209 research outputs found

    Conception des chaînes logistiques multicritères avec prise en compte des incertitudes

    Get PDF
    Les modèles de conception des chaînes logistiques sont devenus de plus en plus complexes, à cause de l'environnement économique incertain et l'introduction de nouveaux critères de décision tels que : l'aspect environnemental, l'aspect social, l'aspect législatif, l'aspect économique, la satisfaction du client et la prise en compte des risques. Répondre aux changements qui touchent les chaînes logistiques exige de composer avec des incertitudes et des informations incomplètes. Configurer des chaînes logistiques multicritères avec prise en compte des incertitudes peut garantir la continuité des activités de l'entreprise.L'objectif principal de cette thèse est la conception de chaînes logistiques multicritères qui résistent aux changements et l'instabilité des marchés. Le manuscrit de cette thèse s'articule autour de sept principaux chapitres:1 - introduction.2 - Etat de l'art sur la conception des chaînes logistiques.3 -Conception des chaînes logistiques multicritères en mesure de répondre aux nouveauxcritères économiques, sociaux, environnementaux et législatifs.4 - Conception des chaînes logistiques multi-objectifs.5 - Développement d'une heuristique de résolution des problèmes de conception deschaînes logistiques de taille réelle.6 - Conception des chaînes logistiques avec prise en compte des incertitudes.7 - Conclusions et perspectives.This thesis contributes to the debate on how uncertainty and concepts of sustainable development can be put into modern supply chain network and focuses on issues associated with the design of multi-criteria supply chain network under uncertainty. First, we study the literature review , which is a review of the current state of the art of Supply Chain Network Design approaches and resolution methods. Second, we propose a new methodology for multi-criteria Supply Chain Network Design (SCND) as well as its application to real Supply Chain Network (SCN), in order to satisfy the customers demand and respect the environmental, social, legislative, and economical requirements. The methodology consists of two different steps. In the first step, we use Geographic Information System (GIS) and Analytic Hierarchy Process (AHP) to buildthe model. Then, in the second step, we establish the optimal supply chain network using Mixed Integer Linear Programming model (MILP). Third, we extend the MILP to a multi-objective optimization model that captures a compromisebetween the total cost and the environment influence. We use Goal Programming approach seeking to reach the goals placed by Decision Maker. After that, we develop a novel heuristic solution method based on decomposition technique, to solve large scale supply chain network design problems that we failed to solve using exact methods. The heuristic method is tested on real case instances and numerical comparisons show that our heuristic yield high quality solutions in very limited CPU time. Finally, again, we extend the MILP model presented before where we assume that the costumer demands are uncertain. We use two-stage stochastic programming approach to model the supply chain network under demand uncertainty. Then, we address uncertainty in all SC parameters: opening costs, production costs, storage costs and customers demands. We use possibilistic linear programming approach to model the problem and we validate both approaches in a large application case.ARRAS-Bib.electronique (620419901) / SudocSudocFranceF

    A Multi-Objective Coordinated Operation Model for Supply Chain with Uncertain Demand Based on Fuzzy Interval

    Get PDF
    Abstract: The coordinated operation process of a class of supply chain with uncertain demands is considered. The supply chain consists of a manufacturer, a supplier and several customers. The semi-finished products of the supplier are raw materials of the manufacturer; demands of customers are uncertain and can be described as fuzzy intervals. A multi-objective programming model for coordinated operation of the supply chain is constructed and a numerical example is proposed. The results of the numerical example shows that decision makers can obtain an optimal operation strategy by using the model proposed in this study according to the level of uncertainties of demands and the operation strategy possesses robustness in some ways

    Ecotourism supply chain during the COVID-19 pandemic: A real case study

    Get PDF
    The coronavirus (COVID-19) disease has caused serious and irreversible damage to the ecotourism industry, posing serious challenges to all parts of the ecotourism supply chain. The ecotourism supply chain is made up of various components, the most important of which are ecotourism centers. During these pandemic times, the primary concerns of these centers are to improve their deplorable economic conditions and retain customers for the post-coronavirus era. As a result, an investigation should be conducted to address these concerns and provide appropriate solutions to help them overcome the challenges that have emerged. To achieve the research goal, a bi-objective mathematical model for the ecotourism supply chain in an uncertain environment is developed, accounting for the effects of COVID-19. The first objective function minimizes the total cost of the supply chain, while the second maximizes customer satisfaction. The proposed mathematical model is solved using a fuzzy goal programming (FGP) method. A sensitivity analysis study is also carried out to examine the performance of some basic parameters. Furthermore, the model is tested in a real case study to determine its efficacy. Finally, some effective managerial insights are proposed to improve the situation of the centers during the pandemic. © 2021 The Author

    STRATEGIC PLANNING OF CIRCULAR SUPPLY CHAINS WITH MULTIPLE DOWNGRADED MARKET LEVELS: A METHODOLOGICAL PROPOSAL

    Get PDF
    Recent legislation has recognized the importance of adopting Circular Economy (CE) principles in supply chain (SC) restructuring. The primary objective is to create circular supply chains (CSCs) that effectively reintegrate end-of-life (EOL) products into production networks through processes such as reusing, remanufacturing, and recycling. This paradigm shift toward circularity aims to enhance resource efficiency, extend product lifecycle, and minimise waste, thereby aligning firms with sustainable practices while providing them with a competitive advantage. In line with the goals of the CE, this study focuses on the design and optimisation of strategic decisions within a circular supply chain (CSC). To achieve this aim, a bi-objective mixed-integer linear programming (MILP) model is developed. This model represents a significant contribution as it offers a compact and generalized formulation for dealing with CSC design problems. The proposed MILP model encompasses several key decision variables and considerations. It determines the optimal number of downgraded market levels to be activated, the location of forward and treatment facilities as well as the optimal product flow within the CSC. Furthermore, the model takes into account the cannibalisation effects associated with the demand for both new and recovered products, ensuring a comprehensive analysis of the system dynamics. To solve the complex mathematical model, the augmented epsilon-constraint (AUGMECON2) method is employed. The utilisation of this method enables decision-makers to obtain practical solutions within reasonable time frames. The computational results obtained from applying the MILP model illustrate its encouraging potential and effectiveness in dealing with strategic decision-making problems within CSCs

    Integrated supply chain and competitive facility location models

    Get PDF
    Önsel Ekici, Şule (Dogus Author) -- Conference full title: XIV.International Logistics And Supply Chain Congress, 1-2 Aralık 2016, İzmir.The optimization of supply chain networks plays a key role in determining the competitiveness of the whole supply chain. Therefore, during the last two decades, an increasing number of studies have focused on the optimization of the overall supply chain network. However, in most of these optimization studies, the structure of the network is considerably simplified and there is still a need for more comprehensive models that simultaneously capture many aspects that are relevant to real-world problems such as demand dynamics on the market. Facility location decisions—more specifically, decisions on the physical network structure of a supply chain network—are important factors affecting chain’s competitiveness, especially for the supply chains serving retail markets. However, supply chain network optimization models in the current literature ignore the impacts of network decisions on customer demand. Nevertheless, competitive facility location problems model only the distribution part of the supply chain, even though they have certain characteristics of supply chain networks and analyze the rival chains existing on the market. In this study, an integrated supply chain network optimization model based on the joint supply chain network optimization and competitive facility location models is proposed to analyze the results of ignoring the impacts of network decisions on customer demand. The unique unknown variable within the model is the demand. The demand at each customer zone is assumed to be determined by price and the utility function. The utility function is defined as the availability of same-day transportation from the distribution center to the customer zone

    Best matching processes in distributed systems

    Get PDF
    The growing complexity and dynamic behavior of modern manufacturing and service industries along with competitive and globalized markets have gradually transformed traditional centralized systems into distributed networks of e- (electronic) Systems. Emerging examples include e-Factories, virtual enterprises, smart farms, automated warehouses, and intelligent transportation systems. These (and similar) distributed systems, regardless of context and application, have a property in common: They all involve certain types of interactions (collaborative, competitive, or both) among their distributed individuals—from clusters of passive sensors and machines to complex networks of computers, intelligent robots, humans, and enterprises. Having this common property, such systems may encounter common challenges in terms of suboptimal interactions and thus poor performance, caused by potential mismatch between individuals. For example, mismatched subassembly parts, vehicles—routes, suppliers—retailers, employees—departments, and products—automated guided vehicles—storage locations may lead to low-quality products, congested roads, unstable supply networks, conflicts, and low service level, respectively. This research refers to this problem as best matching, and investigates it as a major design principle of CCT, the Collaborative Control Theory. The original contribution of this research is to elaborate on the fundamentals of best matching in distributed and collaborative systems, by providing general frameworks for (1) Systematic analysis, inclusive taxonomy, analogical and structural comparison between different matching processes; (2) Specification and formulation of problems, and development of algorithms and protocols for best matching; (3) Validation of the models, algorithms, and protocols through extensive numerical experiments and case studies. The first goal is addressed by investigating matching problems in distributed production, manufacturing, supply, and service systems based on a recently developed reference model, the PRISM Taxonomy of Best Matching. Following the second goal, the identified problems are then formulated as mixed-integer programs. Due to the computational complexity of matching problems, various optimization algorithms are developed for solving different problem instances, including modified genetic algorithms, tabu search, and neighbourhood search heuristics. The dynamic and collaborative/competitive behaviors of matching processes in distributed settings are also formulated and examined through various collaboration, best matching, and task administration protocols. In line with the third goal, four case studies are conducted on various manufacturing, supply, and service systems to highlight the impact of best matching on their operational performance, including service level, utilization, stability, and cost-effectiveness, and validate the computational merits of the developed solution methodologies

    An integrated approach to value chain analysis of end of life aircraft treatment

    Get PDF
    Dans cette thèse, on propose une approche holistique pour l’analyse, la modélisation et l’optimisation des performances de la chaîne de valeur pour le traitement des avions en fin de vie (FdV). Les recherches réalisées ont débouché sur onze importantes contributions. Dans la première contribution, on traite du contexte, de la complexité, de la diversité et des défis du recyclage d’avions en FdV. La seconde contribution traite du problème de la prédiction du nombre de retraits d’avions et propose une approche intégrée pour l’estimation de ce nombre de retraits. Le troisième et le quatrième articles visent à identifier les parties prenantes, les valeurs perçues par chaque partenaire et indiquent comment cette valeur peut affecter les décisions au stade de la conception. Les considérations relatives à la conception et à la fabrication ont donné lieu à quatre contributions importantes. La cinquième contribution traite des défis et opportunités pouvant résulter de l’application des concepts de la chaîne logistique verte, pour les manufacturiers d’avions. Dans la sixième contribution, un outil d’aide à la décision a été développé pour choisir la stratégie verte qui optimise les performances globales de de toute la chaîne de valeur en tenant compte des priorités et contraintes de chaque partenaire. Dans la septième contribution, un modèle mathématique est proposé pour analyser le choix stratégique des manufacturiers en réponse aux directives en matière de FdV de produits comme le résultat des interactions des compétiteurs dans le marché. La huitième contribution porte sur les travaux réalisés dans le cadre d’un stage chez le constructeur d’avions, Bombardier. Cette dernière traite de l’apport de « l’analyse du cycle de vie » au stade de la conception d’avions. La neuvième contribution introduit une méthodologie d’analyse de la chaîne de valeur dans un contexte de développement durable. Finalement, les dixième et onzième contributions proposent une approche holistique pour le traitement des avions en FdV en intégrant les concepts du « lean », du développement durable et des contraintes et opportunités inhérentes à la mondialisation des affaires. Un modèle d’optimisation intégrant les modèles d’affaires, les stratégies de désassemblage et les structures du réseau qui influencent l’efficacité, la stabilité et l’agilité du réseau de récupération est proposé. Les données requises pour exploiter le modèle sont indiquées dans l’article. Mots-clés: Fin de vie des avions, analyse de la chaîne de valeurs, développement durable, intervenants.The number of aircrafts at the end of life (EOL) is continuously increasing. Dealing with retired aircrafts considering the environmental, social and economic impacts is becoming an emerging problem in the aviation industry in near future. This thesis seeks to develop a holistic approach in order to analyze the value chain of EOL aircraft treatment in the context of sustainable development. The performed researches have led to eleven main contributions. In the first contribution, the complexity and diversity of the EOL aircraft recycling including the challenges and problem context are discussed. The second contribution addresses the challenges for estimation of retired aircrafts and proposes an integrated approach for prediction of EOL aircrafts. The third and fourth contributions aim to identify the players involved in EOL recycling context, values perceived by different shareholders and formulate that how such value can affect design decisions. Design stage consideration and manufacture’s issues are discussed and have led to four main contributions. The fifth contribution addresses the opportunities and challenges of applying green supply chain for aircraft manufacturers. In the sixth contribution, a decision tool is developed to aid manufactures in early stage of design for their green strategy choices. In the seventh contribution, a mathematical model is developed in order to analyze the strategic choice of manufacturers in response to EOL directives as the result of the interaction of competitors in the market. An internship project has been also performed in Bombardier and led to the eighth contribution, which addresses life cycle approach and incorporating the sustainability in early stage of design of aircraft. The ninth contribution introduces a methodology for analyzing the value chain in the context of sustainable development. Finally, the tenth and eleventh contributions propose a holistic approach to EOL aircraft treatment considering lean principals, sustainable development, and global business environment. An optimization model is developed to support decision making in both strategic and managerial level. The analytical approaches, decision tools and step by step guidelines proposed in this thesis will aid decision makers to identify appropriate strategies for the EOL aircraft treatment in the sustainable development context. Keywords: End of life aircraft, value chain analysis, sustainable development, stakeholders
    corecore