180 research outputs found

    Experimental demonstration of a hard-type oscillator using a resonant tunneling diode and its comparison with a soft-type oscillator

    Get PDF
    A hard-type oscillator is defined as an oscillator having stable fixed points within a stable limit cycle. For resonant tunneling diode (RTD) oscillators, using hard-type configuration has a significant advantage that it can suppress spurious oscillations in a bias line. We have fabricated hard-type oscillators using an InGaAs-based RTD, and demonstrated a proper operation. Furthermore, the oscillating properties have been compared with a soft-type oscillator having a same parameters. It has been demonstrated that the same level of the phase noise can be obtained with a much smaller power consumption of approximately 1/20

    Delta-sigma modulation microphone sensors employing a resonant tunneling diode with a suspended microstrip resonator

    Get PDF
    We propose and demonstrate novel microphone sensors based on the frequency delta-sigma modulation (FDSM) technique, which replaces the conventional delta-sigma modulator in the delta-sigma analog-todigital converters. A key of the FDSM technology is to employ a voltagecontrolled oscillator (VCO) for converting an input analog signal to a 1-bit pulse-density modulated digital signal. High-performance sensors can be realized if the VCO is replaced by an oscillator whose oscillation frequency depends on an external physical parameter.Microphone sensors are proposed based on FDSM that employs a suspended microstrip disk resonator, where the backside ground plane is replaced by a thin metal diaphragm. A resonant tunneling diode (RTD) oscillator is also employed, as the performance of these sensors significantly depends on the oscillation frequency. To demonstrate the basic operation of the proposal, prototype devices were fabricated with an InGaAs/AlAs RTD.A satisfactory noise shaping property, which is a significant nature of delta-sigma modulation, was demonstrated over three decades for the prototype device. A sound-sensing peak was also clearly observed when applying 1 kHz sound from a speaker.High-performance ultrasonic microphone sensors can be realized if we fabricate the sensors using a thin InP substrate with high-frequency oscillator design.In this study, we proposed and experimentally demonstrated novel microphone sensors, which are promising as future ultrasonic sensors that have high dynamic range with wide bandwidth

    Quantum and spin-based tunneling devices for memory systems

    Get PDF
    Rapid developments in information technology, such as internet, portable computing, and wireless communication, create a huge demand for fast and reliable ways to store and process information. Thus far, this need has been paralleled with the revolution in solid-state memory technologies. Memory devices, such as SRAM, DRAM, and flash, have been widely used in most electronic products. The primary strategy to keep up the trend is miniaturization. CMOS devices have been scaled down beyond sub-45 nm, the size of only a few atomic layers. Scaling, however, will soon reach the physical limitation of the material and cease to yield the desired enhancement in device performance. In this thesis, an alternative method to scaling is proposed and successfully realized. The proposed scheme integrates quantum devices, Si/SiGe resonant interband tunnel diodes (RITD), with classical CMOS devices forming a microsystem of disparate devices to achieve higher performance as well as higher density. The device/circuit designs, layouts and masks involving 12 levels were fabricated utilizing a process that incorporates nearly a hundred processing steps. Utilizing unique characteristics of each component, a low-power tunneling-based static random access memory (TSRAM) has been demonstrated. The TSRAM cells exhibit bistability operation with a power supply voltage as low as 0.37 V. Various TSRAM cells were also constructed and their latching mechanisms have been extensively investigated. In addition, the operation margins of TSRAM cells are evaluated based on different device structures and temperature variation from room temperature up to 200oC. The versatility of TSRAM is extended beyond the binary system. Using multi-peak Si/SiGe RITD, various multi-valued TSRAM (MV-TSRAM) configurations that can store more than two logic levels per cell are demonstrated. By this virtue, memory density can be substantially increased. Using two novel methods via ambipolar operation and utilization of enable/disable transistors, a six-valued MV-TSRAM cell are demonstrated. A revolutionary novel concept of integrating of Si/SiGe RITD with spin tunnel devices, magnetic tunnel junctions (MTJ), has been developed. This hybrid approach adds non-volatility and multi-valued memory potential as demonstrated by theoretical predictions and simulations. The challenges of physically fabricating these devices have been identified. These include process compatibility and device design. A test bed approach of fabricating RITD-MTJ structures has been developed. In conclusion, this body of work has created a sound foundation for new research frontiers in four different major areas: integrated TSRAM system, MV-TSRAM system, MTJ/RITD-based nonvolatile MRAM, and RITD/CMOS logic circuits

    Accurate quantum transport modelling and epitaxial structure design of high-speed and high-power In0.53Ga0.47As/AlAs double-barrier resonant tunnelling diodes for 300-GHz oscillator sources

    Get PDF
    Terahertz (THz) wave technology is envisioned as an appealing and conceivable solution in the context of several potential high-impact applications, including sixth generation (6G) and beyond consumer-oriented ultra-broadband multi-gigabit wireless data-links, as well as highresolution imaging, radar, and spectroscopy apparatuses employable in biomedicine, industrial processes, security/defence, and material science. Despite the technological challenges posed by the THz gap, recent scientific advancements suggest the practical viability of THz systems. However, the development of transmitters (Tx) and receivers (Rx) based on compact semiconductor devices operating at THz frequencies is urgently demanded to meet the performance requirements calling from emerging THz applications. Although several are the promising candidates, including high-speed III-V transistors and photo-diodes, resonant tunnelling diode (RTD) technology offers a compact and high performance option in many practical scenarios. However, the main weakness of the technology is currently represented by the low output power capability of RTD THz Tx, which is mainly caused by the underdeveloped and non-optimal device, as well as circuit, design implementation approaches. Indeed, indium phosphide (InP) RTD devices can nowadays deliver only up to around 1 mW of radio-frequency (RF) power at around 300 GHz. In the context of THz wireless data-links, this severely impacts the Tx performance, limiting communication distance and data transfer capabilities which, at the current time, are of the order of few tens of gigabit per second below around 1 m. However, recent research studies suggest that several milliwatt of output power are required to achieve bit-rate capabilities of several tens of gigabits per second and beyond, and to reach several metres of communication distance in common operating conditions. Currently, the shortterm target is set to 5−10 mW of output power at around 300 GHz carrier waves, which would allow bit-rates in excess of 100 Gb/s, as well as wireless communications well above 5 m distance, in first-stage short-range scenarios. In order to reach it, maximisation of the RTD highfrequency RF power capability is of utmost importance. Despite that, reliable epitaxial structure design approaches, as well as accurate physical-based numerical simulation tools, aimed at RF power maximisation in the 300 GHz-band are lacking at the current time. This work aims at proposing practical solutions to address the aforementioned issues. First, a physical-based simulation methodology was developed to accurately and reliably simulate the static current-voltage (IV ) characteristic of indium gallium arsenide/aluminium arsenide (In-GaAs/AlAs) double-barrier RTD devices. The approach relies on the non-equilibrium Green’s function (NEGF) formalism implemented in Silvaco Atlas technology computer-aided design (TCAD) simulation package, requires low computational budget, and allows to correctly model In0.53Ga0.47As/AlAs RTD devices, which are pseudomorphically-grown on lattice-matched to InP substrates, and are commonly employed in oscillators working at around 300 GHz. By selecting the appropriate physical models, and by retrieving the correct materials parameters, together with a suitable discretisation of the associated heterostructure spatial domain through finite-elements, it is shown, by comparing simulation data with experimental results, that the developed numerical approach can reliably compute several quantities of interest that characterise the DC IV curve negative differential resistance (NDR) region, including peak current, peak voltage, and voltage swing, all of which are key parameters in RTD oscillator design. The demonstrated simulation approach was then used to study the impact of epitaxial structure design parameters, including those characterising the double-barrier quantum well, as well as emitter and collector regions, on the electrical properties of the RTD device. In particular, a comprehensive simulation analysis was conducted, and the retrieved output trends discussed based on the heterostructure band diagram, transmission coefficient energy spectrum, charge distribution, and DC current-density voltage (JV) curve. General design guidelines aimed at enhancing the RTD device maximum RF power gain capability are then deduced and discussed. To validate the proposed epitaxial design approach, an In0.53Ga0.47As/AlAs double-barrier RTD epitaxial structure providing several milliwatt of RF power was designed by employing the developed simulation methodology, and experimentally-investigated through the microfabrication of RTD devices and subsequent high-frequency characterisation up to 110 GHz. The analysis, which included fabrication optimisation, reveals an expected RF power performance of up to around 5 mW and 10 mW at 300 GHz for 25 μm2 and 49 μm2-large RTD devices, respectively, which is up to five times higher compared to the current state-of-the-art. Finally, in order to prove the practical employability of the proposed RTDs in oscillator circuits realised employing low-cost photo-lithography, both coplanar waveguide and microstrip inductive stubs are designed through a full three-dimensional electromagnetic simulation analysis. In summary, this work makes and important contribution to the rapidly evolving field of THz RTD technology, and demonstrates the practical feasibility of 300-GHz high-power RTD devices realisation, which will underpin the future development of Tx systems capable of the power levels required in the forthcoming THz applications

    The Third International Symposium on Space Terahertz Technology: Symposium proceedings

    Get PDF
    Papers from the symposium are presented that are relevant to the generation, detection, and use of the terahertz spectral region for space astronomy and remote sensing of the Earth's upper atmosphere. The program included thirteen sessions covering a wide variety of topics including solid-state oscillators, power-combining techniques, mixers, harmonic multipliers, antennas and antenna arrays, submillimeter receivers, and measurement techniques

    Compact and Efficient Millimetre-Wave Circuits for Wideband Applications

    Get PDF
    Radio systems, along with the ever increasing processing power provided by computer technology, have altered many aspects of our society over the last century. Various gadgets and integrated electronics are found everywhere nowadays; many of these were science-fiction only a few decades ago. Most apparent is perhaps your ``smart phone'', possibly kept within arm's reach wherever you go, that provides various services, news updates, and social networking via wireless communications systems. The frameworks of the fifth generation wireless system is currently being developed worldwide. Inclusion of millimetre-wave technology promise high-speed piconets, wireless back-haul on pencil-beam links, and further functionality such as high-resolution radar imaging. This thesis addresses the challenge to provide signals at carrier frequencies in the millimetre-wave spectrum, and compact integrated transmitter front-ends of sub-wavelength dimensions. A radio frequency pulse generator, i.e. a ``wavelet genarator'', circuit is implemented using diodes and transistors in III--V compound semiconductor technology. This simple but energy-efficient front-end circuit can be controlled on the time-scale of picoseconds. Transmission of wireless data is thereby achieved at high symbol-rates and low power consumption per bit. A compact antenna is integrated with the transmitter circuit, without any intermediate transmission line. The result is a physically small, single-chip, transmitter front-end that can output high equivalent isotropically radiated power. This element radiation characteristic is wide-beam and suitable for array implementations

    Resonant Tunnelling Diodes for Millimetre and Sub-Millimetre Wave Mixing Applications

    Get PDF
    The primary intention of this research work was to evaluate a topology for a sub-harmonic down conversion mixer exploiting the fourth harmonic of a LO signal. Designs were evaluated by simulation at 640GHz and 320GHz with the aim of exploring the potential of a RTD based down-converter at 640GHz, in the 580-750GHz atmospheric window, with an intermediate frequency signal in the range around 2GHz by mixing with the fourth harmonic of a 159.5GHz LO signal. Related design studies were undertaken at 320GHz which gave a simulated single side band (SSB) conversion loss of 5.7dB, and with a LO power requirement of less than -9.5dBm which vindicated the principle, as far as the design stage is concerned, of using RTDs as the non-linear mixing element, where the layer design can be tailored to favour very low pump powers. The other, related, target of the current PhD work was to also explore the potential for high LO drive level mixers and their up-conversion efficiencies using the same novel devices, i.e. RTDs, but with a different layer design, better suited to support high pump powers in this instance. For achieving the latter goal, two different sub-harmonic up-conversion mixers employing a single RTD and using the second harmonic of an LO signal were designed and evaluated at two different frequencies. The first mixer design was aimed at 180 GHz providing -7.5dBm of output power while the second one should work at 110GHz showing output power in the range of -4dBm, and was used to initially evaluate the approach and which could, in principle, be later fabricated and measured. All these down and up-conversion mixers were carefully designed using ADS and HFSS and evaluated using two different technologies, microstrip and Grounded Coplanar Waveguide (GCPW), and both compared with a nearest Schottky diode based approaches, and also their physical mask was produced in anticipation of a later fabrication stage

    Towards RF graphene devices: A review

    Get PDF
    Graphene has been targeted for a wide variety of applications due to its characteristics. It is a zero-bandgap material, has high conductivity, and high carrier mobility, which makes it a promising material for radiofrequency applications. This review examines the applications of graphene in the design of radiofrequency building blocks, their performance, and current hurdles. Initially, graphene passive devices (inductors, capacitors, antennas, and waveguides) are analyzed, as well as their current modelling techniques. Then, radiofrequency transistors and their modelling are reported and discussed. An insight on the current state of radiofrequency devices is provided which more specifically targets graphene oscillators, multipliers, and mixers. Finally, the current fabrication issues and techniques are analyzed and discussed, providing a global overview on the application of graphene for radiofrequency electronics.Work supported by PTDC/EEI-TEL/29670/2017 - (POCI-01-0145-FEDER-029670), co-financed by the European Regional Development Fund (ERDF), through COMPETE 2020, grant SFRH/BD/141462/2018, grant SFRH/BD/137529/2018, grant UIDB/04436/2020, grant UIDP/04436/2020, and grant UIDB/04650/2020

    Integrated interface electronics for capacitive MEMS inertial sensors

    Get PDF
    This thesis is composed of 13 publications and an overview of the research topic, which also summarizes the work. The research presented in this thesis concentrates on integrated circuits for the realization of interface electronics for capacitive MEMS (micro-electro-mechanical system) inertial sensors, i.e. accelerometers and gyroscopes. The research focuses on circuit techniques for capacitive detection and actuation and on high-voltage and clock generation within the sensor interface. Characteristics of capacitive accelerometers and gyroscopes and the electronic circuits for accessing the capacitive information in open- and closed-loop configurations are introduced in the thesis. One part of the experimental work, an accelerometer, is realized as a continuous-time closed-loop sensor, and is capable of achieving sub-micro-g resolution. The interface electronics is implemented in a 0.7-µm high-voltage technology. It consists of a force feedback loop, clock generation circuits, and a digitizer. Another part of the experimental work, an analog 2-axis gyroscope, is optimized not only for noise, but predominantly for low power consumption and a small chip area. The implementation includes a pseudo-continuous-time sense readout, analog continuous-time drive loop, phase-locked loop (PLL) for clock generation, and high-voltage circuits for electrostatic excitation and high-voltage detection. The interface is implemented in a 0.35-µm high-voltage technology within an active area of 2.5 mm². The gyroscope achieves a spot noise of 0.015 °/s/√H̅z̅ for the x-axis and 0.041 °/s/√H̅z̅ for the y-axis. Coherent demodulation and discrete-time signal processing are often an important part of the sensors and also typical examples that require clock signals. Thus, clock generation within the sensor interfaces is also reviewed. The related experimental work includes two integrated charge pump PLLs, which are optimized for compact realization but also considered with regard to their noise performance. Finally, this thesis discusses fully integrated high-voltage generation, which allows a higher electrostatic force and signal current in capacitive sensors. Open- and closed-loop Dickson charge pumps and high-voltage amplifiers have been realized fully on-chip, with the focus being on optimizing the chip area and on generating precise spurious free high-voltage signals up to 27 V

    Resonant tunnelling diodes for THz communications

    Get PDF
    Resonant tunnelling diodes realised in the InGaAs/AlAs compound semiconductor system lattice-matched to InP substrates represent one of the fastest electronic solid-state devices, with demonstrated oscillation capability in excess of 2 THz. Current state-of-the-art offers a poor DC-to-RF conversion efficiency. This thesis discusses the structural issues limiting the device performance and offers structural design optimums based on quantum transport modelling. These structures are viewed in the context of epitaxial growth limitations and their extrinsic oscillator performance. An advanced non-destructive characterisation scheme based on low-temperature photoluminescence spectroscopy and high-resolution TEM is proposed to verify the epitaxial perfection of the proposed structure, followed by recommendations to improve the statistical process control, and eventually yield of these very high-current density mesoscopic devices. This work concludes with an outward look towards other compound semiconductor systems, advanced layer structures, and antenna designs
    • …
    corecore