56,716 research outputs found

    Smart Health Infrastructure: Integrating Internet of Things (IoT) with Edge Computing for Enhanced Disease Surveillance and Response

    Get PDF
    Smart health infrastructure that incorporates the Internet of Things (IoT) and edge computing offers an innovative approach to improving disease response and surveillance Public health emergencies and chronic disease surveillance are two areas where this program is particularly important because of the significant impact that early intervention can have on patient outcomes. Hurdles for the integration of healthcare IoT and edge computing are data privacy and security concerns, performance issues on IoT devices as well as robust network infrastructure needs. To reduce its reliance on computers, Cloud has come up with a plan of introducing Edge Computing-based Context Health Monitoring System (EC-CHMS) which enables faster data analysis and response times by eliminating its use. The healthcare information is locally managed between the networks throughout the system network through edge computing in EC-CHMS that incorporates cloud to manage healthcare information locally between networks within the entire network. This technology can recognize a patient’s life threatening condition by fusing IoT sensors with machine learning algorithms and has numerous possibilities for healthcare applications such as early disease detection, real-time outbreak management, remote patient care among others. Continuous and context-aware health monitoring is possible using this system that supports proactive healthcare interventions towards enhancing overall health delivery efficiency. These results demonstrate that EC-CHMS outperforms traditional cloud-based systems in terms of handling data efficiently and time taken to run the code. To ensure accuracy and reliability of these vital signs, simulation shows how multiple health issues can be handled by it

    A perspective on the Healthgrid initiative

    Full text link
    This paper presents a perspective on the Healthgrid initiative which involves European projects deploying pioneering applications of grid technology in the health sector. In the last couple of years, several grid projects have been funded on health related issues at national and European levels. A crucial issue is to maximize their cross fertilization in the context of an environment where data of medical interest can be stored and made easily available to the different actors in healthcare, physicians, healthcare centres and administrations, and of course the citizens. The Healthgrid initiative, represented by the Healthgrid association (http://www.healthgrid.org), was initiated to bring the necessary long term continuity, to reinforce and promote awareness of the possibilities and advantages linked to the deployment of GRID technologies in health. Technologies to address the specific requirements for medical applications are under development. Results from the DataGrid and other projects are given as examples of early applications.Comment: 6 pages, 1 figure. Accepted by the Second International Workshop on Biomedical Computations on the Grid, at the 4th IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGrid 2004). Chicago USA, April 200

    Technology inspired design for pervasive healthcare

    Get PDF
    Pervasive healthcare technologies are increasingly using novel sensory devices that are able to measure phenomena that could not be measured before. To develop novel healthcare applications that use these largely untested technologies, it is important to have a design process that allows proper exploration of the capabilities of the novel technologies. We focus on the technology-inspired design process that was used in the development of a system to support posture and provide guidance by nudging people, and how this has lead us to explore pervasive healthcare applications

    A module placement scheme for fog-based smart farming applications

    Get PDF
    As in Industry 4.0 era, the impact of the internet of things (IoT) on the advancement of the agricultural sector is constantly increasing. IoT enables automation, precision, and efficiency in traditional farming methods, opening up new possibilities for agricultural advancement. Furthermore, many IoT-based smart farming systems are designed based on fog and edge architecture. Fog computing provides computing, storage, and networking services to latency-sensitive applications (such as Agribots-agricultural robots-drones, and IoT-based healthcare monitoring systems), instead of sending data to the cloud. However, due to the limited computing and storage resources of fog nodes used in smart farming, designing a modules placement scheme for resources management is a major challenge for fog based smart farming applications. In this paper, our proposed module placement algorithm aims to achieve efficient resource utilization of fog nodes and reduce application delay and network usage in Fog-based smart farming applications. To evaluate the efficacy of our proposal, the simulation was done using iFogSim. Results show that the proposed approach is able to achieve significant reductions in latency and network usage

    Healthcare in the Smart Home: A Study of Past, Present and Future

    Get PDF
    Open Access journalUbiquitous or Pervasive Computing is an increasingly used term throughout the technology industry and is beginning to enter the consumer electronics space in its most recent form under the umbrella term: “Internet of Things”. One area of focus is in augmenting the home with intelligent, networked sensors and computers to create a Smart Home which opens a host of possibilities for the role of tomorrow’s dwelling. As the world’s population continues to live longer and consequently experience more medical-related ailments, at the same time institutional healthcare is struggling to cope, the role of the Smart Home becomes paramount to monitoring a dweller’s health and providing any necessary intervention. This study looks at the history of Smart Home Healthcare, current research areas, and potential areas of future investigation. Unique categorisations are presented in Activities of Daily Living (ADL) and Personal Sensors, and a thorough look at the application of Smart Home Healthcare is presented. Technology can augment traditional methods of healthcare delivery and in some cases completely replace it. Costs can be reduced and medical adherence can be increased, all of which contribute to a more sustainable and effective model of care

    Healthcare Data Analytics on the Cloud

    Get PDF
    Meaningful analysis of voluminous health information has always been a challenge in most healthcare organizations. Accurate and timely information required by the management to lead a healthcare organization through the challenges found in the industry can be obtained using business intelligence (BI) or business analytics tools. However, these require large capital investments to implement and support the large volumes of data that needs to be analyzed to identify trends. They also require enormous processing power which places pressure on the business resources in addition to the dynamic changes in the digital technology. This paper evaluates the various nuances of business analytics of healthcare hosted on the cloud computing environment. The paper explores BI being offered as Software as a Service (SaaS) solution towards offering meaningful use of information for improving functions in healthcare enterprise. It also attempts to identify the challenges that healthcare enterprises face when making use of a BI SaaS solution

    Mobihealth: mobile health services based on body area networks

    Get PDF
    In this chapter we describe the concept of MobiHealth and the approach developed during the MobiHealth project (MobiHealth, 2002). The concept was to bring together the technologies of Body Area Networks (BANs), wireless broadband communications and wearable medical devices to provide mobile healthcare services for patients and health professionals. These technologies enable remote patient care services such as management of chronic conditions and detection of health emergencies. Because the patient is free to move anywhere whilst wearing the MobiHealth BAN, patient mobility is maximised. The vision is that patients can enjoy enhanced freedom and quality of life through avoidance or reduction of hospital stays. For the health services it means that pressure on overstretched hospital services can be alleviated

    Interaction design and emotional wellbeing

    Get PDF
    The World Health Organisation has concluded that emotional wellbeing is fundamental to our quality of life. It enables us to experience life as meaningful and is an essential component of social cohesion, peace and stability in the living environment [21]. This workshop will bring together a diverse community to consolidate existing knowledge and identify new opportunities for research on technologies designed to support emotional wellbeing. The workshop will examine uses of technology in mental health settings, but will also consider the importance of emotional needs in physical healthcare and wellbeing more generally. The design of technology to provide social support and to extend traditional care networks will be key workshop themes
    • 

    corecore