints are more severe than

in desktop computers and thus optimizing compilers must be able to intelligently apply

optimizations to better satisfy these constraints. Furthermore, embedded systems have irregular

resources (i.e., irregular register file), and thus optimizing compilers must be able to consider

these resources and apply optimizations to exploit them. Also, embedded systems are very cost-

sensitive. Any performance improvement can help reduce cost. Another event that has brought

these problems to focus is the trend toward dynamic optimization. Dynamic optimization

requires that we understand optimizations in order for optimizations to be effective. It is unclear

when and where to apply optimizations dynamically and how aggressive optimizations can be

and still be profitable after factoring in the cost of applying optimizations. Lastly, as new

optimizations continue to be developed, the incremental performance improvement is shrinking.

The question is whether the field has reached its limit or the problems that have been ignored

simply limit the progress. We believe the latter is true.

To systematically tackle these problems, we need to identify and study the properties of

optimizations, especially those that target the application of optimizations. For example, to

selectively apply only beneficial optimizations, we need to determine the impact of applying an

optimization at a particular code point given the resources of the targeted platform (i.e.,

profitability property). To efficiently determine a code-specific optimization sequence, we also

need to detect the disabling and enabling interferences among optimizations (i.e., the interaction

property).

3

There are a number of challenges in determining the properties of optimizations. First,

optimization properties depend on many factors, including 1) the specific code being compiled,

2) the semantics and implementation of optimizations, and 3) the target machine resources. For

example, the profitability of a given optimization varies widely as a function of the input

program and machine resources. These factors have different characteristics. To determine

optimization properties with accuracy, all factors need be characterized and formalized. Also, for

different optimizations, the factors that dominantly impact optimization properties are different.

For example, loop behavior dominates data cache performance [36]. Thus, for loop

optimizations, the cache is the dominant resource impact and can be used as an indicator for

overall profitability. The knowledge of the dominant factors is important in determining

optimization properties.

Previous research on optimization properties has been very limited [15]. However, more

recently, there has been a flurry of research activity focusing on studying optimization

properties. There are generally two approaches. One approach is through formal techniques.

These include developing formal specifications of optimizations, analytic models, and proofs

through model checking and theorem proving. This approach has been used to prove the

soundness and correctness of optimizations [33], [35], [39]. Work has also been done to

automatically generate the implementation of optimizations and detect interactions among

optimizations through formal specifications [50], [51], [28], [32]. Another approach uses

experimental techniques. That is, after actually performing optimizations, the properties are

experimentally determined (e.g., executing the code to evaluate performance for determining

profitability). The empirical approach has been used to determine the correctness of an optimizer

through comparing the unoptimized and optimized code [23]. It has also been used to determine

the profitability and interactions of optimizations to find a good order and configuration to apply

optimizations [1], [15], [26], [46], [48].

Although the empirical approach can be effective in addressing some of the problems

with the application of optimizations, a major disadvantage is its high cost and scalability [15].

For example, to search for good optimization sequences, the empirical approach may involve

dynamic measures (e.g., dynamic instruction count or cycle count). And thus, the execution of

the program is required. It may take hours, or even days, to find a good optimization sequence

4

for a program [30]. Ideally, we need a systematic approach for addressing the effective

application of optimizations, which is practical, efficient and scalable [55].

1.2 OVERVIEW OF THIS RESEARCH

This research presents an effective model-driven approach to address the problems with the

application of optimizations. It develops a general framework that uses analytic models to study

optimization properties. With the framework, it presents instances that determine profitability

and the interaction properties. Given code context, machine resources and the optimization,

profitability can be accurately predicated and the interactions among a set of optimizations can

be automatically detected.

This research develops different techniques for effectively applying optimizations based

on optimization properties. Profitability is used to apply only beneficial optimizations to avoid

performance degradation. Profitability can also be used to evaluate candidate sequences in

searching for a good order to apply optimizations. The interaction property is used to determine a

code-specific optimization sequence. The search space is greatly reduced by using the disabling

and enabling interactions among optimizations.

Using the general framework, this research presents two framework instances, FPSO and

FPLO, for predicting the profitability of scalar and loop optimizations. To predict profitability,

models of machine resources, optimizations and code are developed. We analyzed the machine

resources and found that the registers, computation (i.e., functional units) and cache are the most

important factors that impact performance. We developed a model for each machine resource to

describe the configuration and the cost to use the resource. For scalar and loop optimizations, the

resources that dominantly impact profitability are different. Thus, FPSO considers registers and

computation, and FPLO considers cache. We studied the semantics of optimizations and

developed models for a set of scalar optimizations and loop optimizations. These optimization

models specify how the optimizations change the code and thus impact the use of machine

resources. We also automatically extract code models from the program to express those code

characteristics that are changed by optimizations and impact the use of machine resources. In

5

FPSO and FPLO, there is a profitability engine that uses the models to predict the profit of

applying an optimization at any code point where the optimization is applicable.

This research also presents a framework instance, FIO for detecting the interaction

property. To automatically detect interactions among a set of optimizations, the models of

optimizations and code are developed. An optimization specification language, SpeLO, is

designed to express (1) the conditions under which an optimization can be safely applied and (2)

the actions of applying the optimization in the code. An optimization model using SpeLO is

developed for each optimization. As part of FIO, there is an interaction engine that uses these

models to generate the specific enabling, disabling and post conditions for each optimization at a

program point. These enabling and disabling conditions are then matched with the post

conditions of other optimizations to determine the interaction property.

Our framework instances have been developed, implemented and experimentally

evaluated. We compare our model-driven approach with a heuristic approach for selectively

applying optimizations. Our model-driven approach can perform as good as, or even better than,

the heuristic approach without having to tune parameters necessary in the heuristic approach. We

compare our model-driven approach with an empirical approach that searches for code-specific

optimization sequences. Our model-driven approach can find similarly good sequences as the

empirical approach with much less compile-time.

This research demonstrates that the analytic models can be used to effectively address the

problems with the application of optimizations. Our model-driven approach is practical and

scalable. With model-driven optimizations, compilers can produce higher quality code in less

compile-time than what is possible with current approaches.

1.3 ORGANIZATION OF THIS DISSERTATION

The remainder of this dissertation is organized as follows. Chapter 2.0 presents prior work on

tackling the problems with the application of optimizations. We categorize the previous research

efforts by the models used in their approaches. The relationship of this research and prior work is

also discussed. Chapter 3.0 discusses the overall design of our framework. It describes the

components and uses of the framework. Chapter 4.0 presents the framework instance, FPSO, for

6

predicting the profitability of scalar optimizations. In this chapter, models for code, scalar

optimizations and machine resources are presented. The profitability engine is also described to

show how to use models to make a prediction. The experimental results shown in this chapter

demonstrate the prediction accuracy and the usefulness of FPSO. Similarly, Chapter 5.0 presents

the framework instance, FPLO, for predicting the profitability of loop optimizations. Chapter 6.0

presents the framework instance, FIO, for automatically detecting the enabling and disabling

interactions among optimizations, considering code context. It describes the code model,

optimization models and the interaction engine. It also shows how to use the interaction property

to determine a code-specific optimization sequence. We compare our model-driven approach

with an empirical approach for searching for code-specific optimization sequences. The

experimental results demonstrate that our model-driven approach is practical and scalable.

Conclusions, limitations and directions for future research are discussed in Chapter 7.0 .

7

2.0 BACKGROUND AND RELATED WORK

In the past 40 years, much of the research in the compiler community has been devoted to the

development of particular optimizations (e.g., path sensitive optimization [5]) and program

analysis techniques (e.g., demand-driven data flow analysis [16]). Since this dissertation is

focused on using models to study optimization properties and effectively apply optimizations,

this related work section describes techniques that explore the effective application of

optimizations. In this section, we discuss these related approaches. We categorize them

according to the models used in the approaches. We also discuss the optimization properties and

the problems that have been addressed in each approach. Lastly, the relationship of this research

and prior work is discussed.

2.1 PRIOR WORK

As stated in Chapter 1.0 , due to the problems with the application of optimizations and the use

of fixed strategies for handling these problems (e.g., always applying applicable optimizations,

using a fixed order to apply optimizations), traditional compilers do not achieve the potential

benefits from optimizations. There have been several approaches to address some of these

problems. Table 2.1 categorizes these approaches. In the table, each row represents a class of

approaches that uses similar models to explore the effective application of optimizations. For

each row, there are four columns. The first column gives a name for these approaches. The

second column indicates optimization properties that were studied in these approaches. The third

column shows models that were used. The last column gives the uses of these approaches. To

facilitate the discussion, we first describe the terminology used in the table.

8

• A code model represents code characteristics that are changed by optimizations and

affect the use of machine resource and the code conditions needed before applying

optimizations to maintain program semantics.

• An optimization model expresses the changes made by an optimization on code

characteristics and the pre-and post conditions of the optimization.

• An analytic resource model estimates the cost to use a resource by analyzing the code

characteristics.

• An experimental resource model estimates the cost to use a resource by

experimentally executing the program.

Table 2.1: Approaches to explore the effective application of optimizations

Approach Properties Models Uses

Empirical
Profitability
Interaction
Code size

No Order optimizations
Configure optimizations

OSE Profitability Analytic resource model Configure optimizations

Jalapeño Profitability Experimental resource model Select optimization levels

Profitability
Code model

Loop optimization models
Analytic resource model Unimodular

Interaction Heuristic & experimental

Order optimizations
Configure optimizations
Combine optimizations

Analytic
interaction Interaction Optimization models Detect interaction

Profitability
Code model

Loop & scalar optimization models
Analytic resource models This

research
Interaction Code model

Optimization models

Profit-driven optimization
Order optimizations

9

2.1.1 Empirical

The representation of an empirical approach is shown in the second row of Table 2.1. In this

approach, optimizers search the optimization space, apply optimizations, and then evaluate

performance by executing the optimized code. The properties of optimizations are determined by

performing optimizations and experimentally evaluating their performance. For example, the

interactions among optimizations are detected by applying an optimization on the code and

recomputing the data flow needed for the analysis of other optimizations. This approach has been

used to discover a code-specific optimization sequence [1], [15], [29], [30], [31] and to select an

optimization configuration [17], [26].

Cooper et al. [1], [15] proposed a compiler framework, called an adaptive optimizing

compiler, which explores different orders to apply optimizations at compile time. In their system,

the traditional fixed-order optimizer is replaced with a pool of optimizations, a steering algorithm

and an explicit objective function. An objective function is the criteria to optimize the code; for

example, improving performance, reducing the code size or reducing energy consumption. The

steering mechanism uses a search algorithm (e.g., a genetic algorithm) to select an optimization

sequence to transform the code. The compiler evaluates the performance of the optimization

sequence by executing the optimized code. The results serve as an input to the steering algorithm

to refine future choices. Through repeated experimentation, the steering algorithm discovers a

good optimization sequence, given the source code, the available optimizations, and the target

machine. They performed a large experimental study using a prototype adaptive compiler. Their

findings indicate that for the cost of 200 to 4550 compilations and executions, they can find

sequences that are 15 to 25% better than a fixed-order sequence.

In a similar approach, the select-best-from function in VISTA [29], [30], [31] selects an

optimization sequence that maximizes the objective function (i.e., reducing the code size or

improving the performance). In this approach, an algorithm is designed to carefully and

aggressively prune the search space and thus make exhaustive enumeration feasible for 98% of

the functions in their benchmark suite. However, most of their benchmarks are from MiBench

[34] and have relatively small functions.

Knijnenburg et al. [17], [26] propose an iterative compilation approach to explore

optimization configurations. They implement a compiler that traverses the optimization space for

10

different configurations of loop unrolling, loop tiling and padding. They apply optimizations

with different configurations and execute the transformed code to choose the best optimization

configuration.

Compared with other approaches, the empirical approach evaluates the properties of

optimizations via execution, which is its major disadvantage (i.e., high overhead) [15], [46]. As

Triantafyllis et al. [46] point out, the adaptive optimizing compiler’s proof-of-concept

experiment, which involved a small kernel of code, took about a year to complete. Moreover, an

optimizer that uses search techniques must be able to remove optimizations when the candidate

of sequence or configuration is not desirable. This removal may also have high time or space

overhead.

2.1.2 OSE (Analytic Resource Model-based)

Triantafyllis et al. [46], [47] propose an approach to discover a best optimization configuration

based on an analytic resource model (shown in the third row of Table 2.1). In this approach, the

profitability of optimizations is determined by using this analytic resource model. They present

an Optimization-Space Exploration (OSE) compiler. To search the optimization space, OSE

prunes the search space in advance and searches within a small number of promising

optimization configurations. After applying optimizations with a candidate configuration, OSE

uses an analytic resource model (i.e., static estimator) to evaluate the performance of the

optimized code. In their approach, the code and optimizations are not modeled. Thus, OSE still

needs to apply optimizations to get the optimized code and to remove optimizations when not

desirable. Because of the high compile-time overhead, they apply their techniques only to hot

code segments.

2.1.3 Jalapeño (Experimental Resource Model-based)

Arnold et al. [2] propose an approach to select an optimization level based on an experimental

resource model, shown in the fourth row of Table 2.1. In this approach, the profitability of

optimizations is determined by integrating parameters achieved from offline experiments. They

present the adaptive optimization in the Jalapeño JVM. Optimizations are grouped into several

11

levels. When deciding at which optimization level a method should be recompiled, they use a

simple benefit-cost analysis: they estimate the profitability of each optimization level as a

constant based on offline measurements and they use a function of method size to estimate the

cost of recompilation. This approach is simple and can be used to select the optimization level at

run time. However, it neglects many aspects of optimization behavior. For example, the benefits

of an optimization level should be varied according to code context. Also, for an optimization

level, the order of applying optimizations impacts the effectiveness of this optimization level.

2.1.4 Unimodular (Analytic Model-based)

As shown in the fifth row of Table 2.1, other researchers have explored the use of code,

optimization and analytic resource models to determine the profitability of optimizations. In this

approach, the interactions among optimizations are determined by heuristics and experiments.

This approach has been used for discovering a best sequence of optimizations [52], [42], [53],

optimization configuration [14], [11], [55], [25], [43] and combining optimizations [12], [13].

Sarkar [42] describes the IBM ASTI optimizer in the IBM XL FORTRAN compilers for

RS/6000 and PowerPC uniprocessors and symmetric multiprocessors. ASTI automatically

selects a sequence of loop optimizations for a given input program and a target processor to

improve utilization of the memory hierarchy and instruction–level parallelism. The selection is

based on an analytic memory cost model and optimization models of loop optimizations. Wolf

and Lam [52] propose an algorithm that finds a sequence of loop optimizations to improve the

locality of a loop nest. The algorithm is based on two components: a mathematical formulation

of reuse and locality (i.e., analytic cache model) and a loop optimization theory that unifies the

various transformations as unimodular matrix transformations (i.e., optimization models for loop

optimizations). Wolf et al. [53] present a compiler algorithm that intelligently searches the

various optimizations, using analytic models of resource and optimizations to select the sequence

of optimizations leading to the best performance. The analytic resource model they use estimates

total machine cycles taking into account cache misses, software pipelining, register pressure and

loop overhead. All of these approaches use heuristics to decide which optimizations should be

considered first, according to the potential enabling interactions. They check the applicability of

further loop optimizations to explore the interactions experimentally.

12

Another model-based approach derives a best optimization configuration. Coleman et al.

[14] and Sarkar et al., [43] present algorithms for choosing the best tile size based on the

optimization model for loop tiling and the resource model for cache. Chandramouli et al. [11]

and Kandemir et al. [25] choose the configuration for other optimizations, including data

reconstructing optimizations. Yotov et al. [55] use an analytic model to choose an optimization

configuration and compare with the empirical approach in ATLAS (a system for generating a

dense numerical linear algebra library, called the BLAS).

Click et al. [12], [13] propose a model-based approach to combine optimizations. They

formalize the optimizations as monotone analysis frameworks. When applying a monotone

analysis framework to a specific program, a set of equations (i.e., code model) can be derived

directly from the program. The equations have a maximal solution, called the Greatest Fixed

Point. To combine optimizations, monotone analysis frameworks are combined and a new

framework is produced. Also, the new code model can be derived by applying the resulting

framework. If the new code model is still monotonic and its maximal solution is better than the

combined maximal solution of individual code models, the combination yields better results.

Although these model-based approaches can be very efficient, they have some problems.

First, they do not always achieve good performance. Yotov et al. [55] showed that their analytic

model-based approach has an average of 7% performance decrease compared to the empirical

approach. Second, these approaches are not integrated into a general framework that is

applicable to other optimizations (e.g., scalar optimizations) and machine resources (e.g.,

registers).

2.1.5 Analytic Interaction

As shown in sixth row of Table 2.1, researchers have explored the use of models (i.e.,

specification language) to specify optimizations and to analytically study the interaction property

of optimizations [28], [50], [51], [32].

Knuth and Bendix [28] proposed an approach to detect the interaction property of

optimizations. They express optimizations as a set of rewrite rules. Their algorithm detects

potential conflicts and resolves them by introducing new rewriting rules, derived from the

existing set. Unfortunately their procedure is difficult to generalize.

13

Whitfield and Soffa [50], [51] describe a framework that enables the exploration, both

analytically and experimentally, of the interaction property of optimizations. They proposed a

specification language, Gospel, to express the pre- and post conditions of optimizations. They

detect the existence of interactions by examples and prove the non-existence of interactions

among optimizations. However, they can not automatically detect the interactions among

optimizations based on code context.

Lacey [32] introduces a specification language, TRANS, for automatically generating the

implementation of optimizations and formally analyzing optimizations. TRANS combines

elements of rewriting, temporal logic and logic programming. TRANS is used to prove the

soundness of optimizations and detect disabling interaction for a certain class of optimizations.

However, their algorithm for detecting disabling interaction is limited since it can not handle all

the optimizations described by TRANS.

2.2 PRIOR WORK AND THIS RESEARCH

In comparison with empirical approaches, the model-based approaches are very efficient in

addressing the effective application of optimizations. Yet, none of the previous model-based

work has been integrated into a general framework that can be used for studying different

properties of optimizations and is applicable to a wide range of optimizations and machine

resources.

This research (shown in the seventh row of Table 2.1), presents a general framework that

uses models to determine the properties of optimizations, including profitability and the

interaction property. The framework can also be extended to study other optimization properties,

such as the impact of optimizations on code size and power consumption. The framework

includes a variety of models, including 1) code models, 2) optimization models for scalar and

loop optimization, and 3) resource models for cache, registers and computation. Thus, it is

applicable to both scalar and loop optimizations. It also considers several machine resources,

which can be combined to determine overall profit.

14

Another difference between this research and previous model-based approaches is that

the interaction property of optimizations is determined by models instead of heuristics and

experiments. This research presents an automatic technique that considers code context to

determine the enabling and disabling interactions of a set of optimizations without actually

applying optimizations on the code.

Based on optimization properties, the framework can handle the problems with the

application of optimizations. For example, the framework can be used to perform profit-driven

optimization, which selectively applies only profitable optimizations to avoid performance

degradation. The framework can also be used to determine a code-specific order of applying

optimizations to get the most benefit.

15

3.0 OVERALL DESIGN OF THE MODEL-BASED FRAMEWORK

As described in Section 1.0 , properties of optimizations are difficult to determine because they

depend on a number of factors, including code, optimizations and resources. Furthermore,

several resources may impact overall performance. Thus, our approach is to develop models that

can express the characteristics of these factors. For example, to determine the profitability of an

optimization, we require models that are useful for predicting the impact of the optimization on

performance. Performance is generally affected by registers, computation and cache. So, we need

resource models for each of them, as well as the models for code and optimizations.

Figure 3.1: Overall design of model-based framework

Decisions

Use models to determine optimization properties

Code Models Optimization Models Resource Models

Properties

Code
characteristics

for determining
optimization

properties
(automatically)

Semantics, pre-
and post

conditions of
optimizations

(compiler writer)

Configuration
and the cost of
the resource

(compiler writer)

Optimizer

Code

Engine

Techniques to use properties to drive applying optimizations

Framework

16

Figure 3.1 shows the overall design of our model-based framework. In the framework,

there are three types of analytic models (code, optimization and resource models). The code

model is generated automatically by the optimizer. The models of optimizations and resources

are developed by a compiler writer. As part of the framework, there is an engine that processes

the models and determines optimization properties. Based on these properties, techniques are

designed to make decisions for optimizers on when, where and in what order to apply

optimizations to get the most benefit. The models in the framework are plug-and-play

components. When new models for code, optimizations or machine resources are needed, they

can be developed and easily added into the framework. Note our framework uses optimization

properties to decide how to effectively apply optimizations. Thus, to determine the properties of

optimizations, we do not require exact numbers but numbers “accurate enough” that the right

decisions as to when and what optimizations to apply can be made.

In this chapter, we first describe the components of the framework, including code

models, optimization models, resource models and the engine. Also, we discuss the framework’s

uses in effectively applying optimizations.

3.1 COMPONENTS OF THE FRAMEWORK

3.1.1 Code Models

The code model expresses characteristics of a code segment needed to determine optimization

properties. For example, to predict profitability, the code model needs to represent the code

characteristics that are changed by an optimization and impact the use of a machine resource.

Because several resources impact overall performance, there is a code model for each machine

resource. For example, there is a register code model to express live range information because

live ranges can be changed by an optimization and impact register uses. There is a computation

code model to specify the frequency of the occurrence for operations. There is also a code model

for cache to specify the iteration space and array reference sequence. For determining the

interaction property, we require the code model to represent the code characteristics that are

17

needed for verifying the pre-conditions of an optimization and are changed by the actions of an

optimization.

The code models are extracted from an intermediate representation of the program. The

code models are automatically generated by the optimizer for an optimization or a complete

function. When safe conditions for applying an optimization are detected, the code models for

the optimization are automatically generated by the optimizer to determine profitability. For

profitability, we assume that data flow information is available to determine if an optimization is

legal. If legal, we then predict the profit of applying the optimization. However, we could also do

the reverse: we could determine the hot regions of the code and the profitability of an

optimization in a region and if the transformation is profitable, use data flow analysis (in

particular, demand-driven data flow analysis [16]) to determine if the optimization is legal. The

code model can also be generated for a complete function before determining optimization

properties.

3.1.2 Optimization Models

Optimization models are written by the compiler engineer when developing a new optimization.

For predicting profitability, an optimization model expresses the semantics (i.e., effect) of an

optimization, from which the impact of the optimization on each resource can be determined. For

detecting the interaction property, an optimization model represents the conditions under which

an optimization can be safely applied and the code modifications that implement the

optimization.

The effect of an optimization is determined from the code changes that the optimization

introduces. Optimizations can cause non-structural and structural code changes, which can be

expressed by editing changes on a control flow graph. The edits are insert/delete a statement

(including its operation and operators), insert/delete a block and insert/delete an edge. All

optimization code changes can be expressed with these edits [4]. Thus, the code changes of an

optimization can be described as a series of basic edits. For example, constant propagation can

be represented as “delete variable v at statement s; insert constant c at statement s”.

To determine the profit of an optimization on a resource, we may need a model that

represents the impact of other optimizations on the resource. For example, to determine the

18

register profit, an optimization model for the register allocator must be developed. The

characteristics of the register allocator that need to be modeled are whether the allocator is local

or global and how it spills the live ranges (i.e., how the additional loads and stores are inserted

into the code). A model for the register allocator can be developed that approximates a particular

register allocation scheme; for example, graph coloring [10] or linear scan [40]. In this

dissertation, we are interested in the profit of optimizations on registers rather than the impact of

different register allocation schemes. Hence, we only need a representative optimization model

for register allocation, such as one for graph coloring.

In this research, optimizations models are developed for a number of scalar and loop

optimizations. They are copy propagation (CPP), constant propagation (CTP), dead code

elimination (DCE), loop invariant code motion (LICM), partial redundancy elimination (PRE),

global value numbering (VN), branch chaining (BRC), branch elimination (BRE), register

allocation, loop tiling (LPT), loop interchange (LPI), loop unrolling (LPU), loop reversal (LPR),

loop fusion (LPF), and loop distribution (LPD).

3.1.3 Resource Models

The profitability of optimizations depends on several machine resources, including registers,

functional units and cache. Our framework has a model for each resource, which describes the

resource configuration and benefit/cost information in using the resource. A resource model is

developed based on a particular platform. For example, to determine the register profit, we need

to know the number of available hardware registers and the cost of memory accesses (i.e., loads

and stores). When considering functional units, the computational operations available in the

architecture and their execution latencies are needed. The enabling and disabling interactions

exist because an optimization may create or destroy the conditions of applying another

optimization. Thus, no resource models are needed for detecting the interaction.

19

3.1.4 Engine

The models in the framework are descriptive and provide the information needed to determine

optimization properties. The other important component of our framework is the engine, which

uses the models to determine optimization properties.

To predict profitability, the engine inputs the code, optimization and resource models

after an optimization is detected to be safe. The engine uses information in the models to

compute the profit. The profit can be computed for one resource or for combined resources.

From an optimization model, the engine determines the code model changes caused by the

application of the optimization. It then applies these changes to the code model and generates a

new code model that represents the effect of the optimization. Finally, it uses the resource model

to determine the impact of the changes on the resource. The engine can also use profile

information (e.g., the basic block frequencies) in computing the profits.

For example, assume the register profit of an optimization is desired. The engine inputs

the register code model, an optimization model, a register allocation model and a register

resource model. Then it determines the changes on the live ranges (i.e., the register code model)

based on the optimization model. Since an optimization model expresses the semantics of the

optimizations as basic edits, the engine takes the edits and computes the changes on the live

ranges using an incremental dataflow algorithm [41]. The engine then uses a register allocation

model to determine how the spills (i.e., loads and stores) are changed according to these live

range changes. Finally, the engine computes the profit associated with the change in the spills.

To detect the interactions among a set of optimizations, the engine inputs the

optimization models and the code model. It then generates the specific enabling, disabling and

post conditions for each optimization opportunity at a program point. It then matches the

enabling and disabling conditions with the post conditions among all the optimization

opportunities and determines the interaction property.

20

3.2 USES OF THE FRAMEWORK

As previously discussed, there are several problems with the application of optimizations. Our

model-based framework can be used to address these problems based on optimization properties.

First, using our framework, the optimizer can perform profit-driven optimization. Once

the optimizer finds that an optimization is applicable, it generates the code models involved in

the optimization and triggers the engine to predict the profit of the optimization. When the

engine is triggered, it takes the code models, optimization models and resources models, updates

the code models and determines the profit on resources under consideration. Based on whether

there is a benefit or not, the optimizer applies the optimization accordingly. In this way,

performance can be improved by avoiding applying optimizations when they are not profitable.

Secondly, using our framework, the optimizer can determine code-specific optimization

sequences. There are several ways that the optimization properties can be used to decide the

order to apply optimizations for the most benefit. One is to use profitability. Previous work

showed the effectiveness of using genetic algorithm to discover code-specific optimization

sequences [15], [29], [30]. However, they experimentally evaluated the candidate sequences:

They performed optimizations and executed the optimized code to evaluate. Thus, the search

time is large. Using our framework, we can predict the profitability of optimizations in a

sequence without applying optimizations and executing the code. The search time can be reduced

by avoiding effort and time to perform the optimizations and execute the optimized code. To

determine the order of applying optimizations, the interaction property can be used. The

interaction can help prune the search space by knowing what optimizations are legal after

applying an optimization (through enabling and disabling relationships). According to an

evaluation function (e.g., the number of optimizations), we can select one optimization from the

legal optimizations. We can construct a good optimization sequence to maximize the evaluation

function. We also can combine profitability with the interaction property and use profitability as

the evaluation function to determine the optimization sequences.

Our framework also has other uses. For example, an optimizer can use the framework to

find a good configuration of an optimization. Instead of different optimization sequences,

different optimization configurations are evaluated, and the one with the best performance is

determined and used.

21

4.0 FPSO: PREDICTING PROFITABILITY OF SCALAR OPTIMIZATIONS

In this chapter, we describe a framework instance, called FPSO, for predicting the profitability of

scalar optimizations, including Partial Redundancy Elimination (PRE), Loop Invariant Code

Motion (LICM) and Value Numbering (VN). Because scalar optimizations have negligible effect

on cache (i.e., loop behavior dominates data cache performance [36]), we consider only two

machine resources: registers and computation (i.e., functional units). Figure 4.1 shows the

overall structure of FPSO. There are three kinds of analytic models in FPSO. Code models

include models for representing live ranges and operations in the code. An optimizations model

is developed for each scalar optimization, such as PRE and Register Allocation (RA). Machine

resource models include models for expressing the machine configuration and the cost of using

registers and functional units. The profitability engine in FPSO uses the model to predict the

impact of optimizations on registers and computation.

Figure 4.1: Structure of FPSO

Profitability Engine

Code Models Optimization Models Resource Models

Profitability

 Live ranges

Operations

PRE Registers

Computation

LICM

RA ……

22

The impact of PRE, LICM and VN on computation is clear: They insert or delete

operations at some program points. Their impact on registers is more complicated and depends

on code context. Sometimes they may introduce register spills, while in other cases they may

decrease the number of spills.

PRE increases the number of register spills by one,
if there are 7 hardware registers.

1: a 1
2: b 2

3: c a * b
4: e c + 2

5: e 2
6: c 1

7: d c + 1
8: f d + c
9: g f + e
10: h a * b
11: k a + b

(a) Code before PRE

1: a 1
2: b 2

3: v a * b
3’ c v

4: e c + 2

5: e 2
6: c 1

6’: v a * b

7: d c + 1
8: f d + c
9: g f + e
10: h v

11: k a + b

1

2

3

4

5

6

7

8

a

b

c

d

e

f

v

6’

(c) Live ranges after PRE

9

10

g

(b) Code after PRE

Figure 4.2: An example of PRE impacting registers

Figure 4.2 shows an example where PRE increases register pressure by introducing one

more spill. The PRE algorithm is lazy code motion, which inserts the computation as late as

possible [27]. In the figure, the code before and after applying PRE are given in (a) and (b).

Figure (c) shows the live ranges after applying PRE. In (b), PRE moves the use of a and b at

statement 10 up in the code. Because a and b are used after statement 10, their live ranges remain

the same (shown in (c)). PRE also introduces a new live range for the temporary variable, v.

Thus, if there are seven hardware registers, the inserted live range will cause a spill to memory.

However, if a and b were not used after statement 10, their live ranges would be shortened. In

that case, the total number of live ranges would be decreased by one, leading to fewer spills.

In the following sections, we present the components of FPSO. We describe (1) code

models for registers and computation, (2) optimization models for PRE, LICM, VN and register

allocation, (3) resource models, and (4) the profitability engine. We use an example to show how

FPSO works in determining profitability of VN. Experimental results are given in Section 4.6.

23

4.1 CODE MODELS FOR REGISTERS AND COMPUTATION

The register code model represents the code as live ranges of global and local variables

(including temporaries and parameters). We express a live range by x
mnLR],...,[, where x is a

variable name and [n,…,m] is the range of statements over which x is defined and referenced.

The live range of a variable is not necessarily contiguous. For example, in Figure 4.2 (c), after

PRE, the live range of v consists of two parts and can be expressed as vLR]10'..6 ,4..3[, where

[6’..10] is a shorthand notation to represent a contiguous range. When a variable v is defined

outside a loop at n and used inside the loop at m, we use [n,…,m] to represent its live range for

simplicity. However, v’s live range includes the whole loop.

The computation code model expresses the frequency of occurrence for each operation in the

code. For an operation, op, its frequency is represented as a sequence opBBB nfff ,...,, 21 , where

fBi is the number of op in block Bi and op appears in blocks B1, B2, … Bn.

4.2 OPTIMIZATION MODELS

All optimization code changes can be expressed with basic edits. For example, a code movement

can be expressed as a deletion of the statement at the source location and an insertion of a

statement at the destination location. Thus, an optimization model expresses the semantics (i.e.,

effect) of the optimization as a series of basic edits. We represent a basic edit by its action and

code location. For example, we express “insert a statement x a + b at code location S” by

“ Saddbax @ OP , USE DEFInsert >< ”. In some cases, only a part of a statement is involved

in a basic edit. For example, to replace a statement “x a + b” at location S with a statement “x

 v”, only the use variables and the operations are involved in the replacement. We represent

the replacement by:

 “ Saddba @ OP , USEDelete >< ”

“ Scopyv @ OP USEInsert >< ”.

24

For clarity, we use Ss to represent the source location and Sd for the destination location in

a code movement. Also, we express the new code location as S’. We next describe the

optimization models for partial redundancy elimination, loop invariant code motion, value

numbering and register allocation.

4.2.1 PRE Optimization Model

PRE inserts and deletes computations using a flow graph representation of a program. After

PRE, each path contains no more occurrences of the computation than what is in the original

code. The PRE algorithm that we model is lazy code motion (LCM), which takes register

pressure into account by hoisting an expression no earlier than necessary [27]. Although LCM

considers register pressure, there are still cases where PRE introduces more register spills (as

shown in Figure 4.2).

PRE has three semantic actions that create code changes:

• Insert a statement: insert the redundant expression EXP and introduce a temporary v

to hold the result of EXP at a destination code location;

• Replace the computation: replace EXP with a copy from the temporary v at the source

code position; and

• Update each same expression T (that has the same operation and operands as EXP):

replace T’s destination with the temporary and insert a copy statement after it.

The PRE optimization model expresses these code changes (given in Figure 4.3). In the

figure, lines 2 and 3 show that an assignment from the expression EXP to a temporary v is

inserted at a new code location Sd’. The variables of EXP are inserted as uses and the temporary

v is inserted as the definition with the operation op at Sd’, where Sd’ is a new code location

immediately after Sd. Lines 5 and 6 show that at the source code location Ss, the expression EXP

is deleted and a copy from the temporary v is inserted. The definition variable is unchanged.

Finally, lines 8 to 12 express the code changes of updating the same expressions. For each

expression T that has the same computation as EXP at the code location Sw, the destination w is

replaced by the temporary v and a copy from v to w is inserted at the new location Sw’

immediately after Sw.

25

Figure 4.3: PRE optimization model

After PRE, the temporary v can be propagated and copy statements can be deleted by

applying copy propagation, which is modeled separately (see Appendix A).

4.2.2 LICM Optimization Model

LICM moves a statement from a loop body to the outside of the loop. There are certain

conditions that must be met to safely apply LICM. An example of LICM is shown in Figure 4.4,

where the invariant statement “a b + 1” is moved out of the loop body because each of its

operands is either defined outside of the loop or a constant.

The semantic action of LICM is simply a code movement. The optimization model for

LICM is shown in Figure 4.5. At a new code location Sd’, which is immediately after the

destination code location Sd (i.e., the loop preheader), an invariant statement is inserted (as given

in lines 2 and 3). Line 5 shows that at the source location Ss (i.e., inside the loop), the invariant

statement is deleted.

Eliminate the partial redundant expression EXP (y op z) at Ss

1: Insert a statement:
2: 1' += dd SS
3: '@ OP , USE DEFInsert dSopzyv ><

4: Replace the computation:
5: sSopzy @ OP , USEDelete ><
6: sScopyv @ OP USEInsert ><

7: Update the same expressions:
8: wSzopyEXPwTT at) (← | ∀ =
9: wSw @ DEFDelete ><
10: wSv @ DEFInsert ><
11: 1' += ww SS
12: '@ OP USE DEFInsert wScopyvw ><

26

 b 2
i 1

i > 100

a b + 1
c a + i
i i + 1

d a + 1

(a) Code before LICM

b 2
i 1

a b + 1

i > 100

c a + i
i i + 1

d a + 1

(b) Code after LICM
Figure 4.4: An example of LICM

Figure 4.5: LICM optimization model

4.2.3 VN Optimization Model

The goal of VN is to find and remove redundant expressions that are equivalent based on their

values (unlike PRE which considers lexically equivalent expressions). It assigns an identifying

number to each expression in a particular way and then uses the number to find and remove

redundant computations.

We model dominator-based VN, which is a global technique that uses hashing to discover

redundant computations and to fold constants [8]. It works on Static Single Assignment (SSA)

intermediate code. An example of VN is shown in Figure 4.6. Because the expression “d0 + c0”

Move a loop invariant statement x y op z
1: Insert a statement:
2: 1' += dd SS
3: '@ OP , USE DEFInsert dSopzyx ><

4: Delete the statement:
5: sSopzyx @ OP , USE DEFDelete ><

27

at statement 4 has the same value number as “a0 + c0” at statement 2, it is redundant and can be

replaced by the destination of “a0 + c0”. Thus, statement 4 is replaced by a copy from b0 to e0.

 1: a0 1
2: b0 a0 + c0

3: d0 1
4: e0 d0 + c0
5: f0 e0 +2

6: e1 1

7: e2 Φ (e0, e1)
8: g0 e2 + c0

(a) Code before VN

1: a0 1
2: b0 a0 + c0

3: d0 1
4: e0 b0
5: f0 b0 +2

6: e1 1

7: e2 Φ (e0, e1)
8: g0 e2 + c0

(a) Code after VN
Figure 4.6: An example of VN

VN has three actions for a basic block: 1) remove redundant or meaninglessΦ -

instructions (Φ -instruction is a pseudo-assignment that introduces a new definition point at the

merge point in the control-flow graph [7]); 2) simplify computation (constant folding) or remove

the redundant computation; and 3) adjust the inputs of Φ -instructions in successor blocks. When

converting SSA to non-SSA intermediate code, some Φ -instructions should be replaced by copy

instructions in predecessor blocks. Because the inputs of theΦ -instructions have been adjusted,

they do not show where they were originally defined (i.e., where the copy should be inserted). A

general algorithm can be used to replace the Φ -instructions with copy instructions [7]. To

accurately predict the impact of VN, the replacement algorithm should be modeled.

A simplification is to incrementally add the copy statements as VN progresses. In our

VN, we replace the redundant computations with copy statements (instead of removing them)

and retain the inputs of Φ -instructions when processing each basic block. We then use Φ -

instructions to keep the useful copy statements and remove the useless ones. In this way, no copy

statements will be inserted when converting SSA to non-SSA code.

28

Figure 4.7: VN optimization model

The VN optimization model, given in Figure 4.7, describes the code changes from VN. In

the figure, VN[x] is the value number of x, where x can be a variable, an expression or a Φ -

instruction. Each value number is a variable name. For an expression, its value number is the

variable name of the first occurrence of the expression in this path in the dominator tree.

In Figure 4.7, lines 2 and 3 show that if an expression EXP (y op z) at Ss is redundant, it is

replaced by a copy from its value number v. That is, the variables of EXP are deleted as uses

with the operation op at Ss. The expression’s value number v is inserted as a use with the

operation copy at Ss. Also, all uses of the defined variable x are replaced by v (expressed in lines

5 to 7). In the example shown in Figure 4.6, at statement 4, the redundant expression d0 + c0 is

deleted and a copy from its value number b0 is inserted. At statement 5, the definition variable e0

is used and is replaced by b0.

Replace a redundant statement x y op z with x VN[x] at Ss
1: Replace the computation:
2: sSopzy @ OP , USEDelete ><
3: sScopyv @ OP USEInsert ><

4: Replace all uses of x with its value number v:
5: uSxu at of use is |u ∀
6: uSx @ USEDelete ><
7: uSv @ USEInsert ><

Fold constant a statement x y op z at Ss
8: Delete the computation:
9: sSopzy @ OP , USEDelete ><

Delete a redundant Φ -instruction x Φ (x1, x2, …)
10: Replace all uses of x with its value number v:
11: at of use is |u ∀ uSxu
12: uSx @ USEDelete ><
13: uSv @ USEInsert ><

Delete a useless copy instruction x y at Ss
14: Delete the copy instruction:
15: sScopyyx @ OP USE DEFDelete ><

29

In our VN algorithm, we also find statements for constant folding. Line 9 in Figure 4.7

shows if an expression EXP (y op z) at Ss can be simplified by constant folding, EXP is deleted.

As given in lines 11 to 13, if a redundant Φ -instruction is deleted, all the uses of the defined

variable x are replaced by the value number v. Thus, at the statement Su where the defined

variable x is used, x is deleted as a use and v is inserted as a use. The last line in Figure 4.7

models the deletion of a useless copy statement that is inserted in the step of replacing the

computation. Here, the variable y is deleted as a use and the defined variable x is deleted as a

definition with the operation copy at the location Ss.

4.2.4 Register Allocation Optimization Model

To determine the register profit of scalar optimizations, we need a model for register allocation.

By applying register allocation, hardware registers are assigned to live ranges. If the number of

hardware registers is not enough for all live ranges, the register allocator selects live ranges to

spill to memory, which impacts overall performance. Thus, to predict the impact of optimizations

on registers, we need to compute spills for the original live ranges and the live ranges changed by

the optimization and compare them. This is a time consuming process. Instead, we use an

incremental approach that computes how spills are changed due to each live range change. Our

register allocation model reflects this incremental approach.

We model a global graph coloring register allocator. Figure 4.8 shows the register

allocation optimization model. For each changed live range c
mnLR],...,[, we determine how spills

are changed. As given in lines 1 to 7, if c
mnLR],...,[is inserted or lengthened, it may introduce one

more spill. Within the range [n,...,m], if the insertion of a new live range causes the number of

live ranges to exceed the number of available hardware registers (HR), we select a live range to

spill to memory, which introduces more loads and stores. We use all
mnLR],...,[to represent the live

ranges in [n,...,m]. To select a live range to spill, we choose the one that has the least number of

uses and definitions within the range, under the assumption that the register allocator typically

performs well. Thus, we need to represent all variables’ uses and definitions within the range.

Suppose, s
mnLR],...,[is selected to be spilled. If there is no definition of s before a use of s or there

30

is no use of s within the range [n,...,m], a store or load is inserted at the boundary of [n,...,m]. If

the boundary of [n,...,m] is within a loop, a store or load is inserted outside the loop. Otherwise,

at all the uses or definitions of s within [n,...,m], a load or store will be inserted. Alternatively, if
c

mnLR],...,[is deleted or shortened, it may decrease one spill (shown in lines 8 to 14). This

register allocation model is input to the profitability engine (see Section 4.4) to predict the

impact of the other optimizations on registers.

Figure 4.8: Register allocation optimization model

4.2.5 Other Scalar Optimizations

We also develop optimization models for copy propagation, constant propagation and dead code

elimination. These models are given in Appendix A.

Determine how spill changes for every live range change c
mnLR],...,[

1: IF)(Inserted],...,[
c

mnLR ∪)(Lengthened],...,[
c

mnLR

2: IF || ||],...,[],...,[HRLRLR c
mn

all
mn >+

3: Select { s
mnLR],...,[} MEM

4:],...,[∈∩at of definition is |∀ mnSSs dd dd
5: dSstore @ OPInsert ><
6:],...,[∈∩at of use is |∀ mnSSs uu uu
7: uSload @ OPInsert ><
8: ELSE
9: IF || ≤ | |],...,[],...,[HRLRLR c

mn
all

mn −

10: Select { s
mnLR],...,[} MEM

11:],...,[∈∩at of definition is |∀ mnSSs dd dd
12: dSstore @ OPDelete ><
13:],...,[∈∩at of use is |∀ mnSSs uu uu
14: uSload @ OPDelete ><

31

4.3 RESOURCE MODELS FOR REGISTERS AND COMPUTATION

A resource model expresses the resource configuration and the cost to use the resource. It is built

for a specific platform by a compiler writer.

Our resource model for registers specifies the number of available hardware registers and

the cost of memory accesses (i.e., loads and stores). Thus, the compiler writer needs to specify

how many hardware registers are available in the platform. For example, there are eight

hardware registers that can be allocated for a byte-type variable on an Intel IA-32 machine. The

compiler writer also needs to specify the average access time for a memory access. When there

are not enough hardware registers to allocate variables, loads and stores (i.e., memory access) are

inserted into the code. Because these loads and stores may be caches misses or cache hits, our

resource model uses the average memory access time to represent the cost of registers.

Our resource model for computation describes the computational operations available in

the architecture and their execution latencies. Thus, the compiler writer needs to specify what

operations are available in the platform (using a form of intermediate representation), such as a

move between registers or an add operation. The compiler writer also needs to give the execution

latency for each operation. Some operations need the average latency, such as loads and stores.

Our resource model for computation in an Intel IA-32 machine (using Mach SUIF intermediate

representation [44]) is shown in Appendix B.

Resource models will be used by the profitability engine when computing the profit of

applying an optimization. For example, to compute the register profit, the profitability engine

uses the number of hardware registers to decide whether inserting or deleting a live range will

increase or decrease spills. According to the cost of memory accesses, the profitability engine

computes the cost of increasing spills or the benefit of decreasing spills (i.e., the register profit).

4.4 PROFITABILITY ENGINE

The profitability engine inputs code models, optimization models and resource models. It can

also integrate profile information from offline experiments (e.g., execution frequency of basic

32

blocks). It then determines the changes on code models (for both registers and computation) and

generates the optimized code models. Finally, it computes the register and computation profits

and combines them.

Table 4.1: Incremental computation of the new register code model

Code Change Incrementally compute the new register code model

Insert a use of
variable v at
statement s

IF v is live at post-s THEN no change;
ELSE /* lengthen v’s live range*/
 The original live range v

mnLR],...,[changes to

⎪⎩

⎪
⎨
⎧

=
otherwise

 usesother dominate-post s

][

],...,[
],...,[∪],...,[v

.,sn,...,m,..

v
snv

snmn LR

LR
LR

Insert a definition of
variable v at
statement s

IF v is not live at post-s THEN no change;
ELSE /* shorten v’s live range*/
The original live range v

mnLR],...,[changes to

⎪⎩

⎪
⎨
⎧

=
otherwise

definitionother dominate-post s

],...,,...,[

],...,[
],..., [∩],...,[v

msn

v
msv

msmn LR

LR
LR

Delete a use of
variable v at
statement s

IF v is live at post-s and v is not only use in a loop THEN no change;
ELSE /* shorten v’s live range*/
The original live range v

snLR],...,[changes to

⎪⎩

⎪
⎨
⎧

=
otherwise

 usesother dominate-post m

][

],...,[
,...][∩],...,[v

n,...m,...

v
mnv

nsn LR

LR
LR

Delete a definition of
variable v at
statement s

IF v is not live at post-s THEN no change;
ELSE /* lengthen v’s live range*/
The original live range v

msLR],...,[changes to

⎪⎩

⎪
⎨
⎧

=
otherwise

definitionother dominate-post n

],...,[...,

],...,[
]...,[∪],...[v

mn

v
mnv

mms LR

LR
LR

Delete an edge from
block Bs to block Bd

Delete all uses of any variable that is live at the beginning of Bd from
the Bs and all predecessors of Bs where the variable is no longer live
by any path.

Insert an edge from
block Bs to block Bd

Insert all uses of any variable that is live at the beginning of Bd to the
Bs and all predecessors of Bs.

33

An optimization model expresses the semantics of optimizations by basic edits. From an

optimization model, the engine determines how the optimization changes the register code model

with an incremental dataflow algorithm [41]. Table 4.1 shows how to incrementally compute the

new register code model (i.e., live ranges) for each edit. Each row in the table represents an edit

and shows how the profitability engine incrementally updates the register code model for this

edit, considering code context. There are six basic edits shown in the table.

In Table 4.1, post-s means the point immediately after statement s. We use n to represent

a statement where there is a definition of the variable v and use m to represent a statement where

there is a use of the variable v. For example, the effect on the live ranges from inserting a use of

v (1st row of the table) depends on the current code. If v is already live at post-s, there is no

change. Otherwise, the original live range v
mnLR],...,[, is lengthened. If the inserted use at

statement s is the last use (i.e., s post-dominates other uses), the new live range for v

becomes v
snLR],...,[. Otherwise, the new live range consists of the original live range and a range

to the use statement s. This range is represented as v
smnLR],...,,...,[. Similarly, the profitability

engine updates the register code model for inserting a definition, deleting a use, deleting a

definition, inserting an edge and deleting an edge.

Table 4.2: Updates of the computation code model

Code Change Update the computation code model

Insert an operation op at

block Bs

The original operation list opBBBB ns ffff ,...,,...,, 21

changes to opBBBB ns ffff ,...,1,...,, 21 +

Delete an operation op

at block Bs

The original operation list opBBBB ns ffff ,...,,...,, 21

changes to opBBBB ns ffff ,...,1,...,, 21 −

The engine also infers how an optimization changes the computation code model. Table

4.2 shows the basic changes on computation code model and how the profitability engine

updates the computation code model for each basic change. As shown in Table 4.2, the code

34

changes from an optimization can be classified as either inserting an operation or deleting an

operation. If an operation op is inserted at a block Bs, the number of op in block Bs (i.e., Bsf) is

increased by one. If an operation op is deleted at a block Bs, Bsf is decreased by one. Thus, the

engine can determine the impact of an optimization on computation.

For example, the impact of PRE on computation can be determined by the engine, as

shown in Figure 4.9. To insert a statement, the operation op is inserted at block Bd (the

destination code location Sd is in block Bd). To replace the computation, the operation op is

deleted at block Bs and a copy is inserted at block Bs (the source location Ss is in block Bs).

Finally, to update the same expression T at the code location Sw, a copy is inserted in block Bw,

where Sw is in block Bw.

 # Eliminate the partial redundant expression EXP (y op z) at Ss

Insert a statement at block Bd:
op

BBBB nd ffff ,...,,...,, 21 op
BBBB nd ffff ,...,1,...,, 21 +

Replace the computation at block Bs:
op

BBBB ns ffff ,...,,...,, 21 op
BBBB ns ffff ,...,1,...,, 21 −

copy
BBBB ms ffff ,...,,...,, 21 copy

BBBB ms ffff ,...,1,...,, 21 +

Update the same expressions at block Bw:
wSzopyEXPwTT at) (← | ∀ =

copy
BBBB mw ffff ,...,,...,, 21 copy

BBBB mw ffff ,...,1,...,, 21 +

Figure 4.9: Impact of PRE on computation code model

After determining the changes on the code models, the engine generates the optimized

code model and computes the profit for the resource under consideration. For example, to

compute the profit for registers, the engine computes the benefit/cost in terms of spills (i.e., loads

and stores) based on the register allocation model. That is, for each live range change, the engine

determines the impacted region and compares the total number of live ranges with the available

hardware registers. If the total number of live ranges is larger than the available hardware

registers, inserting a live range will introduce one more spill. To select a live range to spill to

memory, the engine records the uses and definitions of all variables in the region and chooses the

35

one that has the least number of uses and definitions. The benefit/cost associated with the spill is

the profit of the optimization on registers.

Table 4.3: Computing profit on registers (Rtotal) and computation (Ctotal)

Optimization Compute the profit on registers and computation

PRE: eliminate a
redundant expression

))1,()1,(

),(),((
),(),(

),(),(
exp

++++

+∑+
++

+=

++=

winsertusewinsertdef

winsertdefwdeletedef
w

sinsertusesdeleteuse

dinsertdefdinsertuse

updatepreplacecominsertstattotal

SvRSwR

SvRSwR
SvRSEXPR

SvRSEXPR

RRRR

∑+
++

=

++=

w
winsert

sinsertsdelete

dinsert

updatepreplacecominsertstattotal

BcopyC
BcopyCBopC

BopC

CCCC

),(
),(),(

),(
exp

LICM:
move an invariant

statement
),(),(

),(),(

sdeletedefsdeleteuse

dinsertdefdinsertuse

deletestatinsertstattotal

SxRSEXPR

SxRSEXPR
RRR

++

+=
+=

),(),(sdeletedinsert

deletestatinsertstattotal
BopCBopC

CCC
+=

+=

VN: eliminate a
redundant expression

)),(),((
),(),(

uinsertuseudeleteuse
u

sinsertusesdeleteuse

replaceusepreplacecomtotal

SvRSxR
SvRSEXPR

RRR

+∑+
×+=

+=

α

),(),(sinsertsdelete

replaceusepreplacecomtotal

BcopyCBopC

CCC

×+=

+=

α

VN: fold constant a
statement

),(sdeleteuse

deletecomptotal

SEXPR

RR

=

=

),(sdelete

deletecomptotal

BopC

CC

=

=

To compute the overall profit of an optimization, Ptotal, the engine needs to combine the

register profit, Rtotal and computation profit, Ctotal. To compute Rtotal, the engine sums the register

36

profit associated with every step in the optimization model. Similarly, to compute Ctotal, the

engine sums the computation profit for every step.

Table 4.3 shows how the profitability engine computes Rtotal and Ctotal for PRE, LICM

and VN. For example, to compute the profit of eliminating a redundant expression in VN (3rd

row in Table 4.3), the engine needs to compute the register profit, which includes the register

profit of replacing the computation preplacecomR and updating of the uses of the defined

variable replaceuseR . Further, preplacecomR is computed by deleting a use,

),(sdeleteuse SEXPR and inserting a use,),(sinsertuse SvR . The engine also needs to compute the

computation profit of replacing the computation preplacecomC (i.e., removing the computation

and inserting a copy). However, the inserted copy statement may be deleted later as a useless

statement if it is not an argument of an Φ -instruction (described in Section 4.2.3). The engine

also considers the deletion. Thus, the engine multiplies),(sinsertuse SvR and),(sinsert BcopyC by

a factor of α . α is the ratio that a copy statement will stay in the code (i.e., not deleted in the

later phase of VN), which is a number between zero and one. We determine α by profiling.

To combine the profits for registers and computation, they must have the same metric. If

the computation profit considers the frequency of a node, the register profit also needs to

consider the execution frequency of the loads or stores.

4.5 AN EXAMPLE OF PROFIT-DRIVEN VN

To illustrate how FPSO works, we show an example of profit-driven VN applied to a code

segment, shown in Figure 4.10 (a). Figure 4.10 (b) gives the corresponding register code model,

where all the live ranges are expressed.

VN processes each block in the dominator tree. The first block processed is B1. Since

none of the expressions in B1 has been seen, the value number of the defined variables and the

expressions are the defined variables themselves. For example, VN[u0] is u0 and VN[a0+b0] is

u0.

37

 1: u0 a0 + b0
2: v0 c0 + d0
3: w0 e0 + f0

4: x0 c0 + d0
5: y0 c0 + d0

6: u1 a0 + b0
7: x1 e0 + f0
8: y1 e0 + f0

9: u2 Φ (u0, u1)
10: x2 Φ (x0, x1)
11: y2 Φ (y0, y1)
12: z0 u2 + y2
13: u3 a0 + b0

(a) Code before VN

B1

B2 B3

B4

1: u0 a0 + b0
2: v0 c0 + d0
3: w0 e0 + f0

4: x0 v0
5: y0 c0 + d0

6: u1 a0 + b0
7: x1 e0 + f0
8: y1 e0 + f0

9: u2 Φ (u0, u1)
10: x2 Φ (x0, x1)
11: y2 Φ (y0, y1)
12: z0 u2 + y2
13: u3 a0 + b0

(c) Code after 1st elimination

B1

B2 B3

B4

1: u0 a0 + b0
2: v0 c0 + d0
3: w0 e0 + f0

4: x0 v0
5: y0 w0

6: u1 u0
7: x1 w0
8: y1 w0

9: u2 Φ (u0, u1)
10: x2 Φ (x0, x1)
11: y2 Φ (y0, y1)
12: z0 u0 + x2
13: u3 u0

(e) Code after VN

B1

B2 B3

B4

(b) Register code model before VN

00 ,
]13..0[

baLR

00 ,
]5..0[

dcLR

00 ,
]8..0[
feLR

3210
]13[]12..9[]9..6[]9..1[

uuuu LRLRLRLR
0
]2[

vLR

0
]3[

wLR

210
]10[]10..7[]10..4[

xxx LRLRLR

210
]12..11[]11..8[]11..5[

yyy LRLRLR

0
]12[

zLR

(d) Register code model after 1st elimination

00 ,
]13..0[

baLR

00 ,
]5..0[

dcLR

00 ,
]8..0[
feLR

3210
]13[]12..9[]9..6[]9..1[

uuuu LRLRLRLR
0

]42[
v

..LR

0
]3[

wLR

210
]10[]10..7[]10..4[

xxx LRLRLR

210
]12..11[]11..8[]11..5[

yyy LRLRLR

0
]12[

zLR

(f) Register code model after VN

00 ,
]1..0[

baLR

00 ,
]2..0[

dcLR

00 ,
]3..0[
feLR

30
]13[]13..1[

uu LRLR

0
]4..2[

vLR

0
]7..3[

wLR

210
]12..10[]10..7[]10..4[

xxx LRLRLR
0

]12[
zLR

Figure 4.10: An example of model-driven VN

38

The next block processed is B2. Since the expression c0 + d0 is defined in block B1, the

first redundant expression, x0 c0 + d0, is found. The optimizer calls the engine to predict the

profit of eliminating this redundancy. The engine computes the profit on both registers and

computation. To predict the profit on registers, the engine first takes the register code model

(shown in Figure 4.10 (b)) and the VN optimization model. The engine generates the optimized

code model using the incremental dataflow algorithm (shown in Table 4.1). In this case, c0 and

d0 are deleted as uses. Because c0 and d0 are live after statement 4, there is no change on the

register code model for the deletions. Also, v0 is inserted as a use. Thus, the live range of v0 is

lengthened from 0
]2[

vLR to 0
]4..2[

vLR . Figure 4.10 (d) shows the updated register code model after

replacing this redundancy.

Using the register allocation optimization model, the engine determines how the spills

change based on the live range updates. For this example, there is no spill change from deleting

c0 and d0. But inserting v0 will increase the spills by one if the number of hardware registers is

less than 8. Indeed, the number of live ranges at statement 3 changes from 7 to 8. Choosing

which variable to spill depends on the register allocator’s spill strategy. In our register allocation

model, we select the one that has the fewest number of uses and definitions, which is u0. This

introduces a store before statement 2 and a load after statement 4. The cost associated with the

inserted load and store is the register profit as predicted by the engine.

The profit on computation is more easily predicted, which includes the benefit of

removing an add statement and the cost to insert a copy statement. To compute the overall profit,

the engine uses the functions described in the previous section. If the overall profit is positive,

redundancy elimination is applied. Otherwise, it is not applied.

There are 6 redundant expressions that can be eliminated in this example. For every

redundant expression, the profitability engine is triggered to predict the profit of applying the

redundancy elimination. Figure 4.10 (e) shows the code after VN (assuming all 6 redundant

expressions are profitable). The register code model after VN is shown in Figure 4.10 (f), where

all the live ranges are changed except for 0
]12[

zLR .

39

4.6 EXPERIMENTAL RESULTS

To evaluate FPSO, we implemented optimization models for six optimizations, including PRE,

LICM, VN, copy propagation (CPP), constant propagation (CTP) and dead code elimination

(DCE). We integrated FPSO into the Mach SUIF compiler [44]. Mach SUIF was chosen as each

optimization in Mach SUIF is implemented and applied as a single pass. Thus, we can

incorporate our models for experimentation proposed. We used the DCE pass from Mach SUIF,

and implemented PRE, LICM, VN, CPP and CTP.

For the experiments, we used several programs from MiBench [34], MediaBench [21]

and SPEC2K to show FPSO works for a variety of programs. We ran our experiments on a dual-

processor AMD Athlon MP 1800 1.4 GHz machine and a Pentium III 1.4G machine, running

RedHat Linux. The experimental results show the same trend for both machines. We report the

results on the Pentium III machine in this chapter. The results for the AMD Athlon are given in

Appendix C. We performed node profiling on training data sets to get the basic block frequency

counts that were used by the engine. In all experiments, each benchmark was run three times on

a lightly loaded machine and the average execution time was computed to factor out system

effects.

We show the experimental results of FPSO for two uses. First, we show that profitability

is useful for selectively applying optimizations. Second, we show that profitability is also useful

in searching for code-specific optimization sequences.

4.6.1 Selectively Applying Optimizations

Always applying an applicable optimization can sometimes lead to a performance degradation.

Such a simple heuristic of “always applying” is not sufficient in making decisions about when to

apply an optimization. Work has been done to develop heuristics to decide when to apply

optimizations [20]. Heuristics can work well in general. However, heuristics tend to be ad hoc

and focus specifically on a single or a small class of optimizations. Heuristics also require tuning

parameters to select appropriate threshold values. The success of a heuristic can depend on these

values and the best choice can vary for different optimizations and code contexts. Instead of

40

using heuristics, we can determine the profitability of an optimization and selectively apply

profitable optimizations using FPSO.

In the following sections, we present an approach that uses heuristics to decide when to

apply optimizations. We compare it with our profit-driven approach. We compare the two

approaches in terms of prediction accuracy, performance improvement and compile-time

overhead. The experimental results show that FPSO is accurate in predicting profitability, which

is useful for deciding when to apply optimizations.

4.6.1.1 A heuristic approach

Previous work used heuristics to decide when to apply optimizations, such as register pressure

sensitive redundancy elimination, which sets upper limits on allowable register pressure and

performs redundancy elimination within these limits [20]. We implemented a similar heuristic.

We set the upper limit on allowable live ranges at the places where the redundant expressions

will be moved. Redundancy elimination is performed only when the number of live ranges is

within the limit. In VN, we eliminate full redundancies and there is no code movement. Thus, the

heuristic described here is not useful for VN. In this section, we show the experimental results

for heuristic-driven PRE and LICM.

One challenge with a heuristic-driven approach is how to select a limit that can achieve

good performance across all benchmarks. Our experiments show that different benchmarks need

different limits to achieve the best performance. Figure 4.11 and Figure 4.12 show the run-time

performance improvement of heuristic-driven PRE and LICM over the baseline. The baseline

compiler applies register allocation and simple instruction scheduling. Also, to enable more

opportunities for PRE and LICM, we apply copy propagation, constant propagation and dead

code elimination before PRE and LICM. We varied the limit on register pressure from zero to

sixteen. For PRE, if the limit is zero, only full redundancies are eliminated. In practice, the limits

are usually chosen to be the number of available hardware registers. Hence, eight may be a good

limit because there are eight hardware registers that can be allocated for a byte-type variable on

the Intel IA-32. Zero, four and sixteen are used to examine stricter or higher limits.

41

0

4

8

12

16

gz
ip vp

r
mcf

pa
rse

r

vo
rte

x
bz

ip2
tw

olf

bit
co

un
t

dij
ks

tra FFT
jpeg sh

a

%
 R

un
tim

e
Pe

rf
or

m
an

ce
 Im

pr
ov

em
en

t Heurist-0 Heurist-4
Heurist-8 Heurist-16

Figure 4.11: Improvement of heuristic-driven PRE with different limits

-4

0

4

8

12

16

gz
ip vp

r
mcf

pa
rse

r

vo
rte

x
bz

ip2 tw
olf

bit
co

un
t

dij
ks

tra FFT
jpe

g
sh

a

%
 R

un
tim

e
P

er
fo

rm
an

ce
 Im

pr
ov

em
en

t

Heurist-0 Heurist-4
Heurist-8 Heurist-16

Figure 4.12: Improvement of heuristic-driven LICM with different limits

From the figures, we can see that different benchmarks need different limits to perform

the best. For example, for PRE, gzip can achieve an improvement of 5.25% when the limit is set

to sixteen, while mcf needs the limit set to zero to achieve the best improvement of 3.01%. Also,

some benchmarks are sensitive to the limit (e.g., bitcount), while others are not (e.g., mcf).

Further, we see that different optimizations may need different limits for the same benchmarks.

For example, gzip needs the limit set to sixteen for PRE but needs the limit set to four for LICM.

If we fix the limit, then we can not always achieve the best improvement with a heuristic.

42

4.6.1.2 Comparing prediction accuracy

To use FPSO, we must ensure it has good prediction accuracy. We evaluated the prediction

accuracy by considering only registers. We did not evaluate the accuracy of the computation

profit because the computation is exact in terms of instruction count, given relative node

frequencies from a profile. If the relative frequencies in the profile do not match what happens in

an actual run, then there can be an inaccuracy in predicting the computation profit. However, this

inaccuracy is a property of the profile – not of the models that compute the computation profit.

For deciding whether an optimization should be applied, a correct prediction is one in

which we predict there is a benefit/cost for registers (i.e., if register profit is positive, it indicates

a spill reduction; otherwise, it shows a spill increase) and actual execution has the same result.

For those cases where the actual execution shows there was no impact on registers, we consider

the prediction to be correct. The accuracy prediction is measured by how often we make a

correct prediction. To validate the prediction accuracy, we checked every prediction and

compared the value predicted with the actual execution (i.e., we use the number of memory

accesses before and after applying an optimization to reflect the spill changes).

Table 4.4: Prediction accuracy of H-PRE and P-PRE

Heuristic-8 PRE Profit-driven PRE Benchmark
TP accuracy% TP accuracy%

gzip 43 79.07% 48 89.58%
vpr 290 80.34% 303 96.04%
mcf 51 88.23% 51 86.27%

parser 239 75.73% 293 87.87%
vortex 513 79.72% 530 81.13%
bzip2 58 81.03% 56 78.57%
twolf 484 76.03% 475 91.12%

bitcount 5 100% 5 100%
dijkstra 2 100% 2 100%

FFT 3 33% 3 100%
jpeg 58 96.55% 58 100%
sha 5 100% 5 100%

average -- 82.48% -- 92.55%

43

Table 4.5: Prediction accuracy of H-LICM and P-LICM

Heuristic-8 LICM Profit-driven LICM Benchmark
TP accuracy% TP accuracy%

gzip 53 88.68% 45 84.44%
vpr 251 75.70% 230 94.35%
mcf 68 76.47% 52 82.69%

parser 89 79.78% 75 90.67%
vortex 361 77.56% 346 87.57%
bzip2 92 82.60% 88 89.77%
twolf 367 77.93% 345 88.70%

bitcount 3 66.67% 3 100%
dijkstra 5 40% 5 80%

FFT 23 86.96% 23 95.65%
jpeg 82 97.56% 79 100%
sha 21 76.19% 21 95.24%

average -- 77.18% -- 90.76%

Table 4.4 and Table 4.5 show the prediction accuracy of PRE and LICM. In the tables,

“TP” is the total number of predictions and “accuracy%” is the prediction accuracy for both

heuristic-driven and profit-driven approaches. In the heuristic-driven PRE and LICM, we set the

limit to eight.

As Table 4.4 shows, in some cases heuristic-driven PRE had a different number of

predictions than profit-driven PRE because of the interactions among PRE instances. The

prediction accuracy for heuristic-driven PRE varies from 75% to 100%, with an average of

82.5%. Compared with heuristic-driven PRE, profit-driven PRE makes more correct predictions

generally, with the prediction accuracy from 78% to 100% (average 92.6%). Profit-driven PRE

considers the impact on register pressure in a more precise way. In some cases, such as mcf,

although the prediction accuracy of P-PRE is lower than H-PRE, P-PRE achieves a better

performance benefit than H-PRE because P-PRE also considers computation (shown in Figure

4.14).

A similar trend can be seen in Table 4.5 for LICM. The prediction accuracy for heuristic-

driven LICM varies from 40% to 97%, with an average of 77%. Profit-driven LICM has a higher

prediction accuracy, varying from 82% to 100% (average 91%). Because profit-driven PRE and

44

LICM can make more correct predictions than the heuristic-driven approach, the performance

improvement of P-PRE and P-LICM is generally better than heuristic-8 PRE and heuristic-8

LICM.

Table 4.6 shows the prediction accuracy of FPSO for profit-driven VN. It varies from

81% to 100%, with an average of 87%. In some cases, there is no applicable VN, so no accuracy

is reported (i.e., bitcount, dijkstra and sha).

Table 4.6: Prediction accuracy of P-VN

Profit-driven VN Benchmark
TP accuracy%

gzip 30 93.33%
vpr 77 87.01%
mcf 35 82.86%

parser 32 84.38%
vortex 71 94.37%
bzip2 48 87.5%
twolf 101 81.19%

bitcount 0 --
dijkstra 0 --

FFT 4 75%
jpeg 1 100%
sha 0 --

average -- 87.29%

On average, FPSO made inaccurate predictions about 10% of the time. The inaccuracy is

primarily from a simplified assumption used in the register optimization model about how the

register allocator spills registers. The model assumes that the allocator will select the spill

priority based solely on the number of uses and definitions in a live range. However, Mach

SUIF’s register allocator also uses the number of conflicting edges in the interference graph to

make spill decisions. Even without detailed implementation information, our models achieve

good accuracy. If more accuracy is needed, the models can be improved by incorporating more

implementation information. Also, in FPSO, the prediction inaccuracy does not accumulate,

which is important in predicting the profitability of a sequence of optimizations. The engine

incrementally updates the code models. The incremental update is accurate. That is, the updated

45

code model is the same as performing the optimization and reconstructing the code models. The

inaccuracy of the prediction only comes from computing the profit associated with every update

in an optimization. Thus, the prediction of an optimization does not impact the prediction

accuracy of later optimizations.

4.6.1.3 Comparing performance improvement

Using FPSO, we can determine the profitability of an optimization and selectively apply

profitable optimizations without setting threshold limits. The cases where optimizations degrade

performance can be avoided. In this section, we first compare profit-driven PRE and LICM with

always applying PRE and LICM and the heuristic-driven PRE and LICM. We then compare

profit-driven VN and always applying VN.

Figure 4.13 and Figure 4.14 show the comparisons of four PRE approaches, in terms of

the improvement in the dynamic number of memory accesses and run-time performance over the

baseline. The comparison on the number of memory accesses shows how these approaches

impact the use of registers. It also helps to explain the run-time performance difference. In the

figures, A-PRE is the improvement of always applying PRE when it is applicable. Heuristic-

driven PRE is described as above and has two versions based on the register pressure allowed.

Best-heuristic is the best case among the limits for each benchmark, while Heuristic-8 uses a

fixed limit of eight. Lastly, P-PRE is the performance benefit of profit-driven PRE. Figure 4.15

and Figure 4.16 show the comparisons with the same configurations except for LICM.

As Figure 4.13 shows, the problem with always applying PRE when it is applicable is it

may increase register pressure and incur more spills. In most cases, A-PRE increases the number

of memory accesses. For example, in vpr, A-PRE increases the memory accesses by 5.11%. Both

the heuristic approach and P-PRE can avoid the unprofitable instances of PRE, thus decreasing

the memory accesses. However, P-PRE considers the registers in a more accurate way (as

demonstrated by the prediction accuracy in Section 4.6.1.2). It improves the memory access

count more than the heuristic approach. For example, in gzip, the best-heuristic, which is

unattainable, increases the memory access by 1.1%, while P-PRE decreases the memory accesses

by 0.82%. Due to the mispredictions, P-PRE increases the memory accesses more than the

heuristic approach for mcf and bzip2.

46

-8

-4

0

4

8

gz
ip vp

r
mcf

pa
rse

r

vo
rte

x
bz

ip2 tw
olf

bit
co

un
t

dij
ks

tra FF
T

jpe
g

sh
a

%
 M

em
or

y
A

cc
es

s
Im

pr
ov

em
en

t A-PRE Best-Heuristic
Heuristic-8 P-PRE

Figure 4.13: Memory access improvement for PRE

0

4

8

12

16

gz
ip vp

r
mcf

pa
rse

r

vo
rte

x
bz

ip2 tw
olf

bit
co

un
t

dij
ks

tra FFT jpe
g

sh
a

%
 R

un
-ti

m
e

Pe
rf

or
m

an
ce

 Im
pr

ov
em

en
t

A-PRE Best-Heuristic
Heuristic-8 P-PRE

Figure 4.14: Run-time performance improvement for PRE

Figure 4.14 shows the run-time performance improvement for different PRE approaches

over the baseline. Both H-PRE and P-PRE achieve performance benefits over always applying

PRE. However, the choice of the limits in heuristic-PRE is very important (as described in

Section 4.6.1.1). For example, in vortex, when the limit is set to 4, H-PRE improves performance

by 5.61%. While when the limit is 8, H-PRE improves performance by 4.89%. P-PRE considers

both register pressure and computation to predict the profitability of PRE. Thus, in the case

where P-PRE increases memory accesses more than H-PRE (mcf), P-PRE still improves the

overall run-time performance. P-PRE consistently performs as good as or better than the Best-

Heuristic for PRE, except for bzip2, where predictions are sometimes incorrect. In the cases

where P-PRE decreases the number of memory accesses, it improves the run-time performance

47

more (e.g., gzip, twolf and jpeg). That is, the performance benefit comes from the careful

consideration of register pressure. On a register limited machine, like the Intel IA-32, it is

particularly important to consider the register pressure as these results indicate.

Figure 4.15 and Figure 4.16 show a comparison of the different approaches for applying

LICM. As shown in Figure 4.15, A-LICM can increase register pressure greatly. For example, in

sha, A-LICM increases the memory accesses by 19.17%. Heuristic LICM and profit-driven

LICM selectively choose profitable LICM instances to apply. Thus, in sha, Best-Heuristic LICM

decreases the memory accesses by 0.74% and P-LICM decreases the accesses by 1.24%.

-20

-16

-12

-8

-4

0

4

8

gzip vp
r

mcf

parse
r

vo
rte

x
bzip

2
tw

olf

bitc
ount

dijks
tra FFT

jpeg
sh

a

%
 M

em
or

y
A

cc
es

s
Im

pr
ov

em
en

t A-LICM Best-Heuristic
Heuristic-8 P-LICM

Figure 4.15: Memory access improvement for LICM

0

4

8

12

16

gz
ip vp

r
mcf

pa
rse

r

vo
rte

x
bz

ip2 tw
olf

bit
co

un
t

dij
ks

tra FFT jpe
g

sh
a

%
 R

un
-ti

m
e

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t

A-LICM Best-Heuristic
Heuristic-8 P-LICM

Figure 4.16: Run-time performance improvement for LICM

48

Figure 4.16 shows the run-time performance improvement for different LICM

approaches over the baseline. From the figure, we can see that overall performance of A-LICM

can be improved by not applying unprofitable LICMs. Although the heuristic-driven LICM

achieves a performance improvement over always applying LICM, it is important to choose the

right limit. For example, in vortex, with a register pressure limit of eight, the heuristic-driven

LICM is worse than always applying LICM. While in the Best-Heuristic (where the limit is

sixteen), it is better than always applying LICM. P-LICM can perform at least as well as the

best-heuristic LICM in most cases, without tuning the parameters used in H-LICM. However, in

one case (gzip), due to incorrect predictions, P-LICM has worse performance than the heuristic-

driven approach.

-5

-4

-3

-2

-1

0

1

2

gz
ip vp

r
mcf

pa
rse

r

vo
rte

x
bz

ip2 tw
olf

bit
co

un
t

dij
ks

tra FF
T

jpe
g

sh
a

%
 M

em
or

y
A

cc
es

s
Im

pr
ov

em
en

t

A-VN P-VN

Figure 4.17: Memory access improvement for VN

-2

-1

0

1

2

3

4

5

gz
ip vp

r
mcf

pa
rse

r

vo
rte

x
bz

ip2 tw
olf

bit
co

un
t

dij
ks

tra FF
T

jpe
g

sh
a

%
 R

un
tim

e
P

er
fo

rm
an

ce
 Im

pr
ov

em
en

t

A-VN P-VN

Figure 4.18: Run-time performance improvement for VN

49

Figure 4.17 and Figure 4.18 show the improvement of memory accesses and run-time

performance of profit-driven VN over the baseline, compared to always applying VN. Unlike

PRE and LICM, we did not apply other optimizations (e.g., copy propagation or constant

propagation) before VN because VN eliminates redundancies by value, not by name. Constant or

copy propagation cannot enable more opportunities for VN. Always applying VN degraded

performance in some cases because of the increased register pressure caused by eliminating

some redundancies, as shown in Figure 4.17. For example, for vortex, A-VN increases the

memory accesses by 1.46% and thus, the run-time performance was degraded by 1.37%.

However, using FPSO, P-VN can selectively apply only profitable redundancy elimination,

achieving a performance benefit. For vortex, P-VN decreases the memory accesses by 0.91%,

and thus, improves run-time performance by 1.28% over the baseline.

From these figures, we see that FPSO is useful for a variety of optimizations, whether the

optimization operates on SSA or non-SSA intermediate code formats. In comparison with the

always applying approach, our profit-driven approach achieved a better performance

improvement. The performance degradation from always applying optimizations was avoided. In

comparison with the heuristic approach, our profit-driven approach performed as good as the

Best-Heuristic approach, which is unattainable in practice. We conclude that our model-based

approach can be effectively used to explore and determine the profitability of optimizations. The

profitability property is useful in deciding when to apply optimizations.

4.6.1.4 Comparing compile-time overhead

Because our approach uses models to make decisions, we investigated how compile-time is

impacted. We need to ensure that evaluating the models does not overly increase compile-time.

Table 4.7, Table 4.8 and Table 4.9 show the compile-time for different optimization strategies

for PRE, LICM and VN. In the tables, the compile-time for all compilation passes, including the

front-end, optimizations and back-end passes (“Full Compile-time”), and for the optimization

pass under consideration (“One Pass Compile-time”) are shown. In Table 4.7 and Table 4.8,

there are three columns for compile-time comparison. The first column shows the compile-time

of always applying approach. The second one gives the percentage of the compile-time increased

by the heuristic approach over always applying approach. The third column shows the

percentage of compile-time increased by the profit-driven approach over always applying

50

approach. In Table 4.9, we compare the compile time of always applying VN and profit-driven

VN.

Table 4.7: Compile-time for PRE

Full Compile-time One Pass Compile-time
Benchmark

A-PRE H over A P over A A-PRE H over A P over A

gzip 44.99 9.18% 17.63% 10.44 36.78% 65.90%
vpr 142.46 52.23% 61.86% 37.61 77.45% 103.56%
mcf 21.84 37.36% 48.49% 4.68 57.39% 72.91%

parser 106.74 25.10% 34.00% 26.7 69.06% 94.23%
vortex 518.5 19.11% 29.64% 88.49 56.78% 79.76%
bzip2 35.58 22.85% 27.15% 10.77 68.25% 86.56%
twolf 767.27 46.05% 58.24% 199.49 90.29% 104.82%

bitcount 6.59 7.13% 10.93% 1.79 56.98% 61.45%
dijkstra 1.15 11.30% 13.91% 0.29 24.14% 48.28%

FFT 4.61 8.89% 13.02% 1.07 41.12% 55.14%
jpeg 35.08 40.34% 53.62% 7.49 80.32% 104.74%
sha 3.04 10.53% 15.13% 0.66 21.21% 36.36%

average -- 24.17% 31.97% -- 56.65% 76.14%

From Table 4.7, the full compile-time for A-PRE varies from approximately 1.2 seconds

to 767.3 seconds. The compile-time shown for the heuristic approach is the average for the

different limits. It increases from 7% to 52% over A-PRE, with an average of 24%. The

heuristic-driven PRE has to compute and update live range information, which causes the

compile-time increase. The compile-time for profit-driven PRE increased over A-PRE by 11% to

62%, with an average of 32%. Because P-PRE considers computation and register pressure in a

more precise way than the heuristic-driven PRE, it incurs a modest overhead increase. Table 4.7

also shows compile-time for only the PRE optimization pass. The one pass compile-time for A-

PRE varies from approximately 0.3 seconds to 199.49 seconds. The compile-time for H-PRE

increases from 21% to 90% over A-PRE, with an average of 57%. The compile-time for P-PRE

increases over A-PRE by 36% to 105%, with an average of 76%.

Similar compile-time trends can be seen for A-LICM, H-LICM and P-LICM in Table 4.8.

The full compile-time for A-LICM varies from approximately 1.2 seconds to 579.9 seconds. The

51

heuristic-driven LICM increases compile-time over A-LICM from 5% to 38% (average 21%)

and profit-driven LICM increases compile-time over A-LICM by 7% to 56% (average 28%). The

one pass compile-time for A-LICM varies from approximately 0.35 seconds to 165.49 seconds.

The compile-time for H-LICM increases from 11% to 88% over A-LICM, with an average of

49%. The compile-time for P-PRE increases over A-PRE by 14% to 132%, with an average of

68%.

Table 4.8: Compile-time for LICM

Full Compile-time One Pass Compile-time
Benchmark

A-LICM H over A P over A A-LICM H over A P over A

gzip 45.97 23.65% 27.65% 12.94 57.26% 69.63%

vpr 127.84 18.80% 27.35% 32.36 58.19% 79.49%

mcf 20.51 32.42% 9.10% 4.73 49.89% 72.94%

parser 106.08 21.86% 30.82% 29.53 58.42% 88.93%

vortex 511.8 11.34% 15.48% 98.87 36.41% 47.25%

bzip2 34.63 22.81% 30.26% 11 57.55% 79.55%

twolf 579.97 37.73% 55.50% 165.49 88.14% 132.64%

bitcount 6.63 4.52% 7.39% 1.88 16.49% 25.53%

dijkstra 1.19 7.56% 10.08% 0.35 11.43% 14.29%

FFT 4.58 35.37% 41.48% 1.21 60.33% 85.12%

jpeg 25.26 20.23% 28.82% 6.38 56.99% 70.82%

sha 2.78 7.63% 25.90% 0.81 38.27% 54.32%

average -- 21.16% 28.32% -- 49.11% 68.38%

From Table 4.9, the full compile-time for A-VN varies from 1.7 seconds to 512 seconds.

The profit-driven VN increases the compile-time over always applying VN from 12% to 18%,

with an average of 15%. The one pass compile-time for A-VN is from 0.25 to 21 seconds. The P-

VN increase compile-time over A-VN from 22% to 49%, with an average of 32%. Compared

with P-PRE and P-LICM, the compile-time increased by P-VN is smaller. One reason is that

there are fewer instances of VN than PRE and LICM (shown in the next section). The overhead

52

of the profit-driven approach depends on how many instances of the optimization appear in the

code and the impact of every instance.

Table 4.9: Compile-time for VN

Full Compile-time One Pass Compile-time
Benchmark

A-VN P over A A-VN P over A

gzip 47.02 15.82% 6.82 26.83%

vpr 127.93 14.88% 18.17 26.25%

mcf 25.98 15.97% 3.61 22.44%

parser 97.2 17.78% 13.56 33.48%

vortex 511.68 14.72% 61.95 27.44%

bzip2 28.59 17.59% 3.47 48.99%

twolf 284.34 16.93% 40.4 34.16%

bitcount 7.33 12.55% 1.81 26.52%

dijkstra 1.67 13.17% 0.25 24.00%

FFT 5.66 17.49% 0.84 44.05%

jpeg 29.11 15.94% 4.27 37.24%

sha 3.58 12.29% 0.55 27.27%

average -- 15.43% -- 31.56%

As the tables show, the increase in compile-time of our profit-driven approach is modest

and about the same as the heuristic-driven approach. These small increases show that our

approach is feasible and efficient. However, our prototype has several implementation artifacts

that negatively impact performance; a production implementation could decrease the compile-

time further. We conclude that the compile-time increase is worth the benefit of applying the

optimizations more effectively without tuning parameters.

53

4.6.2 Searching for Code-specific Optimization Sequences

It is known that the order to apply optimizations can have an impact on performance. However,

traditional compilers typically choose a fixed order to apply optimizations. It is almost

impossible that this single order can work best for every application.

Previous work has focused on experimentally searching for code-specific optimization

sequences. Almagor et al. presented the promising results of using a genetic algorithm to find

effective optimization sequences [1]. However, the profitability of a sequence of optimizations is

evaluated by experimentation. That is, they perform the optimizations in a sequence and execute

the optimized code to evaluate a candidate sequence. Thus, it is very costly to find an effective

sequence, even for small kernel applications.

Instead of executing the code, we can predict the profitability of a sequence of

optimizations using FPSO. The compile-time overhead will be greatly reduced because the time

spent to execute the code can be avoided.

In our experiments, we compared three approaches (i.e., fixed-order approach, empirical

approach and model-based approach) to find a good order of applying optimizations. The fixed

order that we used in our experiments is “VN, CPP, CTP, DCE, PRE, CPP, LICM, CPP, CTP,

DCE”. The choice of the order was based on the interactions studied in Whitfield and Soffa’s

work [50]. Their study can order some of optimizations, for example constant propagation

should apply before dead code elimination. However, the order for other optimizations can not

be decided. According to code context, different order maybe needed for the best performance.

The genetic algorithm that we used has a similar configuration as in Almagor’s work [1].

We performed the search on each file using 10 generations. Each generation had a population of

20 sequences. Every sequence had ten optimization passes, chosen from these six optimizations.

At each generation, the best 10% of the sequence survive without any change. The rest of the

new generation is created by the crossover operation, followed by the character-by-character

mutation with the mutation rate is 5%. A hash table is maintained to keep track of the sequence

evaluated to avoid evaluating the same sequence twice. For the empirical approach, we ran the

code with the train input set to evaluate the candidate sequences. For our approach, we used

FPSO to predict profitability.

54

In the following sections, we show the compile-time and performance improvement

comparison among the three approaches: fixed-order approach, empirical approach and model-

based approach.

4.6.2.1 Comparing compile-time overhead

Our approach uses models to predict the profit of a sequence of optimizations (instead of

executing the code). Thus, the compile-time can be greatly reduced. We investigated the

compile-time for the empirical approach and our model-based approach. Figure 4.19 shows the

compile-time for both approaches in hours.

0

5

10

15

20

25

30

35

40

45

bitcnt dijkstra FFT adpcm mpeg gzip mcf parser bzip2

C
om

pi
le

 T
im

e
(H

ou
rs

)

Experimental Model-based
46.1 55.6

MiBench MediaBench SPEC2K

Figure 4.19: Compile-time of the experimental and model-based approaches

From Figure 4.19, the compile-time for the empirical approach varies from

approximately 0.24 to 55.6 hours. The empirical approach has to perform the optimizations and

execute the code to evaluate the sequences. For benchmarks with a long execution time, (e.g.,

SPEC2K benchmarks), most of the compile-time was spent on executing the code. For example,

the empirical approach spent 55.6 hours to find effective sequences for mcf, among which 53.4

hours were for executing the code.

The compile-time for our model-based approach varies from 0.19 hours to 18.5 hours.

For the SPEC2K benchmarks, the compile-time for our model-based approach is much smaller

than the empirical approach, with up to 17 times compile-time savings. For example, for mcf, our

55

model-based approach spent 3.1 hours to find good sequences, while the empirical approach

spent 55.6 hours. On the other hand, for the benchmarks from Mibench and Mediabench, the

compile-time savings of our model-based approach is not much. For example, our approach used

0.99 hours to find good sequence for bitcount while the empirical approach used 1.21 hours.

4.6.2.2 Comparing performance improvement

Using the genetic algorithm, we can find an effective optimization sequence for each file. Thus,

by applying those sequences, the program should have better performance than a fixed-order

sequence.

0

5

10

15

20

bitcnt dijkstra FFT adpcm mpeg gzip mcf parser bzip2

%
 Im

pr
ov

em
en

t

Fixed Experimental Model-based

MiBench MediaBench SPEC2K

Figure 4.20: Performance of three approaches

Figure 4.20 shows the performance improvement for the three approaches over the

baseline. Performance was measured by the number of instructions executed. As the figure

shows, the problem with the fixed-order approach is that the fixed order may not be a good order

for some files. The genetic algorithm, on the other hand, can find the code-specific sequences. In

most cases, the empirical and model-based approaches improve performance more than the

fixed- order approach. For example, in dijkstra, the fixed-order approach improves performance

by 9.9% while the empirical approach and the model-based approach have improvement of

56

14.0% and 13.7%. From the figure, we can see that our model-based approach can achieve

similar improvements as the empirical approach.

As experimental results given in this section show, the compile-time of the empirical

approach to search for code-specific optimization sequences is huge for large benchmarks (e.g.,

SPEC2K benchmarks), which makes the empirical approach not scalable. Our model-based

approach is practical and scalable: It can find good sequences for large benchmarks with much

less compile-time. We conclude that the profitability property is useful in searching for code-

specific optimization sequences.

57

5.0 FPLO: PREDICTING PROFITABILITY OF LOOP OPTIMIZATIONS

In this chapter, we describe a framework instance, called FPLO, for predicting the profitability of

loop optimizations. Because loop behavior dominates data cache performance [37], we consider

cache performance as our indicator for overall performance of loop optimizations.

As the disparity between processor and main memory speed increases by approximately

50 percent per year, the use of caches with high hit rates has become critical for performance

[18]. Data caches are designed to exploit locality, and naturally, they work best for programs that

have high locality. Some optimizations are designed to improve cache performance by

rearranging code to have better locality. Other optimizations are not designed specifically for this

purpose and may negatively impact cache performance and overall performance. We need to

determine the profit of an optimization on cache performance and overall performance.

In the following sections, we describe the code model, loop optimization models and

cache resource model. Next, we describe the profitability engine that uses the models to make

predictions. Lastly, we show the experimental results.

5.1 CODE MODEL FOR CACHE

To predict the cache profit of loop optimizations, we need to express those code characteristics

that affect the cache, which are a loop’s header and the sequence of array references in a loop

body. Loop headers give the total number of memory accesses for an array reference. The loop

organization and array reference pattern determine how the memory accesses are ordered.

Different orders result in different data reuse and amounts of cache misses.

Our code model for cache represents the loop nests in the code as a sequence of loop

nests, 〉〈 K,ln,ln 21 . The order of loop nests in the sequence is as they appear in the code. Each

58

loop nest ln is represented as 〉〈∫∫∫
−

R
lb

step
ub

lb
step
ub

N lb
step
ub

011

L , where
011
∫∫∫

− lb
step
ub

lb
step
ub

N lb
step
ub
L corresponds

to the loop headers and 〉〈R is the array reference sequence. For convenience, we put a number

under each loop header to express its order in the loop nest.

A loop header, ∫
lb

step
ub

, consists of a lower bound (lb), upper bound (ub), and iteration step

(step). The array reference seqeuence, 〉〈R , consists of all array references in a loop body in the

order that they appear textually in the code. An array reference refers to an array element and

includes the name of the array and its access function (subscript). Because optimizations usually

change the access functions (and not the name of the array), we use an equation,

CIARef +×= , to represent the access function of an array reference. A is the access matrix, I

is the loop index vector and C is the constant vector [22]. This equation can be written as:

1

0

1

0

)1)(1(0)1(

)1(000

1

0

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
×

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−−

−

− dN-Ndd

N

d C

C

I

I

AA

AA

sub

sub
MM

L

MOM

L

M

Although we consider only perfect loop nests, our technique can be extended to handle

non-perfect nested loops by including the loop index I in every array reference.

for (i=0; i<N; i++)
for (j=0; j<N; j++)

a[i] = a[i] + b[j][i]*c[i][j]+c[i+1][j];

(a) Original loop nest

() () () () ()aaccccbbaa
NN

CACACACACA ,,,,,,,,, 2211

0 0
1

1

1 0
1

1

∫∫
−−

(b) Code model for the loop nest

Figure 5.1: A loop nest and its code model

Figure 5.1 shows an example of a loop nest and its code model, where (Aa, Ca) represent

the access matrix and constant vector of the array reference a[i] (same for the array references b

and c).

59

5.2 OPTIMIZATION MODELS

Loop optimizations change the loop headers and array references. Thus, our optimization model

for a loop optimization captures these changes. We use an impact function,

〉〈=〉〈 KK ,ln,ln,ln,lnf 2121opt '') (, to map an original sequence of loop nests to a new sequence.

We develop an optimization model for each loop optimization considered in this

research. In the following sections, we present our models for loop interchange, unrolling, tiling,

reversal, fusion, and distribution [3].

5.2.1 Loop Interchange

Loop interchange exchanges the position of two loops in a loop nest. The optimization model for

loop interchange is illustrated in Figure 5.2. The impact function, finterchange, maps an original

loop nest to a new loop nest, according to the semantics of loop interchange. Essentially this

function exchanges lb, ub and step of loop i with that of loop j. It also changes the array

reference sequence 〉〈R by a function)(〉〈Rg . This function determines the new array reference

sequence for the transformed loop by applying h(r) on every reference r in 〉〈R . Function h(r)

computes a new array reference by exchanging column i and j in the access matrix A from r's

reference equation. l(A) handles the column interchange. The constant vector, C, for r is

unchanged.

Consider the example in Figure 5.1. Using the model in Figure 5.2, we determine the new

loop nest. The new header is determined by exchanging lb, ub, and step for loop li and lj. The

new array reference sequence, 〉〈=〉〈 ',...,',','' 4210 rrrrR , is determined by changing the access

matrix of every array reference in 〉〈R . For example, the access matrix of a[i] is changed from

[]01 to []10 and b[j][i] is changed from ⎥
⎦

⎤
⎢
⎣

⎡
0
1

1
0

 to ⎥
⎦

⎤
⎢
⎣

⎡
10
01

 .

60

INPUT: 〉〈∫∫∫
−

R
N

011

L and interchange is legal for loops i, j;

∫ ∫∫ ∫∫ ∫∫ ∫
−−

〉〈=〉〈

1 01 0

)()(
N j iN i j

eInterchang RgRf LLLLLL

where 〉〉〈∈〈∀=〉〈)()()(rhRrRg ,

)),(()(CAlrh = , and][:][][:][)(jAiAAl ↔=

Figure 5.2: Loop interchange optimization model

5.2.2 Loop Unrolling

Loop unrolling duplicates a loop’s body a number of times [3]. It is commonly understood that

loop unrolling has little impact on data cache performance when register pressure is not

considered. However, we model loop unrolling to demonstrate the effectiveness of our models.

The optimization model for loop unrolling is shown in Figure 5.3.

 INPUT: 〉〈∫∫∫
−

R
N

011

L and unroll factor U;

 〉〈=〉〈∫ ∫ ∫
−

restunroll

N

unroll lnlnRf ,)(
1 1 0

L where

)(
1 1 0

〉〈= ∫ ∫ ∫
−

× Rgln
N

Ustepunroll L and

〉〈= ∫ ∫ ∫
− ×⎥⎥

⎤
⎢⎢
⎡ +

Rln
N U

U
ub

rest

1 1 0 1
L

)),()(^(^)(
1

1
〉〉〈∈〈∀〉〈=〉〈

−

=
irhRrRRg

U

i
and

)),(,(),(iClAirh = and
isCNaAasiCl +≠−∈∀=][})0]1][[|{(),(

Figure 5.3: Loop unrolling optimization model

The impact function funrollling maps an original loop nest to two nested loops (one for the

unrolled loop and one for possible leftover iterations) according to the semantics of loop

61

unrolling. In the unrolled loop nest, the step of the innermost loop is changed to Ustep × (U is

the unroll factor) and the array reference sequence, 〉〈R , is changed by a function g, which

combines 〉〈〉〈〉〈〉〈 − 121 ,,,, URRRR L together. A reference 〉〈 iR is determined by applying the

function),(irh on every array reference, r, in 〉〈R . Function),(irh models how the access

matrix and constant vector of a reference are changed. It keeps the access matrix unchanged and

applies),(iCl on the constant vector. Essentially,),(iCl changes C by adding i to those

dimensions that have the innermost loop control variable. In the loop nest for the leftover

iterations, the lower bound of the innermost loop is changed to U
U

ub
×⎥⎥

⎤
⎢⎢
⎡ +1 and the array

reference sequence, 〉〈R , is unchanged.

Using the example from Figure 5.1, suppose that the unroll factor is two. With the model

from Figure 5.3, the unrolled loop's header becomes, ∫∫
−−

0 0
2

1

1 0
1

1 NN
, from the rolled loop's header,

∫∫
−−

0 0
1

1

1 0
1

1 NN
, by doubling the step of the innermost loop. The array reference sequence for the

unrolled loop is 〉〈 9,,5,,10, rrrr LL , where r5 to r9 is determined by keeping the access matrix

and changing the constant vector of r0 to r4 in 〉〈R . For example, r6 (b[j+1][i]) has the same

access matrix ⎥
⎦

⎤
⎢
⎣

⎡
0
1

1
0

 as 1r (b[j][i]) , but a different constant vector ⎥
⎦

⎤
⎢
⎣

⎡
0
1

. Second, we determine

the loop nest for the leftover iterations. Its loop header is ∫∫
×⎥⎥
⎤

⎢⎢
⎡

−−

0 2
2

1
1

1 0
1

1

N

NN
 and its array reference

sequence is unchanged.

5.2.3 Loop Tiling

Loop tiling improves cache reuse by dividing an iteration space into tiles and transforming the

loop nest to iterate over them [3]. The optimization model for loop tiling is shown in Figure 5.4.

62

 INPUT: 〉〈∫∫∫
−

R
N

011

L , tiling loops tnt ,,1L , with tile size ntsts ,,1 L respectively;

∫ ∫∫∫∫ ∫∫∫
−−

〉〈=〉〈

1 011 01

)()(
N ttnN ttn

tiling RfgRf LLLLLL where

∫∫ ∫ ∫∫∫ ∫∫∫∫
− −−+

=

01 1 1 1

)1()(

101 1

1

1

)(
N N t x

h

tn x

nh

nN N lb
ts
ub

lb
ts
ub

ttn nn

n

n

g LLLLLLL

)1,min()(−+= iii tsxubih and
〉〉〈∈〈∀=〉〈)),(()(CAlRrRf where]0[)(AAl =

Figure 5.4: Loop tiling optimization model

The impact function, ftiling, maps an original loop nest to a new loop nest by changing its

loop header by function g and changing its array reference sequence 〉〈R by function f.

Essentially, function g adds ∫∫
−+ NnN n

n

n

lb
ts
ub

lb
ts
ub

1

1

1

1
L to the outermost and changes lower bound and

upper bound of loops to be tiled. (The input to the model specifies the number of loops to be

tiled, n, their index in the header sequence tntt ,,2,1 L and their tile size, ntststs ,,, 21 L .) The

lower bound of lti changes to the control variable of lN+ti-1 (represented as xi). The upper bound

of lti changes to a function h(i), which gets the minimum number of original upper bound and

(1−+ ii tsx). On the other hand, function)(〉〈Rf changes the access matrix (A) by function l(A)

of every array reference in 〉〈R , where function l(A) adds n columns of zero to A’s first n

columns. The constant vector (C) does not change.

For the example in Figure 5.1, if we tile li and lj with tile size 64, using the model shown

in Figure 5.4, we get the new loop header as ∫∫∫∫
+−+−−−

0 1
1

)631,1min(

1 2
1

)632,1min(

2 0
64

1

3 0
64

1

x

xN

x

xNNN
. The

access matrix of every array reference is changed; e.g., b[j][i] is changed from ⎥
⎦

⎤
⎢
⎣

⎡
0
1

1
0

 to

⎥
⎦

⎤
⎢
⎣

⎡
0100
1000

 .

63

5.2.4 Other Loop Optimizations

We also develop impact function for loop reversal, loop fusion and loop distribution. The

detailed optimization models for these optimizations are described in Appendix A.

5.3 CACHE MODEL

We use a cache model to estimate the cache cost of executing a loop nest. This model indicates

how a given reference pattern affects cache misses (and hits) under the assumption of a single

issue in-order pipelined processor with a blocking cache. To improve locality, we want to reduce

the number of cache misses, and in evaluating the impact of an optimization, we want to know

whether the number of cache misses is decreased by the optimization.

Because some array references may access the same cache line in the same or different

iteration (due to group temporal or spatial reuse), we group references to avoid over estimating

the number of cache misses when a reference may access a cache element that has been

previously loaded. We adapt Mckinley et al.’s RefGroup algorithm [37] to formulate RefSet

using our code model representation to calculate group spatial and temporal reuse with respect to

the innermost loop. We consider two references 1r (A1, C1) and 2r (A2, C2) that refer to the

same array that belongs to the same RefSet if:

1) 21 A A = , ki∀ (ik is the row index of the none-zero elements in the last column of

A1) 121][][−×= Nkk steppi-CiC (p is a positive integer and 2≤p , 1−Nstep is the

iteration step of the innermost loop) , and all other ip (kp ii ≠),][][21 pp iCiC = or

2) 21 A A = ,)10 (][][21 d-iiCiC <≤= , and clsdCdC <−−−]1[]1[21 (cls is the cache

line size, and d is the dimension of the array.

Condition 1 accounts for group temporal reuse, and condition 2 accounts for group spatial reuse.

Once we account for group reuse, we can calculate the cache misses of a representative

array reference, say Rα, in a RefSet. Initially, we used McKinley et al.’s cache cost model. While

their model accurately estimated cache misses under some circumstances, it did not have

sufficient overall accuracy needed to achieve good results for all of our optimization models. The

64

reason is that it handles cache conflict misses in a simple manner and did not accurately reflect

all possible sources of conflict misses.

Cache conflicts are difficult to predict and estimate [45]. From our own experiments, we

found that cache conflict misses can vary widely with slight variations in the problem input size.

Ghosh et al. [18] proposed a precise algorithm, Cache Miss Equation (CME), to generate a set of

equations for cold and replacement misses. The solutions to these equations represent all

compulsory and conflict misses. However, finding all reuse vectors and setting up complete

cache miss equations is very complex. Instead, our goal was to develop a more feasible and

practical model that tailors Ghosh's scheme to our specific problem of predicting the impact of

loop optimizations on cache performance. We simplified Ghosh's model to calculate the cache

misses of Rα. Table 5.1 explains the terms that are used in computing the cache misses of an

array reference, Rα.

Table 5.1: Terms used in cache model

Term Meaning

TI Total number of iterations in the loop nest

cls Cache line size

FP Footprint of Rα (i.e., how many different elements Rα access over all iterations)

CRT Fraction of Rα’s self temporal-reuse that cannot be realized (realizing a reuse

means a reuse can result a cache hit)

CRS Fraction of Rα’s self spatial-reuse that cannot be realized

We estimate the cache misses of Rα to be:

))1(1())1(()(CRSCRS
cls

CRTCRT
TI
FPTIRCM +−××+−××=α (1)

We compute CRS and CRT in a way similar to the CME approach by solving a set of equations

that sets the cache block address of Rα equal to that of other references within its reuse distance

to find possible conflicts. The reuse distance is the number of iterations between a reuse and its

previous access. For example, in Figure 5.1, b[j][i]’s spatial reuse distance is N, because an

access in iteration ()ji, can be spatially reused by another access in iteration ()ji ,1+ , which is

N iterations behind. With this approach, we take into account the cache conflicts in an accurate

manner. We illustrate how to compute CRS and CRT for b[j][i] in Figure 5.1. Suppose that we

65

have direct-mapped cache. First according to b[j][i]’s spatial reuse distance N, we set up a set of

equations to get CRS for b[j][i], including:

])][[(])][[(]1,0[tjicAddrijbAddrNt +=−∈∀ (2)

])][1[(])][[(]1,0[tjicAddrijbAddrNt ++=−∈∀ (3)

])][[(])][[(],1[itjbAddrijbAddrNt +=∈∀ (4)

])[(])][[(iaAddrijbAddr = (5)

The solutions to every equation represent all the iterations where b[j][i] conflicts with another

reference. Because of direct mapping, the total number of iterations that b[j][i] will be evicted by

another reference will be the union of these solution sets. We compute CRS by dividing the total

number of conflict iterations by the total number of iterations. As b[j][i] has no temporal reuse,

CRT equals one.

5.4 PROFITABILITY ENGINE

The profitability engine inputs the code model for cache, loop optimization models and cache

model to predict the profitability of loop optimizations.

When a loop optimization is applicable, the optimizer extracts the loop nests from the

original code and expresses them using the code model (described in section 5.1). The optimizer

then triggers the engine. When the engine is triggered, it inputs the code model, optimization

models and cache model. It applies the optimization model on the code model and generates a

new code model that represents the optimized code. Finally, the engine applies the cache model

on the original and optimized code models. With a cache configuration, the cache model

estimates the cache misses according to the representation of the code model. The engine outputs

the profit of applying a loop optimization by determining the difference between cache misses of

the original and optimized code models.

66

5.5 EXPERIMENTAL RESULTS

To evaluate FPLO, we implemented the models and extensively tested them using a number of

loop benchmarks that were commonly used in other researches [22]. There are two types of

benchmarks: those with a single loop nest (alv, irkernel, lgsi, smsi, srsi, tfsi, tomcat3, biquad_N,

lms, gdevcdj and pegwit) and those with multiple loop nests (adi, aps, eflux, tomcat, vpenta, and

bmcm). The benchmarks have from one to nine loop nests and from four to thirty two array

references in a loop nest.

In the compiler infrastructure we used for scalar optimizations, Mach SUIF [44], there

are no loop optimizations implemented. Thus, we implemented a stand-alone tool for FPLO,

which inputs the cache code model, loop optimization models and cache resource model and

outputs the profit of applying an optimization. Based on the output from the tool, we manually

apply loop optimizations. To experimentally evaluate our approach, we measured the actual

execution behavior by simulating the code using SimpleScalar sim-outorder microarchitecture

simulator [9]. We simulate a processor pipeline with in-order single issue and a critical-word

first non-blocking cache. The processor has a two entry load-store queue and can sustain up to

two cache misses before stalling. This model is similar to several popular embedded processors,

including MIPS' 4Kp (R4000), ARM's 94x series, and IBM's PowerPC 405. The cache that is

used in our simulation is a direct-mapped data cache with 32-byte block size. Using a small

cache with scaled working sets allows us to investigate the impact of different sized working sets

without suffering the high simulation times required for large data sets. The performance

numbers that we present will scale to other cache configurations and working set sizes.

We first present the prediction accuracy of FPLO. Then we compare our profit-driven

approach with an approach that always applies an optimization if applicable. We also show other

uses of FPLO in selecting the most beneficial loop optimizations. Finally, we present the

compile-time overhead of FPLO.

5.5.1 Model Accuracy

To use FPLO to drive the application of loop optimizations, we must ensure that it has good

prediction accuracy, as we did for scalar optimizations. To measure the prediction accuracy, we

67

ran the original benchmarks and optimized ones with our simulation framework and compared

the predictions from FPLO against the simulation results.

First, we compared the predictions of cache miss reductions against the simulation

results. When replaced by a simpler cache model [36], FPLO could not make correct predictions

in some cases. With our cache model, FPLO predicted more accurately. Figure 5.5 shows an

example of how FPLO with different cache models compares with the simulation results for loop

interchange on irkernel with varying trip counts. With a simple cache model, wrong predictions

about whether to apply interchange were made in some cases. For example, when the trip count

equals 128, FPLO with a simple cache model predicts that interchange reduces the number of

cache misses by 8224. But the simulation result showed that interchange increased the number of

cache misses by 3937. Using our cache model, FPLO correctly predicted the trend of cache

misses increased to 3810. Other benchmarks and other optimizations showed a similar trend.

-10000

-5000

0

5000

10000

15000

20000

25000

50 74 98 122 146 170 194

Trip Count

C
ac

he
 M

is
se

s
R

ed
uc

tio
n

simulation

prediction using our cache model

prediction using simple cache model

Figure 5.5: Loop interchange on irkernel with different cache models

We computed prediction accuracy for FPLO integrated with our cache resource model. If

an optimization improves cache performance shown in the simulation results, and our model

predicted that the optimization should be applied, then we consider this to be a correct

prediction. If the simulation result does not match our predicted result, then it is a misprediction.

Prediction accuracy captures how often FPLO gives the correct prediction. Table 5.2 shows

prediction accuracy for the single nest benchmark loops with varying trip counts. For each

benchmark, the trip count was varied from 50 to 200. From the table, the prediction accuracy

68

ranged from 81.6% to 100% across all benchmarks and optimizations with an average of 97%.

Although there is high accuracy across all optimization models, loop reversal has the lowest

accuracy. The reason is that loop reversal has a minimal impact on data cache locality (i.e., the

cache miss reduction of applying reversal is very small), and as such, it is difficult to predict its

benefit. Although FPLO chose not to apply loop reversal in these cases, this choice did not

degrade the effectiveness of FPLO because the benefit of applying reversal was so small that it

can be ignored (see Figure 5.6).

Table 5.2: Prediction accuracy for single-loop nest benchmarks

Benchmark Interchange Tiling Reversal

alv 100% 100% 97.4%
irkernel 98.7% 100% 93.4%

lgsi 100% 100% 82%

smsi 100% 100% 86.8%

srsi 100% 100% 86.8%

fsi 100% 97.4% 100%

tomcat3 98.7% 92.1% 93.4%

biquad_N 89.5% 88.2% 100%

gdevcdj 100% 100% 97.4%

lms 97.4% 100% 94.7%

pegwit 100% 100% 81.6%

average 99% 98% 92%

We also investigated the prediction accuracy of FPLO for the benchmarks with multiple

loop nests. Table 5.3 shows the choices made with our models and how the choices compare

with actual performance as reported by simulation. For each optimization in the table, there are

three columns. The first column, A, indicates on how many loop nests in a benchmark an

optimization is applicable. The second column, M, indicates the number of loops for which our

framework predicts a benefit to applying an optimization. The final column, S, indicates the

number of loops in a benchmark in which an optimization should have been applied (i.e., it had

an actual performance improvement). As an example, consider loop reversal for vpenta. On this

benchmark, there are eight loops where reversal could be applied and FPLO predicted to apply it

69

in seven cases. The simulation results indicate that the optimization had a benefit on seven loops.

In all cases in the table where there are mispredictions, our model selected the same set of loop

nests for optimization as the simulation results, except for the one case where there was a

misprediction. Although not shown in the table, our model also always made the correct choice

for loop unrolling, fusion, and distribution.

Table 5.3: Prediction accuracy for multi-loop nest benchmarks

Interchange Tiling Reversal
Benchmark

A M S A M S A M S

adi 2 0 0 2 0 0 2 0 1
aps 1 1 1 1 1 1 3 1 1

eflux 5 5 5 5 1 1 6 2 3

tomcat 6 5 5 6 3 2 9 7 6

vpenta 3 3 3 3 2 2 8 7 7

bmcm 2 2 2 2 2 2 4 3 3

5.5.2 Comparing with Always-applying Approach

Always applying an applicable optimization can lead to a performance degradation in some

cases. Such a simple heuristic of “always applying” is not sufficient in making decisions about

when to apply an optimization. Figure 5.6 shows how always applying an optimization can lead

to significant performance penalties. This figure shows the percentage change in performance

(i.e., cycle count) when always applying an optimization versus not applying the optimization.

Several benchmarks were run with varying trip counts to explore the effect of different

configurations of a loop on whether to apply an optimization or not. For the benchmarks where

the configuration was varied, only two trip counts are shown. One trip count comes directly from

the benchmark, while the other is at a point that has significant conflict cache misses.

The figure demonstrates that across all benchmarks and optimizations that we considered,

applying loop optimizations has significantly different performance impacts based on both a

specific loop nest and the exact configuration of a loop nest. For example, loop interchange has a

performance impact that varies from a 120% degradation to a 55% improvement. Also, for a

specific configuration of a loop nest (i.e., different trip counts), the impact varies. In the case of

70

interchange for the lgsi benchmark, there is a 4% performance degradation for a trip count of 98

and a 8.3% performance improvement for a trip count of 128. Although the figure does not

show loop unrolling, distribution, or fusion, we used our models to predict their impact. First, as

expected, loop unrolling had no benefit on data cache locality. Of course, it had other non-cache

related benefits such as reducing the total number of branch tests, improving the scheduling

window and changing register pressure. Second, loop distribution had a 17.8% degradation when

applied to alv with a trip count of 100 and a 1.2% improvement when applied to alv with a trip

count of 128. Finally, on tomcat3, loop fusion had a very small benefit (0.8%) for a trip count of

100 and a 2.8% degradation for a trip count of 128. Optimizations may improve the performance

for one trip count while degrade the performance for another. This trend for the single loop nest

benchmarks is also true for the complex benchmarks with multiple loop nests. Here, interchange

has a performance range from a 2.5% degradation to a 55% improvement. Tiling shows a similar

trend, with the aps having a 26.2% performance improvement and vpenta having a 1%

performance degradation.

As this figure shows, the strategy of always applying an applicable loop optimization is a

dangerous one that may indeed lead to significant performance degradations. Of course, in some

cases, this strategy works, but it is hard to know when it will work and when it will not. Instead

of blindly applying an optimization, a more selective approach can be taken using FPLO. It can

be used to predict when to apply an applicable optimization without actually applying it.

Using our profit-driven approach, the cases where performance is degraded can be

avoided, which can have a significant effect. Figure 5.7 shows the performance improvement of

selectively applying an optimization over always applying it. The improvement is relative to

always applying the optimization and demonstrates the effect of selectivity. For the single nest

benchmarks, a performance improvement implies that an optimization was not applied. For

example, the benchmark alv with a trip count of 100, selectively deciding not to apply loop

interchange has twice the performance of applying it. When performance is not improved both

always applying and selectively applying an optimization had the same effect.

For interchange on the single nest benchmarks, optimization selectivity has a

performance improvement of 0 to 120%. The large improvements in this case are due to the large

degradations from always applying interchange (see Figure 5.6). Although loop tiling shows a

slight improvement due to selectivity, it does not have as much an improvement as interchange

71

because the degradation from always applying the optimization is less. Reversal is similar to the

tiling case. Distribution and fusion also showed improvements when applied with selectivity.

With selectivity, unrolling was not applied since it does not have any benefit to cache

performance. For all single nest benchmarks and optimizations considered, a selective approach

using FPLO never results in a performance degradation over always applying an optimization.

Indeed, the model captures the points at which an optimization is harmful as well as the points at

which an optimization is helpful.

The rightmost bars in the figure show the effect of selectivity on benchmarks with

multiple loop nests. In these cases, interchange with selectivity has a small performance

improvement for adi and tomcat. A similar trend is true for loop reversal. However, in the case

of loop reversal, two points (eflux and adi) are shown where our model mispredicts the benefit of

applying an optimization and results in a small performance degradation over always applying

reversal. The situation is different for tiling where selectivity has a significant difference. For

eflux, tomcat, and vpenta, there is a performance improvement of 1.12.

While Figure 5.7 shows the advantage of selectively applying an optimization, it does not

show the actual improvement in execution time due to selectivity. Figure 5.8 shows how cycle

count is improved. For the single nest benchmarks, performance is improved by deciding not to

apply an optimization when it would be harmful and by applying an optimization when it would

help. In Figure 5.8, the cases with multiple loop nests are very compelling with selectivity

resulting in a cycle count improvement over always applying an optimization for some cases.

Consider the tomcat benchmark and the tiling optimization. Tiling results in a 15.5%

improvement in cycle count by selectively applying the optimization to some loop nests and not

to others within the same program. In comparison, always applying tiling achieved only a 5.4%

improvement in cycle count.

72

-10%

-5%

0%

5%

10%

alv (1
00)

alv (1
28)

irk
ernel (1

00)

irk
ernel (1

28)

lgs i (9
8)

lgsi (1
28)

smsi (1
24)

smsi (1
28)

srsi
 (1

94)

srsi
 (1

28)

tfs
i (4

2)

tfs
i(1

28)

tomca
t3(100)

tomca
t3 (1

28)

biquad_N(90)

biquad_N(128)

gdevc
dj(1

00)

gdevc
dj(1

28)

lm
s(1

6)

lm
s(1

28)

pegwit(1
00)

pegwit(1
28) ad i

aps
eflu

x

tomca
t

vpenta
bmcm

interchange tiling reversal

Figure 5.6: Performance impact of always-applying approach

0.9

0.95

1

1.05

1.1

alv
 (1

00
)

alv
 (1

28
)

irk
ern

el
(10

0)

irk
ern

el
(12

8)

lgs
i (9

8)

lgs
i (1

28
)

sm
si

(12
4)

sm
si

(12
8)

srs
i (1

94)

srs
i (1

28)

tfs
i (4

2)

tfs
i(1

28
)

tom
ca

t3(
10

0)

tom
ca

t3
(128

)

biq
uad

_N
(90

)

biq
uad

_N
(12

8)

gd
ev

cd
j(1

00)

gd
ev

cd
j(1

28)

lm
s(1

6)

lm
s(1

28
)

pe
gw

it(1
00

)

pe
gw

it(1
28

)
ad

i
ap

s
efl

ux

tom
ca

t

vp
en

ta
bm

cm

interchange tiling reversal

Figure 5.7: Improvement of profit-driven approach vs. always-applying

0%

2%

4%

6%

8%

10%

alv
 (1

00
)

alv
 (1

28
)

irk
ern

el
(10

0)

irk
ern

el
(12

8)

lgs
i (9

8)

lgs
i (1

28
)

sm
si

(12
4)

sm
si

(12
8)

srs
i (1

94)

srs
i (1

28)

tfs
i (4

2)

tfs
i(1

28
)

tom
ca

t3(
10

0)

tom
ca

t3
(128

)

biq
uad

_N
(90

)

biq
uad

_N
(12

8)

gd
ev

cd
j(1

00)

gd
ev

cd
j(1

28)

lm
s(1

6)

lm
s(1

28
)

pe
gw

it(1
00

)

pe
gw

it(1
28

)
ad

i
ap

s
efl

ux

tom
ca

t

vp
en

ta
bm

cm

interchange tiling reversal

Figure 5.8: Performance impact of profit-driven approach

-111% -27% -120% -11% -91% -108%

12.1% 38%26% 18% 33% 52% 55%31%

-85% -27% -103%
-34%

-20% -15%
-31%

-16%
-28%

2.11 1.27 2.2 1.11 1.9 2.08 1.85 1.27 2.0 1.3 1.2 1.15 1.3 1.16 1.28 1.12 1.12 1.12

 12% 38% 19% 35% 52% 55%
16% 11% 26% 31%

73

5.5.3 Choosing the Best Optimization

Not only can FPLO be used to decide whether an optimization should be applied or not, but it

can also be used to select among several applicable optimizations. We can use FPLO to predict

the profit of applying each optimization on a loop and then select the one with the maximum

benefit, which is useful for constructing the good optimization sequences. Choosing the best

optimization is particularly interesting in our single nest benchmarks when varying the trip

count. Here, the trip count (the loop configuration) has a big impact on which optimization is the

most beneficial. Figure 5.9 shows the accuracy and distribution of optimizations selected for

each single nest benchmark with the trip count varied from 50 to 200. The figure shows the

percentage of times that a particular optimization was chosen as the best one to apply. When all

optimization models predicted a performance degradation (or no benefit), our model decided not

to apply any optimization (the "not applying" case in the figure).

0%

20%

40%

60%

80%

100%

 alv
(100%)

irkernel
(98.7%)

lgsi
(100%)

smsi
(86.8%)

srsi
(86.8%)

tfsi
(96%)

tomcat3
(91%)

biquad_N
(86.8%)

gdevcdj
(97.4%)

lms
(97.4%)

pegwit
(96.1%)

Interchange Tiling Reversal Unrolling Fusion Distribution Not Applying

Figure 5.9: Accuracy and distribution of the most beneficial optimizations

For several of the benchmarks, only a couple of choices were made. For example, in alv,

loop distribution was applied for 11% of the trip counts. For the other 89% of the trip counts, no

optimization was applied. The benchmarks tfsi and tomcat3 are interesting since they have three

different choices. In tfsi, loop reversal, interchange, and tiling were applied, with tiling being

applied the most often. For tomcat3, loop interchange was most often the best optimization,

followed by fusion.

The figure also shows the accuracy of the choices made by our models (in parenthesis

below each benchmark name). For most of the benchmarks, the accuracy was above 96%. For

the others, such as smsi and srsi, the accuracy was lower due to mispredictions from our loop

74

reversal model. For example, in smsi, the model predicted no benefit to loop reversal, yet there

was a very small actual benefit. Notice that from Table 5.2 we see that reversal had an accuracy

of 86%, and as described earlier, the actual benefit was so small that our model did not capture it.

Here, the performance improvement due to reversal was minimal.

5.5.4 Compile-time Overhead for Prediction

FPLO uses models to make predictions and thus the cost of predicting profitability needs to be

evaluated. Thus, we need to evaluate the compile-time overhead, as done earlier. Table 5.4

shows for several loop benchmarks the compile time overhead (in milliseconds) of our tool.

From the table, we see that the overhead depends on the loop configuration and the array

references. For example, irkernel is a triple loop nest with five references and srsi is a double

loop nest with 25 references. The compile-time overhead is high in these programs due to their

complexity. On average, our compile-time for predicting is reasonable.

Table 5.4: Compile-time overhead for prediction (millisecond)

Benchmark Interchange Tiling Reversal

alv (100) 24 29 23
irkernel (100) 2150 2637 2140

lgsi (98) 40 49 38

smsi (124) 118 137 117

srsi (194) 541 630 541

tfsi (42) 8 10 7

tomcat3 (100) 136 160 137

biquad_N (90) 30 36 29

gdevcdj (100) 11 15 11

lms (16) 1 1 1

pegwit (100) 7 10 6

In this section, we described FPLO for predicting the profitability of loop optimizations.

Our experimental results demonstrate the predication accuracy and the usefulness of FPLO. On

average, with our accurate cache model FPLO can make correct predictions for 97% of the time.

75

Using FPLO, compilers can selectively apply loop optimizations. Thus, the performance

degradation cases in always-applying approach were avoided. FPLO can also be used to select

the most beneficial optimization among a set of optimizations, which will be useful in

constructing a good optimization sequence.

76

6.0 FIO: DETERMINING THE INTERACTION PROPERTY

In this chapter, we present the framework instance, FIO, for automatically determining the

interactions among a set of optimizations, considering code context. The key idea of our

technique is to model the pre- and post conditions of optimizations and code context, and

determine how the pre-conditions of one optimization interact with the post conditions of another

optimization. In our approach, there is no need to actually apply the optimization on the code or

to recompute data and control flow information after each optimization.

To understand how FIO works, we present an overview of our approach in Figure 6.1.

The figure shows the components of FIO and how FIO detects the interactions among a set of

optimizations.

Figure 6.1: Overview of FIO

Interaction Engine

Step 1:
Generate specific

enabling, disabling and
post conditions

< S1, S3, flow, =, 1>
< S1, S2, anti, =, 0>

… …

Code Model

O1

Optimization Model O11
Enable conditions:

<delete, Si, Sj, *, *, *> …
Disable conditions:

<insert, Si, Sj, *, *, *> …
Post conditions:

<insert, Si, Sj, *, *, *> …

Optimizations

O12
……

Step 2:
Match post conditions

with enable and disable
conditions

… …

<O11 O23 Enable O12>
<O12 Disable O24>

……

Interaction

S1: a = b;
S2: b = 2;
S3: d = a + 3;

… …

Code

Code Pattern
Depend
Action

SpeLO

77

In Figure 6.1, the code model is extracted from the code and automatically generated by

the optimizer. Its representation is the control flow graph with explicit data and control

dependence information, which is needed to verify the pre-conditions of optimizations and

determine the changes by the actions of optimizations. A specification language, SpeLO, is

designed to express the conditions under which an optimization can be safely applied and the

actions of the optimization. Compiler writers use SpeLO to develop models for optimizations. As

part of FIO, there is an interaction engine, which uses models to determine the interaction

property. In the first step, the interaction engine inputs the code and optimization models to

generate the specific enabling, disabling and post conditions for each optimization at a program

point. In the second step, these enabling and disabling conditions are matched with the post

conditions of other optimizations to determine the enabling and disabling interactions. The

output of our framework is the interactions among optimizations.

In the following sections, we describe the code model of FIO. We then present the

specification language, SpeLO. A number of optimization models are described, followed by the

interaction engine. We also describe how to use the interaction property to determine a code-

specific optimization sequence. Finally, we show experimental results.

6.1 CODE MODEL FOR INTERACTION

The code model for interaction analysis represents the dependences for each statement in the

code. We represent a dependence by >< posdirtypeSS ds ,,,, . There are four types of

dependencies, including flow, anti-, output, and control dependencies [54]. A flow dependence is

a dependence between statement Ss that defines a variable and statement Sd that uses the

definition. An anti-dependence exists between statement Ss that uses a variable that is then

defined in statement Sd. An output dependence defines a dependence between a statement Ss that

defines (or writes) a variable that is later defined (or written) by Sd. A control dependence exists

between a control statement Ss and all of the statements Sd under its control. The dir records the

direction of the dependence, which can be forward, backward or equivalent, represented by <, >,

or =, respectively. The direction is needed in optimizations for parallelization. The pos records

78

the position of dependence between Ss and Sd. Except for the dependences, we also need the

control flow graph for the code model to verify the path related information.

6.2 A SPECIFICATION LANGUAGE

In prior work, a number of specification languages have been introduced to specify optimizations

and formally analyze the properties of optimizations. Whitfield and Soffa [50] presented a

specification language, Gospel, to specify a class of scalar and loop optimizations. Gospel has

been used to automatically generate the implementation of optimizations and detect the

interactions among optimizations. Lerner et al. [35] introduced a domain specific language,

Cobalt, for automatically checking the correctness of optimizations. Lacey [33] introduced a

specification language, TRANS, to prove the soundness of optimizations and detect the disabling

interaction among optimizations. Both Cobalt and TRANS are based on temporal logic.

Figure 6.2: The format of SpeLO specification

We design a specification language, SpeLO, to specify optimizations for determining the

interaction property. Our SpeLO language extends Gospel by introducing path related

conditions, and thus, we can express path based optimizations such as PRE. The format of a

SpeLO specification is shown in Figure 6.2. The PRECONDITION section contains the code

pattern and dependence conditions needed before applying an optimization to maintain the

semantics. The ACTION section consists of a series of primitive operations to perform an

optimization. In SpeLO, an elementId starting with S represents a statement, an L represents a

OptName
PRECONDITION

Code_Pattern
[Quantifier ElementId: mem_list, element_format_list;]+

Depend
[Quantifier ElementId [pos]: mem_list, condition_list;]*

ACTION
[primitive_operation;] *

79

loop, and a B represents a block. B(Si) represents the block of Si. The general form of the code is

three-address code with loop structure information. A basic three-address code statement has the

form:

dst := opnd1 opcode opnd2

The names (e.g., opnd1, or opcode) are used to specify the attributes of the operands or operator.

6.2.1 SpeLO PRECONDITION Section

Previous research demonstrated that dependence relationships can be used to efficiently

determine the applicability of optimizations [24]. Thus, we use the code pattern and dependence

conditions to specify the conditions under which an optimization is applicable. Our approach is

the same as Gospel [50]. There are two parts in the pre-condition section.

Code_Pattern: This part identifies the code pattern of program elements such as a

statement or loop. If the element is a statement, then the code pattern expresses the statement’s

operator and operands required. If the element is a loop, then the code pattern expresses the

particular loop’s header, trip count, etc. needed. The quantifier can be one of ANY, ALL or NO

with the following meaning:

• ANY returns the set of matching elements and each element is considered separately;

• ALL returns the set of matching elements and all elements are considered together;

• NO returns a null set if there is no matching element.

The mem_list specifies a predefined set to which the element belongs, such as a path or a

loop. Format expressions are used to give the specific format of the code element and can be

combined in element_format_list using AND and OR. To help in generating the enabling and

disabling conditions, SpeLO requires that all the combined expressions are in disjunctive normal

format (DNF).

Depend: The second part of the PRECONDITION section specifies the necessary data

and control dependence conditions for applying the optimization. The quantifier operators can be

one of ANY, ALL or NO. The condition_list consists of the condition expressions combined by

AND and OR operators in DNF. A condition expression can be a dependence condition in the

form of type(Ss, Sd, dir). As in code model, the dependence type can be flow, anti-, output or

control dependence. The direction, dir, can be forward, backward, equivalent or any. A condition

80

expression can also be a predefined condition, such as in_any_path(Si, Sj, Sk), which means a

statement Si should appear in a path from Sj to Sk, and in_every_path(Si, Sj, Sk), which means a

set of statements Si should appear in every path from Sj to Sk. A position tag can also be specified

in a dependence rule to show whether the position of the dependence should be checked or not.

6.2.2 SpeLO ACTION Section

The ACTION section describes the modifications on code or code properties (e.g., value

number) of applying optimizations. We decompose these effects on code into four primitive

operations (move, add, delete and modify). The semantics of the primitive operations are shown

in Table 6.1, which are similar to Gospel [50]. The effect on code properties can be assigning a

new value to the property, hash the properties, etc. There can also be some conditions associated

with the actions. In Section 6.3.3, we describe the optimization model for global value

numbering, whose ACTION section expresses the modification on the value number of the

statements and has conditions associated with the actions.

Table 6.1: Semitics of primitive operations

Operation Parameter Semantics

Move (Obj, After_Obj) move Obj to the place after After_Obj

Add (Obj_Description, After_Obj) add an Obj with Obj_Description after After_Obj

Delete (Obj) delete Obj

Modify (Obj, Obj_Description) modify Obj with the Obj_Description

6.3 OPTIMIZATION MODELS

Optimization models for interaction analysis express the conditions under which an optimization

can be safely applied and the actions of the optimization. We describe the optimization model for

dead code elimination, partial redundancy elimination and value numbering, using SpeLO.

81

6.3.1 Dead Code Elimination

Figure 6.3 presents a SpeLO specification for dead code elimination (DCE). Because DCE

requires no path specific conditions, the optimization model of DCE is the same as what is in

Gospel [50]. To facilitate the discussion of the example (shown in Section 6.5), we describe DCE

optimization model. The specification uses two variables Si and Sj whose values are statements.

The Code_Pattern section specifies the code pattern consisting of any statement, which is a copy

statement or binary expression operation (i.e., +, -, *, /). Si will have its value as such a

statement if it exists. The Depend section ensures that there is no statement that is flow

dependent on Si.

If an Si is found that meets the code pattern, and no Sj is found that meets the specified

requirements, then the operation expressed in the ACTION section is performed. The action is to

delete the statement Si.

Figure 6.3: DCE optimization model

6.3.2 Partial Redundancy Elimination

Figure 6.4 presents the optimization model of partial redundancy elimination (PRE). The first

line in Figure 6.4 shows when we find that a statement Si is a binary expression operation, there

is a possible PRE opportunity. We need to find all the same expressions Sj, executed on a path to

Si without a redefinition between them (lines 2 and 3). We also find some definitions Sp of this

statement where there is a path that does not include the same expressions found (line 4). In this

specification, common subexpression elimination is a separate optimization from PRE. We save

DCE
PRECONDITION

Code_Pattern
1: ANY Si: Si.opcode = copy OR Si.opcode = binary_exp;

Depend
2: NO Sj: flow_dep(Si, Sj, any);
ACTION
3: Delete (Si);

82

the immediate predecessors of the statement on the path that does not include the same

expression, which will be the places to insert the computation. At the same time, we must make

sure that at these insertion places, the expression is anticipated (i.e., the block of statement Si

post-dominates the insertion place), as shown in line 5 of Figure 6.4.

When applying PRE, we insert the computation at the insertion places and before the

same expressions Sj and replace the same expressions Sj and the statement Si with the assignment

(lines 6 to 9 in Figure 6.4).

Figure 6.4: PRE optimization model

6.3.3 Value Numbering

Figure 6.5 presents the optimization model of global value numbering (VN), which operates on

SSA code [8]. We separate the optimization into two passes. First, we assign a value number to

each assignment statement. Second, we remove the redundancy based on the value number. The

PRE

PRECONDITION

Code_Pattern

1: ANY Si: Si.opcode = binary_exp;

2: ALL Sj: mem(path(Entry, Si)), Sj.opcode = Si.opcode AND

Sj.opnd1 = Si.opnd1 AND Sj.opnd2 = Si.opnd2;

Depend

3: NO Sk: anti_dep(Sj, Sk, =) AND flow_dep(Sk, Si, =);

4: ALL Sp: flow_dep(Sp, Si, =) AND

¬in_every_path(Sj, Sp, Si, save pred(Si) ∧ ¬ in_any_path(pred(Si), Sj, Si) to Bq)

5: NO Bl: mem(Bq), ¬post_dom(B(Si), Bl);

ACTION

6: Add ((new_temp= Si.opnd1 Si.opcode Si.opnd2), Bq);

7: Add (new_temp=Si.opnd1 Si.opcode Si.opnd2), Sj);

8: Modify (Sj, (Sj.dst = new_temp));

9: Modify (Si, (Si.dst = new_temp));

83

first pass is a preparation for the pass that uses the code property (i.e., value number). Thus, it is

always performed in the beginning and not involved in selecting a good order for optimizations.

Figure 6.5: VN optimization model

In the first pass, the specification uses two variables Si and Sj whose values are

statements. The Code_Pattern section specifies the code pattern consisting of any statement,

which is an assignment or Ø-operation (as shown in line 1 of Figure 6.5). The Depend section

finds all the statements that Si is flow dependent on. The ACTION section specifies the

modification on the code property, value number, which is initialized to the destination operator

of the statement. Associated with the actions, there are conditions. For example, if the value

numbers for all Sj are the same and Si is an Ø-operation, Si is a useless Ø-operation, as shown in

VN
Pass 1: Assigning a value number
PRECONDITION

Code_Pattern
1: ANY Si: Si.opcode = Ø OR Si.opcode = assign

Depend
2: ALL Sj: flow_dep (Sj, Si)
ACTION

// useless Ø-operation
3: IF ((Si.opcode = Ø) AND (equal (Sj.VN)))
4: Si.VN = Sj.VN;

// redundant Ø-operation or assign
5: ELSE IF (hash (Sj.VN, Si.opcode) != NULL)
6: Si.VN = hash (Sj.VN, Si.opcode);
7: ELSE
8: hash (Sj.VN, Si.opcode, Si.VN);

Pass 2: Redundancy elimination
PRECONDITION

Code_Pattern
9: ANY Si: Si.opcode = binary_exp

Depend
10: ALL Sj: Sj.VN = Si.VN
ACTION
11: Delete (Sj);

84

line 3 of Figure 6.5. Then, we assign the value number of Si to be Sj’s value number. If there is an

item that has the same operation and operators as Si in the hash table, Si is a redundant

computation and assigned the hashed value as its value number. Otherwise, we insert an item

into the hash table. In the second pass, the redundancy is eliminated based on the value number.

6.3.4 Other Optimizations

We also develop optimization models for CPP, LICM, CTP, branch chaining (BRC), branch

elimination (BRE), loop interchange (LPI), and loop fusion (LPF). Their optimization models are

shown in Appendix A.

6.4 INTERACTION ENGINE

The interaction engine of FIO inputs the code model and optimization models and determines the

enabling and disabling interactions among optimizations. Here, we focus on the interactions

among scalar optimizations; our technique also works for loop optimizations. The algorithm to

detect the enabling and disabling interactions among scalar optimizations is shown in Figure 6.6.

The algorithm for detecting the interactions of loop optimizations is similar, but the element

checked is a loop instead of a statement.

Lines 1 and 2 in Figure 6.6 show the data structures used in the algorithm. SetTable is

used to store the set of objects, ObjSet, which matches the element_format_list or condition_list

for each rule in the optimization specification. OptTable stores the information about each

optimization opportunity. Each element in OptTable includes an identifier, optimization type,

whether the optimization is applicable or not, the list of enabling conditions, the list of disabling

conditions and the list of post conditions.

As shown in Figure 6.6, the interaction engine uses two steps to detect the interactions

among a set of optimizations. In the first step, from line 3 to line 13, the interaction engine

executes a loop over every statement in the code model and every optimization specification and

85

generates the enabling, disabling and post conditions for each possible optimization opportunity.

The optimization opportunities are identified by looking for the code pattern and dependence

relations in the code model. In the second step, from line 14 to line 17, the interaction engine

matches the enabling and disabling conditions of an optimization with the post conditions of

other optimizations to compute the enabling and disabling interactions. The interaction engine

outputs a list of interaction relations, represented by “<O1 … On> Enable/Disable Oj”. The next

two sections describe in detail the algorithm for the interaction engine.

Figure 6.6: The overview algorithm for the interaction engine

Data Structure

 // SetTable records ObjSet found that matches the condition

1: SetTable: structure (Quantifier, ElementId, ObjSet)

// OptTable records the optimization opportunities
2: OptTable: structure (OptId, OptType, Applicable, Enable, Disable, Post)
Algorithm

//Step1: generating specific conditions
3: foreach statement S in the code model {
4: foreach optimization O under consider {
5: if (check_code_pattern (S, O) = = match | possible) {
6: check_depend (S, O);
7: foreach related opt in OptTable {
8: if (opt.enable is empty)
9: opt.applicable = true;
10: else
11: opt.applicable = false;
12: generate_postcondition(S, O);
13: } } } }

//Step2: matching the conditions
14: foreach opt in the OptTable {
15: postcondition_match(opt.enable);
16: postcondition_match(opt.disable);
17: }

86

6.4.1 Generating Specific Conditions

For each optimization and program point, the interaction engine checks the conditions described

in the PRECONDITION section and generates the specific enabling and disabling conditions.

Because there are two parts, Code_Pattern and Depend, in the PRECONDITION section, we

have two functions, check_code_pattern and check_depend (as shown in line 5 and line 6 of

Figure 6.6).

Table 6.2 shows how to generate enabling and disabling conditions for checking

conditions described in Code_Pattern (i.e., function check_code_pattern). Each row in the table

shows a different case when checking the conditions. There are three columns for each row. The

first column shows a case. The second and the third columns show the enabling and disabling

conditions generated for the case. The condition expressions in Code_Pattern are combined by

AND and OR operators in DNF. Without loss of generality, we represent a condition expression

as (A AND B OR C) in our discussion.

Table 6.2: Generating enabling and disabling conditions for check_code_pattern

Case Enabling conditions Disabling conditions

Match True

(delete S)

∨ (¬A ∧ ¬ C)

∨ (¬B ∧ ¬ C)

Possible match
A

if A not mach

(delete S)

∨ (¬A ∧ ¬ C)

∨ (¬B ∧ ¬ C)

As shown in Table 6.2, there are two cases when comparing a statement with the

conditions specified in Code_Pattern:

Case 1: The statement matches the conditions specified in Code_Pattern. The interaction

engine stores the statement in SetTable by calling SetTable_insert with (Quantifier = ANY,

ElementId = ElementId in the rule, ObjSet = {StatId}). It also creates an optimization

opportunity in OptTable by calling OptTable_insert with (OptId = cur_opt ++, OptType = O). It

then generates enabling and disabling conditions. As shown in second row of Table 6.2, the

87

enabling condition is true. The disabling conditions include a condition to delete the statement

and the conditions to modify the operands or operation to not match element_format_list. The

table shows a general form of the disabling conditions. “¬A ∧ ¬C” means modifying the

statement to not match the conditions A and C.

Case 2: The statement can be modified (by other optimizations) to match the conditions

specified in Code_Pattern. It is possible that the statement can be modified by other optimization

code changes, making this optimization applicable. For example, constant folding requires that

both operands are constant. But if the statement has a variable operand, it is still possible to

perform constant folding on this statement if the operand can be changed to a constant by

constant propagation. In the case that the operands or the operation can be changed by another

optimization to match the code pattern, the interaction engine stores the statement in the SetTable

and creates an optimization opportunity in OptTable. Here it generates both disabling and

enabling conditions, as shown the third row of Table 6.2. The disabling conditions are the same

as case 1. The enabling conditions are the conditions in which the code model does not match

with the code pattern. When it is impossible that any code change by another optimization

matches the code pattern, the interaction engine does not create an optimization opportunity.

The quantifier (ANY or ALL) specified in the code pattern does not change the

generation of the enabling and disabling conditions. When the quantifier is ANY, the generator

will create an optimization opportunity for each statement that matches or possibly matches with

the code pattern.

After checking the conditions specified in Code_Pattern, the interaction engine needs to

check the conditions given in the Depend section, as shown in Table 6.3. The table shows the

enabling and disabling conditions generated for different cases. Each row represents a case for

matching the conditions with code context. There are four columns. The first column shows the

quantifier of the conditions. The second column indicates whether the matching objects can be

found or not. The third and the fourth columns give the enabling and disabling conditions

generated. We still use (A AND B OR C) to represent a general condition in our discussion.

88

Table 6.3: Generating enabling and disabling conditions for check_depend

Quantifier Match Enabling Conditions Disabling Conditions

ALL Yes True
(delete obj1) ^ ... ^ (delete objn)

∨ (insert A AND B)*
∨ (insert C)*

ALL No
(insert A AND B)*

∨ (insert C)*
None

ANY Yes True

(delete obji)
∨ (insert A AND B)*

∨ (insert C)*
for every element in OptTable

ANY No
(insert A AND B)*

∨ (insert C)*
None

NO Yes
(delete obj1) ^ ... ^ (delete objn)
∨ (delete depi) if depi not match

(insert A AND B)
∨ (insert C)

NO No True
(insert A AND B)

∨ (insert C)

The second row in Table 6.3 shows the first case, where the quantifier of this condition is

ALL and there are objects that match the condition. Because this is a match case, the enabling

condition is true. The disabling conditions generated show that if deleting all of these matching

objects, the application of this optimization will be destroyed. The disabling conditions also

include inserting a dependence that matches the conditions, (insert A AND B)* or (insert C)*.

The stars on these disabling conditions show that the dependencies need to be updated before the

interaction engine can determine whether other optimizations disable this optimization because

of this condition. In most cases, we do not need to update the code model. However, there are

two cases when it is needed. In one case, a statement is inserted by an optimization. We need to

temporarily update the dependencies (i.e., the code model). For example, considering the

following code:

S1: a = b;

S2: d = a + 3;

…

S6: c = a + 6; newly inserted

89

Suppose O1 is an optimization opportunity of copy propagation applied to statement S1. It

is applicable for this code segment. Another optimization Oi inserts a statement S6 that is flow

dependent on S1, which will match the disabling condition of O1. However, it is unknown

whether S6 has other definitions or there is redefinition of b between S1 and S6. So it cannot be

decided whether O1 is applicable after inserting this dependence. Thus, the code model needs to

be updated to determine the interactions. The other case that needs to update the code model is

when the interaction engine considers a combination of optimizations, which will be discussed in

Section 6.4.2.

The third row in Table 6.3 shows the case where the quantifier of this condition is ALL

and there is no matching object. The interaction engine needs to generate the enabling

conditions, showing that dependencies can be inserted to match the condition A AND B or match

the Condition C.

Other cases are similar. One major difference is that when the quantifier of the condition

is ANY and there are matching objects, it needs to generate an optimization opportunity in

OptTable for each object and store OptId into ObjSet. The reason is that the objects defined by

ANY quantifier should be considered separately.

The enabling condition is combined with the other enabling conditions generated for the

previous rules by the AND operator, while the disabling condition is combined by the OR

operator. Finally we standardize all the enabling and disabling conditions to DNF in order to

match them with the post conditions.

When an enabling condition is deleting dependence, the generator needs to follow the

output dependences to generate all enabling conditions. For example, consider the following

code:

S1: a = b;

S2: b = 2;

S3: b = 3;

S4: d = a + 3;

In order to perform copy propagation at S1, it needs to delete the anti-dependence

between S1 and S2 and the output dependence between S2 and S3 as well.

After checking conditions specified in the PRECONDITION section, the interaction

engine needs to generate the specific post conditions for an optimization opportunity, as shown

90

in line 12 of Figure 6.6. The primitive operations in the ACTION section specify the code

modifications of the optimizations. The interaction engine decomposes them when generating the

specific post conditions. It also generates the post conditions that describe the changes on

dependences after applying the optimization.

Table 6.4 shows how to generate specific post conditions for each primitive operation in

a SpeLO ACTION section. Each row in the table represents a primitive operation. There are two

columns for each primitive operation. The first one gives the code modifications. The second one

gives the modification on the dependence.

For example, the move operation can be decomposed to delete the object at its original

place and insert the new object at a new place. Deleting an object needs to delete all its

dependences. Inserting an object will insert the dependences that relate to the new object at the

new place.

Table 6.4: Generating post conditions for primitive operations

Operation Code Modifications Dependence Modifications

Move
delete (Obj)

insert (NewObj, After_obj)

delete_dep (any_type, any_stat, Obj, any_dir)
insert_dep (any_type, any_stat, NewObj, any_dir)
insert_dep (any_type, NewObj, any_stat, any_dir)

Add insert(Obj, After_obj)
insert_dep (any_type, Obj, any_stat, any_dir)
insert_dep (any_type, any_stat, Obj, any_dir)

Delete delete (Obj) delete_dep (any_type, any_stat, Obj, any_dir)

modify_opnd(Obj,opnd, new_opnd)

delete_dep (any_type, any_stat, Obj, any_dir)
where dep_position = opnd

insert_dep (any_type, any_stat, Obj, any_dir)
where dep_position = new_opnd

insert_dep (any_type, Obj, any_stat, any_dir)
where dep_position = new_opnd

Modify

modify_opcode(Obj, new_opcode) --

6.4.2 Matching Conditions

In the first step, the interaction engine generates an optimization table, OptTable, which has all

the possible optimization opportunities (including their disabling, enabling and post conditions).

91

In this step, the interaction engine determines the interactions among these optimizations by

matching the enabling and disabling conditions of each optimization with the post conditions of

other optimizations in OptTable.

The algorithm for matching Oi’s enabling and disabling (E/D) conditions with the post

conditions is shown in Figure 6.7. Because the E/D conditions are already in DNF, we represent

them using the general form (A AND B OR C).

Figure 6.7: Matching Oi’s E/D conditions with post conditions

As Figure 6.7 shows, the interaction engine checks each post condition of other

optimizations. It finds all optimizations whose post conditions match the condition A, B, or C.

Then the set of optimizations whose post conditions match conditions A and B enable/disable Oi

together. The optimization whose post conditions match condition C enables/disables Oi.

Matching the post condition with condition A (or others) is straightforward. The condition action

(i.e., delete, insert, delete_dep, insert_dep, modify_opnd, or modify_opcode) and the object (e.g.,

statement, or dependence) are compared. For example, if A is <delete S3>, the post condition that

deletes S3 matches with A. If A is <delete_dep, type, Si, Sj, dir, other_condition>, the post

// Suppose the general form of E/D conditions of Oi is (A AND B OR C)
1: foreach optimization Oj (Oj ≠ Oi) {
2: foreach postcondition Pj of Oj {

 // match Pj with the condition A
3: if (Pj match A) {
4: if ((A has a star) && (update_match(Oj, Oi))
5: Oj {match1};
6: elseif (A has no a star)
7: Oj {match1};
8: }

 // same for conditions B and C to get {match2} and {match3}
9: } }
10: foreach Oa in {match1} {
11: foreach Ob in {match2} {
12: { Oa + Ob } (E/D) Oi;
13: }}
14: foreach Oc in{match3} { { Oc } (E/D) Oi; }

92

condition that deletes the same type of dependence between Si and Sj with the same direction as

well as meets the other condition can match A. The other condition specifies other requirements

for this dependence, such as the statement should be in a path.

In Section 6.4.1, we discussed that in one case when an optimization’s enabling or

disabling condition (a star condition) cannot fully determine the enabling and disabling

interactions, the interaction engine needs to update the code model to determine their

interactions, by calling update_match. Another case is when the interaction engine considers the

interactions of a combination of optimizations with other optimizations, in which it also needs to

update the control flow and dependencies. In these cases, the interaction engine creates a new

element in OptTable which represents the combination of O2O1. It then applies O2’s post

conditions to temporarily update the code model and checks the conditions specified in O1’s

dependence section under the modified code model. The interaction engine generates the

enabling and disabling conditions for this combination. According to whether O1 is applicable

after O2 is applied, the interaction engine determines whether O2 enables or disables O1. The

engine considers how the enabling and disabling conditions of this combination interact with the

post conditions of other optimizations to determine the interactions of a combination of

optimization with other optimizations.

6.5 AN EXAMPLE OF DETERMINING THE INTERACTION

In this section, we use an example to show how FIO automatically determines the enabling and

disabling interactions for two optimizations, dead code elimination (DCE) and copy propagation

(CPP). The code is shown in Figure 6.8(a). The optimizer generates the code model, as shown in

Figure 6.8(b). The code model describes the dependences in the code. Each dependence is

expressed as <Si, Sj, type, dir, pos>. For example, there is a flow dependence between S1 and S2.

It has equal direction. The dependence exists on the first operand. Thus, this dependence can be

represented as <S1, S2, flow, =, 1>. The optimizer inputs the code model and optimization model

for DCE and CPP into the interaction engine, which determines the interactions among these two

optimizations.

93

Figure 6.8: An example of determining the interaction

When the engine is triggered, it first generates the specific enabling, disabling and post

conditions for every possible optimization opportunity in the code. Figure 6.8(c) shows all the

possible optimizations, generated by the engine. Here, we only show the details of the conditions

for two optimizations, O13 and O21 in Figure 6.8(d). O13 is a dead code elimination that operates

on S3. O13 is applicable for this code segment. Thus, the enabling condition for O13 is true. There

are three disabling conditions for destroying the application of O13. The first one is deleting S3.

The second one is modifying its operation. The third one is inserting a flow dependence that has

S3 as the source. The post conditions for O13 show how it changes the code model, which

S1: b = 0;
S2: a = b;
S3: b = 3;
S4: c = a + 2;
S5: print c;

(a) Code

<S1, S2, flow, =, 1>
<S1, S3, output, =, 0>
<S2, S4, flow, =, 1>
<S2, S3, anti, =, 1>
<S4, S5, flow, =, 1>

(b) Code model

<O13, DCE, S3, applicable>
<E13, true>
<D13, <delete S3> {conditions that disable DCE at S3}

∨ <modify_opcode, S3, ≠, copy/binary_arith>
∨ <insert_dep, flow, S3, any, any> >

<Post13, <delete S3> {postconditions of applying DCE at S3}
∧ <delete_dep, anti, S2, S3, =>
∧ <delete_dep, output, S1, S3, =>>

<O21, CPP, S2, not applicable>
<E21, <delete_dep, anti, S2, S3, =>> {conditions for enabling}
<D21, <delete S2> {conditions that disable CPP at S2}

∨ <modify_opcode, S2, ≠, copy>
∨ <modify_opnd, S2, dst, ≠, var >
∨ <modify_opnd, S2, opnd1, ≠, var>
∨ <delete_dep, flow, S2, S4, =>
∨ <insert_dep, flow, S2, any, =>*
∨ <insert_dep, flow, any, S4, =, any ≠ S2>
∨ <insert_dep, anti, S2, any, =, in_any_path(S2, S4)>>

<Post21, <delete S2>{postconditions of applying CPP at S2}
∧ <delete_dep, flow, S1, S2, =>
∧ <modify_opnd, S4, opnd1, S2.opnd1>
∧ <delete_dep, flow, S2, S4, =>
∧ <insert_dep, flow, S1, S4, =>>

(d) Detailed conditions for O13 and O21

<O11, DCE, S1, not app>
< O12, DCE, S2, not app>
< O13, DCE, S3, app>
< O14, DCE, S4, not app>
< O21, CPP, S2, not app>

(c) Output of first step

<O13> Enable O21

(e) Interactions

94

includes deleting S3, deleting the anti-dependence between S2 and S3 and deleting the output

dependence between S1 and S3. Similarly, the enabling, disabling and post conditions are

generated for O21 according to the CPP specification.

In the second step, the interaction engine compares the enabling and disabling conditions

with the post conditions of other optimizations and determines the interactions. For example, the

engine needs to determine the enabling interaction for O21. There is only one condition needed

for O21 to be applicable, i.e., <delete_dep, anti, S2, S3, =>. When the interaction engine checks

each condition in O13’s post conditions, it finds that O13 changes the dependency by deleting the

anti-dependence between S2 and S3. This condition matches with the enabling condition of O21.

Thus, O13 enables O21, shown in Figure 6.8(e).

6.6 USING INTERACTION TO ORDER OPTIMIZATIONS

FIO can be used to determine a good order to apply a set of optimizations. Instead of blindly

searching the optimization space, we can determine what optimizations are legal after applying

an optimization based on the interaction property. We design an algorithm to construct a code-

specific optimization sequence using the interaction. Our algorithm is shown in Figure 6.9.

In the algorithm, worklist is initialized to the applicable optimizations and seq is

initialized to the empty sequence. We evaluate every optimization in worklist by some

evaluation function, Eval(O). Then we select Ok with the largest Eval value as the next

optimization in the sequence. As shown in line 7 of Figure 6.9, we modify worklist according to

what optimizations are disabled by this optimization Ok, and what optimizations are enabled by

Ok. We require that when Ok along with other optimizations together disable Om and only if all

the other optimizations are already in the sequence, then we can remove Om from worklist. For

the enabling, we also require that optimizations already in seq do not disable Om, and then we

can add Om to worklist. As discussed in Section 6.4.2, we also consider the interactions between

the individual optimization and the combination of two optimizations. Thus we add the

combination of two optimizations that are enabled by this optimization. We evaluate worklist

until it becomes empty. And then we achieve the best sequence that maximizes the evaluation

function.

95

Figure 6.9: Determining a good optimization sequence using interaction

The evaluation function, Eval(O) can be to maximize the number of optimizations in the

sequence. We use the weighted number of optimizations enabled and disabled by the

optimization (line 9 of Figure 6.9). We can also use profitability as the evaluation function (line

10 of Figure 6.9), which combines profitability and the interaction property to search for code-

specific optimization sequence.

There are some other possible search algorithms that can use interactions in finding code-

specific optimization sequences. The more complicated the search algorithm, the longer search

time it may take. Our experimental results show that this simple constructive algorithm achieves

good optimization sequences.

6.7 EXPERIMENTAL RESULTS

To evaluate FIO, we compare three approaches to apply optimizations: a fixed-order approach,

an empirical approach that uses a genetic algorithm to search for effective optimization

sequences [1] and our model-driven approach. We performed two sets of experiments. One used

Algorithm
1: worklist = {all applicable optimization instances};
2: seq = {};
3: while (worklist ≠ empty) {
4: Evaluate (worklist);
5: select Ok that Eval(Ok) is the best;
6: seq = seq + { Ok };
7: worklist = worklist – { Ok }

– { Om | Disable({Ok, …}, Om) ∧ {Ok, …} ⊆ seq }
+ { Om | Enable({Ok, …}, Om) ∧ {Ok, …} ⊆ seq

∧ ¬∃ (Op ∈ seq ∧ Disable(Op, Om))}
+ { Om1Om2 | Enable({Ok, …}, Om1Om2) ∧ {Ok, …} ⊆ seq };

8: }
9: Eval(Ok) = a ∗ |Enable(Ok)| – b ∗ |Disable(Ok)|; or
10: Eval(Ok) = profitability (Ok);

96

the number of optimizations applied as the evaluation function in the search. The other used

profitability as the evaluation function. We ran our experiments on an Intel Pentium IV 2.4GHz

machine, with 512MB of memory running RedHat Linux.

There are eight optimizations in our experiments, including CPP, CTP, DCE, PRE,

LICM, VN, branch chaining (BRC) and branch elimination (BRE). The fixed-order sequence

that we used is “VN, BRC, BRE, CPP, CTP, DCE, PRE, LICM, VN, BRC, BRE, CPP, CTP,

DCE, PRE, LICM”. The selection of the fixed order was based on the study of interactions

among these optimizations [50]. The empirical approach used in the experiments has the

following configuration. We performed a search for each function of a program using 10

generations. Each generation had a population of 20 sequences. Every sequence had 16

optimization passes, choosing from eight optimizations. At each generation, the best 10% of the

sequences survive without any change. The rest of the new generation is created by the crossover

operation, followed by the character-by-character mutation with the mutation rate is 5%. This

configuration is the same as the experiments in Section 4.6.2, only here search is for each

function.

6.7.1 Evaluation Function: the Number of Optimizations

In the first set of our experiments, the evaluation function is the number of optimizations applied.

In the empirical approach, the optimizations in a sequence are performed on the code. Then, the

number of optimizations applied is measured to evaluate the sequence. In our model-driven

approach, we construct a code-specific optimization sequence as described in Section 6.6. The

evaluation function is the number of optimizations enabled and disabled by an optimization. We

compare three approaches (the fixed-order approach, the empirical approach and our model-

driven approach) in terms of compile-time overhead and performance improvement. We also

show the memory requirements for our approach.

6.7.1.1 Compile-time overhead

For each sequence, the genetic algorithm determines the interactions by applying the

optimizations and recomputing the data flow needed for other optimizations. In our approach, the

interaction engine is used to determine the optimization property and thus the good sequences.

97

By determining the interaction property, the time to find a good order is greatly reduced. The

compile-time comparison among the fixed-order, the empirical (i.e., GA approach) and our

model-driven approaches is shown in Table 6.5.

From the table, the compile-time for the fixed-order approach is small. It varies from 0.05

minutes to 2.34 minutes. The compile-time for the GA approach varies from 3 minutes to 5.5

hours, while the compile-time for our model-driven approach is from 0.4 to 65 minutes. In the

GA approach, each function is compiled for 200 sequences and evaluated by the number of

optimizations applied. The compile-time for the GA approach is related to the average compile-

time for each function. For example, there are 106 functions in gzip and the average compile-

time for a function is about 0.8 seconds. Adding the GA search time, it took 327 minutes for the

GA approach to find code-specific sequences for gzip. In our approach, we use FIO to identify

all the possible optimization opportunities in a function and determine their interactions. Then

we use these interactions to find a good order to apply these optimization instances. The

compile-time of our approach depends on the time for the interaction engine to determine the

interactions and the search time using the interactions. As the number of the optimization

opportunities in each function increases, the compile-time of our approach increases. For

example, on average, there are about 957 optimization opportunities for a function in mpeg while

about 423 in gzip. Thus, the average time for the interaction engine to determine the optimization

interactions for mpeg is 20 seconds while it takes 10 seconds for gzip. This is why the interaction

engine took more time for mpeg than for gzip in our approach.

Table 6.5: Compile-time overhead of three approaches (minutes)

Benchmarks Fixed-order Empirical Model-driven

adpcm.rawcaudio 0.05 3.01 0.89

mpeg2.enc 1.92 308.96 65.25

bitcount 0.15 16.84 1.03

dijkstra.large 0.05 8.21 0.36

FFT 0.11 10.13 1.02

gzip 1.52 327.60 35.33

mcf 0.53 41.7 4.02

bzip2 2.34 250.35 29.67

98

6.7.1.2 Performance improvement

Besides compile-time, we also compare performance of three approaches. Next, we first show

the comparison on the number of optimizations applied and then the run-time performance using

dynamic instruction counts.

In Table 6.6, the number of optimizations applied is shown for the fixed-order, empirical

and model-driven approaches. For example, for adpcm, using the fixed order sequence, 146

optimizations are applied. Using the sequences found by the GA approach, 155 optimizations are

applied. While using the sequences found in our approach, 155 optimizations are applied. On

average, the number of optimizations applied in our approach is 2.7% less than the empirical

approach.

Table 6.6: Comparing the number of optimization applied

Benchmarks Fixed Empirical Model-based

adpcm.rawcaudio 146 155 155

mpeg2.enc 10009 11686 11031

bitcount 302 335 326

dijkstra.large 113 154 148

FFT 251 291 283

gzip 5138 5589 5493

mcf 2020 2280 2218

bzip2 3509 3883 3802

In Figure 6.10, we compare the performance improvement of three approaches over the

unoptimized code (only register allocation is applied). In the figure, the performance

improvement is measured using dynamic instruction count. The empirical approach and model-

driven approach use a code-specific order to apply optimizations. Thus, they improve the

performance more than the fixed-order approach. For example, for bitcount, by applying fixed-

order sequences, there is an improvement of 22.2%. While using the sequences found by the

empirical and model-driven approaches, the improvement is 24.5% and 24.1% respectively. In

most cases, our approach achieves similar performance improvements as the empirical approach,

yet compile-time is much lower.

99

0

5

10

15

20

25

30

adpcm mpeg2 bitcount dijkstra FFT gzip mcf bzip2

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t

Fixed-order Empirical Model-driven

Figure 6.10: Comparing performance improvement

6.7.1.3 Memory requirement

In our approach, FIO needs tables to store the data and control dependence information and

information about each optimization opportunity and their interactions. We measured the

memory requirements of FIO to ensure the information can be stored in memory.

Table 6.7: Memory requirement of our approach (KB)

Benchmarks Min Max Average

adpcm.rawcaudio 22 1102 710

mpeg2.enc 1 9714 601

bitcount 1 164 58

dijkstra.large 9 98 43

FFT 1 888 205

gzip 1 3417 289

mcf 4 1646 227

bzip2 1 3938 527

Table 6.7 shows the minimum, maximum and average memory requirements for the

functions in each benchmark. For example, there are 3 functions in adpcm. They required 1102

100

KB, 1004 KB and 22 KB memory. These three functions needed 710 KB memory on average.

Most of the memory consumed is for storing information about each optimization opportunity

and their interactions. As the number of optimization opportunities in each procedure increases,

the memory requirements also increase. For the largest procedure putpict (in mpeg2), it has 7321

optimization opportunities and required 9714 memory. From the table, we can see that the

memory requirements of FIO are reasonable and the information generated in FIO can be

sufficiently stored in memory.

From these experimental results, we can see that our model-driven approach achieves the

similarly good sequences as in the empirical approach with much less compile-time, using

reasonable memory.

6.7.2 Evaluation Function: Profitability

In the second set of our experiments, the evaluation function is profitability. In the empirical

approach, the optimizations in a sequence are performed on the code. Then, the code is executed

to evaluate the profitability of the sequence. In our model-driven approach, we construct a code-

specific optimization sequence as described in Section 6.6. The evaluation function used is the

profitability of optimizations, predicted by FPSO. We compare compile-time and performance of

three approaches (the fixed-order approach, the empirical GA approach and our model-driven

approach).

6.7.2.1 Compile-time overhead

When using profitability as the evaluation function, the empirical approach needs to apply

optimizations and execute the code to evaluate the profitability. For the SPEC benchmarks (i.e.,

gzip, mcf, and bzip2), the test input was used to execute the code. In our approach, the interaction

property is detected by FIO and profitability is determined by FPSO. Thus, the compile-time to

search for a good order is greatly reduced. The compile-time overhead of these three approaches

is shown in Table 6.8.

101

Table 6.8: Compile-time overhead of three approaches (minutes)

Benchmarks Fixed-order Empirical Model-driven

adpcm.rawcaudio 0.05 5.41 1.14

mpeg2.enc 1.92 726.67 82.24

bitcount 0.15 18.97 1.66

dijkstra.large 0.05 11.63 0.68

FFT 0.11 13.20 1.81

gzip 1.52 1180.67 53.82

mcf 0.53 74.64 19.54

bzip2 2.34 2618.79 58.68

From the table, the compile-time for the fixed-order approach is the same as in Table 6.5.

It varies from 0.05 minutes to 2.34 minutes. Because the empirical approach needs to execute the

code, its compile-time is large, varying from 5 minutes to 43.6 hours. Using our approach, the

compile-time is greatly reduced compared with the empirical approach. It varies from 0.7 to 82

minutes. In the empirical approach, each function is compiled for 200 sequences and evaluated

by executing the code. The compile-time for the empirical approach is related to the compile-

time and execution time for each function. For example, there are 106 functions in gzip. The

average compile-time for a function is about 0.8 seconds. The execution time for test input is

about 2.4 seconds. Adding the GA search time, it took 1181 minutes for the GA to find code-

specific sequences for gzip. In our approach, we use FIO to determine the interactions among

optimizations and FPSO to predict the profitability of optimizations. The compile-time of our

approach depends on the time for FIO to determine the interaction property and the time for

FPSO to predict profitability. For example, for mpeg, the average compile-time for FIO to

determine the optimization property is about 20 second and the compile-time for FPSO to

determine profitability is about 6 seconds. Thus, it took 82.24 minutes for our approach to

determine good optimization sequences for mpeg.

6.7.2.2 Performance improvement

Besides compile-time, we also compare performance of three approaches, as shown in Figure

6.11. In the figure, the performance improvement is measured using dynamic instruction count.

102

0

5

10

15

20

25

30

adpcm mpeg2 bitcount dijkstra FFT gzip mcf bzip2

Pe
rfo

rm
an

ce
 Im

pr
ov

em
en

t

Fixed-order Empirical Model-driven

Figure 6.11: Comparing performance improvement

In the figure, the empirical approach and our model-driven approach improve the

performance more than the fixed-order approach. For example, by applying fixed-order

sequences, there is an improvement of 22.2% for bitcount. While using the sequences found by

the empirical and model-driven approaches, the improvement is 24.6% and 24.5% respectively.

Comparing with the results in Figure 6.10 (the number of optimizations applied as the evaluation

function), both the empirical approach and our model-driven approach have better performance.

For example, the empirical approach improves performance by 10.8% for adpcm if using the

number of optimizations as the evaluation function. However, if profitability is used as the

evaluation function, the empirical approach improves performance by 12.1%.

In most cases, our model-driven approach achieves similar performance improvements as

the empirical approach. In some cases, performance of our model-driven approach is even better

than the empirical approach. For example, for adpcm, using the empirical approach, the

improvement is 12.1%, while using our model-driven approach, the improvement is 12.6%. This

is because an optimization is not applied if it is predicted as unprofitable by FPSO in our

approach.

103

6.7.2.3 Memory requirement

Similarly as in Section 6.7.1.3, we measured the memory requirements of our approach to ensure

the information can be stored in memory. Here, not only the dependence and the optimization

table, but also the code models for determining profitability need to be stored.

Table 6.9: Memory requirement of our approach (KB)

Benchmarks Min Max Average

adpcm.rawcaudio 23 1131 723

mpeg2.enc 2 9815 659

bitcount 1 181 66

dijkstra.large 10 106 51

FFT 1 985 232

gzip 2 3476 332

mcf 5 1675 253

bzip2 2 4328 582

Table 6.9 shows the minimum, maximum and average memory requirements for the

functions in each benchmark. For example, there are 3 procedures in adpcm. They required 1131

KB, 1014 KB and 23 KB memory. These three procedures needed 723 KB memory on average.

The information needed for determining profitability is small. Thus, comparing with the results

in Table 6.7, the memory requirements do not increase much. For example, here the smallest

function in adpcm needs 23KB memory, while it needs 22KB memory without determining

profitability. From the table, we can see that the memory requirements of our approach are

reasonable and the information can be sufficiently stored in memory.

Our experiments show that the interaction property is very useful in finding code-specific

optimization sequences. Comparing with the empirical approach, our model-driven approach can

find similarly good optimization sequences in much less compile-time. Our techniques make the

search for good order to apply optimizations practical.

104

7.0 CONCLUSIONS

Compilers apply code optimizations to improve the quality of generated code (e.g., running

faster, consuming less memory or less power). However, it is known that there are problems with

the application of optimizations that keep compilers from achieving the full potential benefit of

optimization. For example, optimizations may degrade performance in certain circumstances.

Also, optimizations enable and disable each other. The order to apply optimizations impacts

performance. So far there is no systematic and efficient way to decide when, where and in what

order to apply optimizations to be effective. The continued growth of embedded systems, the

application of dynamic optimizations and the shrinking performance gains from developing new

optimizations demand us to handle these long-standing problems.

Most prior work has focused on developing heuristics or empirical approaches to handle

some of these application problems. However, heuristics tend to be ad hoc and focus specifically

on a single or a small class of optimizations. Heuristics also require tuning parameters to select

appropriate threshold values. The major disadvantage of an empirical approach is its high cost.

Although there has been some work that uses the models to explore the application problems, the

work is very limited; it works for a small set of optimizations and a single machine resource.

Ideally, we need a general, effective and efficient model-driven approach, which uses models to

determine the optimization properties and to intelligently apply optimizations.

7.1 SUMMARY OF CONTRIBUTIONS

The benefits of this dissertation are twofold. The theoretical benefits include developing a

foundation that determines two optimization properties: profitability and interaction. The

105

practical benefits include developing an optimizing compiler that uses model-driven techniques

developed in the framework to effectively apply optimizations.

Effectively applying optimizations is hampered by the difficulties in understanding the

properties of optimizations. This research presents a novel model-based framework to determine

optimization properties. The focus is to accurately predict profitability and automatically detect

the interaction property without applying optimizations or executing the code. The scope of this

research covers a wide range of optimizations and machine resources.

This dissertation presents framework instances, FPSO and FPLO, to predict the

profitability of scalar and loop optimizations. FPSO and FPLO include models of code,

optimizations and machine resources. For machine resources, FPSO considers registers and

functional units and FPLO considers data cache. In FPSO and FPLO, there is a profitability

engine that uses models to predict the profit of applying an optimization at any code point where

the optimization is applicable.

This dissertation also describes a framework instance, FIO, to detect the interactions

among a set of optimizations. A specification language, SpeLO, is developed to express the

conditions under which an optimization can be safely applied and the actions of the optimization.

Optimization models are developed using SpeLO. The code model in FIO is the control flow

graph with explicit data and control dependence information. As part of FIO, there is an

interaction engine that uses models to generate the specific enabling, disabling and post

conditions for each optimization at a program point. These enabling and disabling conditions are

then matched with the post-conditions of other optimizations to determine the enabling and

disabling interactions.

By determining these optimization properties, compilers will apply optimizations more

effectively. Compilers can perform profit-driven optimization, which applies only profitable

optimizations. Also, compilers can determine a code-specific order or configuration to apply

optimizations with practical compile-time overhead.

We implemented our framework instances and performed experiments to evaluate their

effectiveness and efficiency. We evaluated prediction accuracy of FPSO and FPLO. On average,

they can make correct predictions about 90% of the time. We compared our profit-driven

approach with other two approaches. One approach always applies applicable optimizations. The

other uses a heuristics to decide whether an optimization should be applied. The model-driven

106

approach and the heuristic approach achieved better performance improvement than the always-

applying approach. The model-driven approach is practical because it does not require tuning the

parameters necessary in the heuristic approach. For FIO, we compared the model-driven

approach with other two approaches for searching for code-specific optimization sequences. One

approach uses a fixed order to apply optimizations. The other approach experimentally searches

for good order to apply optimizations to get the most benefit. The model-driven approach and the

empirical approach can find similarly good optimization sequences. Thus, they achieve similar

improvement, better than the fixed order approach. However, compile-time of the model-driven

approach is greatly reduced, when compared with the empirical approach (up to 43 times better).

The model-driven approach is scalable.

This dissertation demonstrates that analytic models can be used to address the effective

application of optimizations. Our model-driven approach is practical and scalable. With model-

driven optimizations, compilers can produce higher quality code in less time than what is

possible with current approaches.

7.2 LIMITATIONS

This dissertation has several limitations, including limitations of the models, limitations of what

can be automatically generated and limitations in the experiments.

This research covers a number of machine resources, including cache, registers and

computation without code scheduling. Our resource models are most suitable for the Intel IA-32

and other processors where there are few registers or with in-order single issue pipeline.

However, other machine resources such as computation with code scheduling are important and

need to be modeled. The optimizations considered in this research include a number of scalar and

loop optimizations. However, there are other important optimizations that have not been studied,

such as procedure inlining and code scheduling. Our specification language, SpeLO, can specify

a wide range of scalar and loop optimizations, including path-based optimizations. However,

some optimizations cannot be expressed by SpeLO, for example conditional constant

propagation [49]. In conditional constant propagation, a program needs to be symbolically

107

executed, which cannot be expressed using the current SpeLO specification. Modeling more

machine resources and optimizations is deferred to future work.

In this research, code models are automatically generated by the optimizer. However,

optimization models are developed separately and manually by a compiler writer. To predict

profitability, the compiler writer needs to express the semantics of optimizations using basic

edits. To determine the interaction property, the compiler writer requires to represent the

conditions under which an optimization can be applied and the actions of the optimization, using

SpeLO. When the profitability and interaction properties are needed, the compiler writer needs to

write optimization models based on different specifications. A unifying specification is needed

that optimization models can be uniformly developed. A tool is also needed to automatically

generate optimization models based on the unifying specification and provide the compiler writer

a simpler interface to use our framework.

Regarding the experiments, there are two major limitations. First, due to the restrictions

of the compiler infrastructure we use, Mach SUIF [44], we ran experiments on the Intel IA-32

machines. We have not investigated how our approach applies to other machine architectures.

Secondly, some empirical investigation would have to be undertaken to compare our model-

driven approach with other approaches, such as the Optimization-Space Explore compiler [46],

where only analytic resource models are used for effectively applying optimizations.

Experiments are needed to show the compile-time advantages of modeling code and

optimizations in our approach.

7.3 FUTURE WORK

There are a number of open research problems related to this research. Although only

profitability and interaction were studied in this dissertation, our model-based framework can be

used to study other optimization properties. Also, although we focus on profit-driven

optimization and finding a code-specific order to apply optimizations, there are other uses of our

framework. In the future, we can extend the work in the following ways.

1) Modeling more resources. In this dissertation, the resources that we model are

cache, registers and computation without code scheduling. Our models for the

108

registers are more suitable for the Intel IA-32 and other processors where there

are few registers. In the future, we may need to model resources based on

different machine architectures. For example, we may need to predict the profit on

computation with code scheduling. To do so, a code model (e.g., dependence

graph), a resource model, and an optimization model for code scheduling are

needed. Also, the profitability engine should be able to infer the changes of an

optimization on the computation code model directly from the optimization

model. For some architecture, we may also need to combine all the resources

(cache, registers and computation) to make more accurate predictions.

2) Modeling more optimizations. In this dissertation, we developed models for

several scalar and loop optimizations. Although they cover a wide range of

optimizations, there are some other important optimizations (e.g., procedure

inlining, code scheduling) needed to be studied. Also the optimizations studied in

this work are global optimizations. We may also need to model the inter-

procedural optimizations.

3) Determining other optimization properties. In this dissertation, we focus on two

optimization properties, profitability and interaction. Our framework can also be

used to study other optimization properties. For example, we can study the impact

of optimizations on code size and power consumption. In this work, we combined

the profitability and interaction to find a code-specific order to apply

optimizations. In the future, we may also need to combine the profitability and

interaction properties with other optimization properties to find a way to apply

optimizations to balance multiple constraints. For example, in embedded systems,

in addition to performance, memory and power consumption are also important.

We need to consider the impact of optimizations on all these factors and

determine a way to apply optimizations to balance these constraints. Another

optimization property that needs to be studied is the cost of applying

optimizations, which includes the cost for applicability analysis and the actions to

perform the optimizations. The cost of applying optimizations is important for

deciding when and how to apply dynamic optimizations.

109

4) Using optimization properties for other applications. Profit-driven optimization

and finding a code-specific order of applying optimizations are two applications

experimentally evaluated in this dissertation. There are other applications for our

framework. For example, we can find a code-specific configuration to apply

optimizations similarly as finding effective optimization order. Another

interesting application is to reconfigure the hardware. Based on the optimization

properties determined in the framework, we can choose a hardware configuration

(e.g., cache configuration) that fits better the application.

5) Develop software tools to enable the automatic generation of models and model-

based optimizations. In this dissertation, optimization models are developed

separately and manually by a compiler writer. Work can be done to design a

unifying specification language to express optimizations and resources, from

which all the models could be automatically created. A tool and algorithm are also

needed to automatically generate the implementation of model-based

optimizations.

110

APPENDIX A OPTIMIZATION MODELS

A.1 SCALAR OPTIMIZATION MODELS

Optimization Optimization Model

Copy Propagation

Propagate x y

Modify the statement:
dS@x USEDelete ><

dS@ y USEInsert ><

Delete the statement:
sScopyyx @ OP USE DEFDelete ><

Constant Propagation

Propagate x const

Modify the statement:
dS@x USEDelete ><

Dead Code
Elimination

Eliminate the dead code x EXP (y op z) at Ss

Delete a statement:
sSopzyx @ OP , USE DEFDelete ><

Loop Invariant Code
Motion

Move a loop invariant statement x y op z
Insert a statement:

1' += dd SS
'@ OP , USE DEFInsert dSopzyx ><

Delete the statement:
sSopzyx @ OP , USE DEFDelete ><

111

Optimization Optimization Model

Partial Redundancy
Elimination

Eliminate the partial redundant expression EXP (y op z) at Ss

Insert a statement:
1' += dd SS

'@ OP , USE DEFInsert dSopzyv ><
Replace the computation:

sSopzy @ OP , USEDelete ><
sScopyv @ OP USEInsert ><

Update the same expressions:
wSzopyEXPwTT at) (← | ∀ =

wSw @ DEFDelete ><
wSv @ DEFInsert ><

1' += ww SS
'@ OP USE DEFInsert wScopyvw ><

Value Numbering

#Replace a redundant statement x y op z with x VN[x] at Ss

Replace the computation:
sSopzy @ OP , USEDelete ><

sScopyv @ OP USEInsert ><
Replace all uses of x with its value number v:

uSat x of use is u |u ∀
uSx @ USEDelete ><

uSv @ USEInsert ><

#Fold constant a statement x y op z at Ss
Delete the computation:

sSopzy @ OP , USEDelete ><

#Delete a redundant Φ -instruction x Φ (x1, x2, …)
Replace all uses of x with its value number v:

 Sat x of use is u|u ∀ u
uSx @ USEDelete ><

uSv @ USEInsert ><

#Delete a useless copy instruction x y at Ss
Delete the copy instruction:

sScopyyx @ OP USE DEFDelete ><

112

A.2 LOOP OPTIMIZATION MODELS

Optimization Optimization Model

Loop

Interchange

INPUT: 〉〈∫∫∫
−

R
N

011

L and interchange is legal for loops i, j;

∫ ∫∫ ∫∫ ∫∫ ∫
−−

〉〈=〉〈
1 01 0

)()(
N j iN i j

eInterchang RgRf LLLLLL , where

〉〉〈∈〈∀=〉〈)()()(rhRrRg and

)),(()(CAlrh = and][:][][:][)(jAiAAl ↔=

Loop Reversal

INPUT: 〉〈∫∫∫
−

R
N

011

L and reversal loop i;

∫ ∫ ∫∫ ∫ ∫
−

−

−

〉〈=〉〈
1 01 0

)(
N i ub

step
lb

N i

reversal RRf LLLL

Loop Tiling

INPUT: 〉〈∫∫∫
−

R
N

011

L tiling loops tnt ,,1L , with tile size ntsts ,,1 L respectively;

∫ ∫∫∫∫ ∫∫∫
−−

〉〈=〉〈
1 011 01

)()(
N ttnN ttn

tiling RfgRf LLLLLL , where

∫∫ ∫ ∫∫∫ ∫∫∫∫
− −−+

=
01 1 1 1

)1()(

101 1

1

1

)(
N N t x

h

tn x

nh

nN N lb
ts
ub

lb
ts
ub

ttn nn

n

n

g LLLLLLL ,

)1,min()(−+= iii tsxubih , and

〉〉〈∈〈∀=〉〈)),(()(CAlRrRf where]0[)(AAl =

113

Optimization Optimization Model

Loop unrolling

INPUT: 〉〈∫∫∫
−

R
N

011

L and unroll factor U;

〉〈=∫ ∫ ∫ 〉〈
−

restunroll
N

unroll lnlnRf ,)(
1 10
L

)(
1 10

〉〈∫ ∫ ∫=
−

× Rgln
N

Ustepunroll L 〉〈∫ ∫ ∫=
− ×⎥⎥

⎤
⎢⎢
⎡ +

Rln
N U

U
ub

rest
1 10 1
L

)),()(^(^)(
1

1
〉〉〈∈〈∀〉〈=〉〈

−

=
irhRrRRg

U

i

)),(,(),(iClAirh =

isCNaAasiCl +≠−∈∀=][})0]1][[|{(),(

Loop fusion

INPUT:) (1
011

1 〉〈∫∫∫
−

Rln
N

L ,) (2
011

2 〉〈∫∫∫
−

Rln
N

L , …,) (
011

〉〈∫∫∫
−

m
N

m Rln L

)(),,(,,2
1 10

,121 〉〈〉〈∫ ∫ ∫ 〉〈=〉〈
−

m
N

mfusion RRRflnlnlnf LLL

〉〈=〉〈〉〈〉〈
=

i
m

i
m RRRRf

1
21 ^),,,(L

Loop

distribution

INPUT: 〉〈∫∫∫
−

R
N

011

L and the sets of reference index which will be in lni , },...,{ 1 pii ;

〉〈=∫ ∫ ∫ 〉〈
−

m
N

ondistributi lnlnlnRf LL ,,)(21
1 10

∫ ∫ ∫ 〉〈=
−1 1 0

)(
N

ii Rfln L , where 〉〈=〉〈 ipiii rrrRf ,...,,)(21

114

A.3 OPTIMIZATION MODEL FOR INTERACTION

Optimization Optimization Model

copy
propagation

CPP
PRECONDITION

Code_Pattern
ANY Si: Si.opcode = copy AND type(Si.opnd1) = var AND type(Si.dst) = var;

Depend
ALL Sj, pos: flow_dep(Si, Sj, =);
NO Sk: flow(Sk, Sj, =) AND (Sk != Si);
NO Sp: mem(Sp, path(Si, Sj)), anti_dep(Si, Sp, =);

ACTION
Modify (operand(Sj, pos), Si.opnd1);

Delete (Si);

dead code
elimination

DCE
PRECONDITION

Code_Pattern
ANY L;

Depend
ANY Sk: mem(Sk, L), NOT flow_dep(Sk, Sk) AND NOT anti_dep(Sk, Sk)

AND NOT flow_dep(L.head, Sk)
NO Sm: mem(Sm, L) AND Sm != Sk, flow_dep(Sm, Sk) OR anti_dep(Sk, Sm)

OR out_dep(Sm, Sk) OR out_dep(Sk, Sm)
OR anti_dep(Sm, Sk) OR ctr_dep (Sm, Sk)

ACTION
Move (Sk, L.preheader);

loop invariant
code motion

LICM
PRECONDITION

Code_Pattern
ANY Si: Si.opcode = copy AND type(Si.opnd1) = var AND type(Si.dst) = var;

Depend
ALL Sj, pos: flow_dep(Si, Sj, =);
NO Sk: flow(Sk, Sj, =) AND (Sk != Si);
NO Sp: mem(Sp, path(Si, Sj)), anti_dep(Si, Sp, =);

ACTION
Modify (operand(Sj, pos), Si.opnd1);

Delete (Si);

115

Optimization Optimization Model

partial
redundancy
elimination

PRE

PRECONDITION

Code_Pattern

ANY Si: Si.opcode = binary_exp;

ALL Sj: mem(path(Entry, Si)), Sj.opcode = Si.opcode AND

Sj.opnd1 = Si.opnd1 AND Sj.opnd2 = Si.opnd2;

Depend

NO Sk: anti_dep(Sj, Sk, =) AND flow_dep(Sk, Si, =);

ALL Sp: flow_dep(Sp, Si, =) AND ¬in_every_path(Sj, Sp, Si, save pred(Si)

∧ ¬ in_any_path(pred(Si), Sj, Si) to Bq)

NO Bl: mem(Bq), ¬post_dom(B(Si), Bl);

ACTION

Add ((new_temp= Si.opnd1 Si.opcode Si.opnd2), Bq);

Add (new_temp=Si.opnd1 Si.opcode Si.opnd2), Sj);

Modify (Sj, (Sj.dst = new_temp));

Modify (Si, (Si.dst = new_temp));

constant
propagation

CTP
PRECONDITION

Code_Pattern
ANY Si: Si.opcode = copy AND type(Si.opnd1) = const AND type(Si.dst) = var;

Depend
ALL Sj, pos: flow_dep(Si, Sj, =);
NO Sk: flow(Sk, Sj, =) AND (Sk != Si);

ACTION
Modify (operand(Sj, pos), Si.opnd1);

branch
chaining

BRC
PRECONDITION

Code_Pattern
ANY Si: Si.opcode = jmp AND B(Si) – Si = Ø;

Depend
ALL Sj: ctrl_dep(Sj, Si, =);

ACTION
Modify (Sj.target, Si.target);

Delete (Si);

116

Optimization Optimization Model

global value
numbering

VN
Pass 1: Assigning a value number
PRECONDITION

Code_Pattern
ANY Si: Si.opcode = Ø OR Si.opcode = assign

Depend
ALL Sj: flow_dep (Sj, Si)

ACTION
// meaningless Ø-operation
IF ((Si.opcode = Ø) AND (equal (Sj.VN)))

Si.VN = Sj.VN;
// redundant Ø-operation or assign
ELSE IF (hash (Sj.VN, Si.opcode) != NULL)

Si.VN = hash (Sj.VN, Si.opcode);
ELSE

hash (Sj.VN, Si.opcode, Si.VN);

Pass 2: Redundancy elimination
PRECONDITION

Code_Pattern
ANY Si: Si.opcode = binary_exp

Depend
ALL Sj: Sj.VN = Si.VN

ACTION
Delete (Sj);

branch
elimination

BRE
PRECONDITION

Code_Pattern
ANY Si: Si.opcode = branch;

Depend
ALL Sj: ctrl_dep(Sj, Si, =);
ALL Sp: flow_dep(Sp, Sj, =) AND type(Sp.opnd1) = const;

ACTION
IF match(Sp.opnd1, Si.opcode)

Modify (Sj.target, Si.target);

ELSE

Modify (Sj.target, Si.fall_through);

Delete (Si);

117

Optimization Optimization Model

loop
interchange

LPI
PRECONDITION

Code_Pattern
// find tightly nested loops
ANY L1, L2, L3: tight_loop(L1, L2, L3);

Depend
// perfectly nested without flow dependence with <, >
no L1.head: flow_dep(L1.head, L2.head);
no L2.head: flow_dep(L2.head, L3.head);
no Sm, Sn: mem(Sm, L3) AND mem(Sn, L3), flow_dep(Sn, Sm, (<,>));

ACTION
move (L1.head, L3.head);
move (L1.end, L3.end.prev);

loop fusion

LPF
PRECONDITION

Code_Pattern
// find adjacent loops with equivalent heads
ANY L1, L2: adjacent_loop(L1, L2) AND L1.initial = L2.initial AND

L1.final = L2.final AND L1.lcv = L2.lcv;
Depend

// No dependence with backward direction
no Sn, Sm: mem(Sn, L1) AND mem(Sm, L2), flow_dep(Sn, Sm, any) OR

out_dep(Sn, Sm, any) OR anti_dep(Sn, Sm, any);
// No definition reaching prior to loops
no Si, Sj, Sk: mem(Sj, L1) AND mem(Sk, L2), flow(Si, Sj, any) AND

anti_dep(Sj, Sk, any) AND (Si ≠ Sk);
ACTION

modify(L1.head.opr1, L2.head.label);

modify(L2.end.opr1, L1.end.label);

delete(L1.end);

delete(L2.head);

118

APPENDIX B RESOURCE MODEL FOR COMPUTATION

Table B.1: Computation resource model for an Intel IA-32 machine using Mach SUIF

representation

Operation Latency

CVT 1
LDA 1

LDC 1

ADD 1

SUB 1

NEG 1

MUL 3

DIV 19

REM 19

MOD 19

ABS 1

MIN 1

MAX 1

NOT 1

AND 1

IOR 1

XOR 1

ASR 1

LSL 1

LSR 1

ROT 1

119

Operation Latency

MOV 1
STR 2

MEMCOPY 1

SEQ 1

SNE 1

SL 1

SLE 1

BTRUE 1

BFALSE 1

BEQ 1

BNE 1

BGT 1

BLE 1

BLT 1

JMP 1

JMPI 1

MBR 1

RET 1

120

APPENDIX C EXPERIMENTAL RESULTS FOR ATHLON MACHINE

C.1 HEURISTIC-DRIVEN APPROACH

Table C.1: Improvement of heuristic-driven PRE and LICM with different limits

Heuristic-driven PRE Heuristic-driven LICM Benchmark
0 4 8 16 0 4 8 16

gzip 3.50 3.75 3.78 4.10 2.90 3.29 5.40 3.27
vpr 1.22 0.75 1.81 1.83 - -0.38 0.52 0.69
mcf 2.37 2.35 2.31 2.22 2.50 2.62 2.58 2.47

parser 1.25 1.50 1.70 1.35 2.55 2.86 1.99 2.23
vortex 4.73 5.25 4.66 3.86 4.88 5.69 4.99 5.28
bzip2 7.35 7.52 8.19 7.91 7.02 7.35 6.70 4.57
twolf 1.07 0.88 1.14 0.02 0.52 0.38 2.14 1.91

bitcount 6.8 6.8 8.69 9.53 6.35 6.35 8.99 10.2
dijkstra 3.1 3.5 3.6 0 3.2 0 0 -3.1

FFT 1.12 1.21 1.69 1.23 2.13 1.93 2.85 -0.3
jpeg 9.13 9.16 10.0 8.69 10.1 10.5 9.5 9.23
sha 8.64 10.7 8.2 8.2 9.34 11.2 8.24 7.33

121

C.2 PERFORMANCE BENEFIT OF PROFIT-DRIVEN PRE, LICM, AND VN

0

4

8

12

16

20

gz
ip vp

r
mcf

pa
rse

r
vo

rte
x

bz
ip2 tw

olf

bit
co

un
t

dij
ks

tra FFT
jpe

g
sh

a

D
yn

am
ic

 In
st

ru
ct

io
n

C
ou

nt
A-PRE Best-Heuristic
Heuristic-8 P-PRE

Figure C.1: Dynamic instruction count improvement of PRE

0

4

8

12

gzip vp
r

mcf

pa
rse

r
vo

rte
x

bzip
2

tw
olf

bitc
ount

dij
ks

tra FFT
jpeg

sh
a

%
 R

un
-t

im
e

Pe
rf

or
m

an
ce

 Im
pr

ov
em

en
t

A-PRE Best-Heuristic
Heuristic-8 P-PRE

Figure C.2: Run-time performance improvement of PRE

122

0

4

8

12

16

20

gz
ip vp

r
mcf

parse
r

vo
rte

x
bzip

2
tw

olf

bitc
ount

dijk
str

a
FFT

jpeg
sh

a

D
yn

am
ic

 In
st

ru
ct

io
n

C
ou

nt
 Im

pr
ov

em
en

t

A-LICM Best-Heuristic
Heuristic-8 P-LICM

Figure C.3: Dynamic instruction count improvement of LICM

0

4

8

12

16

gzip vp
r

mcf

pa
rse

r
vo

rte
x

bzip
2

tw
olf

bitc
ou

nt

dijks
tra FFT

jpeg sh
a

%
 R

un
-t

im
e

Pe
rf

or
m

an
ce

 Im
pr

ov
em

en
t

A-LICM Best-Heuristic
Heuristic-8 P-LICM

Figure C.4: Run-time performance improvement of LICM

123

-1

0

1

2

3

gz
ip vp

r
mcf

pa
rse

r
vo

rte
x

bz
ip2 tw

olf

bit
co

un
t

dij
ks

tra FFT
jpe

g
sh

aD
yn

am
ic

 In
st

ru
ct

io
n

C
ou

nt
 Im

pr
ov

em
en

t

A-VN P-VN

Figure C.5: Dynamic instruction count improvement of VN

-2

-1

0

1

2

3

4

gz
ip vp

r
mcf

pa
rse

r
vo

rte
x

bz
ip2 tw

olf

bit
co

un
t

dij
ks

tra FFT
jpe

g
sh

a

%
 R

un
tim

e
Pe

rf
or

m
an

ce
 Im

pr
ov

em
en

t

A-VN P-VN

Figure C.6: Run-time performance improvement of VN

124

C.3 COMPILE-TIME OVERHEAD

Table C.2: Compile-time for PRE

Full Compile-time One Pass Compile-time Benchmark
A-PRE H over A P over A-PRE H over P over A

gzip 42 7.48% 16.14% 9.14 35.26% 61.34%
vpr 128.38 50.33% 68.25% 36.32 76.35% 101.18%
mcf 20.89 38.82% 46.00% 3.96 59.39% 71.15%

parser 100.67 22.18% 35.40% 25.72 66.68% 91.23%
vortex 490.48 17.30% 29.08% 83.23 55.82% 76.96%
bzip2 33.77 26.15% 30.59% 9.97 70.15% 88.91%
twolf 755.55 43.87% 57.13% 192.19 89.93% 102.12%

bitcount 6.33 7.03% 10.65% 1.23 57.19% 63.24%
dijkstra 1.13 10.93% 13.86% 0.23 25.66% 49.32%

FFT 4.59 9.12% 13.93% 1.01 42.23% 56.18%
jpeg 34.34 39.89% 51.78% 6.18 79.13% 101.43%
sha 2.99 10.59% 15.88% 0.59 24.26% 38.39%

average -- 23.64% 32.39% -- 56.84% 75.12%

Table C.3: Compile-time for LICM

Full Compile-time One Pass Compile-time Benchmark
A-LICM H over P over A A- LICM H over P over A

gzip 47.8 23.51% 27.80% 13.45 59.36% 70.13%
vpr 128 14.84% 25.78% 33.52 56.92% 75.42%
mcf 20.8 32.69% 39.28% 4.93 46.23% 71.35%

parser 109.3 22.11% 26.43% 30.15 59.27% 86.39%
vortex 492.1 11.24% 15.63% 90.18 38.21% 49.51%
bzip2 38.59 25.81% 33.89% 13.14 55.65% 76.15%
twolf 591 38.37% 55.04% 160.14 89.04% 130.49%

bitcount 6.82 4.32% 7.54% 1.68 19.58% 28.13%
dijkstra 1.13 7.55% 10.12% 0.31 12.49% 16.38%

FFT 4.66 34.37% 40.49% 1.31 61.13% 84.62%
jpeg 25.23 21.23% 29.03% 6.23 57.69% 73.18%
sha 2.89 18.98% 26.61% 0.89 39.76% 56.23%

average -- 21.25% 28.14% -- 49.61% 68.17%

125

Table C.4: Compile-time for VN

Full Compile-time One Pass Compile-time benchmark
A-LICM P over A A- LICM P over A

gzip 46.93 15.77% 6.15 28.13%
vpr 127.06 15.14% 17.98 26.52%
mcf 25.57 15.02% 3.13 22.64%

parser 96.25 18.02% 14.16 32.85%
vortex 508.94 14.73% 60.52 26.94%
bzip2 28.35 17.39% 3.25 49.39%
twolf 283.35 16.83% 40.12 35.08%

bitcount 7.25 13.12% 1.81 25.25%
dijkstra 1.89 13.19% 0.23 25.02%

FFT 5.54 18.24% 0.89 43.35%
jpeg 30.11 16.65% 4.72 38.04%
sha 3.12 12.19% 0.53 28.13%

average -- 15.52% -- 31.78%

C.4 MODEL VERIFICATION

The prediction accuracy for PRE, LICM and VN is the same as what are reported in Table 4.4,

Table 4.5 and Table 4.6.

126

BIBLIOGRAPHY

[1] L.Almagor, K. Cooper, A. Grosul, T. Harvey, S. Reeves, D. Subramanian, L. Torczon
and T. Waterman. Finding Effective Compilation Sequences. Proceedings of ACM
Conference on Languages, Compilers, and Tools for Embedded Systems, June 2004.

[2] M. Arnold, S. Fink, D. Grove, M. Hind and P. F. Sweeney. Adaptive Optimization in the
Jalapeño JVM. ACM Conference on Object-oriented Programming, Systems, Languages,
and Applications, October 2000.

[3] D. Bacon, S. Graham, and O. Sharp. Compiler Transformations for High-Performance
Computing. ACM Computing Surveys, Vol. 26 No. 4, pp 345-420, December 1994.

[4] M.P. Bivens and M.L. Soffa. Incremental register reallocation. Software Practice and
Experience, Vol. 20, No. 10, October 1990.

[5] R. Bodik. Path-Sensitive, Value-Flow Optimizations of Programs. PhD dissertation.
University of Pittsburgh, 1999.

[6] P. Briggs and K. D. Cooper. Effective Partial Redundancy Elimination. Proceedings of
ACM SIGPLAN’94 Conference on Programming Language Design and Implementation,
June 1994.

[7] P. Briggs, K. D. Cooper, T. J. Harvey and L. T. Simpson. Practical Improvements to the
Construction and Destruction of Static Single Assignment Form. Software Practice and
Experience, Vol. 28, No. 8, July 1998.

[8] P. Briggs, K. Cooper and L. T. Simpson. Value Numbering. Software Practice and
Experience, Vol. 27, No. 6, June 1997.

[9] D.C. Burger and T. M. Austin. The SimpleScalar Tool Set, Version 2.0. UW Computer
Sciences Technical Report 1342, June 1997.

[10] G. Chaitin. Register allocation and spilling via graph coloring. ACM SIGPLAN
Symposium on Compiler Construction, June 1982.

[11] B. Chandramouli, J. Carter, W. Hsieh, and S. McKee. A Cost Framework for Evaluating
Integrated Restructuring Optimizations. International Conference on Parallel
Architectures and Compilation Techniques, September 2001.

127

[12] C. Click. Combining Analyses, Combining Optimizations. PHD Thesis, Rice University,
1995.

[13] C. Click and K.D. Cooper. Combining Analyses, Combining Optimizations. ACM
Transactions on Programming Languages and Systems, March 1995.

[14] S. Coleman and K.S. McKinley. Tile Size Selection Using Cache Organization and Data
Layout. Proceedings of SIGPLAN’95 Conference on Programming Language Design and
Implementation, June 1995.

[15] K. Cooper, D. Subramanian, and L. Torczon. Adaptive Optimizing Compilers for the 21st
Century. The Journal of Supercomputing, vol. 23, no. 1, pp 7-22, August 2002.

[16] E. Duesterwald. Meta-Analysis: a Unifying Framework for Optimizing Data Flow
Analysis. PhD thesis, University of Pittsburgh, 1996.

[17] G.G. Fursin, M.F.P. O’Boyle and P.M.W. Knijnenburh. Evaluating Iterative Compilation.
Languages and Compilers for Parallel Computers, 2003.

[18] S. Ghosh, M. Martonosi, and S. Malik. Cache Miss Equations: A Compiler Framework
for Analyzing and Tuning Behavior. ACM Transactions on Programming Languages and
Systems, 21(4): 703-746, July 1999.

[19] T. Gross, D. O'Hallaron, and J. Subhlok. Task Parallelism in a High Performance Fortran
Framework. IEEE Parallel & Distributed Technology, vol. 2, no 2, pp 16-26, 1994.

[20] R. Gupta and R. Bodík. Register Pressure Sensitive Redundancy Elimination. The 8th
International Conference on Compiler Construction, March 1999.

[21] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, R. B. Brown.
MiBench: A free, commercially representative embedded benchmark suite. IEEE 4th
Annual Workshop on Workload Characterization, December 2001.

[22] J. S. Hu, M. Kandemir, N. Vijaykrishnan, M. J. Irwin, H. Saputra, and W. Zhang.
Compiler-Directed Cache Polymorphism. Proceedings of ACM Conference on
Languages, Compilers, and Tools for Embedded Systems, June 2002.

[23] C. Jaramillo, R. Gupta and M.L. Soffa. Comparison Checking: An approach to avoid
debugging of optimized code. Proceedings of Foundation of Software Engineering, June
1999.

[24] R. Johnson and K. Pingali. Dependence-Based Program Analysis. ACM Conference on
Programming Language Design and Implementation, June 1993.

[25] M. Kandemir, J. Ramanujam, and A. Choudhary. Improving Cache Locality by a
Combination of Loop and Data Transformations. IEEE Transactions on Computers, Vol.
48, No. 2, February 1999.

128

[26] T. Kisuki, P.M.W. Knijnenburg and M.F.P. O’Boyle. Combined Selection of Tile Size
and Unroll Factors Using Iterative Compilation. International Conference on Parallel
Architectures and Compilation Techniques, October 2000.

[27] J. Knoop, O. Rüthing and B. Steffen. Lazy Code Motion. In Proceedings of SIGPLAN’92
Conference on Programming Language Design and Implementation, June 1992.

[28] D. E. Knuth and P. B. Bendix. Simple word problems in universal algebras.
Computational problems in abstract algebra, Pergamon Press, 1970.

[29] P. Kulkarni, S. Hines, J. Hiser, D. Whalley, J. Davidson, D. Jones. Fast Searches for
Effective Optimization Phase Sequences. In Proceedings of SIGPLAN’04 Conference on
Programming Language Design and Implementation, June 2004.

[30] P. Kulkarni, D. B. Whalley, G. S. Tyson and J. W. Davidson. Exhaustive Optimization
Phase Order Space Exploration. In Proceedings of International Symposium on Code
Generation and Optimization, March 2006.

[31] P. Kulkarni, W. Zhao, H. Moon, K. Cho, and et al. Finding Effective Optimization Phase
Sequence. In Proceedings of ACM Conference on Languages, Compilers, and Tools for
Embedded Systems, June 2003.

[32] D. Lacey. Program Transformation using Temporal Logic Specifications. PhD thesis,
University of Oxford, August 2003.

[33] D. Lacey, N. D. Jones, E. Wyk and C. C. Frederiksen. Proving correctness of compiler
optimizations by temporal logic. Proceedings of the 29th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, January 2002.

[34] C. Lee, M. Potkonjak, and W.H. Mangione-Smith. MediaBench: A Tool for Evaluating
and Synthesizing Multimedia and Communications Systems. 30th International
Symposium on Microarchitecture (MICRO-30), December 1997.

[35] S. Lerner, T. Millstein, and C. Chambers. Automatically Proving the Correctness of
compiler optimizations. Proceedings of SIGPLAN’03 Conference on Programming
Language Design and Implementation, June 2003.

[36] K. McKinley, S. Carr, and C. Tseng. Improving Data Locality with Loop
Transformations. ACM Transactions on Programming Languages and Systems, vol. 18,
no. 4, pp 424-453, July 1996.

[37] K. McKinley and O. Temam. A Quantitative Analysis of Loop Nest Locality.
Proceedings of the Seventh International Symposium on Architectural Support for
Programming Languages and Operating Systems, October 1996.

[38] S.S. Muchnick. Advanced Compiler Design Implementation. Morgan Kaufmann
Publishers, 1997.

129

[39] George C. Necula. Translation validation for an optimizing compiler. Proceedings of the
ACM SIGPLAN 2000 conference on Programming language design and implementation,
June, 2000.

[40] M. Poletto and V. Sarkar. Linear Scan Register Allocation. ACM Transactions on
Programming Languages and Systems, Vol. 21, No. 5, September 1999.

[41] L. Pollock and M.L. Soffa. An Incremental Version of Iterative Data Flow Analysis.
IEEE Transactions on Software Engineering, Vol. 15, No. 12, December 1989.

[42] V. Sarkar. Automatic Selection of high-order transformations in the IBM XL FORTRAN
compilers. IBM Journal of Research and Development, May 1997.

[43] V. Sarkar and N. Megiddo. An Analytic Model for Loop Tiling and its Solution.
International Symposium on Performance Analysis of Systems and Software, April 2000.

[44] D. Smith and Glenn Holloway. An Introduction to Machine SUIF and Its Portable
Libraries for Analysis and Optimization. URL:
http://www.eecs.harvard.edu/hube/software/nci/overview.html

[45] O. Temam, C. Fricker and W. Jalby. Cache Interference Phenomena. In Proceedings of
SIGMETRICS Conference on Measurement and Modeling Computer Systems, 1994.

[46] S. Triantafyllis, M. Vachharajani, N. Vachharajani, and D.I. August. Compiler
Optimization-space Exploration. First International Symposium on Code Generation and
Optimization, March 2003.

[47] S. Triantafyllis, M. Vachharajani, and D.I. August. Compiler Optimization-space
Exploration. Journal of Instruction-Level Parallelism vol. 7, pp 1-25, 2005.

[48] R. Whaley and J. Dongarra. Automatically Tuned Linear Algebra Software. Technical
Report UT CS-97-366, LAPACK Working Note No. 131, University of Tennessee, 1997.

[49] M. N. Wegman and F. K. Zadeck. Constant propagation with conditional branches. ACM
Transactions on Programming Languages and Systems, vol. 13, no. 2, pp 181-210, April
1991.

[50] D. Whitfield and M.L. Soffa. An Approach to Ordering optimizing transformations. In
Proceedings of ACM SIGPLAN Symposium on Principles & Practice of Parallel
Programming, March 1990.

[51] D. Whitfield and M.L. Soffa. An Approach for Exploring Code Improving
Transformations. ACM Transactions on Programming Languages, vol. 19, no. 6, pp
1053-1084, November 1997.

[52] M. Wolf and M. Lam. A Data Locality Optimizing Algorithm. In Proceedings of
SIGPLAN’91 Conference on Programming Language Design and Implementation, June
1991.

130

[53] M.E. Wolf, D.E. Maydan and D. Chen. Combining Loop Transformations Considering
Caches and Scheduling. 29th Annual IEEE/ACM International Symposium on
Mircoarchitecture, December 1996.

[54] M. Wolfe. High Performance Compilers for Parallel Computing. Addison-Wesley, 1996.

[55] K. Yotov, X. Li, G. Ren, and M. Cibulskis. A Comparison of Empirical and Model-
driven optimization. In Proceedings of SIGPLAN’03 Conference on Programming
Language Design and Implementation, June 2003.

[56] W. Zhao, B. Cai, D. Whalley, M.W. Bailey, and et al. VISTA: A System for Interactive
Code Improvement. Proceedings of ACM Conference on Languages, Compilers, and
Tools for Embedded Systems, June 2002.

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	Table 2.1: Approaches to explore the effective application of optimizations
	Table 4.1: Incremental computation of the new register code model
	Table 4.2: Updates of the computation code model
	Table 4.3: Computing profit on registers (Rtotal) and computation (Ctotal)
	Table 4.4: Prediction accuracy of H-PRE and P-PRE
	Table 4.5: Prediction accuracy of H-LICM and P-LICM
	Table 4.6: Prediction accuracy of P-VN
	Table 4.7: Compile-time for PRE
	Table 4.8: Compile-time for LICM
	Table 4.9: Compile-time for VN
	Table 5.1: Terms used in cache model
	Table 5.2: Prediction accuracy for single-loop nest benchmarks
	Table 5.3: Prediction accuracy for multi-loop nest benchmarks
	Table 5.4: Compile-time overhead for prediction (millisecond)
	Table 6.1: Semitics of primitive operations
	Table 6.2: Generating enabling and disabling conditions for check_code_pattern
	Table 6.3: Generating enabling and disabling conditions for check_depend
	Table 6.4: Generating post conditions for primitive operations
	Table 6.5: Compile-time overhead of three approaches (minutes)
	Table 6.6: Comparing the number of optimization applied
	Table 6.7: Memory requirement of our approach (KB)
	Table 6.8: Compile-time overhead of three approaches (minutes)
	Table 6.9: Memory requirement of our approach (KB)

	LIST OF FIGURES
	Figure 3.1: Overall design of model-based framework
	Figure 4.1: Structure of FPSO
	Figure 4.2: An example of PRE impacting registers
	Figure 4.3: PRE optimization model
	Figure 4.4: An example of LICM
	Figure 4.5: LICM optimization model
	Figure 4.6: An example of VN
	Figure 4.7: VN optimization model
	Figure 4.8: Register allocation optimization model
	Figure 4.9: Impact of PRE on computation code model
	Figure 4.10: An example of model-driven VN
	Figure 4.11: Improvement of heuristic-driven PRE with different limits
	Figure 4.12: Improvement of heuristic-driven LICM with different limits
	Figure 4.13: Memory access improvement for PRE
	Figure 4.14: Run-time performance improvement for PRE
	Figure 4.15: Memory access improvement for LICM
	Figure 4.16: Run-time performance improvement for LICM
	Figure 4.17: Memory access improvement for VN
	Figure 4.18: Run-time performance improvement for VN
	Figure 4.19: Compile-time of the experimental and model-based approaches
	Figure 4.20: Performance of three approaches
	Figure 5.1: A loop nest and its code model
	Figure 5.2: Loop interchange optimization model
	Figure 5.3: Loop unrolling optimization model
	Figure 5.4: Loop tiling optimization model
	Figure 5.5: Loop interchange on irkernel with different cache models
	Figure 5.6: Performance impact of always-applying approach
	Figure 5.7: Improvement of profit-driven approach vs. always-applying
	Figure 5.8: Performance impact of profit-driven approach
	Figure 5.9: Accuracy and distribution of the most beneficial optimizations
	Figure 6.1: Overview of FIO
	Figure 6.2: The format of SpeLO specification
	Figure 6.3: DCE optimization model
	Figure 6.4: PRE optimization model
	Figure 6.5: VN optimization model
	Figure 6.6: The overview algorithm for the interaction engine
	Figure 6.7: Matching Oi’s E/D conditions with post conditions
	Figure 6.8: An example of determining the interaction
	Figure 6.9: Determining a good optimization sequence using interaction
	Figure 6.10: Comparing performance improvement
	Figure 6.11: Comparing performance improvement

	1.0 INTRODUCTION
	1.1 MOTIVATION
	1.2 OVERVIEW OF THIS RESEARCH
	1.3 ORGANIZATION OF THIS DISSERTATION

	2.0 BACKGROUND AND RELATED WORK
	2.1 PRIOR WORK
	2.1.1 Empirical
	2.1.2 OSE (Analytic Resource Model-based)
	2.1.3 Jalapeño (Experimental Resource Model-based)
	2.1.4 Unimodular (Analytic Model-based)
	2.1.5 Analytic Interaction

	2.2 PRIOR WORK AND THIS RESEARCH

	3.0 OVERALL DESIGN OF THE MODEL-BASED FRAMEWORK
	3.1 COMPONENTS OF THE FRAMEWORK
	3.1.1 Code Models
	3.1.2 Optimization Models
	3.1.3 Resource Models
	3.1.4 Engine

	3.2 USES OF THE FRAMEWORK

	4.0 FPSO: PREDICTING PROFITABILITY OF SCALAR OPTIMIZATIONS
	4.1 CODE MODELS FOR REGISTERS AND COMPUTATION
	4.2 OPTIMIZATION MODELS
	4.2.1 PRE Optimization Model
	4.2.2 LICM Optimization Model
	4.2.3 VN Optimization Model
	4.2.4 Register Allocation Optimization Model
	4.2.5 Other Scalar Optimizations

	4.3 RESOURCE MODELS FOR REGISTERS AND COMPUTATION
	4.4 PROFITABILITY ENGINE
	4.5 AN EXAMPLE OF PROFIT-DRIVEN VN
	4.6 EXPERIMENTAL RESULTS
	4.6.1 Selectively Applying Optimizations
	4.6.1.1 A heuristic approach
	4.6.1.2 Comparing prediction accuracy
	4.6.1.3 Comparing performance improvement
	4.6.1.4 Comparing compile-time overhead

	4.6.2 Searching for Code-specific Optimization Sequences
	4.6.2.1 Comparing compile-time overhead
	4.6.2.2 Comparing performance improvement

	5.0 FPLO: PREDICTING PROFITABILITY OF LOOP OPTIMIZATIONS
	5.1 CODE MODEL FOR CACHE
	5.2 OPTIMIZATION MODELS
	5.2.1 Loop Interchange
	5.2.2 Loop Unrolling
	5.2.3 Loop Tiling
	5.2.4 Other Loop Optimizations

	5.3 CACHE MODEL
	5.4 PROFITABILITY ENGINE
	5.5 EXPERIMENTAL RESULTS
	5.5.1 Model Accuracy
	5.5.2 Comparing with Always-applying Approach
	5.5.3 Choosing the Best Optimization
	5.5.4 Compile-time Overhead for Prediction

	6.0 FIO: DETERMINING THE INTERACTION PROPERTY
	6.1 CODE MODEL FOR INTERACTION
	6.2 A SPECIFICATION LANGUAGE
	6.2.1 SpeLO PRECONDITION Section
	6.2.2 SpeLO ACTION Section

	6.3 OPTIMIZATION MODELS
	6.3.1 Dead Code Elimination
	6.3.2 Partial Redundancy Elimination
	6.3.3 Value Numbering
	6.3.4 Other Optimizations

	6.4 INTERACTION ENGINE
	6.4.1 Generating Specific Conditions
	6.4.2 Matching Conditions

	6.5 AN EXAMPLE OF DETERMINING THE INTERACTION
	6.6 USING INTERACTION TO ORDER OPTIMIZATIONS
	6.7 EXPERIMENTAL RESULTS
	6.7.1 Evaluation Function: the Number of Optimizations
	6.7.1.1 Compile-time overhead
	6.7.1.2 Performance improvement
	6.7.1.3 Memory requirement

	6.7.2 Evaluation Function: Profitability
	6.7.2.1 Compile-time overhead
	6.7.2.2 Performance improvement
	6.7.2.3 Memory requirement

	7.0 CONCLUSIONS
	7.1 SUMMARY OF CONTRIBUTIONS
	7.2 LIMITATIONS
	7.3 FUTURE WORK

	Appendix A OPTIMIZATION MODELS
	Appendix B RESOURCE MODEL FOR COMPUTATION
	Appendix C EXPERIMENTAL RESULTS FOR ATHLON MACHINE
	BIBLIOGRAPHY

