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Abstract

This thesis contributes to the debate on how uncertainty and concepts of sustainable de-

velopment can be put into modern supply chain network and focuses on issues associated

with the design of multi-criteria supply chain network under uncertainty.

First, we study the literature review , which is a review of the current state of the art of

Supply Chain Network Design approaches and resolution methods.

Second, we propose a new methodology for multi-criteria Supply Chain Network Design

(SCND) as well as its application to real Supply Chain Network (SCN), in order to satisfy

the customers demand and respect the environmental, social, legislative, and economical

requirements. The methodology consists of two different steps. In the first step, we use

Geographic Information System (GIS) and Analytic Hierarchy Process (AHP) to build

the model. Then, in the second step, we establish the optimal supply chain network using

Mixed Integer Linear Programming model (MILP).

Third, we extend the MILP to a multi-objective optimization model that captures a com-

promise between the total cost and the environment influence. We use Goal Programming

approach seeking to reach the goals placed by Decision Maker. After that, we develop

a novel heuristic solution method based on decomposition technique, to solve large scale

supply chain network design problems that we failed to solve using exact methods. The

heuristic method is tested on real case instances and numerical comparisons show that

our heuristic yield high quality solutions in very limited CPU time.

Finally, again, we extend the MILP model presented before where we assume that the

costumer demands are uncertain. We use two-stage stochastic programming approach

to model the supply chain network under demand uncertainty. Then, we address uncer-

tainty in all SC parameters: opening costs, production costs, storage costs and customers

demands. We use possibilistic linear programming approach to model the problem and

we validate both approaches in a large application case.



Chapter 1

Introduction

In 1915, Arch Shaw (1915) pointed out that: ” The relations between the activities of

demand creation and physical supply...illustrated the existence of the two principles of

interdependence and balance. Failure to co-ordinate any one of these activities with its

group-fellows and also with those in the other group, or undue emphasis or outlay put on

any one of these activities, is certain to set the equilibrium of forces which means efficient

distribution... The physical distribution of the goods is a problem distinct from the cre-

ation of demand...Not a few worthy failures in distribution campaigns have been due to

such a lack of co-ordination between demand creation and physical supply.”

It has taken more than 70 years the principals of Supply Chain Management (SCM) to be

clearly defined in literature : according to Jones and Riley (1985), supply chain manage-

ment is an integrative approach to dealing with the planning and control of the materials

flow from suppliers to end-users. In Berry et al (1994), the SCM aims at building trust,

exchanging information on market needs, developing new products, and reducing the sup-

plier base to a particular original equipment manufacturer so as to release management

resources for developing meaningful, long term relationship.

Tan et al. (1998) integrated the recycling step in the definition of SCM, it encompasses

materials/supply management from the supply of basic raw materials to final product (and

possible recycling and re-use). Supply chain management focuses on how firms utilize their

suppliers’ processes, technology and capability to enhance competitive advantage. It is

a management philosophy that extends traditional intra enterprise activities by bringing

trading partners together with the common goal of optimization and efficiency.
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Recently Simchi-Levi et al. (2000) defined SCM as the set of approaches utilized to effi-

ciently integrate suppliers, manufacturers, warehouses and stores so that merchandise is

produced and distributed at the right quantity, to the right locations, and at the right

time, in order to minimize system wide costs while satisfying service level requirements.

The objectives of supply chain management concern satisfying the customer effectively.

This means to fulfil costumer requests with maximum profit or minimum cost.

Part of the design processes in SCM aim to find the best possible supply chain configu-

ration so that all operations can be performed in an efficient way.

- What is Supply Chain Network Design (SCND)?

It is clear from above definitions that, the supply chain is a network of suppliers, fac-

tories, warehouses, and distribution centers through which raw materials are procured,

transformed, and delivered to the customer.

According to Diaby and Martel (1993), SCND problems deal with strategic decisions

related to the number, size, and location of warehouses, as well as the assignment of

customers and products to warehouses. These decisions involve trade-offs between invest-

ment costs, including inventory carrying and transportation costs, but at a very aggregate

level.

Cornuejols et al. (1990) defined supply chain network design as follows: Given a set of

potential sites, a set of clients, and relevant profit and cost data, the goal is to find a

maximum profit plan giving the number of facilities to open, their locations and an allo-

cation of each client to an open facility.

In Pomper (1976) paper, SCND decisions focus on the development of a worldwide man-

ufacturing policy. These decisions are those which normally result from the capital-

planning, budgeting process within the firm, i.e. location, technology, capacity, and time-

phasing of new facilities.

For Shulman (1991), SCND is to select the time schedule for installing facilities at different

locations to optimize the total discounted costs for meeting customer demands specified

over the time-period referred to as the planning horizon.

According to Chopra and Meindl (2004), a supply chain design problem comprises the

decisions regarding the number and location of production facilities, the amount of ca-

pacity at each facility, the assignment of each market region to one or more locations, and
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supplier selection for sub-assemblies, components and materials.

Many researchers have attempted to extend these classical definitions by incorporating

various themes such as: sustainability of supply chains has emerged since the impacts

of climate change have effected producers and consumers decision-making and how their

decisions effect the environment, transportation modes, tax issue and risk management,

etc.

As the competitive context of business continues to change, bringing with it new complex-

ities and concerns for management generally, it also has to be recognized that the impact

of these changes on logistics can be considerable. Indeed, perhaps the most challenging

strategic issues that confront the business organization today are in the area of Supply

Chain (SC), which are: (i) the customer service, (ii) time compression, (iii) globalization

and (iv) organization.

- The customer service:

Nowadays, the customer is more demanding, not just of product price and product qual-

ity, but also of service. As more and more the technical difference between offers decrease,

products don’t have value until they are in the hands of the customer at the time and

place required. In other words, customer needs for the creation of added value through

customer service (Christopher (2001)). To achieve this, a company may be able to save

millions of Euro in logistic costs and simultaneously improve service levels by redesigning

or designing its supply chain network.

- Time compression:

In recent years, time has become a critical issue in supply chain management. Logis-

tic actors require just-in-time deliveries, products life cycle and order cycles are shorter

than ever and customers accept a competitor product if their first choice is not instantly

available. To overcome these problems and ensure timely response to volatile and uncer-

tain demand, new approaches to the management of lead times are required (Christopher

(2001)). Neglecting uncertainty in supply chain network design may cause more than high

costs on the long term objectives of a company Santoso et al. (2005), Klibi et al. (2010),

Sabri and Beamon (2000). Building a sustainable supply chain nowadays has become the

ultimate objective of intelligent organisations.

- Globalization:
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In the global business materials and components are sourced worldwide, manufactured

offshore in many different countries perhaps with local customization. However, experts

maintain that global supply chains are more difficult to manage than domestic supply

chains (Wood et al. (2002), MacCarthy and Atthirawong (2003)). Geographical dis-

tances in these global situations not only increase transportation costs, but also inventory

costs and lead-time in the supply chain. Different local cultures, languages, and prac-

tices reduce the effectiveness of demand forecasting and material planning. Deficiencies

in transportation and telecommunication infrastructures, as well as inadequate worker

skills, supplier quality, equipment and technology provide challenges normally not expe-

rienced in developed countries.

For global companies, the management of supply chain has become an issue of central

concern. They seek to achieve competitive advantage by identifying world markets for

their products then developing a supply chain strategy to support their marketing strat-

egy (Christopher (2001)).

Indeed, the ultimate objective in supply chain network design should be not only to

minimize common costs, but also to integrate multi-criteria in the SCND and to reduce

vulnerability due to uncertainty , by reducing possible sources of lose due to uncertainty.

- Organisation:

The classical business organization is based on strict functional divisions and hierarchies,

where each manager manages each own function independently from others. In today’s

environment, the company organisation needs broad-based integrators which are oriented

to achieve marketplace success based on managing processes and people that deliver ser-

vice. Generalist and specialist managers are required to integrate materials management

with operational management and delivery. They will focus on customer service to achieve

the integration of functions (Christopher (2001)).

To achieve this, an ideal network must have the optimum number, size, and location of

warehouses to support the inventory replenishment activities of its retailers. This state-

ment calls for sophisticated facility location models to determine the best supply chain

configuration.
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1.1 Problem statement

The main concepts that we focus on this thesis are the considerations of multi-criteria

Supply Chain Network Design (SCND), the uncertain environment in SCD and heuristic

algorithm to solve large size SCND problems.

We consider a multi-criteria, multi-level, single product, single period and multi-modal

(roads, railways, waterways) supply chain network problem. The network has four levels:

suppliers, storage depots or warehouses, production plants or distribution centers and

customers.

In this context, this research deals with the design of a sustainable supply chain network

under uncertain environment in order to satisfy the customers demand and to respect

the environmental, social, legislative, and economical requirements. The strategic supply

chain network we intend to establish, should answer the following questions under un-

certain environment: (i) how many facilities (manufacturing plants, warehouses or/and

distribution centers) should be installed? (ii) where the new sites should be located? (iii)

how much goods should each warehouse and/or distribution center handle? (iv) which

sellers should be served by each distribution centers? (v) products quantities to transport

throughout the supply chain network? (vi) which transportation mode should be used?

1.2 Research Contribution

According to what is presented previously, the main contributions of this research can be

summarized under five headings:

(1) A review of approaches and resolutions methods taking into account multi-criteria

and uncertainty in supply chain network design problems.

(2) A new methodology to design multi-criteria supply chain networks and applying the

model to a real-world treatment sediment supply chain. Geographic Information System

(GIS), Analytic Hierarchy Process (AHP) and Mixed Integer Linear Programming ap-

proaches are combined together to design the SCN.

(3) A new heuristic algorithm to solve large scale supply chain network problems and

applying the heuristic to a real-word textile supply chain (European Textile Company.

The heuristic is based on a decomposition technique.
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(4) A two-stage stochastic programming approach for supply chain network design under

demand uncertainty. This proposal is tested by using data from a real Textile supply

chain.

(5) A possibilistic linear programming based approach for supply chain network design

in an uncertain environment. This model is validated by using data from a real-world

supply chain. The detail of these headings is outlined in the following.

1.3 Outline of Dissertation

This thesis is organised into 7 chapters and is presented according to the following dia-

gram (Figure 1.1).

This introductory Chapter is followed by the literature review in Chapter 2, which

Figure 1.1: Thesis structure diagram

is a review of the current state of the art of Supply Chain Network Design approaches

and resolution methods. Among other things, we recall the different decision levels in

Supply Chain (strategic, tactical and operational level), the supply chain network struc-
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ture (single/multiple layer(s), single/multiple product(s), single/multiple period(s), sin-

gle/multiple objective (s), single/multiple modality, deterministic/stochastic parameters)

and existing deterministic SCND models and SCND models under uncertainty. We end

the chapter with some concluding remarks.

In order to satisfy the customers demand and to respect the environmental, social, leg-

islative, and economical requirements, a novel framework for multi-criteria Supply Chain

Network Design (SCND) and its application to real Supply Chain Network (SCN) are

presented in Chapter 3. The methodology consists of two different steps. The first step

looks for the best potential facility locations to open in order to satisfy the different cri-

teria: environmental, social, and legislation aspects, using the Geographic Information

System (GIS) and Analytic Hierarchy Process (AHP). The second step looks for the opti-

mal supply chain design to satisfy customer demands and economic criteria using mixed

integer linear programming model. The objective in this step is to determine location of

treatment facilities and their capacities minimizing the sum of : opening facilities cost,

products storage cost, production cost, transportation cost, and CO2 emissions taxes.

We apply our methodology to a real application case concerning the recycling of sediment

waterways, which was presented in Bouzembrak et al. (2010). We end the Chapter with

some concluding remarks.

In Chapter 4, we extend the second step of our methodology that we developed in

Chapter 3. We study a supply chain network design problem with environmental con-

cerns. We are interested in the environmental investments decisions in the design phase

and propose a multi-objective optimization model that captures a compromise between

the total cost and the environment influence. We use Goal Programming approach seek-

ing to reach the four goals placed by Decision Maker: (i) total costs goal, (ii) energy

consumption costs goal, (iii) waste treatment costs goal and (iv) CO2 emissions goal.

The strategic decisions considered in the model are facilities location, building technology

selection and flow of materials throughout the SC. We present numerical results illus-

trating and comparing the performance of the GP model, the instances elaborated from

the real application case presented in Chapter 3. We conclude the chapter with some
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conclusions from our study.

In Chapter 5, a novel heuristic solution method is developed based on a decomposi-

tion technique, to solve large scale supply chain network design problems that we failed to

solve using exact methods. The heuristic method is tested on real case instances, Euro-

pean Textile Company, and it is compared to an exact method in solving small instances.

Computational tests with up to 1 500 customers, 220 potential warehouses, 220 potential

distribution centers and 220 suppliers are reported.

For the general model, a numerical comparison of the heuristic solutions to the exact

method solutions shows that the heuristics yield high quality solutions in very limited

time. We conclude the chapter with some conclusions from our study.

The deterministic model discussed in the previous chapter provides a base for Sup-

ply Chain Network Design (SCND). Nevertheless, any network design obtained based on

this model, which represents the optimal deterministic configuration, has no assurance

of performance for any other future parameter fluctuation. However, we extended the

deterministic model presented in chapter 3. We first assume that we got the statistical

data of the customer demands, so, we use two-stage stochastic programming approach to

model the supply chain network under demand uncertainty. After that, we address uncer-

tainty in all SC parameters: opening costs, production costs, storage costs and customers

demands. In the case where the statistical data of all these parameters are not available,

we use possibilistic linear programming approach to model the problem and we validate

the approach in a large real case textile supply chain network.

Finally, Chapter 7 concludes the research findings and the activities undertaken through-

out the thesis.
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Chapter 2

Literature Review on Supply Chain

Network Design

In this chapter existing Supply Chain Network (SCN) modelling approaches and resolution

methods in literature will be discussed. In section 2.2, we show the different decision levels

in Supply Chain (SC) : strategic, tactical and operational level. Then, in section 2.3, we

recapitulate the supply chain network structure. In section 2.4, we introduce the most

important approaches used in Supply Chain Network Design (SCND). We end the chapter

in section 2.5 with some concluding remarks.

2.1 Introduction

Most articles on supply chain management include different form of categorization for lo-

gistic decisions (Ballou (2004), Bowersox et al. (2002), Chopra and Meindl (2004), Coyle

et al. (2003), Johnson et al (1999), Simchi-Levi et al. (2003)). These works generally

enumerate the logistic functions, indicate that many of decisions are interdependent and

present in detail models for solving various problems. Huang et al. (2003) considered

four classification criteria: supply chain structure, decision level, modelling approach and

shared information.

In this chapter we propose three classification criteria: decision level, supply chain net-

work structure and modelling approaches used on SCND. All of them are briefly described

below:

9



- Decision level: three decision levels may be distinguished in term of the decision to be

made; strategic, tactical and operational.

- Supply chain network structure: it defines the features that may be included in a SCN

model : single/multiple layer(s), single/multiple product(s), single/multiple period(s),

single/multiple objective (s), single/multiple modality, deterministic/stochastic parame-

ters.

- Supply chain network modelling approach: it consists in the type of representation,

mathematical relationship, and the aspects to be considered in the supply chain. Also, it

resumes the resolution methods that may be used in solving supply chain network models.

These categories will be detailed in the following sections.

2.2 Decision Levels

The decision making process in supply chain networks is highly complex. It can be

decomposed according to the time horizons considered (Gupta and Maranas, 1999). This

process results in the following temporal classification of the models: strategic, tactical and

operational. Figure 2.1 describes the different decision levels in supply chain management.

�

Control�

decisions

Material�flow��

decisions

Design�decisions

Operational

Tactical

Strategic

Figure 2.1: Supply Chain Levels

As we can see, strategic level decisions determine the configuration of the supply chain,

tactical level decisions prescribe material flow management and operational level decisions

present control decisions. The following paragraphs give the definitions of these levels.
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2.2.1 Strategic level

This section addresses strategic level decisions, which determine the configuration of the

supply chain by prescribing supplier selection, facility location (plants, warehouses, dis-

tribution centers and costumers zones), production technologies, plant capacities and

transportation modes. Simchi-Levi et al. (2004) state that the strategic level deals with

decisions that have a long-lasting effect on the firm. These include decisions regarding the

number, location and capacities of warehouses and manufacturing plants, or the flow of

material through the logistic network. The main strategic questions addressed in SCND

approach are presented in the following Table 2.1:

In strategic phase, generally, the planners are not constrained by existing resources. The

Table 2.1: Strategic level decisions

Strategic Decisions Strategic Questions

Type and number How many production and Distribution Centers (DC)

should be implemented?

of facilities Which activities should be externalized?

Which products should be produced/stocked in each loca-

tion?

Size of facilities What production, storage and handling technologies should

we adopt and how much capacity should we have?

Facility location Where should they be located?

Supplier selection Which supplier should be selected?

Activities from each facility Which factory/DC/demand zones should be supplied by

each supplier/factory/DC?

What delivery time should we provide in different product

markets and at what price?

Utilisation of facilities Which factory/DC/Warehouse should be opened or closed?

Transportation Modes What means of transportation should be used (road, train,

waterways,...etc. )?

data used in this phase are often imprecise. Moreover, an operating plan must be con-

structed to assess various scenarios depending on the forecasts. Many factors contribute
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to the complexity of SCN decision models. The first one is the long-term impact of the

design decisions. It may be reasonable to use one year model when the decisions are

limited to the selection of warehouses or distribution centers, as most of the literature

suggests.

A second complexity factor is uncertainty. Most models proposed in the literature are

deterministic. The interested reader can find these strategic questions in some important

works on supply chain network design: ReVelle and Eiselt (2005), Daskin et al. (2005),

Vila et al. (2006), Martel (2005), Klose and Drexl (2005), Arntzen et al. (1995), Cordeau

et al. (2006), Amiri (2005), Amrani et al. (2005), Ghiani et al. (2004). In stochastic

strategic supply chain design, you can find Santoso et al. (2005) and Shapiro (2001).

Furthermore, many references considered aspects related to the strategical and tactical

levels simultaneously (Dogan and Goetschalckx (1999), Jayaraman and Pirkul (2001),

Goetschalckx et al. (2002), Jang et al. (2002)).

2.2.2 Tactical Level

On the tactical level, medium term decisions are made. They are related to the flow

of materials between the supply chain actors, such as materials requirement planning,

production planning, inventory planning, transport capacities, inventories and managing

safety inventories and distribution planning (Table 2.2).

At this level, the policies and decisions not only aim to an adequate allocation and utiliza-

tion of existing resources, but also strive to achieve the best trade-off between benefits and

service performance. Furthermore, they are commonly used to model and analyse differ-

ent scenarios, such as determining the incremental operating costs or inventory quantities

for a set of volume changes. They are somewhat sensitive only to broad variations in

data. Midterm tactical models are intermediate in nature and incorporate some features

from both the strategic and operational models (Gupta and Maranas (2003)).

The main tactical decisions related to the supply chain management are recapitulated

in Table 2.2. Some works focus on the tactical decision level (Sabri and Beamon (2000),

Timpe and Kallrath (2000), Kallrath (2002), Liang and Cheng (2008), Torabi and Hassini

(2008) and Chen and Lee (2004)).
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Table 2.2: Tactical decisions

Tactical Decisions Tactical Questions

Material requirement Which raw material supplier should be selected?

planning Which raw material should be selected?

How much raw materiel should be supplied from each supplier?

Production planning Which products should be produced?

How much goods should they be produced?

When should they be produced? On which machine?

Where should they be produced?

Inventory planning How much products should be stored?

Where should they be stored?

When should they be stored?

How should the cost of storing inventory be reduced?

Distribution planning Which plant to supply which distribution centers?

2.2.3 Operational Level

Operational level decisions involve shorter term horizon, generally one or several days,

and smaller area than the tactical level and strategic level decisions. They include a

wide variety of operational problems such as: demand forecasting, production, warehous-

ing, inventory management, transportation, product packaging, procurement and supply

management, etc. Particularly, real-time control problems are solved in real time during

operations and aim to minimize customer inconvenience.

In this level, the time factor plays a highly dynamic role. Notably, sometimes emergency

management is regarded as real-time level in the operation process. Table 2.3 classifies

the most important questions reviewed in terms of the operational decisions level.

Rizk et al. (2006, 2008) cover the operational decision level exclusively. The interested

reader can find operational models in some important works: the vehicle routing problem

(Eksioglu et al. (2009)), inventory management (Andersson et al. (2010)) and production

scheduling (Eren Akyol and Bayhan (2007)).

In the context of this thesis, we focus on the strategic supply chain network design. The

strategic SCN we intend to elaborate should answer the following strategic questions: (i)
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Table 2.3: Operational level

Operational Decisions Operational Questions

Demand forecasting Quantities of future demand?

When should the future demand be received?

Where should be the future demand?

Production Where the product should be completed?

Who should produce the product?

Which layout of production facilities should be selected?

Which master production schedule should be selected?

Warehousing Which warehouse layout should be selected?

Where in the warehouse should each item stored?

What should be the storage policy of each item?

Inventory management Which methods should be used for controlling inventories?

Which should be the inventory levels?

The safety stock?

Transportation Which carrier type should be selected?

Vehicle routing and scheduling?

Assignment of customers to vehicles?

Product packaging Which type of packaging should be selected?

Which information should be provided with the product?

what type and how many facilities should be installed? (ii) where the new sites should be

established? (iii) how much goods should each plant handle? (iv) which transportation

mode should be used?

2.3 Supply Chain Network Structure

In supply chains, many basic features are included in strategic supply chain configura-

tion: single/multiple layer(s), single/multiple product(s), single/multiple period(s), sin-

gle/multiple objective (s), single/multiple modality, deterministic/stochastic parameters.

We conducted a detailed literature survey for the last decade period to reveal the current
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state of art in SCND literature. The main review used to elaborate this work are (Melo

et al. (2009), Klibi et al. (2010), Kabak and Ulengin (2010), Meixell and Gargeya (2005),

Vidal and Goetschalckx (1997), Goetschalckx et al. (2002), Farahani et al. (2010) and

Strivastava (2007)). Table 2.7 classifies the surveyed literature according to these aspects.

It can be seen from Table 2.7 that the single product literature in SCND is approximately

equal to the multiple products one. Around 52% of papers presented include the single

product aspect. (Aghezzaf (2005), Barros et al. (1998), Daskin et al. (2002), Shu et al.

(2005), Tushaus and Wittmann (1998)).

The most of papers in SCND deal with single-period problem. Approximately 83% of the

surveyed papers present single-period model. (Vidal and Goetschalckx (2001), Yan et al.

(2003), Pirkul and Jayaraman (1998), Sabri and Beamon (2000), Santoso et al. (2005)).

Further, the number of multi-layer models are scarce compared with the one or two layers

models. Approximately 66% of the surveyed papers refer to two layers problem. (Melo

et al. (2006), Pati et al. (2008), Santoso et al. (2005), Wilhelm et al. (2005)).

Another important conclusion that can be drawn from Table 2.7 refers to the large num-

ber of deterministic models when compared with stochastic ones. Approximately 79%

of the literature in SCND refers to deterministic models. As pointed out by Sabri and

Beamon (2000), uncertainty is one of the most challenging problems in SCND. However,

the literature integrating uncertainty with location decisions in an SCND context is still

scarce (Van Ommeren et al. (2006), Sabri and Beamon (2000), Santoso et al. (2005),

Hwang (2002), Listes and Dekker (2005)).

The surveyed literature can also be divided into those papers that consider single-objective

problem and those that propose multiple-objective problem. The small number of papers

in this Table refers to models with multiple objective (approximately 10% against 90%).

(Melachrinoudis et al. (2005), Sabri and Beamon (2000), Altiparmak et al. (2006), Fara-

hani and Asgari (2007)). The last and smallest group of articles integrating decisions

regarding transportation modes, in strategic planning level, show that the existing lit-

erature is still far from combining many aspects relevant to SCND (approximately 7%

against 93%). In fact, this integration leads to much more complex models due to the

large size of problems that may results. (Carlsson and Ronnqvist (2005), Cordeau et al.

(2006), Eskigun et al. (2005)).
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Table 2.4: Supply chain structure

Product Period Layer Model Objective Transportation Mode

Authors Single Multiple Single Multiple Two Multiple Deterministic Stochastic Single Multiple Single Multiple

Aghezzaf (2005) X X X X X X

Altiparmak et al. (2006) X X X X X X

Ambrosino and Scutell (2005) X X X X X X

Amiri et al. (2006) X X X X X X

Barros et al. (1998) X X X X X X

Carlsson and Ronnqvist (2005) X X X X X X

Cordeau et al. (2006) X X X X X X

Daskin et al. (2002) X X X X X X

Dogan and Goetschalckx (1999) X X X X X X

Erlebacher and Meller (2000) X X X X X X

Eskigun et al. (2005) X X X X X X

Guillen et al. (2005) X X X X X X

Gunnarsson et al. (2004) X X X X X X

Hinojosa et al. (2000) X X X X X X
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Table 2.5: Supply chain structure (suite 1)

Product Period Layer Model Objective Transportation Mode

Authors Single Multiple Single Multiple Two Multiple Deterministic Stochastic Single Multiple Single Multiple

Hinojosa et al. (2008) X X X X X X

Hwang (2002) X X X X X X

Jang et al. (2002) X X X X X X

Jayaraman and Pirkul (2001) X X X X X X

Jayaraman and Ross (2003) X X X X X X

Jayaraman et al. (1999) X X X X X X

Jayaraman et al. (2003) X X X X X X

Karabakal et al. (2000) X X X X X X

Keskin and Ulster (2007) X X X X X X

Ko and Evans (2007) X X X X X X

Kouvelis and Rosenblatt (2002) X X X X X X

Lee and Dong (2008) X X X X X X

Lieckens and Vandaele (2007) X X X X X X

Lin et al. (2006) X X X X X X

Listes and Dekker (2005) X X X X X X
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Table 2.6: Supply chain structure (suite 2)

Product Period Layer Model Objective Transportation Mode

Authors Single Multiple Single Multiple Two Multiple Deterministic Stochastic Single Multiple Single Multiple

Lu and Bostel(2007) X X X X X X

Ma and Davidrajuh (2005) X X X X X X

Melachrinoudis and Min (2007) X X X X X X

Melachrinoudis et al. (2005) X X X X X X

Melo et al. (2006) X X X X X X

Min et al. (2006) X X X X X X

Miranda and Garrido (2004) X X X X X X

Pati et al. (2008) X X X X X X

Pirkul and Jayaraman (1998) X X X X X X

Romeijn et al. (2007) X X X X X X

Sabri and Beamon (2000) X X X X X X

Salema et al. (2006) X X X X X X

Salema et al. (2007) X X X X X X

Santoso et al. (2005) X X X X X X

Schultmann et al. (2003) X X X X X X
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Table 2.7: Supply chain structure (suite 3)

Product Period Layer Model Objective Transportation Mode

Authors Single Multiple Single Multiple Two Multiple Deterministic Stochastic Single Multiple Single Multiple

Srivastava (2008) X X X X X X

Troncoso and Garrido (2005) X X X X X X

Tushaus and Wittmann (1998) X X X X X X

Vidal and Goetschalckx (2001) X X X X X X

Vila et al. (2006) X X X X X X

Wilhelm et al. (2005) X X X X X X

Wouda et al. (2002) X X X X X X

Yan et al. (2003) X X X X X X

Nb of papers 28 30 48 10 38 20 46 12 52 6 54 4

% 48% 52% 83% 17% 66% 34% 79% 21% 90% 10% 93% 7%
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2.4 Supply Chain Network Modelling Approaches

In this section, we aim to present in detail the most important modelling approaches used

in SCND. First, we present a review of deterministic SCN models such as: Mixed In-

teger Linear Programming (MILP), Non-Linear Programming (NLP) and Multi-Criteria

Problems (MCP). Then, we enumerate the SCN models under uncertainty like: Stochas-

tic Programming (SP), Robust Optimization (RO), Fuzzy Linear Programming (FLP),

Possibilistic Linear Programming (PLP) and Catastrophe Models (CM).

2.4.1 Deterministic SCND Models

Methods discussed in this subsection are deterministic approaches. Most of them are used

to design SCN problems.

Mixed Integer Linear Programming

The Mixed Integer Linear Programming (MILP) problems or Integer Linear Programming

(ILP) are special cases of the Linear Programming (LP) problems with integer decision

variables.

Linear programming problems involve a linear objective function and linear constraints.

The classical model of linear programming can be written as follows:

Optimize ψ(x) (2.1)

s.t Ax ≤ b (2.2)

x ≥ 0 (2.3)

Where the goal of the problem, is to determine the decision variables x that optimize the

objective function ψ(x), while ensuring that the model operates within established limits

enforced by equality and/or inequality constraints. As a general rule, linear programming

computational effort depends on the number of constraints rather than the number of

variables.

In SCND literature most authors have used MILP approach to formulate their supply

chain network. Wilhelm et al. (2005) presented a MILP model that represents the strate-

gic design of an assembly system in international business environment. Amiri (2004)
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developed a mixed integer programming model to formulate a supply chain system prob-

lem. He designed a distribution network problem in a supply chain system that involves

locating production plants and distribution warehouses, and tried to determine the best

strategy for distributing products from plants to warehouses and from warehouses to cus-

tomers. Keskin and Ulster (2007) considered a multi-product production/distribution

system design problem. They used a mixed-integer programming approach to formulate

their problem.

Pirkul and Jayaraman (1997) proposed a mixed integer programming formulation for

multi-commodity, multi-plant, distribution system design problems. The objective is

minimize the total operating costs of the distribution network, such that all customer

demands are satisfied. Authors presented an efficient heuristic based on Lagrangian re-

laxation method, to solve the problem.

Canel and Khumawala (1997) proposed an efficient branch and bound procedure for solv-

ing the uncapacitated multi-period international facility location problem. A heuristic ap-

proach based on simulated annealing and Lagrangean relaxation was developed by Syam

(2002) for a multi-source, multi-product, multi-location framework. Jayaraman and Ross

(2003) proposed a heuristic approach based on simulated annealing for the designing

of distribution network and management in supply chain environment. Jayaraman and

Ross (2001) used simulated annealing methodology to solve a model of distribution supply

chain. Brown et al. (1987) presented a MIP multi commodity model that determines the

opening/closing of plants, the commodities produced at each plant and delivered to each

customer, and the assignment of equipment to plants. Variable production and shipping

costs, fixed costs of equipment assignment and fixed costs of plant operations were in-

cluded in the objective function.

Eskigun et al. (2005) presented a large-scale network design model for the outbound

supply chain of an automotive company. The most important characteristics mentioned

in the paper are considering lead times and choice of transportation mode. To solve this

large-scale design model, a Lagrangian heuristic is presented. The algorithm gives excel-

lent solution quality in modest computational time. Amiri (2006), Eskigun et al. (2005),

Hinojosa et al. (2008), Santoso et al. (2005), Pirkul and Jayaraman (1998), Miranda

and Garrido (2004), Sourirajan (2007), Lu and Bostel (2007) used explicitly this method
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to solve their models. The interested reader is referred to some important reviews where

MILP are deployed in SCND problems: Tushaus and Wittmann (1998), Shu et al. (2005),

Melachrinoudis and Min (2007), Melo et al. (2006).

Non-Linear Programming

Non-linear programming problems involve either the objective function or constraints, or

both the objective function and constraints are non-linear.

Lababidi et al. (2004) developed a deterministic mixed integer non-linear programming

model to optimize the supply chain of a petrochemical company. Non-linear MIP model

presented by Cohen et al. (1989) considered the operation of a network of suppliers,

producers and markets. Min et al. (2005) presented a non-linear integer program for

solving the multi-echelon, multi commodity closed loop network design problem involving

product returns. Also, Chen and Lee (2004) proposed a multi-objective mixed integer

non-linear programming model which considers uncertainty for demands and prices, and

models according to the production, transport, sales and inventory planning stages.

Cohen et al. (1989) presented the main features that differentiate an international supply

chain model from a single-country model. The most important characteristics mentioned

in the paper are the necessity of treating multinational firms as global systems to obtain

economies of scale in order to reduce costs. A heuristic method that initially fixes the

transfer prices and allocated overhead variables, was presented.

To solve this NLP, two most popular methods, reduced gradient methods and successive

quadratic programming methods, were applied.

Multi-Criteria Problems

In real-world SCND problems, companies like to pursue more than one target or consider

more than one factor or measure. Such a desire transforms the decision making problem to

a multi-objective decision making (MODM) problem or a multi-attribute decision making

(MADM) problem. These groups of problems all come together in one category, named

multi-criteria decision making (MCDM) problems (see Figure 2.2). Furthermore, as the

bi-objective problems have become of particular consideration, they investigated them

separately from other k-objective ones. Figure 2.2 illustrates Farahani et al. (2010) clas-
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sification of multi-criteria problems and some important papers of each problems group.

The optimization focuses in traditional SCM problems are maximizing profit or mini-

Figure 2.2: Multi-criteria problems

mizing costs as a single objective (Tsiakis et al. (2001), Santoso et al. (2005), Elhedhli

and Gzara (2008)). Nevertheless, other important criteria such as environmental criteria,

customer response time, social criteria, economic criteria should be taken into account.

- Multi-objective programming models:

In this subsection, we evaluate that part of SCND literature in which there are more

than two objectives. We call them multi-objective integer programming problems with

k-objectives (Ozlen and Azizoglu (2009)). The k-objective problem is defined as:

Optimize ψ1(x) (2.4)

Optimize ψ2(x) (2.5)

... (2.6)

Optimize ψk(x) (2.7)

s.t x ∈ X (2.8)

where the objectives are defined as ψ1(x) =
n
∑

j=1

c1jxj, ψ2(x) =
n
∑

j=1

c2jxj and ψk(x) =

n
∑

j=1

ckjxj; c
i
j is integer for all i ∈ {1, 2, · · · , k} and j ∈ {1, 2, · · · , n}. X is the set of feasi-

ble solutions in which xj ≥ 0 and integer for all j ∈ {1, 2, · · · , n}.
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Several criteria for SCND have been appeared in literature. Alcada-Almeida et al. (2009)

proposed a multi-objective programming approach to identify locations and capacities of

hazardous material incineration facilities and balance the society, economic, and envi-

ronmental impacts. Customer response time was integrated in the distribution network

design by (Erol and Ferrell (2004), De Toni and Tonchia (2001)). Azaron et al. (2008)

used the goal attainment technique to optimize total cost, total cost variance, and fi-

nancial risk cost of a three echelon supply chain. Mincirardi et al. (2002) proposed a

multi-objective programming model to analyse solid waste management.

Paksoy et al. (2010) considered the green impact on a close-looped supply chain network

and tried to prevent more CO2 gas emissions and encourage customers to use recyclable

products via giving a small profit. They presented different transportation choices be-

tween echelons according to CO2 emissions. They also considered recyclable ratio of raw

material. Many network facility location problems utilize multi-objective optimization

concepts. Cantarella and Vitetta (2006) introduced an urban network layout and link

capacity through a multi-objective Road Network Design Problem. Pati et al. (2008)

proposed a multi-objective model for a paper recycling network system in determining

the facility location, route and flow of different varieties of recyclable waste paper in a

multi-item, multi-echelon and multi-facility environment. Selim and Ozkarahan (2006)

presented a supply chain distribution network design model that utilizes maximal cov-

ering approach in the reporting of the service level and with multiple capacity levels,

through a fuzzy multi-objective model.

Altiparmak et al. (2006) proposed a Genetic Algorithm , for designing a four-echelon

supply chain (suppliers, plants, warehouses and customers). It has three objectives to be

minimised. The first one is the cost that includes the fixed costs of operating and opening

plants and warehouses plus the cost of supplying raw materials and delivering products.

The second one is the total customer demand that can be delivered within the orders due

date. The third one is capacity utilisation for plants and warehouses.

Papers involving an integrated design of supply chain networks under uncertainty and con-

sidering several objectives is significantly smaller in number (Sabri and Beamon (2000),

Chen et al. (2008), Guillen et al. (2005). The Bi-objective integer programming prob-

lem is a special case of the multi-objective integer programming problem with only two
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objectives Ozlen and Azizoglu (2009). Fernandez et al. (2007) presented a bi-objective

supply chain design and facility location problem of supermarkets on the plane in which

the main objective was to maximize the profit obtained by the chain, and the secondary

objective was to minimize the difference between market shares before and after entering

a new facility.

For SCND, the main criteria used were costs, price, operating service, quality, distance,

ease of access, etc. Nowadays, with changing supply chain network these criteria are not

sufficient. The set of criteria should be expanded to take into account new dimensions

and represent the ability to deal with social, environmental and economic criteria in sus-

tainable context.

- Multi-attribute problems:

There are many techniques which are used to tackle the MADM problems. The most

used ones are as follows: Analytic Network Process (ANP) (Tuzkaya et al. (2008),

Analytic Hierarchical Process (AHP) (Saaty (1980)), elimination and choice express-

ing reality (ELECTRE) (Barda et al. (1990)), Multi-Attribute Utility Theory (MAUT)

(Canbolat et al (2007)), Technique for Order Preference by Similarity to Ideal Solution

(TOPSIS) (Hwang and Yoon (1981)), Stochastic Multi-criteria Acceptability Analysis

(SMAA) (Lahdelma et al. (2002)) are utilized for solving location problems (Farahani et

al. (2010)).

One analytical approach often suggested for solving such a complex multi-criteria prob-

lem is the Analytic Hierarchy Process. The Analytic Hierarchy Process (AHP) provides a

framework to cope with multiple criteria situations, involving intuitive, rational, qualita-

tive, and quantitative aspects (Khurrum et al. (2002)). We present some of the literature

where AHP multi-attribute decision making method is used to solve location problems.

Higgs (2006) presented a waste management problem where Geographical Information

Systems (GIS) have been combined with multi-criteria evaluation techniques to take into

account the role of public in the decision making process. Tuzkaya et al. (2008) included

qualitative and quantitative criteria (benefits, opportunities, costs and risks), to assess

and select undesirable facility locations. Aras et al. (2004) employed Analytic Hierarchi-

cal Process in wind observation station location problem, and a considerable number of

criteria were taken into consideration.
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In all these works, existing AHP approaches were applied for a very small number of

location alternatives and logistic actors are not considered in the selection criteria. To

the best of our knowledge, no comprehensive supply chain design approach, dealing with

all sustainable criteria, using GIS, has been proposed yet.

Models discussed above have several drawbacks, the most important being their deter-

ministic nature. However, in SCD problems, there are several uncertainties that should be

taken into account. Generally, in SCND problems we are not dealing only with numbers

and mathematical findings but many decisions are based on human judgement. In ad-

dition, existing multi-attribute approaches are applied for facility location problems and

logistic actors are not considered in the selection criteria. However, integrating multi-

criteria approaches with MILP problem can be an important development in supply chain

network design.

2.4.2 SCND Models Under Uncertainty

In this section, we present the most used uncertainty approaches to model SCND problems

under uncertainty, such as: stochastic approach, possibilistic approach, fuzzy approach

and the robust approach (Figure 2.3).

The future business environment where a supply chain network operates is generally

unknown and critical parameters such as customer demands, prices, and capacities are

uncertain.

Uncertainty implies that, in certain situations, a person does not dispose about informa-

tion which qualitatively is appropriate to describe, prescribe or predict deterministically

and numerically a system, its behaviour or other characteristic (Zimmermann (2001)).

However, informations are indispensable in supply chain design, in order to make ap-

propriate strategic decisions. Decision support systems provide decision makers with

useful informations to guide their thoughts and actions. Sufficient informations enable

the decision-makers to achieve the supply chain objectives through better and effective

decisions and actions. However, for many reasons these informations may be incomplete

due to many causes of uncertainty: lack of information, abundance of information, ap-

proximation, ambiguity, conflicting evidence and belief.

26



To model these uncertainties, we can find in literature numerous uncertainty approaches,

such as: probability theories (Shapiro (2003)), evidence theory (Shafer (1990)), possibility

theory (Zadeh (1965)), fuzzy set theory (Zadeh (1965)), rough set theory (Pawlak (1985)),

convex modelling (Ben-Haim and Elishakoff (1990)), etc. The most used to model supply

chain network under uncertainty is stochastic approach, where parameters are considered

as random variables with known probability distributions. The joint-events associated to

the possible values of the random variables can be considered as plausible future scenarios,

and each of these scenarios has a probability of occurrence. (Shapiro (2008), Santoso et

al. (2005), Vila et al. (2007)). A review of recent robust supply chain networks design is

found in Klibi et al. (2010). Several authors have discussed robustness in a supply chain

context (Rosenblatt and Lee (1987)), Gutierrez et al. (1996), Dong (2006), Snyder and

Daskin (2006)).

Figure 2.3 shows the most popular mathematical approaches considered by the researchers

Figure 2.3: Uncertainty Modelling Methods

for designing SCN. many papers are proposed and they are summarized in Table 2.8 and

Table 2.9. Notations used in Table 2.8 and Table 2.9 are: Average Scenario (AS), Models

based on Scenarios (MS), Two Stage Stochastic Programs (TSSP), Multi Stage Stochas-

tic Programs (MSSP), Catastroph Models (CM), Robust Optimisation (RO), Fuzzy Sets

Theory (FST), Possibilistic Programming (PP).
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Stochastic Programming

We begin by abstracting the statement of a LP model with random parameters. Problem

(2.1)-(2.3) can be presented as follows:

Optimize ψ(x) (2.9)

s.t A(ξ)x ≤ b(ξ) (2.10)

x ≥ 0 (2.11)

Where A(ξ) and b(ξ) denote, respectively, the random coefficients matrix and right-hand-

side vector, and decision x corresponds to a setting of all the decision variables. ξ denotes

a random vector varying over a set Φ ∈ ℜk. If we model the random parameters as dis-

crete scenarios, the model (2.9)-(2.11) can be transformed into deterministic equivalent

which is an ordinary linear programming. The deterministic equivalent of the model (2.9)-

(2.11) can be introduced in various ways. Depending on how the random parameters are

modelled and whether a risk measure is included in the objective function, the resulting

deterministic equivalent model will be the two-stage stochastic programming, multi-stage

stochastic programming, and robust optimization.

In order to transform the SCN models with random parameters (2.9)-(2.11) into a deter-

ministic equivalent model, the random data should be modelled as discrete scenarios. In

SCND problems, random data can be modelled as a random variable with a stationary

distribution, or as a non-stationary and dynamic data process. In stationary distribution,

the random data are represented as a number of scenarios with known probabilities. The

origin of scenarios can come from known discrete distributions, can be obtained from the

discretization of a continuous known distribution, or they can result from a preliminary

analysis of the problem with probabilities of their occurrence that may reflect an ad hoc

belief of the problem or a subjective opinion of an expert (Dupacova (1996), Miller and

Rice (1983)). This approach for random data representation in stochastic models is illus-

trated in Figure 2.4.

In two-stage stochastic programs, the structure of the tree encloses the first and second

stage phases, as shown in Figure 2.4. The beginning of the tree is represented by a single

node of the first stage since states of the world during the first stage are known with

certainty. The second stage is represented by many nodes. This means that the scenario
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tree is a set of individual scenarios s which occur with probabilities ps. In dynamic data

S1�

S2�

S3�

S4�

S5�
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Figure 2.4: A scenario tree in two stage stochastic programming models

�

S1�

S2�

�

Stage�2�Stage�1�

S3�

S4�

S5�

S6�

S7�

S8�

S9�

Stage�3�

Figure 2.5: A scenario tree in multi-stage stochastic programming models

process, the random data are characterized by cycles or temporal patterns, they should be

modelled as dynamic stochastic data. A representative scenario tree corresponding to the

multi-stage stochastic programming formulation (Figure 2.5) can be visualised as a tree

starting similarly with the previous case with a single node at first stage and branches

into a finite number of nodes at second stage. This branching continues for all stages of

the problem until last stage.

- Multi-stage stochastic programming:

The stochastic programming models that we have discussed so far, are static in the sense
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that we make a decision at one point in time, while accounting for possible recourse ac-

tions after all uncertainties have been resolved. There are many situations where one

is faced with problems where decisions should be made sequentially at certain periods

of time based on information available at each time period. Such multi-stage stochastic

programming problems can be viewed as an extension of two-stage programming to a

multi-stage setting. Guan and Philpott (2009) presented an application of multi-stage

stochastic programming to a production planning problem for a leading company in the

New Zealand dairy industry, taking into account uncertain milk supply, price demand

curves and contracting. Goh et al. (2007) constructed a stochastic model of the multi-

stage global supply chain network problem, incorporating a set of related risks, namely,

supply, demand, exchange, and disruption (Shapiro and Philpott (2007)).

The equivalent deterministic models of the Multi-stage stochastic programming models

are very large in scale due to the problem structure and the size of the problem increase

as a quadratic function of the number of scenarios. To solve these models, many algo-

rithms have been presented such as the augmented Lagrangian decomposition method

(Ruszczynski (1989)) and the decomposition methods (Liu and Sun (2004)).

- Two-stage stochastic programming:

In two-stage stochastic programming, we assume that the random data has a stationary

probability distribution during the time. The decision variables are explicitly classified

according to whether they are implemented, before or after a scenario of the random data

is observed. In other words, we have a set of decisions to be taken without full information

on the random parameters. These decisions are called first-stage decisions. Later, full

information is received on scenarios of the random vector. Then, second-stage actions are

taken under the full insight on the random data. These second-stage decisions allow us to

model a response to each of the observed scenarios of the random variable. In general, this

response will also depend upon the first-stage decisions. The objective of the two-stage

stochastic model would be to minimize the first-stage cost in addition to the expected

second-stage cost for all scenarios of random parameters.

We define the two-stage stochastic linear programming corresponding to model (2.9)-

(2.11), (Shapiro (2008), Santoso et al. (2007)) as follows:
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Optimize ψ(x) +
N
∑

s=1

psqsTys (2.12)

s.t Asx+Wys = bsT s = 1, ..., N. (2.13)

x, ys ≥ 0 s = 1, ..., N. (2.14)

Where, qsT denotes the vector of second stage costs, As denotes coefficients matrix, bsT

is the right-hand-side vector and ys second-stage vector under scenario s. W denotes

the recourse matrix. N presents the number of scenarios, s is the scenario index and T

denotes the transpose matrix notation.

Dyer and Stougie (2006) proved that under the assumption that the stochastic parame-

ters are independently distributed, two-stage linear stochastic programming problems are

NP-hard.

MirHassani et al. (2000) presented a two-stage stochastic programming model for multi-

period supply chain networks with uncertain demand scenarios. The first stage decisions,

concern the opening and closing of plants and distribution centers and setting their capac-

ity levels. In the second stage decisions, based on the particular demand scenario realized,

the production and distribution decisions are to be decided optimally.

Tsiakis et al. (2001) also considered a two-stage stochastic programming model for supply

chain network design under demand uncertainty. The authors developed a mixed-integer

linear programming model for a European supply chain network involving three demand

scenarios. Two-stage stochastic supply chain network design models were proposed by

Santoso et al. (2005), Vila et al. (2007), Alonso Ayuso et al. (2003), Vila et al. (2008)

and Azaron et al. (2008).

The difficulty with this approach is that the model can become very large in scale if a

huge number of scenarios for the random parameters are taken into account. It could be

impossible to be solved by the existing commercial solvers. In order to solve two stage

stochastic programs with a huge number of scenarios, approximate methods based on

Monte Carlo sampling were proposed by (Higle an Sen (1996), Shapiro (2005), and sam-

ple average approximation (SAA) scheme was presented by (Mak et al. (1999), Shapiro

and Hommen-de-Mello (1998), Santoso et al. (2004)) and decomposition methods and

approximation methods were used (Kall and Mayer (2005), Higle and Sen (1996), Shapiro
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et al. (2005)).

Robust Optimization

The robust optimization method developed by (Mulvey et al. (1995)) is a special class

of two-stage stochastic programming. It extends stochastic programming with the intro-

duction of higher moments of the objective function. In other words, traditional expected

cost minimization objective is replaced by one that explicitly addresses cost variability

and a serie of solutions are generated that are progressively less sensitive to scenarios and

random data.

The robust optimization approach introduced by (Mulvey et al. (1995)) is to modify the

objective function in two-stage stochastic linear programming as follows:

Optimize ψ(x) +
N
∑

s=1

psdsTys + λσ
(

y1, · · · , yN
)

+ωρ
(

δ1, · · · , δN ) (2.15)

s.t Asx+Wys + δs = bsT s = 1, ..., N. (2.16)

x, ys ≥ 0 s = 1, ..., N. (2.17)

Where, λ ≥ 0 is a goal programming weight and σ
(

y1, · · · , yN ) denotes the recourse cost

variability measure. By changing λ, the relative importance of the recourse cost in the

objective function can be controlled. ρ
(

δ1, · · · , δN ) is the model robustness measure. It

is a feasibility penalty function, which is used to penalize the violation of constraint (2.16)

under some scenarios. ω ≥ 0 is a goal programming weight which measures the relative

importance of solution robustness and model robustness.

Wu (2006) applied the robust optimization approach to uncertain production problem

under the global supply chain management environment. Leung et al. (2007) developed a

robust optimization model to address a multi-site aggregate production planning problem

with uncertain data. Stochastic parameters are modelled by introducing different scenar-

ios which are defined for different economical growth scenarios. Gutierrez et al. (1996)

proposed a robust optimization framework for network design under uncertainty. This

approach seeks network configurations that are nearly optimal for a variety of scenarios

(11 scenarios) of the design parameters at the expense of being suboptimal for any one

scenario.

This method can be used to find adequate SCN designs (Mulvey et al. (1995), Kouvelis
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and Yu (1997)). It can be used with min-max regret criterion (Mulvey et al. (1995)), or

the minimization of the maximum cost and mean-variance. Mean-variance measure has

been presented in many works, namely stochastic aggregate production planning (Leung

and Wu (2004), Leung et al. (2007)), stochastic logistic problems (Yu and Li (2000)).

Robust optimization has been applied to different versions of the facility location problem

under uncertainty (Snyder and Daskin (2006), Yu and Li (2000), Gutierrez et al. (1996),

Takriti and Ahmed (2004)).

A major difficulty with this approach is the same one as two-stage stochastic program-

ming that the model can become very large in scale if a huge number of scenarios for

the random parameters are taken into account, making it impossible to be solved by the

existing commercial solvers.

The small size robust optimization models can be solved by the Cplex quadratic pro-

gramming solver. In order to solve the large size ones with large number of scenarios,

decomposition methods and approximations methods can be used (Takriti and Ahmed

(2004)).

Fuzzy Linear Programming

In SCND problems, the conventional approaches tend to be less effective in dealing with

the imprecision or uncertainty nature of the data. There has been an increasing interest

for fuzzy sets to be used for the SCDN in the recent years. The fuzzy mathematical

programming in the first category was initially developed by Bellman and Zadeh (1970).

It treats decision-making problem under fuzzy goals and constraints. The fuzzy goals

and constraints represent the flexibility of the target values of objective functions and the

elasticity of constraints.

We assume that the decision maker can establish an aspiration level, z, for the value of

the objective function he or she wants to achieve and that each of constraints is modelled

as a fuzzy set. The equivalent fuzzy linear programming of the LP (2.1)-(2.3) is (Bellman

and Zadeh (1970)):
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Find x such that

z = ψ(x) (2.18)

s.t Ãx ≤ b̃ (2.19)

x ≥ 0 (2.20)

where x is the vector of decision variables; A and b are fuzzy quantities; operations of

addition and multiplication by a real number of fuzzy quantities are defined by Zadeh’s

extension principle; the objective function z, is to be maximized in the sense of a given

problem.

Linear programming problems with fuzzy parameters are formulated by fuzzy functions.

The ambiguity considered here is not randomness, but fuzziness which is associated with

the lack of a sharp transition from membership to non-membership. Parameters on con-

straint, relationship between constraints or objective functions and objective functions

are given by fuzzy numbers.

Fuzzy linear programming problem with fuzzy numbers can be regarded as a model of

decision problems where human estimation is influential. The model helps in determining

the optimal number and site locations of fire stations at an international airport. Several

distinct methods are frequently mentioned for representing uncertainty. For example, the

fuzzy-based approach (Giannoccaro et al. (2003), Liu and Sahinidis (1997), Petrovic et

al. (1998), (1999)), where in the forecast parameters are considered as fuzzy numbers

with accompanied membership functions.

Possibilistic Linear Programming

Zadeh (1978) presented the theory of possibility, which is related to the theory of fuzzy

sets by defining the concept of possibility distribution as a fuzzy restriction. After pio-

neering work of Zadeh, possibility theory has found gradual acceptance in the literature.

Several research efforts have concentrated on possibilistic linear programming (Buckley

(1988), Buckley (1989), Hsu and Wang (2001)). In this section, we consider the following

34



possibilistic linear programming problem:

Optimize ψ(x) (2.21)

s.t Ãx ≤ b̃ (2.22)

x ≥ 0 (2.23)

Where, Ã is a matrix represented by a possibility distribution and b̃ is a possibilistic vari-

able restricted by a possibility distribution. Wang and Shu (2010) suggested a possibilistic

decision model to determine the supply chain configuration and inventory policies for new

products with unreliable or unavailable statistical data. Fuzzy sets were used to model

uncertain and flexible supply chain parameters such as total supply chain cost, demand,

service time, lead and response time. Authors presented a case study of computer assem-

bly company to evaluate the performance of the entire supply chain.

Wang and Liang (2005) presented a possibilistic linear programming (PLP) approach for

solving the multi-product aggregate production planning problem with imprecise param-

eters : customer demands, operating costs and capacities. They used LINDO computer

software to solve the model. Peidro et al. (2009) proposed a fuzzy mathematical pro-

gramming model for supply chain planning which considers supply, demand and process

uncertainties. The model has been formulated as a fuzzy mixed integer linear program-

ming model where data are unknown and modelled by triangular fuzzy numbers. They

tested the proposed PLP on an automotive supply chain network involving: 44 suppliers,

one seat manufacturer, one seat assembly plant and an Automobile Assembly Plant. To

solve the MILP model they used the CPLEX 9.0 solver. Petrovic et al. (1999) considered

a production supply chain with all facilities in a serial connection. The supply chain

includes inventories and production facilities between them. Authors assumed customer

demand and supply deliveries as uncertain parameters, and proposed small computational

examples showing that uncertain customer demands and uncertain supply deliveries along

the supply chain have great impact on supply chain behaviour.

Torabi and Hassini (2008) considered a supply chain master planning model consisting of

multiple suppliers, one manufacturer and multiple distribution centers. They proposed

a new multi-objective PLP model for integrating procurement, production and distri-

bution planning with imprecise nature of many parameters such as demands, cost/time
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coefficients and capacity levels. To validate their model they advised an industrial case

involves 4 suppliers, one manufacturer and 3 distribution centers located in different cus-

tomer zones. They solved the instances using OSL solver from IBM.

There are different approaches to solve probabilistic SCND problems. To convert the

original model into an equivalent auxiliary crisp model, efficient possibilistic methods

are proposed by Jimenez et al. (2007) and Parra et al. (2005). To find the final pre-

ferred compromise solution, the reader can refer to recently proposed fuzzy methods of

Torabi and Hassini (2008) and Selim and Ozkarahan (2008). As evident from the above

discussion, the existing possibilistic linear programming approaches for supply chain de-

sign under uncertainty are suited for very small size problems and a limited number of

fuzzy parameters. In addition, the majority of these papers are theoretical (Kabak et al.

(2011)).

Models Based on Scenarios

An other alternative is to solve the deterministic model for a set of representative scenarios,

and to evaluate the solution obtained. The difficulty with this approach is to determine

which among solutions found is the best. Many methods have been used to evaluate and

select solutions obtained such as Monte-Carlo sensitivity analysis (Saltelli et al. (2004),

Ridlehoover (2004)), screening procedure using many filtering criteria such as Pareto

optimality and mean-variance. Good examples of how this approach works, are found in

Vidal and Goetschalchx (2000), Mohamed (1999).

Average scenario is an approach often used to solve supply chain network problems under

uncertainty, by elaborating an average scenario, and then solve the resulting deterministic

model.

The solution obtained is not necessary optimal. Solutions may be very bad or even

infeasible under specific scenarios (Sen and Higle (1999)).

Catastrophe Models

Catastrophe models used to estimate the location, severity and frequency of potential

future natural disaster. They are usually based on catastrophe arrival process, and they

provide a compromise between economic loss and the probability that certain level of
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loss will be exceeded on an annual basis (Haimes (2004), Grossi and Kunreuther (2005),

Banks (2006)). Qualitative SC disruptions risk identification and assessment approaches

were proposed by Kleindorfer and Saad (2005) and Manuj and Mentzer (2008).

To conclude this discussion of SCND models under uncertainty, note that the most

used approach in SCND under uncertainty are stochastic linear programming approach

and robust models. The most important problem with these approaches is that the

model can become very large in scale for a small number of scenarios for the random

parameters are taken into account. It could be impossible to be solved by the existing

commercial solvers. Only few models based on the possibilty and fuzzy sets on SCND

problems are proposed in literature (Sule (2001), Torabi and Hassini (2008), Wang and

Shu (2007)). Other approaches such as evidence theory, rough set theory (Pawlak (1985))

and convex modelling (Ben-Haim and Elishakoff (1990)), etc. were used by authors to

model uncertainty.

2.4.3 Resolution Methods

As we discussed before, various approaches such as Branch-and-Bound, Bender decompo-

sition and Lagrangian relaxation were proposed for solving the SCND problem. However,

not all of these methods are regarded as feasible when the size of the system increases.

For small size network systems, exact methods can be used to solve the SCND problems.

For larger systems, exact methods fail because the size of the solution space increases

exponentially with the number of constraints and variables in the network. As a result,

the computation time of exact methods becomes impractical. In these cases, heuristic or

meta-heuristic methods can be used to produce near optimal solutions in a reasonable

computation time. Table 2.10 and Table 2.11 classify the literature according to most

important resolution methods used in solving SCND problems.

2.5 Concluding Remarks

In this chapter, we have described a review of mathematical programming models and

resolution methods for SCND. We have proposed a classification based on the analysis of
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three aspects: supply chain network structure, decision level and supply chain modelling

approaches.

Conclusions drawn from this chapter affirm that: (i) papers integrating multiple periods,

multiple products, multiple criteria, multiple transportation modes, multiple objective

and uncertainty in SCND context are still scarce, (ii) the most widely used modelling

approach is mixed integer linear programming, where the use of heuristic algorithms and

meta-heuristics to solve the approach stands out, (iii) more proposed models validated by

small numerical examples are presented than case studies applied to real supply chains.

The design of a multi-criteria supply chain network to respect the environmental, social,

legislative, and economical aspects and to satisfy customer demands, is presented in the

next chapter.
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Table 2.8: Supply chain design under uncertainty (Part 1)

Authors AS MS TSSP MSSP CM RO FST PP

Eppen et al. (1989) X

Mulvey et al. (1995) X X

Gutierrez et al. (1996) X

Huchzermeier and Cohen (1996) X

Kouvelis and Yu (1997) X

Bok et al. (1998) X

Kurksalan and Sural (1999) X

Mohamed (1999) X

Sen and Higle (1999) X

Vidal and Goetschalckx (2000) X

Yu and Li (2000) X

Sule (2001) X

Tsiakis et al. (2001) X

Lowe et al. (2002) X

Ahmed and Sahinidis (2003) X

Ruszczynski and shapiro (2003) X

Shapiro (2003) X

Kahraman et al. (2003) X

Saltelli at al, (2004) X

Ridlehoover (2004) X

Haimes (2004) X

Christopher and lee (2004) X

Santoso et al. (2005) X

Grossi and Kunreuther (2005) X
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Table 2.9: Supply chain design under uncertainty (Part 2)

Authors AS DMS TSSP MSSP CM RO FST PP

Kleindorfer and saad (2005) X

Sheffi (2005) X

Snyder and Daskin (2006) X

Chen and Lee (2006) X

Banks (2006) X

Shapiro (2007) X X

Vila et al. (2007) X

Wang and Shu (2007) X

Torabi and Hassini (2007) X

Matos (2007) X

Vila et al. (2008) X

Manuj and Mentzer (2008) X
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Table 2.10: Resolution Methods

Authors Heuristic Meta-heuristic Resolution Method

Aghezzaf (2005) X Lagrangean Relaxation

Lu and Bostel (2007) X Lagrangean Relaxation

Aliev et al. (2007) X Genetic algorithm

Amiri (2006) X Lagrangean Relaxation

Arntzen et al. (1995) X Factorization

Barahona and Jens (1998) X Decomposition techniques

Barros et al. (1998) X Relaxation heuristic

Brown and Olson (1994) X Factorization

Brown et al. (1987) X Decomposition

Canel and Khumawala (1997) X Branch and Bound

Canel and Khumawala (2001) X Branch and Bound

Cohen and Lee (1985) X A heuristic method

Cohen and Lee (1989) X Relaxation and Approximation

Cohen and Moon (1991) X Benders Decomposition

Cohen et al. (1989) X Relaxation and Approximation

Cole (1995) X Branch and Bound

Cordeau et al. (2006) X Benders Decomposition

Dogan and Goetschalckx (1999) X Valid inequalities

Eksioglu et al. (2006) X Relaxation and Approximation

Erlebacher and Meller (2000) X Relaxation and Approximation

Eskigun et al. (2005) X Lagrangean Relaxation

Geoffrion and Graves (1974) X Benders Decomposition

Geoffrion et al. (1978) X Decomposition techniques

Geoffrion et al. (1982) X Decomposition techniques

Goetschalckx et al. (2002) X Decomposition techniques

Goetschalckx et al. (1994, 1995) X Decomposition techniques
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Table 2.11: Resolution Methods

Authors Heuristic Meta-heuristic Resolution Method

Hinojosa et al. (2000) X Lagrangean Relaxation

Hinojosa et al. (2008) X Lagrangean Relaxation

Hodder and Dincer (1986) X Relaxation and Approximation

Hwang (2002) X Genetic Algorithm

Jang et al. (2002) X Genetic Algorithm

Jayaraman and Pirkul (2001) X Lagrangean Relaxation

Jayaraman and Pirkul(2001) X Lagrangian relaxation

Jayaraman and Ross (2003) X Simulated Annealing

Jayaraman et al. (2003) X Decomposition techniques

Keskin and Ulster (2007) X Tabu Search

Ko and Evans (2007) X Genetic Algorithm

Lee and Dong (2008) X Decomposition techniques

Lieckens and Vandaele (2007) X Genetic Algorithm

Listes (2006) X L-Shaped

Ma and Davidrajuh (2005) X Genetic Algorithm

Marin and Pelegrin (1999) X Lagrangean Relaxation

Min et al. (2006) X Genetic Algorithm

Miranda and Garrido (2004) X Lagrangean Relaxation

Paquet et al. (2004) X Valid inequalities

Pirkul and Jayaraman (1998) X Lagrangean Relaxation

Romeijn et al. (2007) X Column Generation

Santoso et al. (2005) X Lagrangean Relaxation

Shu (2004) X Column Generation

Sourirajan (2007) X Lagrangean Relaxation

Vidal and Goetschalckx (1996) X Branch and Bound
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Chapter 3

Multi-criteria Supply Chain Network

Design

3.1 Introduction

The main purpose of this chapter is to present a novel framework for multi-criteria Supply

Chain Network Design (SCND) as well as its application to real Supply Chain Network

(SCN).

This chapter deals with the design of a multi-criteria supply chain network in order to

satisfy the customer demands and to respect the environmental, social, legislative, and

economical requirements.

The methodology consists of two different steps. The first step looks for the best potential

facility locations to open in order to satisfy the different criteria: environmental, social,

and legislation aspects, using the overlay weighted and Analytic Hierarchy Process (AHP).

The second step looks for the optimal supply chain design to fulfill customer demands

and economic criteria using mixed integer linear programming model. The objective in

this step is to determine location of treatment facilities and their capacities minimizing

the sum of: opening facilities cost, products storage cost, production cost, transportation

cost, and CO2 emissions taxes. We apply our methodology to a real life application

concerning the recycling of sediment waterways, which was presented in Bouzembrak et

al. (2010).

The chapter is organized as follows. In Section 3.2, we describe the problem in more
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detail. In Section 3.3, we discuss our proposed methodology. In Section 3.4, we present

the real case. The experimental study is discussed in Section 3.5. Finally, Section 3.6

contains some concluding remarks.

3.2 Problem description

Before presenting the methodology, we will briefly introduce a multi-criteria, multi-level,

single product, single period and multi-modal supply chain network problem (see Table

3.1). Figure 3.1 depicts a supply chain network that includes different transportation

modes: roads, railways and waterways. The network has four levels: suppliers, storage

depots, production plants and customers. In addition to different types of transportation

modes, the possible flows of material are shown in the Figure 3.1. Multi-criteria supply

Roads :                               Railways :                           Waterways :  

Suppliers Storage 

depots 

Production 

plants 
Customers 

Figure 3.1: Supply chain network

Table 3.1: Problem description

Criteria Level Product Period Modalily

Single X X

Multiple X X X

chain network design problems are complex and, like most real world problems depend on a

multitude of criteria and uncertain parameters. Many factors contribute to the complexity
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of the model. The first one is the multi-criteria aspect. For example, problems involving

many criteria decision are much more difficult than problems involving only one criterion

decision. The second factor is the integration of multi-modality and CO2 emissions taxes

in the model. Indeed, the majority of papers consider only one transportation mode. The

third factor is uncertainty which will be addressed in Chapter 6.

3.2.1 SCND evaluation criteria

In the section below, we aim to present in detail the most popular criteria in the literature

used for design supply chain networks.

As we explained in Chapter 2, the majority of papers, in supply chain network design lit-

erature, propose a cost minimization objective and their aim is to determine the network

configuration with the least total cost. These models do not gather several of the criteria

depicted in Figure 3.2, simultaneously.

Thus, in this thesis, we will integrate, simultaneously, four different categories of aspects

in the SCND, which are: environmental aspects, social aspects, regulation aspects and

economic aspects.

In actual business world, thinking of criteria other than economic one (like profit, cost,

revenue, etc) is becoming an important opportunity. Sustainability imposes on any de-

velopment and design, like in supply chain network design, to consider social and envi-

ronmental aspects (see Dehghanian and Mansour (2009)).

When a selection decision needs to be made, the company establishes a set of evaluation

criteria that make it possible to compare potential performance features (Masella and

Rangone (2000)). In single criterion SCND problems, the criterion has usually been cost.

However, in multi-criteria SCND problems, there is at least one other criterion to consider

which, for the nature of these problems, is in conflict with the first one. As the number of

criteria used in such problems is important, we decided to present the main criteria that

we will consider in this work, in some general categories (Figure 3.2) which are:

Environmental aspects

Environmental aspects are matters on health effects, sound and optical pollution, smells,

air or water pollution, transportation risk, natural risk, waste disposal or treatment risk,
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• Proximity to urban areas. 
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• Labor availability. 

• Security. 
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• Water pollution. 

• Waste. 

• Green house gases. 

• Health effects. 

• Sound pollution. 

• Closeness to natural areas. 

• Natural threats. 

• …etc. 

�

• Forbidden areas. 

• Country measures. 

• Community consideration. 

• …etc 

�

Land cost. 

Transportation cost. 

Installation cost. 

Production cost. 

Storage cost 

Resource accessibility 

Business climate. 

Closeness to customers, 

suppliers and resources. 

Infrastructure 

…etc. 

Figure 3.2: Sustainable supply chain network criteria

the protection of natural area , etc.).

Social aspects

In this category, we can find cultural and social aspects: education, labour availability,

job opportunities, security, land use, natural threats, pollution, resting, accommodation,

infrastructure and any other factors which represent this category.

Political and regulations aspects

Political matters and regulations include community consideration, country measures, and

government regulations.

Economical criteria

- Cost: There are different types of cost. These types can be divided into fixed and

variable. Fixed cost includes installation and opening cost, along with investment. Vari-

able cost can be transportation, inventory, production, services, distribution, logistics,

waste disposal, maintenance and environmental cost. Generally, transportation cost is
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the highest and installation cost is the second one. Several problems have used a total

cost criterion which contains all costs under one objective. Other criteria like currency

value, business climate, access to public facilities like airports, roads or railways infras-

tructure, could be taken into account.

- Profit: Some problems are interested in the net profit, difference between benefits and

costs, or other outcomes of the capital they invested in their facility location decision

making. We assembled these criteria under the profit category.

- Coverage: Most of location problems, are about coverage by distance, time, amount or

even coverage deviation. Although many problems use distance and population coverage

as their criteria, time is well considered in some problems.

For a deeper understanding of criteria cited above, the reader can refer to Farahani et al.

(2010), Alcada-Almeida et al. (2009), De Toni and Tonchia (2001), Azaron et al. (2008),

Chen et al. (2008).

3.2.2 Multi-modality in SCND

The main four transportation modes for freight are: rail, road, water, and air. Each of

these modes has different characteristics, and any of them can be considered the best un-

der different circumstances, depending on the location, distance, pollution, type of freight,

and value of freight, among other things. The main criteria for transportation are the

type and volume of freight and the distance to be covered. Other criteria may include

speed, availability, reliability, capacity, security, and frequency of delivery (Tuzkaya and

Onut (2008)).

According to Vidal and Goetschalckx (1997), several important SC features are ignored

in the methodology for the strategic and tactical planning of global logistics systems.

One of these factors is the integration of transportation modes in the SCND. Also, as we

showed in chapter 2, the existing literature integrating transportation modes in supply

chain network design, is still scarce. Only 7% of these papers included these aspects.

Arntzen et al. (1995) developed a mixed integer linear program to solve the global supply

chain design problem at an Electronic manufacturer. They proposed supply chain prob-

lem that involves multiple products, production stages, time periods, and transportation

modes. The objective function is to minimize fixed and variable production costs, inven-
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tory costs, and distribution expenses, including transportation, taxes, and duties.

Cordeau et al. (2006) introduced a new formulation of logistics network design problem.

Authors integrated location and capacity choices for plants and warehouses with supplier

and transportation mode selection, product range assignment and product flows.

Carlsson and Ronnqvist (2005) integrated three transportation modes in the design of

the larger Swedish forest company supply chain network. The international three possi-

ble modes of transportation are vessel, train and lorry. A detailed discussion regarding

this aspect is provided in Carlsson and Ronnqvist (2005).

The strategic supply chain network we intend to elaborate should respect criteria

elaborated above, problem constraints and answer the following questions: (i) how many

production plants should be installed? (ii) where new sites should be located? (iii) how

much goods should each production plant handle? (iv) which customers should be served

by each production site? (v) products quantities to transport throughout the supply chain

network? (vi) which transportation mode should be used?

3.3 Approach presentation

In this section, we detail the idea of the novel multi-criteria supply chain network design

methodology by explaining each step with small examples. We start by providing the

basic steps of our methodology design.

Our method, as illustrated in Figure 3.3, contains two steps. The first step is related to

the identification of the potential facility locations set and to satisfy the different criteria:

environmental, social, and legislation aspect, using Geographic Information System (GIS)

overlay weighted and AHP method. The GIS model is implemented on a Arcview 9.2 GIS

to locate elements of the potential facility set. The second step looks for the optimal supply

chain design to satisfy customer demands and economic criteria using mixed integer linear

programming model. These approaches will be presented in detail in the next chapters.

Figure 3.3 presents two steps of our methodology. Now that you have seen the basic

outline of two steps, lets delve into the methodology process in more detail.
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Figure 3.3: Multi-criteria supply chain network design steps

3.3.1 STEP 1: Multi-criteria selection model for potential facil-

ity locations

The multi-criteria selection process contains several steps, as it can be seen in this Fig-

ure 5.8. The first phase is related to the description of the problem. Evidently, better

understanding of the problem provides better solutions to the decision makers. The sec-

ond phase consists in the determination of criteria included in the supply chain network

design. During this phase, GIS input parameters are elaborated. This should be followed

by data collection. Then, the weight of each criterion should be calculated using AHP

method. This notification is based on the data questionnaires collected by experts. Then,

results are obtained via solving GIS model. Results of this phase are investigated and

then if they are unsatisfactory, expert’s corrections are done and lastly a set of sustainable

potential locations are obtained. To establish the potential facilities set, this step can be

applied to many levels in the supply chain network such as: suppliers level, distribution

centers level, manufacturing plants level and customers level, etc.

The following subsection explains the basic steps of GIS Model.

GIS Model

This section introduces key components and concepts of a GIS model. To create the GIS

Model, we used ModelBuilder, an application in GIS Arcview 9.2 in which user can create,

edit, and manage models.

At the highest level, models contain only three components; elements, connectors, and
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Figure 3.4: First step phases

text labels. Elements are the data and tools you work with. Connectors are lines that

connect data to tools. Text labels can be associated with the entire model, individual

elements, or individual connectors (Arcview (2010)).

As we can see on Figure 3.5, a process consists of a tool and all variables are connected

to it. Connector lines indicate the sequence of processing. In this GIS Model several

processes are chained together, C1, C2, · · · , Cn; so that the derived data from one process

becomes the input data for another process, as shown in the following diagram (Figure

3.6). A real case GIS model will be presented in section 3.4.
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Figure 3.6: GIS Model

The weighted overlay process

The second method that we integrate in this step is the weighted overlay. In general, the

weighted overlay function involves the combination of different data layers. Practically,

this can involve a number of different processes depending on inputs to analyse (Arcview

(2010)).

Supply chain network design problems often require analysis of many different factors.

For instance, choosing the location of a new facility means assessing such things as land

cost, proximity to existing services, environmental aspects, legislative aspects and social

aspects. These information should be elaborated in different rasters with different value

scales: Euro, distances, degrees, and so on.

The Weighted Overlay tool lets as to take all these criteria into consideration. It reclassi-

fies values in the input rasters into a common evaluation scale of suitability or preference,

risk, or some similarly unifying scale. The input rasters are weighted by importance and

added together to produce an output raster. Steps are summarized as follows:

- A numeric evaluation scale is chosen. This may be 1 to 9, or any other scale. In this

thesis we will use the Saaty scale (Table 3.2).
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- The cell values for each input raster in the analysis are assigned values from the evalu-

ation scale and reclassified to these values. This makes it possible to perform arithmetic

operations on rasters that originally held dissimilar types of values.

- Each input raster is weighted, or assigned a percent influence, based on its importance

to the model.

- The total influence for all rasters equals to 100 percent.

- The cell values of each input raster are multiplied by the raster’s weight.

- The resulting cell values are added together to produce the output raster.

Example:

Below, we provide illustrative example composed of two layers. The two input rasters

1 2 2 1 6 2 1 5 2

1 1 5 + 5 1 1 = 4 1 2

1 4 1 9 0 9 7 1 7

0,25 0,75

Figure 3.7: Raster Layers

above (Figure 3.7) have been reclassified to an evaluation scale of 1 to 9 (Table 3.2). Each

raster is assigned a weight. The weight of the first raster is 25% and the weight of the

second is 75%. The cell values are multiplied by their weights, then added together to

create the output raster.

Take the top middle cell as an example (2 × 0.25) = 0.5 and (6 × 0.75) = 4.5. The sum

of 0.5 and 4.5 is 5.

Determination of criteria weights using AHP

In this section, we provide a description of AHP method and give some examples in the

next section.

The AHP is a relatively simple and systematic approach that can be used by decision

makers, firstly introduced by Saaty (1980). In general, AHP consists of five main steps: hi-

erarchy construction, pairwise comparison, relative weights estimation, consistency check

and synthesizing (Saaty (1980)).
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- Hierarchy construction: the hierarchy construction step consists of decomposing the

problem into hierarchical structural with distinctive levels which are, generally, the goal

level, criteria, and decision alternatives. The decomposition can be obtained using a

graphical representation, as shown in Figure 3.8.

- Pairwise comparison: this step involves establishing priorities at each level by com-

Figure 3.8: AHP graphical representation

paring pairwise each criteria and alternatives. Experts express the relative importance

of one criterion versus another regarding the fixed objective, and express also the rela-

tive importance of one alternative versus another regarding each criterion. Since experts’

judgements are used as a scale, the alternative ratios reflect the relative importance of

the criteria in achieving the goal.

Experts’ judgements are based on the scale of relative importance that assumes values

between 0 and 9 (Kim et al. (1999), Saaty (1980)) as presented in Table 3.2. A Basic

assumption is that if attribute A is absolutely more important than attribute B and is

rated at 9, then B must be absolutely less important than A and is valued at
1

9
.
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- Relative weights estimation: this step involves calculating the relative weights of crite-

Table 3.2: Saaty Rating Scale

Weight Definition Explanation

1 Equal importance Two activities contribute equally to the objective

2 Weak Between equal and moderate

3 Moderate importance Experience and judgement slightly favor one activ-

ity over another

4 Moderate plus Between moderate and strong

5 Strong importance Experience and judgement strongly favor one ac-

tivity over another

6 Strong plus Between strong and very strong

7 Very strong or demon-

strated importance

An activity is favored very strongly over another;

its dominance demonstrated in practice

8 Very, very strong Between very strong and extreme

9 Extreme importance The evidence favoring one activity over another is

of the highest possible order of affirmation

ria; technically, this set is called an eigenvector. We prefer to use the right eigenvector

method to show how the relative weights are calculated because of its simplicity.

- Consistency check: the final step is to calculate a Consistency Ratio (CR) to check

how matrix judgements is consistent. It is checking at each level of the hierarchy. It is

calculated by:

CI =
(λmax − n)

(n− 1)
and CR =

CI

RI
(3.1)

CR =



















0.05 n = 3

0.08 n = 4

0.10 n > 4

(3.2)

Where, CI is the Consistency Index, n is the number of criteria, λmax is the largest

eigenvalue of judgements matrix, RI is the Random Index which depends on the number

of criteria n. We can find in Saaty (1980) matrix the RI value for each n. It is noted

in Saaty (2008), if CR is less than or equal to the given upper bound (3.2), matrix is of
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sufficient consistency and the judgement is acceptable.

- Synthesizing: this step consists of determining overall rating and normalized priorities

of alternatives by aggregating the relative weights of criteria.

In Appendix A, we provide an example of AHP method, where we calculate weights, CI,

λmax and RI, so that a reader can further study the technique.

3.3.2 STEP 2: Mathematical model solving supply chain net-

work design

There is a wealth of literature and research on modelling of strategic supply chain, but

with an apparent lack of consideration of transportation mode and CO2 taxes. Hence,

in this part, we formulate a strategic supply chain network design model which includes

explicitly the carbon taxes and multi-modality.

Figure 5.9 shows the second step phases. The set of potential facilities is defined in

the first step. Expert arguments are taken to determine costs and inputs parameters.

Then, variables, costs, constraints and all input parameters are determined and then

the model is solved. In results evaluation phase, results are investigated and they are

unsatisfactory, expert corrections are done. Last, optimal multi criteria supply chain

design is represented.

Mathematical Model

Notation used for the formulation of the model is:

The objective function (3.3) minimizes the sum of the fixed facility location costs, the

transportation, storage, and CO2 emissions costs from supply points to storage depots.

The shipment, the processing, and CO2 emissions costs from storage depots to produc-

tion facilities. The transportation and CO2 emissions costs from production facilities to

customers.

Minimize ψ

ψ = OC + ω1 · [TC + SC +RC] + ω2 · EC (3.3)

Where
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Figure 3.9: Second step phases
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- Sets size:

I number of suppliers.

J number of storage depots.

K number of potential production plants locations.

L number of customers.

M number of transportation modes.

- Sets and indexes:

S set of suppliers, indexed by i.

D set of storage depots, indexed by j.

K set of potential production plants locations, indexed by k.

C set of customers indexed by l.

T set of transportation modes, indexed by m.

- Inputs are:

COk The fixed cost of opening production facility j (e).

Cijm The unit transportation costs of goods between supplier i and storage depot

k using transportation mode m (e/Ton).

Cjkm The unit transportation costs of product between storage depot j and produc-

tion site k using transportation mode m (e/Ton).

Cklm The unit transportation costs of product between production facility k and

customer l using transportation mode m (e/Ton).

ϑijm The distance between supplier i and storage depot k using transportation mode

m (Km).

ϑjkm The distance between storage depot j and production facility k using trans-

portation mode m (Km).

ϑklm The distance between production facility k and customer l using transportation

mode m (Km).

CTk The processing costs at production facility k (e/Ton).

CSj The storage costs at storage depot j (e/Ton).

Qk The maximum processing quantity of production facility k (Tons/Year).
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Qj The storage capacity of storage depot j (Tons/Year).

βm The unit CO2 emission using transportation mode m (Tons/Ton.Km).

ω1 Weight of economic dimension (%).

ω2 Weight of environmental dimension (%).

γ Carbon taxes (e/Ton).

Qijm The transportation capacity between supplier i and storage depot k using

transportation mode m (Tons).

Qjkm The transportation capacity between storage depot j and production facility

k using transportation mode m (Tons).

Qklm The transportation capacity between production facility j and customer l using

transportation mode m (Tons).

Dl The demand of costumer l (Tons).

- Decision variables:

Xk =1 if production facility k is opened =0 otherwise

qijm The amount of goods shipped from the supplier i to the storage depot j using

transportation mode m.

qjkm The amount of goods shipped from the storage depot j to the production site

k using transportation mode m.

qklm The amount of goods shipped from the production site k to the customer l

using transportation mode m.

- Opening costs denoted by OC:

OC =
∑

k

(COk ·Xj) (3.4)

- Transportation costs denoted by TC:

TC =

[

∑

i,j,m

Cijm · qijm +
∑

j,k,m

Cjkm · qjkm +
∑

k,l,m

Cklm · qklm

]

(3.5)

- Storage costs denoted by SC:

SC =
∑

i,j,m

CSj · qijm (3.6)
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- Treatment costs denoted by RC:

RC =
∑

j,k,m

CTk · qjkm (3.7)

- Environmental costs denoted by EC:

The greenhouse gases include carbon dioxide CO2, nitrous oxide NOx, and carbon monox-

ide CO. Modes of transport are considered to be only the source of CO2 in our case. The

CO2 emissions of each mean of transport in the way back are integrated. The environ-

mental costs function is formulated as:

EC = γ ·

[

∑

i,j,m

ϑijm · βm · (qijm + 1) +
∑

j,k,m

ϑjkm · βm · (qjkm + 1)+

∑

k,l,m

ϑklm · βm · (qklm + 1)

]

(3.8)

Subject to

Constraint (3.9) guarantees that the demand of the customers will be satisfied.

∑

k,m

qklm = Dl ∀l ∈ C (3.9)

Constraint (3.10) imposes a capacity restriction for each storage depot.

∑

i,m

qijm ≤ Qj ∀j ∈ D (3.10)

Constraint (3.11) limits the capacity of the production facilities.

∑

j,m

qjkm ≤ Qk ·Xk ∀K ∈ K (3.11)

Constraints (3.12), (3.13) enforce the flow conservation of the product.

∑

k,m

qjkm =
∑

i,m

qijm ∀j ∈ D (3.12)

∑

j,m

qjkm =
∑

l,m

qklm ∀k ∈ K (3.13)

Constraints (3.14), (3.15), (3.16) impose a capacity restriction of each mode of transport

throughout the network.

qijm ≤ Qijm ∀i ∈ S, ∀j ∈ D, ∀m ∈M (3.14)

59



qjkm ≤ Qjkm ∀k ∈ K, ∀j ∈ D, ∀m ∈M (3.15)

qklm ≤ Qklm ∀k ∈ K, ∀l ∈ C, ∀m ∈M (3.16)

Constraint (3.17) enforces the binary nature of the configuration decisions for the facilities.

Xk ∈ {0, 1} ∀k ∈ K (3.17)

Constraints (3.18), (3.19), (3.20) are standard integrality and non-negativity constraints.

qijm ≥ 0 ∀i ∈ S, ∀j ∈ D, ∀m ∈M (3.18)

qjkm ≥ 0 ∀k ∈ K, ∀j ∈ D, ∀m ∈M (3.19)

qklm ≥ 0 ∀k ∈ K, ∀l ∈ C, ∀m ∈M (3.20)

It is important to remark that our multi-criteria supply chain network design method

is such that two steps cooperate in designing the network. Each step may execute an

appropriate task. The first one is to determine the set of sustainable potential facilities.

The second one is to give the optimal design of the SCN.

3.4 Case study

To illustrate the concept of the two-step multi-criteria methodology that we have seen

above, we would like to present an application case to validate our methodology steps.

This study focuses on inland waterways sediments recycling in NPDC (Nord-Pas De

Calais) region in France (Bouzembrak et al. (2010)). These sediments have been stored

along waterways or in some agriculture lands, used as depots, bought by French waterways

VNF (Voies Navigable de France). However, these sediments could be polluted with zinc,

plumb, cadmium and mercury. VNF management plans to recycle waterways sediments

because of new European directive exists.

3.4.1 Supply Chain Network

Treatment process steps are as follows: sediments which come for treatment are sent to

phosphating where heavy metals are stabilized by capturing them in calcium phosphate
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matrix and then the organic compounds are destroyed by calcination to get clean sed-

iments that can be used by customers (Novosol (2009)). In France, treated waterways

sediments can be used in the following areas: (i) brickworks, (ii) concrete facilities, (iii)

concrete stations, (iv) roads projects.

A schematic representation of the multi-modal network is shown in Figure 3.10. The

Figure 3.10: Supply chain network in NPDC region

network has four layers. The first level corresponds to suppliers of polluted sediments

or waterways in our case study. The second one represents storage depots where sedi-

ments must be stored before treatment, and the third one corresponds to the treatment

process where sediments should be treated then transported to customers. Finally, the

fourth level is composed of customers: roads projects, brickworks, concrete facilities, and

concrete stations. The transportation of the sand throughout the network yields trans-

portation assets. In NPDC region, goods can be transported by roads, railways and inland

waterways. Some assumptions are considered :

- There are fixed costs of opening treatment facility. For this reason the number of fa-

cilities to open, depends on the amount of recycled sediments that will be ordered by

customers. This amount should be fixed by the decision maker.

- Capacities of recycling, storage and transportation are fixed.
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- Amount of sediments dragged from inland waterways is certain.

- The problem dimensions are presented in Table 3.3.

- Demands of customers are assumed to be known.

- Sediments must be stored before treatment.

- All treated sediments must be transported to customers. Before presenting results, it is

Table 3.3: Characteristics of the case study network

Description Value

Number of waterways sources 50

Number of storage depots 30

Number of potential facility locations 5

Number of customers 60

important to explain how we elaborated the data used in this model.

3.5 Application of the Approach

3.5.1 STEP 1: Multi-criteria selection model for potential facil-

ity location

Criteria included in SCND

We started by the elaboration of the most important criteria that we used in the design

of the SCN. In order to identify the appropriate criteria, citizens had been consulted. We

have asked citizens of this region to complete a questionnaire and to describe and jus-

tify their most desirable criteria. After expressing their different points of view, Experts

turned to study questionnaires collected. Finally, the most important criteria were formed

based on the obtained information while taking into consideration all different points of

view of each citizen (see SEDIBET (2010)).

Inhabitants considered that the most important effects were the possible changes in the

value of real estate, effects on nature, landscape, and ground and surface waters. Possible

smells, noise, and pest animals were also reasons for concern, as well as a possible negative

influence on population growth. They fear that the value of their land and property may
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decrease. Similarly, the closeness of a waste treatment area may prevent further settle-

ment in the region thereby slowing the development of the community structure.

We decided to summarize the main criteria in the following general categories:

- Environmental aspects: several criteria are used to measure the global environmental

consequences of treatment facility locations. These criteria take into account water pol-

lution, CO2 emissions, wastes, sound pollution, health effects, natural threats and the

green house gases.

- Economic aspects: concern facilities establishment costs, production costs, storage costs,

transportation costs, infrastructure closeness to customers and to suppliers, etc. All these

costs will be integrated in the second step of our methodology which is mathematical

model.

- Social aspects: in social category, many aspects were considered concerning the local

population quality life. The impacts on quality of life for each strategy were valued

through the nuisances due to sediments treatment, pollution, security, health effects and

also natural areas destruction in order to deposit sediments. However, sites should be

located far from urban area and natural zones.

- Regulation aspects: treatment facilities could not be built in forbidden area of NPDC

region.

Finally, the multi-criteria analysis, taking into consideration all the aspects described

above, must rank the different strategies in relation to the sustainable development ob-

jectives.

Using GIS spacial analyst, we want to locate potential facilities set. We need to obtain

related map information and perform a GIS overlay analysis for this task. The following

criteria must be used to guide the potential location set (Table 3.5):

1. The land use must be close or adjacent to the urban area.

2. Sites must be located close to the roads, railways and waterways.

3. Sites will need 20 000 m2 in a compact shape.

4. Sites must be far from natural zones.

5. The land use must be close or in the brown-fields.

6. Sites must not be located in forbidden area such as: urban area, airports, extraction

of materials, urban green spaces, sports and entertainment, irrigated continuously, rice
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fields, vineyards, orchards and berry, olive trees, hardwood forests, coniferous forests,

mixed forests, forest and shrub, burned areas, inland marshes, marshes, courses and wa-

terways, seas and oceans.

7. The site can be in, close or adjacent to area such as: port areas, industrial and commer-

cial areas, landfills, crop-land out of irrigation schemes, grasslands, annual crops, moors

and heathland, rocks area, sparse vegetation. Based on these criteria, we will need the

following data for this analysis (Table 3.4):

Table 3.4: Criteria layers

Layers

1- The land use 5- Natural zones

2- Roads network 6- VNF landfills

3- Railways network 7- Brownfield

4- Waterways network

GIS input Layers

To elaborate all the GIS input layers, we used the Euclidean distance output raster tool

in Spatial Analyst toolbox. This function contains the measured distance from every cell

to the nearest source. Distances are measured as Euclidean distance in the projection

units of the raster. The Euclidean distance function is used frequently for applications,

such as finding the nearest hospital for an emergency helicopter flight. Alternatively, this

function can be used when creating a suitability map, when data representing the distance

from a certain object is needed. Figure 3.11 shows an example of the euclidean distance

output raster that we developed (see Arcview (2010)).

- Land use layer:

We now consider the land use layer, the most important raster in our GIS model. The

raster contains more than forty different areas in NPDC region, as you can see on Table

3.5. We used the scale presented in Table 3.2 in order to attribute weights to each area.

As shown in Table 3.5, DM attributes zero to all forbidden zones like airports, continuous

area and 9 to landfills.
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Table 3.5: Land cover

Criteria Weights Criteria Weights Criteria Weights

Continuous urban area 0 Hardwood forests 0 Rocks area 2

Discontinuous urban area 0 Coniferous forests 0 Sparse vegetation 5

Industrial and commercial areas 5 Mixed forests 0 Burned areas 0

Road and rail networks 0 Lawns and natural pastures 2 Glaciers and perpetual snow 0

Port areas 9 Moors and heathland 5 Inland marshes 0

Airports 0 Sclerophyllous vegetation 0 Bogs 0

Extraction of materials 0 Forest and shrub 0 Marshes 0

Landfills 9 Beaches, dunes and sand 0 Salt marshes 0

Workspaces 0 Olive trees 0 Intertidal 0

Urban green spaces 0 Grasslands 5 Courses and waterways 0

Sports and entertainment 0 Permanent crops 2 Water bodies 0

Crop-land 5 Crops complex and fragmented 1 Coastal lagoons 0

Irrigated continuously 0 Predominantly agricultural areas 2 Estuaries 0

Rice fields 0 Territories forestry 2 Seas and Oceans 0

Vineyards 0 Orchards and berry 0
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Figure 3.11: Nature area classes in NPDC region

- Natural zones layer:

Figure 3.11 presents the nature area network classes in NPDC region. As shown in this

Figure, we have 10 different distance classes, for example, the first class (0 - 6 108 m)

includes nature zones and area near these zones. The maximum distance between the

nearest nature area cell and the near zones is equal to 6 108 m. Table 3.6 summarizes

weights attributed by experts to each class.

In Appendix A, we provide all rasters used in this case study as well as Tables of weights.

Table 3.6: Natural area classes and weights

Classes Weights Classes Weights

0 - 6 108 Exclu 30 541 - 36 650 9

6 108 - 12 216 1 36 650 - 42 758 9

12 216 - 18 325 5 42 758 - 48 867 9

18 325 - 24 433 9 48 867 - 54 975 9

24 433 - 30 541 9 54 975 - 61 083 9

- Roads network layer:

Figure A.2 shows the different classes of the roads network in NPDC region. To got this

classification, we use ArcMap and we specify the number of intervals while the GIS de-

termines where breaks should be. Table A.3 recapitulates weights attributed by experts
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to each class.

- Railways network:

Figure A.3 depicts classes of railways network in NPDC region. In Table A.4, we sum-

marise weights attributed by experts to each class.

- Waterways network layer:

In Figure A.4, we depict classes of the inland waterways network in NPDC region. As we

can see on Table A.5, we present weights attributed by experts to each class.

- VNF landfills layer:

In Figure A.5, we propose landfills classes in NPDC region and we summarize weights

attributed by experts to each class in Table A.6.

- Brownfield layer:

Figure A.6 depicts the brownfield classes in NPDC region. In Table A.7, we summarise

weights attributed by experts to each class.

AHP weights

In this section we apply principles and concepts from the AHP method to measure the

importance of each criterion. The Expert’s pairwise comparison matrix is presented in

Table 3.7. Then the corresponding normalised matrix and the average of each line are

Table 3.7: Pairwise comparison matrix

Codes Criteria C1 C2 C3 C4 C5 C6 C7

C1 Proximity to railways 1 4 0.20 2 0.17 0.33 0.14

C2 Proximity to roads 0.25 1 0.14 0.13 0.11 0.20 0.11

C3 Proximity to natural area 5 7 1 5 4 8 2

C4 Proximity to waterways 0.50 8 0.20 1 3 7 2

C5 Proximity to brown field 6 9 0.25 0.33 1 4 2

C6 Proximity to landfills 3 5 0.13 0.14 0.25 1 2

C7 Proximity to landcover 7 9 0.50 0.50 0.50 0.50 1

Total 22.75 43 2.42 9.10 9.03 21.03 9.25

given in (Table 3.8). Weights of each layer can be observed in Figure 3.12 and Table 3.8.
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Table 3.8: Relative importance ratios

Codes C1 C2 C3 C4 C5 C6 C7 Average

C1 0.04 0.09 0.08 0.22 0.02 0.02 0.02 0.07

C2 0.01 0.02 0.06 0.01 0.01 0.01 0.01 0.02

C3 0.22 0.16 0.41 0.55 0.44 0.38 0.22 0.34

C4 0.02 0.19 0.08 0.11 0.33 0.33 0.22 0.18

C5 0.26 0.21 0.10 0.04 0.11 0.19 0.22 0.16

C6 0.13 0.12 0.05 0.02 0.03 0.05 0.22 0.09

C7 0.31 0.21 0.21 0.05 0.06 0.02 0.11 0.14

Total 1 1 1 1 1 1 1 1

For example, the weight of proximity to protected natural areas criterion is equal to 0.34,

while such weight decreases to 0.02 for proximity to roads.

GIS Model

In this section, we create our GIS model using ModelBuilder. We used all the data

prepared before: GIS input layers, AHP weights and Experts weights. The created model

are presented in detail in Appendix (Figure A.7).
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Figure 3.12: Hierarchical structure to the best selection of potential treatment facility location in NPDC region
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The following two sections show results for each step. Tables of results include the

objective function values, as well as the configuration of the supply chain network.

Computational results

In this section, we present results of solving the GIS model, the set of possible treatment

facility locations in NPDC region which will be used in the next step. The GIS model was

implemented on Windows XP 3 GHz Xeon processors and 4 GB of memory and solved by

commercial GIS software Arcview 9.2. The Figure 3.13 shows results of the GIS model.

Only five sites are located in the best sustainable zones, these potential locations are

Figure 3.13: Potential treatment facility locations in NPDC region

denoted by {T1,T2,T3,T4,T5}. One site is located in North West of the NPDC region and

four sites are positioned in the North Center. Proximity of these treatment centers to

road network, train network, waterway network, and storage depots reduces transport

costs and CO2 emissions and ensures a viable market destination for the recycled sedi-

ments. In Figure 3.13 majorities of the sustainable sites are located closeness to Urban

and developed areas where we can find a high market demand for treated sediments as

infrastructure development, landfills, and industrial and commercial areas. With GIS

model we succeeded to reduce the potential set of locations from the entire NPDC region
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to five sustainable locations. This will speed up the process of finding the optimal supply

chain configuration in the next step.

3.5.2 STEP 2: Mathematical model solving supply chain net-

work design

Transportation costs

We start by determining distances between logistic actors in order to calculate the trans-

portation costs from suppliers to storage depots, from depots storage to treatment facilities

and from treatment facilities to customers. All these distances using railways, waterways

and roads as transportation mode are calculated using GIS Arcview.9.2 tools like Spa-

tial Analyst and Network Analyst (Figure 3.14). Transportation costs are calculated per

weight and distance. They depend on the distance, and the quantity to be transported.

The unit transportation cost for goods can be broken down to its main components: cap-

ital, fuel, lubricants, driver and maintenance costs. All expenses along the lifetime of a

vehicle are calculated.

Legend

Roads

Waterways

Trainways

.

0 20 40 60 8010
Kilomètres BOUZEMBRAK.Y. 2010

Figure 3.14: Transportation modes in Nord Pas De Calais (NPDC) region
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Opening, treatment and storage costs

- Opening costs: The facility opening cost implies establishing a treatment facility. There-

fore, it will change according to the place where it will be built. This cost variation is

due to the variation of ground and workforce costs; similarly production and storage costs

vary according to the location.

- Treatment costs: The treatment costs are composed of: equipment capital, energy con-

sumption, workforce, operational and maintenance costs. Only these costs have to be

taken into account. An average unit cost is assumed.

- Storage costs: The storage costs are composed of: storage equipment capital, energy

consumption, workforce, operational and maintenance costs.

CO2 Emissions

Air pollution generated by freight trains, barge and trucks affects negatively the envi-

ronment and the health of people. We estimate the external costs associated with two

general categories of emissions: air pollution and greenhouse gases. Assigning Euro values

to emissions generated per ton-km of freight transportation is inherently difficult.

Decision Makers choose the green technology of treatment facility. So, we assume that

only transportation means are sources of air pollution.

For CO2 emissions in France, we found in some ADEME (Agency of Environment and

Energy Management in France) reports, the CO2 emissions factors of three transportation

modes (Table 3.9).

Table 3.9: CO2 Emissions factors

Transportation Mode Roads Waterways Railways

CO2 Emissions (g/ton.km) 133.11 37.68 5.75

Computational results

In this section, we analyse the computational results obtained from the resolution of

the proposed mathematical model considering economic and environmental aspect. The

integration of CO2 emission taxes in the objective function represents the environmental

aspect in model (3.3)-(3.20). This model is applied to a real case of VNF company in
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NPDC region. To illustrate the validity and the usefulness of the proposed model, several

numerical experiments are implemented and results are reported in this section. The

mathematical model was solved on a Windows Vista 2 GHz Core 2 Due PC with 3 Go of

memory by commercial software solver ILOG OPL 6.3/CPLEX 12.1.0.

- Environmental vs Economic supply chain:

In this section, we introduce the effect of varying ω1 and ω2 on the supply chain network

configuration. For this problem size, the computation time was negligible and the mixed

integer programming model contains 11 408 constraints and 4 876 decision variables.

Table 3.10 shows the impact of ω1 and ω2 on the supply chain network configuration

decisions and on the transportation mode used.

In Table 3.10, Weight represents values of the ω1 and ω2 used on the objective function.

Potential facilities column contains the set of the potential sites. % of transportation

mode column presents the mode of transport used en percentage. Finally the value of the

objective function expressed in (e).

Table 3.10: SCN Configuration varying ω1 and ω2

No Weight Potential facilities % of transportation

mode

Values(e)

ω1 ω2 T1 T2 T3 T4 T5 Roads Waters Rails Objective Value (e)

1 0 1 X X 3% 24% 73% 30 039 950

2 0.1 0.9 X X 3% 26% 71% 31 895 690

3 0.2 0.8 X X 1% 26% 73% 33 750 860

4 0.3 0.7 X X 1% 37% 63% 35 598 230

5 0.4 0.6 X X 1% 36% 63% 37 445 080

6 0.5 0.5 X X 0% 37% 63% 39 290 250

7 0.6 0.4 X X 0% 37% 63% 41 134 900

8 0.7 0.3 X X 0% 50% 50% 42 979 440

9 0.8 0.2 X X 0% 53% 47% 44 823 850

10 0.9 0.1 X X 0% 53% 47% 46 667 200

11 1 0 X X 13% 73% 14% 48 509 520
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As we can see on Table 3.10 , we have 4 types of supply chain configuration solutions,

which are:

1. Environmental location solution: we find this solution {T1,T4} when ω1 is between 0

and 0.2. This solution presents the location of two treatment facilities from five potential

facilities. The first site is located in the center north of the region, where we find the

highest number of customers and the most important quantity of sediments to clean.

The second treatment site is located in the center of the region, in order to serve the

customer demands of this region and the north west of the NPDC region, and to reduce

the transportation costs. Most of the treated sand are transported using trains with an

average of 72.3%, 25.3% using waterways, and only 2.4% of the sand are transported using

roads (Figure 3.15).

2. Economic-Environmental location solution: solution {T1,T5} presents the opening of

two treatment plants from five potential facilities when ω1 is between 0.3 and 0.5. The

first treatment facility is located in the center of the region, in order to serve customer

demands of this region and the north west of the NPDC region. The second site is located

in the center north of the region, where we find the highest number of customers and the

most important quantity of sediments to clean. Analysis of the mode of transport used

shows that 63% of the treated sand are transported using trains, 37% using waterways

and only 0% of the sand are transported using roads (Figure 3.15).

3. Economic location solution: solution {T4,T5} is obtained when ω1 is between 0.6

and 0.9. This solution presents the location of two treatment facilities from five potential

facilities. The first site is located in the center north of the region, the second one is located

in the north west of the region, in order to serve the demand of the customers of each

region, and to reduce the transportation costs. Analysis of the mode of transport used

shows that 48% of the treated sand are transported using railways, 52% using waterways

and only 0% of the sand are transported using roads (Figure 3.15).

4. Extremely Economic location solution: solution {T4,T5} is obtained when ω1 is equal

to 1. Most of the treated sand is transported using waterways 73%, 14% using railways,

and only 13% of the sand are transported using roads. Results obtained point out, first,

the impact of the integration of CO2 emissions taxes in the design of sediments recycling

network; it changes decisions of location. It depends on the environmental policy of the
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Figure 3.15: The transportation mode used varying ω1

company, if managers are environmental they will take the first solution, if they are looking

for the environmental and economic solution they should choose the second solution, and

if they want the economic scenario they should adopt the forth solution. This means that

using the model, supply chain managers are now able to see the impact of integration

of the CO2 taxes and multi-modality in the strategic decisions. That will help them to

decide the best strategic design of the supply chain.

CO2 taxes variation:

As in last subsection we varied ω1 and ω2 to see their effect on the SCN configuration. In

this paragraph, we extend the analysis to CO2 taxes γ. We fix the ωi (ω1 = 1 and ω2 =

1) and we increase the value of γ from 0 to 200 000 (e/ton).

The following Table 3.11 shows the impact of γ on the supply chain design decisions and

on the transportation mode used.

Supply chain configurations:

We present the optimal supply chain configurations obtained varying γ and a comparison

between values of objective function of two cases (γ=0) and (γ 6= 0).

For instance, in Table 3.11, for γ=0 the SC structure is { T4,T5 } and the objective function
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Table 3.11: Supply chain configuration varying CO2 taxes

No γ (e/ton) Configuration Objective function(e) Difference (%)*

1 0 T4, T5 48 509 520 0.0%

2 10 T4, T5 48 509 822 0.0%

6 200 T4, T5 48 515 341 0.0%

7 300 T4, T5 48 518 166 0.0%

22 3000 T4, T5 48 583 363 0.2%

23 4000 T1, T5 48 606 223 0.2%

32 13000 T1, T5 48 792 915 0.6%

33 14000 T1, T4 48 809 384 0.6%

value is equal to 48 509 520. For γ=4000 the configuration is { T1,T5 } and the objective

value is 48 606 223. As we can see on the Table 3.11, we have 3 different solutions, { T4,T5

}, { T1,T5 } ,and { T1,T4 }. The first configuration is obtained when γ is between 0 and

3 000. The second network is obtained when γ is between 4 000 and 13 000. The last one

is fond when γ is higher than 14 000.

It can be observed, the optimal solution { T4,T5 } is approximately 0.2% cheaper than the

second configuration { T1,T5 } and approximately 0.6% cheaper than the third solution.

CO2 Emissions:

In this section, we present a comparison of CO2 emissions quantities obtained for (γ =

0) and (γ 6= 0). To get the quantity of CO2 emissions of the supply chain, we used the

equation (6.29). As we can observe on Table 3.12, the integration of environmental taxes

reduces the quantity of CO2 emissions to at least 70%. For γ = 10, the quantity of CO2

emission decreases to approximately 70% less than the case with γ = 0.

Analysis of Figure 3.16 shows that the most polluted configuration is the first one,

without carbon taxes, in this case the quantity of CO2 gazes is 980 (tons). This quantity

goes down to approximately 300 (tons) increasing γ to 10. As we can see also, we have

four levels of CO2 emissions: the fist level is obtained for γ between 10 and 600, the

average of CO2 emissions is equal to 285 (tons). The average of CO2 emissions drops to

an average of 238 (tons) in the second level when γ is between 600 and 4 000. In the third
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Table 3.12: CO2 Emissions varying CO2 taxes γ

No γ (e/ton) CO2 Emissions (Tons) Difference (%)

1 0 980 0.0%

2 10 302 69.2%

6 200 286 70.8%

7 300 280 71.4%

22 3000 233 76.2%

23 4000 226 76.9%

32 13000 205 79.1%

33 14000 164 83.3%

level for γ between 4 000 and 13 000, the average of CO2 emissions is 205 (tons). Finally,

above 13 000, we obtained the fourth level where the average of CO2 is about 156 (tons).

Transportation Modes:

In this section, we show the effect of γ variation on the transportation modes used in

shipment of the sediment throughout the supply chain network.

As we can see on Table 3.13 , we have 5 types of supply chain configurations, which are:

Table 3.13: Transportation modes used varying CO2 taxes

Transportation Modes

No γ (e/ton) % Roads % Waters % Trains

1 0 9.3% 80.7% 10%

2 10 0.0% 78% 22%

6 200 0% 74.7% 25.3%

7 300 0% 54.7% 45.3%

22 3000 0% 52.0% 48.0%

23 4000 0% 36.7% 63.3%

32 13000 0.7% 36.7% 62.7%

33 14000 1.3% 25.3% 73.3%

1. Extremely Economic configuration: solution { T4,T5 } is obtained when γ is equal to
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Figure 3.16: Quantity of CO2 emission varying γ.

zero. Most of the treated sand are transported using waterways 80.7%, 10% using rail-

ways, and only 9.7% of the sand are transported using roads (Bouzembrak et al. (2010)).

2. Economic configuration: solution { T4,T5 } is obtained when γ is between 10 and

200. Analysis of the transportation mode used show that 24.3% of the treated sand are

transported using railways, 75.7% using waterways and 0% of the sand are transported

using roads.

3. Economic-Environmental configuration: solution { T4,T5 } is obtained when γ is

between 300 and 3 000. We find that approximately 46.2% of the treated sand are trans-

ported using railways, 53.8% using waterways and 0% of the sand are carried using roads.

4. Environmental configuration: solution { T1,T5 } presents the location of two treatment

facilities from five potential facilities when γ is between 4 000 and 13 000. As we can see,

the majority of sediments 62.7% are transported using railways, 36.6% using waterways

and only 0.7% of sediments are shipped using roads.

5. Extremely Environmental configuration: we find this solution { T1,T4 } when γ is

above the value of 14 000. Most of the treated sand are transported using railways with
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an average of 73%, 25% using waterways, and only 2% of the sand are transported using

roads.

Figure 3.17 shows that an increment in the value of γ implies a significant increase in the
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Figure 3.17: The transportation mode choose varying γ

amount of sediments transported using railways as transportation mode, when γ is equal

to zero the percentage of sediments transported using train is approximately 10% and

rising γ to 14 000 the percentage grows up to approximately 72%. Or, when we increase

the value of γ, the percentage of sand transported using waterways decreases. When γ

rises from 10 to 200 000 the % of using waterways goes down from 78% to 25%. The %

of sediments transported using roads fluctuates between 0% to 10%.

From these results, it is clear that the integration of carbon taxes in the model is an

efficient approach to reduce CO2 emissions by choosing the best facility location and

combination of the transportation mode. To achieve the objective of reducing CO2 emis-

sions, we should take into account the multi-modality in the design of the supply chain

especially the railways and the waterways transportation modes.

- Demand variation:

In this section, we study the configuration of the supply chain, analysed via demand
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variation. Throughout, we will use the term Low demand case to denote demand cases

with 100 500 tons as annual customers average, the term Medium demand case to refer

to demand cases with annual customers average equal to 250 000 tons and the term High

demand case to mention to the increase in the annual costumers average to 402 000 tons.

- Low demand case

In this section, the average of annual customer demands is equal to 100 500 tons per year.

We generated 24 demand scenarios and the demand of each customer is assumed to be

fitted to normal distribution with 2 000 tons as the mean value and 40% of mean value

as the standard deviation. Clearly in this situation only one cleaning facility is necessary,

which has to work at full capacity. Table 3.14 presents only four scenarios from 24 ones

generated, for more detail see Table A.11. The optimal configurations of each demand

scenario are illustrated in Table 3.14.

In Table 3.14 optimal solution contains the objective function value of each experience,

Table 3.14: Low demand case

Treatment facility

Scenarios Objective function value (e) T1 T2 T3 T4 T5

S1 21 499 647 0 0 0 0 1

S6 22 557 098 1 0 0 0 0

S12 21 497 861 0 0 0 0 1

S20 22 511 297 0 0 0 0 1

expressed in Euro. Finally the treatment facility contains the set of location solution. For

instance, the deterministic design exhibits two different location solutions (T1) or (T5). It

is also interesting to point out that the configuration depends on demands scenario (Table

3.14).

- Medium demand case

For medium demand case, the demand rises to 250 000 tons per year. We generated 24

demand scenarios (Table A.12) and the demand of each customer is supposed to be fitted

to normal distribution with an average of 5 000 tons and a standard deviation equals to

2 000 tons. Given the treatment capacity of 150 000 tons per year, it turns that at least

two facilities have to be opened.
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As it can be observed on Table 3.15, the deterministic design exhibits three different loca-

Table 3.15: Medium demand case

treatment facilities

Scenarios Objective function value (e) T1 T2 T3 T4 T5

S25 51 537 458 0 0 0 1 1

S33 48 471 592 1 0 0 0 1

S40 48 368 435 1 0 0 0 1

S45 47 581 870 0 0 0 1 1

S49 67 421 795 1 0 0 1 1

tion solutions {T1, T5}, {T4, T5} or { T1,T4,T5}. The facility T5 is frequent in all scenarios;

others are reproduced by many scenarios.

- High demand case

We increase the average of annual demand of customers to 402 000 tons per year. The

mean value of the normal distribution is 8 000 tons and the standard deviation is equal

to 40% of mean value. The configurations of individual scenarios are illustrated in Table

3.16. As it can be observed, the optimal configuration is kept constant. It is clear that the

Table 3.16: High demand case

Treatment facility

Scenarios Objective function value (e) T1 T2 T3 T4 T5

S50 74 846 906 1 0 0 1 1

S58 74 372 451 1 0 0 1 1

S66 75 289 961 1 0 0 1 1

S74 75 981 418 1 0 0 1 1

higher the quantity of sediments, the more stable the supply chain network configuration.

The reader can find all scenarios results in Table A.13.

From these results, it is clear that the customer demands have a great influence on

the configuration of the future SCN. So, we think that to establish a robust supply chain

network, we should take into account the uncertainty of critical supply chain network
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parameters such as: demand and costs.

3.6 Concluding remarks

In this chapter, we have proposed a novel multi-criteria supply chain network design

methodology. Under economical, social, environmental and legislative aspects, we have

designed the optimal supply chain network.

Our methodology consists of two different steps. The first step looks for the best potential

facility locations to open in order to satisfy the different criteria using the GIS model and

the AHP method. The second step establishes the optimal supply chain design to achieve

customer demands and economic criteria using mixed integer programming model.

The results obtained point out, first, using GIS model to location potential facilities in the

design of sustainable supply chain network. In fact it provides a good way for integrating

many criteria and constraints such as: location sites far from the urban areas; sites should

be close to commercial zones, roads, railways and Landfills; plants should be far from nat-

ural area, airports and agriculture area, etc. With GIS model we succeeded to reduce the

potential set of locations from the entire NPDC region to only five sustainable locations.

This will speed up the process of finding the optimal supply chain configuration in the

next step.

Studying the impact of CO2 emissions in the SCND represents our second main contri-

bution in this chapter. Indeed, it changes the structure of the supply chain network. It

depends on the environmental policy of the company. This means that using the model,

supply chain managers could be able to see the impact of integration of the CO2 taxes

and multi-modality in the strategic decisions of supply chain design. That will help them

to select the best strategic supply chain network. From this chapter we have learned

that integration of environmental taxes in the model can be an efficient way to achieve

environmental goals, by choosing the best SCN and clean transportation modes. These

results have also confirmed that to reduce CO2 emissions, we should take into account

multi-modal network, in the design of the supply chain.

In the next chapter, we will extend the mathematical model of our methodology to a

multi-objective supply chain network model.

82



Chapter 4

Multi-objective Supply Chain

Network Design

This chapter continues and extends a line of work that we started in Chapter 3. We study

a supply chain network design problem with environmental concerns. We are interested in

the environmental investments decisions of the supply chain design phase and we propose

a multi-objective optimization model that captures a compromise between the total cost

and the environment influence. We use Goal Programming approach seeking to reach the

four goals placed by Decision Maker: (i) total costs goal, (ii) energy consumption costs

goal, (iii) waste treatment costs goal and (iv) CO2 emissions goal.

The strategic decisions considered in the model are treatment facilities location, building

technology selection and flow of material throughout the SC network.

We first discuss the integration of environmental aspects in Supply Chain Network Design

in Section 4.2. In Section 4.3, we present the Goal Programming (GP) method and the

techniques used to improve it. Section 4.4 proposes the definition of the problem and

the GP mathematical formulation. Section 4.5 presents numerical results illustrating and

comparing the performance of the GP model. In Section 4.6, we discuss conclusions from

our study and briefly summarize potential future research directions.
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4.1 Introduction

Traditionally, the main objective of optimization models used in the design of supply chain

networks focused on the economic aspect (Goetschalcks and Fleischmann (2008)). How-

ever, as environment concerns grow, environmental aspects are also emerging at academic

and industry levels as decisive factors within the supply chain management context.

Nowadays, the investment towards logistics structures that considers both economic and

environmental performances is an important and current research topic.

This growing importance is driven mainly by the deterioration of the environment and the

new environmental regulations. However, companies must invest on the design and plan-

ning optimization of their logistic structures, while accounting for the trade-off between

profit and environment impact (Grossmann (2004), Barbosa-Povoa (2009), Srivastava

(2007), Guillen-Gosalbez and Grossmann (2009)).

Several authors have been working on the integration of CO2 emissions in supply chain

design. Recently Pan et al. (2009), showed that the logistical mutualisation is an effi-

cient approach to reducing CO2 emissions, at the same time they claimed that the rail

transport is an aspect that should be taken into account in order to achieve the objective

of reducing the CO2 emissions. The disadvantage of this model is that the economic

dimension is absent.

Paksoy et al. (2010), considered the green impact on a close-looped supply chain network

and tried to prevent more CO2 gas emissions and encourage the customers to use recy-

clable products via giving a small profit. They presented different transportation choices

between echelons according to CO2 emissions.

Wang et al. (2010) studied a supply chain network design problem with environmental

aspects. They interested in the environmental investments decisions in the design phase

and proposed a multi-objective optimization model that captures the trade-off between

the total cost and the environment influence. Authors considered two objective functions.

The first objective measures the sum of fixed set-up cost, environmental protection in-

vestment, total transportation cost and total handling cost. The second one measures the

total CO2 emission in all the supply chain. Wang et al showed that the model can be

applied as an effective tool in the strategic planning for green supply chain.
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Guillen-Gosalbez and Grossmann (2009) also addressed the design and planning of sup-

ply chains formulating a bi-objective stochastic mixed-integer non linear program that

accounts simultaneously for the maximization of the net present value and the minimiza-

tion of the environmental impact for a given probability level.

Another related study is conducted by Hugo et al. (2005), who developed a multi-objective

optimisation approach for hydrogen SC networks, where they investigated trade-offs be-

tween investment and greenhouse gas emissions. Bojarski et al. (2009) addressed the

optimization of the design and planning of supply chains considering economic and envi-

ronmental issues.

The major drawbacks of these papers are the absence of incorporation of CO2 emissions

and multi-modality in supply chain network design. Also, only few studies have addressed

the impact of integrating environmental regulations, green house gases emissions, energy

consumption, green technology and carbon taxes Nagurney et al. (2006), emission trad-

ing (Stranlund (2007)) and carbon markets (Peace and Juliani, (2009)) on supply chain

network design.

In this context, this chapter deals with the design of a multi-objective supply chain net-

work in order to satisfy the customer demands and to respect the environmental require-

ments. We use Goal Programming approach seeking to reach the four goals placed by

Decision Maker: (i) total costs goal, (ii) energy consumption costs goal, (iii) waste treat-

ment costs goal and (iv) CO2 emissions goal.

The strategic decisions considered in the model are treatment facilities location, building

technology selection and flow of material quantities throughout the SC network. To solve

the model, we apply a Goal Programming approach, which is a single model and easy to

understand and to apply (Aouni and Kettani (2001)).

Finally, we conduct a comprehensive set of numerical studies and present the solutions

and their sensitivities to various parameters.

4.2 Goal Programming

A goal refers to criterion and a numerical level known as a target level, which the decision

maker desires to achieve on the criterion (Tamiz (2009)). There are three principal types
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of goal that can occur in a goal programming model: achieve at most the target level,

achieve at least the target level and achieve the target level. A constraint is a restriction on

the decision variables that must be satisfied in order to implement the solution in practice

(Tamiz (2009)). This is different from the concept of a goal whose non-achievement does

no automatically make the solution non implementable.

The first Goal Programming (GP) formulation was proposed by Charnes et al. (1955).

At that period the term goal programming was not used as a model, but considered as an

adaptation of the linear programming. After six years the theory of the GP was defined by

Charnes and Cooper (1961), then by Ijiri (1965), Lee (1972) and Ignizio (1976), Romero

(1991), Jones et al. (1995) and Tamiz (2009).

According to Field (1973), the formulation of goal programming is characterised by one

or more goals which are directly incorporated in the objective function, through deviation

variables, that is, the objectives are written in the form of goals restrictions, where each

goal represents the value that intends to be reached. The goals can or not be reached

completely and, to allow this flexibility, deviation variables are used δ+ and δ−, indicating

how much the objective was surpassed or was lacked by that value respectively. Goal

programming searches a form of reaching the goals as closest as possible; the objective of

this technique is to minimize the sum of all the goal deviations.

There are several methods for specifying the corresponding weight values in GP, as detailed

by Ringuest (1992). Gass (1986) explained how a link can be established between the

Analytical Hierarchy Process (AHP) and GP. In fact, the weights derived from the pairwise

comparison of AHP can be incorporated directly into a GP model. Gass (1986) also

showed that in some cases the normalising weight is simply part of the whole weight that is

absorbed by the AHP weight determination. To model a multi-objective decision making

problem aiming at selecting the best warehouses, William (2007) combined the AHP and

goal programming. The AHP is used to give weights or priorities to the warehouses based

on two conflicting criteria; customer satisfaction level and operational cost. These weights

are incorporated in a GP model that considers system and goal constraints.
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4.2.1 Normalisation Techniques

Incommensurable in a GP model, occurs when deviation variables measured in different

units are summed up directly. This simple summation will cause a deviation towards the

objectives with a larger magnitude. This deviation may lead to erroneous or misleading

results.

To overcome incommensurable in GP, researchers proposed the use of normalisation tech-

niques. One suggestion to overcome this difficulty, is to divide each objective through by

a normalising constant (i) pertaining to that objective, as shown in model (4.5). This

ensures that all objectives have roughly the same magnitude.

We are now able to show a simple achievement function of GP as follows:

Min

n
∑

i=1

ωi(
δ+i + δ−i
ki

) (4.1)

s.t fi(X) + δ−i − δ
+
i = gi i = 1, 2, ..., n. (4.2)

δ+i , δ
−

i ≥ 0 i = 1, 2, ..., n. (4.3)

x ∈ F . (4.4)

(4.5)

where ωi is the weight of the i-th goal; fi(X) is the linear function of {xi, x2 , · · · , xn} for

the ith goal, gi is the aspiration level of the ith goal, δ+i and δ−i are positive and negative

deviations from the target value of the ith goal, respectively. i are normalising constants

of the i-th goal; F is a feasible set.

We will next discuss an application case to which this approach applies.

4.3 Problem Formulation

We start by introducing the SC problem that we have studied in Chapter 3, which is :

multi-level, multi-modal, multi-objective, single product and single period Supply Chain

Network (SCN). As before, The SCN contains four layers: suppliers, storage depots,

treatment facilities and customers. As illustrated in Figure 6.5, products are shipped
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Figure 4.1: Supply Chain Network

from suppliers to storage depots, and after that, they are transported to treatment fa-

cility. The treatment facilities insure the treatment and the distribution of products to

customers. Before formulating the model, some assumptions are accepted: Customers

demand and suppliers quantity are assumed to be known. The wastes are generated only

by the treatment facilities. The energy consumption depends on the transportation mode

used and the technology of the treatment facility. The CO2 emissions depends on the

transportation modes and technology of treatment facility. For more details, see chapter

3.

The suppliers, storage depots, treatment facility, customers and transportation modes are

defined through the following sets:

I supplier locations set, indexed by i.

J storage depot locations set, indexed by j.

K potential treatment facility locations set, indexed by k.

L customer locations set, indexed by l.

M transportation modes set, indexed by m.

N building technologies set, indexed by n.
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P goal level set, indexed by p.

Each goal should be assigned a weight γi to represent its importance and a goal value gi

that required to be achieved. The deviation variables of the goals are δ+i and δ+i . The unit

transportation costs of goods between supplier i and storage depot j using transporta-

tion mode m is µijm, the unit transportation costs of goods between storage depot j and

treatment facility k using transportation mode m is µjkm and µklm represents the unit

transportation costs of goods between treatment facility k and customer l using trans-

portation mode m.

ϑijm is the distance between supplier i and storage depot j using transportation mode m.

ϑjkm represents distance between storage depot j and treatment facility k using trans-

portation mode m. ϑklm represents distance between treatment facility k and customer l

using transportation mode m.

βm denotes the unit CO2 emission using transportation mode m. The unit CO2 emission

in treatment facility k with building technology n is βkn. Energy consumption parameters

are ρm and γkn. The first one represents the unit energy consumption costs using trans-

portation mode m and the second one denotes the unit energy consumption costs using

treatment facility k with building technology n. ηkn denotes the unit waste treatment

costs in treatment facility j with building technology n. γ is the environmental taxes. Dl

denotes the demand of the customer l.

In our problem, we consider two types of decision variables: treatment facility location

decisions will be taken based on the binary variables xkn that indicate whether treatment

facility k with building technology n is selected or not. Whereas, material flow related

decisions will be taken according to the value of the variables qijm which is the quantity

of products transported from node i to node j using transportation mode m.

4.3.1 Mathematical Model

In this section we will show the mathematical formulation of the inland waterways sedi-

ments treatment supply chain network.

We explicitly consider two objective functions: φ1 measures the total cost (4.6) and φ2
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represents the total CO2 emission in all the supply chain network (4.7).

φ1 :Min OC + TC + LC + ECC +WTC (4.6)

φ2 :Min COE (4.7)

Where

- Opening Costs (denoted OC):

OC =
∑

k∈K

∑

n∈N

(COkn · xkn) (4.8)

- Transportation Costs (denoted TC):

TC =

[

∑

i∈I

∑

j∈J

∑

m∈M

µijm · qijm +
∑

j∈J

∑

k∈K

∑

m∈M

µjkm · qjkm +
∑

k∈K

∑

l∈L

∑

m∈M

µklm · qklm

]

(4.9)

- Logistic Costs (denoted LC):

LC =
∑

i∈I

∑

j∈J

∑

m∈M

CSj · qijm +
∑

j∈J

∑

k∈K

∑

m∈M

CTk · qjkm (4.10)

- Energy Consumption Costs (denoted ECC):

ECC =
∑

i∈I

∑

j∈J

∑

m∈M

ρm · ϑijm · qijm +
∑

j∈J

∑

k∈K

∑

m∈M

ρm · ϑjkm · qjkm + (4.11)

∑

k∈K

∑

l∈L

∑

m∈M

ρm · ϑklm · qklm +
∑

j∈J

∑

k∈K

∑

m∈M

∑

n∈N

γkn · qjkm

- Waste Treatment Costs (denoted WTC):

WTC =
∑

j∈J

∑

k∈K

∑

m∈M

∑

n∈N

ηkn · qjkm (4.12)

- Total CO2 emissions (denoted COE):

COE =
∑

i∈I

∑

j∈J

∑

m∈M

βm · ϑijm · qijm +
∑

j∈J

∑

k∈K

∑

m∈M

βm · ϑjkm · qjkm + (4.13)

∑

k∈K

∑

l∈L

∑

m∈M

βm · ϑklm · qklm +
∑

j∈J

∑

k∈K

∑

m∈M

∑

n∈N

βkn · qjkm

Subject to

Constraint (4.14) limits CO2 emissions quantities.

∑

i∈I

∑

j∈J

∑

m∈M

βm · ϑijm · qijm +
∑

j∈J

∑

k∈K

∑

m∈M

βm · ϑjkm · qjkm + (4.14)

∑

k∈K

∑

l∈L

∑

m∈M

βm · ϑklm · qklm +
∑

j∈J

∑

k∈K

∑

m∈M

∑

n∈N

βkn · qjkm ≤ COEmax
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Constraint (4.15) limits the energy consumption.

∑

i∈I

∑

j∈J

∑

m∈M

ρm · ϑijm · qijm +
∑

j∈J

∑

k∈K

∑

m∈M

ρm · ϑjkm · qjkm + (4.15)

∑

k∈K

∑

l∈L

∑

m∈M

ρm · ϑklm · qklm +
∑

j∈J

∑

k∈K

∑

m∈M

∑

n∈N

γkn · qjkm ≤ ECCmax

Constraint (4.16) guarantees that the demand of the customers will be satisfied.

∑

k∈K

∑

m∈M

qklm = Dl ∀l ∈ C (4.16)

Constraint (4.17) imposes a capacity restriction for each storage depot.

∑

i∈I

∑

m∈M

qijm ≤ Qj ∀j ∈ J (4.17)

Constraint (4.18) limits the capacity of the treatment facilities.

∑

j∈J

∑

m∈M

qjkm ≤ Qk · xkn ∀k ∈ K, ∀n ∈ N (4.18)

Constraints (4.19), (4.20) enforce the flow conservation of the product.

∑

i∈I

∑

m∈M

qijm =
∑

k∈K

∑

m∈M

qjkm ∀j ∈ J (4.19)

∑

j∈J

∑

m∈M

qjkm =
∑

l∈L

∑

m∈M

qklm ∀k ∈ K (4.20)

Constraints (4.21), (4.22), (4.23) impose a capacity restriction of each mode of transport

throughout the network.

qijm ≤ Qijm ∀i ∈ I, ∀j ∈ J, ∀m ∈M (4.21)

qjkm ≤ Qjkm ∀j ∈ J, ∀k ∈ K, ∀m ∈M (4.22)

qklm ≤ Qklm ∀k ∈ K, ∀l ∈ L, ∀m ∈M (4.23)

Constraint (4.24) enforces the binary nature of the configuration decisions for the facilities.

xkn ∈ {0, 1} ∀k ∈ K, ∀n ∈ N (4.24)

Constraints (4.25), (4.26), (4.27) are standard integrality and non-negativity constraints.

qijm ≥ 0 ∀i ∈ I, ∀j ∈ J, ∀m ∈M (4.25)

qjkm ≥ 0 ∀j ∈ J, ∀k ∈ K, ∀m ∈M (4.26)

qklm ≥ 0 ∀k ∈ K, ∀l ∈ L, ∀m ∈M (4.27)
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4.3.2 Goal Programming Model

Among the different approaches available to solve the multi-objective supply chain net-

work design, the GP method seems to be the most promising.

Goal Programming approach were used seeking to reach the following goals: g1, g2, g3

and g4 placed by the Decision Maker.

The first goal (4.30) seeks assigning as at most total costs target level g1 (e). The second

goal (4.31) aims to achieve at most the energy consumption target level g2 (e). The third

goal (4.31) aims to achieve at most the waste treatment cost target level g3 (e). The

fourth goal (4.32) seeks achieve at most the CO2 emissions target level g4 (T).

Objective function (4.28) aims at minimizing the deviations from the goals g1, g2, g3 and

g4.

Min
∑

p∈P

ωp(
δ+p + δ−p
kp

) (4.28)

where ωp is the weight of the p-th goal and kp is a constant ensures that all objectives

have roughly the same magnitude.

Subject to

Total cost goal level (denoted by g1).

∑

k∈K

∑

n∈N

(COkn · xkn) +
∑

i∈I

∑

j∈J

∑

m∈M

µijm · qijm +
∑

j∈J

∑

k∈K

∑

m∈M

µjkm · qjkm + (4.29)

∑

k∈K

∑

l∈L

∑

m∈M

µklm · qklm +
∑

i∈I

∑

j∈J

∑

m∈M

CSj · qijm +
∑

j∈J

∑

k∈K

∑

m∈M

CTk · qjkm +

∑

i∈I

∑

j∈J

∑

m∈M

ρm · ϑijm · qijm +
∑

j∈J

∑

k∈K

∑

m∈M

ρm · ϑjkm · qjkm +

∑

k∈K

∑

l∈L

∑

m∈M

ρm · ϑklm · qklm +
∑

j∈J

∑

k∈K

∑

m∈M

∑

n∈N

γkn · qjkm +

∑

j∈J

∑

k∈K

∑

m∈M

∑

n∈N

ηkn · qjkm + δ−1 − δ
+
1 = g1

Energy Consumption Costs goal (denoted by g2).

∑

i∈I

∑

j∈J

∑

m∈M

ρm · ϑijm · qijm +
∑

j∈J

∑

k∈K

∑

m∈M

ρm · ϑjkm · qjkm + (4.30)

∑

k∈K

∑

l∈L

∑

m∈M

ρm · ϑklm · qklm +
∑

j∈J

∑

k∈K

∑

m∈M

∑

n∈N

γkn · qjkm + δ−2 − δ
+
2 = g2

Waste treatment Costs goal (denoted by g3).

∑

j∈J

∑

k∈K

∑

m∈M

∑

n∈N

ηkn · qjkm + δ−3 − δ
+
3 = g3 (4.31)
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Total CO2 emissions goal (denoted by g4).

∑

i∈I

∑

j∈J

∑

m∈M

βm · ϑijm · qijm +
∑

j∈J

∑

k∈K

∑

m∈M

βm · ϑjkm · qjkm + (4.32)

∑

k∈K

∑

l∈L

∑

m∈M

βm · ϑklm · qklm +
∑

j∈J

∑

k∈K

∑

m∈M

∑

n∈N

βkn · qjkm + δ−4 − δ
+
4 = g4

Constraint (4.33) limits CO2 emissions.

∑

i∈I

∑

j∈J

∑

m∈M

βm · ϑijm · qijm +
∑

j∈J

∑

k∈K

∑

m∈M

βm · ϑjkm · qjkm + (4.33)

∑

k∈K

∑

l∈L

∑

m∈M

βm · ϑklm · qklm +
∑

j∈J

∑

k∈K

∑

m∈M

∑

n∈N

βkn · qjkm ≤ COEmax

Constraint (4.35) limits Energy consumption.

∑

i∈I

∑

j∈J

∑

m∈M

ρm · ϑijm · qijm +
∑

j∈J

∑

k∈K

∑

m∈M

ρm · ϑjkm · qjkm + (4.34)

∑

k∈K

∑

l∈L

∑

m∈M

ρm · ϑklm · qklm +
∑

j∈J

∑

k∈K

∑

m∈M

∑

n∈N

γkn · qjkm ≤ ECCmax

Constraint (4.35) guarantees that the demand of the customers will be satisfied.

∑

k∈K

∑

m∈M

qklm = Dl ∀l ∈ C (4.35)

Constraint (4.36) imposes a capacity restriction for each storage depot.

∑

i∈I

∑

m∈M

qijm ≤ Qj ∀j ∈ J (4.36)

Constraint (4.37) limits the capacity of the treatment facilities.

∑

j∈J

∑

m∈M

qjkm ≤ Qk · xkn ∀k ∈ K, ∀n ∈ N (4.37)

Constraints (4.38), (4.39) enforce the flow conservation of the product.

∑

i∈I

∑

m∈M

qijm =
∑

k∈K

∑

m∈M

qjkm ∀j ∈ J (4.38)

∑

j∈J

∑

m∈M

qjkm =
∑

l∈L

∑

m∈M

qklm ∀k ∈ K (4.39)
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Constraints (4.40), (4.41), (4.42) impose a capacity restriction of each mode of transport

throughout the network.

qijm ≤ Qijm ∀i ∈ I, ∀j ∈ J, ∀m ∈M (4.40)

qjkm ≤ Qjkm ∀j ∈ J, ∀k ∈ K, ∀m ∈M (4.41)

qklm ≤ Qklm ∀k ∈ K, ∀l ∈ L, ∀m ∈M (4.42)

Constraint (4.43) enforces the binary nature of the configuration decisions for the facilities.

xkn ∈ {0, 1} ∀k ∈ K, ∀n ∈ N (4.43)

Constraints (4.44), (4.45), (4.46) are standard integrality and non-negativity constraints.

qijm ≥ 0 ∀i ∈ I, ∀j ∈ J, ∀m ∈M (4.44)

qjkm ≥ 0 ∀j ∈ J, ∀k ∈ K, ∀m ∈M (4.45)

qklm ≥ 0 ∀k ∈ K, ∀l ∈ L, ∀m ∈M (4.46)

Constraint (4.47)Positive and negative deviational variable for i-th goal.

δ+p , δ
−

p ≥ 0 ∀p ∈ P (4.47)

In the next section, we will give computational results of this model, as well as the

interpretation and analyse of the results.

4.4 Computational Results

In order to be able to analyse the behaviour of the optimal SC configuration, we will first

derive a general multi-objective results.

Experiments were performed using a computer with 2 GHz Windows Vista 2 GHz Core

2 Due PC and 3 GB RAM. Both models are coded using ILOG OPL 6.3 and solved

using CPLEX 12.1. The solver is set to solve integer problems using branch-and-bound

algorithm .

Before we describe our results, we first briefly discuss how we determine the Goal Pro-

gramming weights.
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4.4.1 Goal Programming weights

To determine the corresponding weight values in GP, we used AHP method (see, section

3.3.1). The weights of each goal can be observed in Table 4.1. These values are fixed by

the Decision Maker (DM).

As shown in Table 4.1, the number 1 indicates the equal importance of the goals. The

Table 4.1: The Goal Programming weights

g1 g2 g3 g4 Weights

g1 1 0.33 0.25 4 0.16

g2 3 1 1 6 0.39

g3 4 1 1 3 0.37

g4 0.25 0.17 0.33 1 0.08

Total 8.25 2.50 2.58 14 1

number 3, indicates that g2 is moderately important than g1. The scale 4, indicates that

g3 is considerably more important than g1. Finally, 6 indicates that g2 is strongly more

important than g4. The weight of total cost criterion g1 is equal to 0.16 and the weight

of CO2 emission g3 is equal to 0.37. This means, ω1 = 0.16, ω2 = 0.39, ω3 = 0.37 and ω4

= 0.08.

We are now ready to start the resolution of our model.

4.4.2 Solutions

In this section, we will employ the classical approach to determine the optimal structure

of the problem and to have an idea about the different goal level. It is well-known that

there exist multiple non-dominated solutions for a multi-objective optimization problem.

Those solutions are called Pareto optimal solutions.

First of all, the bi-objective model (4.6)-(4.27) has two objective functions, the objective

value of these two functions are represented by φ1 and φ2, respectively. Then, we solve

the Model (4.6)-(4.27) with each objective function separately and get the objective value

φ∗

1 and φ∗

2 corresponding to objective one and two, respectively. Finally, we generate the

corresponding Pareto point set.
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As summarized in Table 4.2, we increase the CO2 emissions value from 120 to 10 000.

The first column shows the CO2 emissions (CO2), the second column shows the value

of the objective function (Obj), then the potential facility locations (Si), the eighth is

the percentage of goods transported using waterways (W), the ninth is the percentage

of products shipped using roads as transportation mode (R), and the last column is the

percentage of goods transported using the train (T).

In Table 4.2, we generate the Pareto frontier which can provide the decision maker an

idea about the alternative optimal solutions. It clearly demonstrates the trade-off between

the total cost and the total CO2 emission. It coincides with our logic that a lower CO2

emission can only be reached by putting more investment. For example, the investment

necessary to design the supply chain network with g3 = 120 (T) is 94 859 779 (e). The

table also shows that, in general, the number of facilities to open go up, decreasing the

total CO2 emission. This is due to reduction of transportation distances between logistic

actors when we open more treatment facilities. Furthermore, in almost all cases the green

treatment facilities (S2 or S4) are not selected. We should open two green treatment

facilities for experiment with total CO2 emission equal to 120 (T) and one green treatment

facility for instances with total CO2 emission between 130 and 150 (T). It’s clear that

if we don’t integrate the CO2 emission in the objective function, we will never choose

to open green facilities because of the high investment cost comparing to the traditional

ones.

According to these results, the DM fixed the goal levels as fellows: g1 = 60 000 000 (e),

g2 = 370 000 (e), g3 = 4500 000 (e), g4 = 250 (T).

It can be noted in Figure 4.2 that the percentage of goods shipped using rails (T%) and

roads (R%) decrease, as consequence of increasing the CO2 emission value. While, the

percentage of waterways (W%) used is incremented (from 25% to 93%) due to the CO2

emission value rise.

4.4.3 Sensitivity Analysis

Since generally, decision makers cannot fix correctly the exact values of weights and goal

levels, it is important to know the influence they have on the results when some changes

occur in their values. More clearly, the robustness of the results must be demonstrated.
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Table 4.2: Solutions

Potential facilities Transportation mode

CO2 (T) Obj(e) S1 S2 S3 S4 S5 W (%) R (%) T (%)

120 94 859 779 1 1 1 1 0 25% 17% 58%

130 74 122 738 1 0 1 1 0 29% 17% 54%

140 59 143 025 1 1 0 0 0 37% 9% 55%

150 59 128 842 1 0 0 1 0 24% 13% 63%

160 56 132 771 1 0 1 0 0 21% 10% 69%

170 56 128 527 1 0 1 0 0 24% 6% 70%

180 56 127 934 1 0 1 0 0 25% 6% 69%

190 56 103 496 1 0 0 0 1 33% 12% 55%

200 56 083 323 1 0 0 0 1 33% 12% 55%

300 56 073 586 1 0 0 0 1 37% 17% 46%

400 56 083 612 1 0 0 0 1 44% 17% 39%

500 56 096 567 1 0 0 0 1 41% 25% 34%

600 56 110 390 1 0 0 0 1 39% 31% 30%

700 56 124 249 1 0 0 0 1 55% 6% 39%

800 56 138 139 1 0 0 0 1 55% 8% 38%

900 56 152 182 1 0 0 0 1 55% 9% 35%

1 000 56 166 444 1 0 0 0 1 58% 10% 32%

1 500 56 244 119 1 0 0 0 1 53% 19% 28%

2 000 56 323 797 1 0 0 0 1 55% 17% 28%

3 000 56 483 513 1 0 0 0 1 59% 13% 28%

4 000 56 643 206 1 0 0 0 1 64% 8% 28%

5 000 56 837 725 0 0 1 0 1 93% 7% 0%

6 000 57 070 118 1 0 0 0 1 93% 7% 0%

8 000 57 527 431 1 0 0 0 1 93% 7% 0%

9 000 57 757 436 0 0 1 0 1 93% 7% 0%

10 000 57 987 278 1 0 0 0 1 93% 7% 0%
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Figure 4.2: Transportation mode used (%)

Therefore, an important step in many applications of multi-objective decision making is

to perform a sensitivity analysis on these parameters. Let’s start with ωi weights variation

ωi variation

In order to show the sensitivity of the numerical solution with respect to the values of

ωi, we conduct experiments with ωi variation. Table 4.3 focuses only on the results of

10 generated instances, where ωi values are not far from the ones fixed previously by the

Decision Maker (see Table 4.1). According to the obtained values of ωi using AHP, ω1 is

varied from 0.1 to 0.5, ω2 is varied from 0.1 to 0.7, ω3 is increased from 0.1 to 0.6 and ω4

is varied from 0.1 to 0.2. When ωi are varied manually the others parameters are fixed :

g1 = 60 000 000 (e), g2 = 370 000 (e), g3 = 4500 000 (e), g4 = 250 (T).

In all cases, we obtained the same supply chain structure composed of two treatment

facilities {S1, S4} a traditional treatment facility S1 and a green facility S4 (see, Table

4.3). In instance 4, we have the same SC configuration and a small variation in the

percentages of the transportation modes used. The waterways use decrease from 55% to
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Table 4.3: Sensitivity

ωi variation Potential facilities Transportation mode

ω1 ω2 ω3 ω4 S1 S2 S3 S4 S5 W (%) R(%) T(%)

0,1 0.4 0.4 0.1 1 0 0 1 0 55% 17% 28%

0.1 0.3 0.5 0.1 1 0 0 1 0 55% 17% 28%

0.1 0.2 0.6 0.1 1 0 0 1 0 55% 17% 28%

0.2 0.1 0.6 0.1 1 0 0 1 0 49% 8% 43%

0.3 0.2 0.4 0.1 1 0 0 1 0 55% 17% 28%

0.4 0.2 0.3 0.1 1 0 0 1 0 55% 17% 28%

0.5 0.2 0.2 0.1 1 0 0 1 0 55% 17% 28%

0.1 0.5 0.2 0.2 1 0 0 1 0 55% 17% 28%

0.1 0.6 0.1 0.2 1 0 0 1 0 55% 17% 28%

0.1 0.7 0.1 0.1 1 0 0 1 0 16% 5% 80%

49%, the roads use decrease from 17% to 8% and the rail use go up from 28% to 43%.

As a result of our computational study on the ωi variation (Table 4.3), we observed that

the variation on the ωi does not have significant effect neither on the number of facilities to

open nor on transportation mode to use. Therefore, in this case study, it can be concluded

that small fluctuations in the choice of ωi would not significantly influence the results.

Total costs goal g1 variation

In this section, we show the sensitivity of the numerical solution with respect to the g1

values. We increased the total cost from 40 000 000 (e) to 90 000 000 (e).

As summarized in Table 4.4, we generate eleven instances where the first column shows

the total cost goal level (g1), the second column shows the real total cost goal level (g1*)

calculated by the model, then the potential facility locations (Si). According to the results

showed in Table 4.4, increasing g1 the number of opened sites increase from 2 facilities

to four sites to open. The table also shows that, changing g1 value, we obtain other SC

configuration. For example, for g1=40 000 000 (e) the proposed SC configuration is {S3,

S5}, for g1=60 000 000 (e) the sites to open are {S1, S4} and for g1=90 000 000 (e) the

proposed SC structure is {S1, S3, S4, S5}. The Figure 4.3 clearly shows that, the proposed
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Table 4.4: Total costs goal g1 variation

g1 variation Potential facilities Transportation mode

g1 g1* S1 S2 S3 S4 S5 W(%) R(%) T(%)

40 000 000 59 150 000 0 0 1 1 0 82% 2% 16%

45 000 000 59 150 000 0 0 1 1 0 82% 2% 16%

50 000 000 59 150 000 0 0 1 1 0 81% 2% 17%

55 000 000 59 150 000 0 0 1 1 0 82% 2% 16%

60 000 000 60 000 000 1 0 0 1 0 55% 17% 28%

70 000 000 74 096 000 1 0 0 1 1 71% 2% 26%

80 000 000 80 014 000 0 1 0 1 1 69% 2% 29%

90 000 000 90 000 000 1 0 1 1 1 64% 12% 24%
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Figure 4.3: Number of opened facilities
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Figure 4.4: Total costs goal g1 variation

SC configuration of all instances contain at least one green treatment facility. It seems

that, the presence of a green treatment facility in all solutions, is due to the CO2 emission

goal value fixed to 250 (T), the energy consumption goal and the waste treatment goal.

Figure 4.4 shows that increasing the total cost value g1, the percentage of goods shipped

using rails (T%) and roads (R%) goes up.

Energy consumption goal g2 variation

We now consider how the supply chain configuration and the transportation modes used

behave as the g2 level varies, which can be seen in Table 4.5. In this case g2 varied from

3 500 000 (e) to 6 500 000 (e).

The optimal SC structure of each instance are illustrated in Table 4.5. It is found that 2

facilities are built up. They are {S1, S4} or {S2, S5}, and in each solution we found a green

site to build (S2 or S4). According to the results presented in Table 4.5, increasing the

goal level g2, the percentage of goods transported using waterways transportation mode

decreases from 55% to 15%, the percentage of products shipped using roads transportation

mode goes down from 17% to 0% and the use of rail to transport the goods rises from

28% to 85% (see, Figure 4.5).
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Table 4.5: Energy consumption goal g2 variation

g2 variation Potential facilities Transportation mode

g2 g2* S1 S2 S3 S4 S5 W(%) R(%) T(%)

3 500 000 4 552 000 1 0 0 1 0 55% 17% 28%

4 000 000 4 552 000 1 0 0 1 0 55% 17% 28%

4 500 000 4 550 000 1 0 0 1 0 55% 17% 28%

5 000 000 5 000 000 1 0 0 1 0 61% 20% 18%

5 500 000 5 500 000 0 1 0 0 1 15% 1% 84%

6 000 000 5 610 800 0 1 0 0 1 15% 0% 85%

6 500 000 5 610 800 0 1 0 0 1 15% 0% 85%

CO2 emissions goal g4 variation

The final aspect studied is CO2 emissions variation impact on the supply chain structure.

In this case, the carbon goal will increase (Figure 4.6) and all other parameters are fixed.

As summarized in Table 4.6, we increase g4 value from 100 to 15 000. The first column

shows the CO2 emission goal level (g4), the second the real CO2 emission goal level (g4*)

considered by the model and the rest of the columns have the same signification as in

Tables presented before.

Regarding the computational results, it is important to note the following. As shown in

Table 4.6 the number of facilities opened, is always equal to 2 sites and for each instance

the solution contains at least a green building (S2 or S4), due to the impact of g2 and

g4 goals, fixed by DM which forces the supply chain to use the green technology. Also,

increasing the g4 the use of waterways to transport goods increase from 39% to 100%,

the percentage of goods transported using roads fluctuate between 0% and 58%, and the

percentage of products shipped using train go down from 46% to 0%. Based on these

results, we can conclude that g4 value has influence in the SC configuration and the

transportation mode to use.

Figure 4.6 confirms that the g4 value variation has influence on the transportation

mode selected.
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Figure 4.5: Energy Consumption Costs

Table 4.6: CO2 emissions goal g4 variation

g4 variation Potential facilities Transportation mode

g4 g4* S1 S2 S3 S4 S5 W (%) R (%) T(%)

100 140.75 1 0 0 1 0 39% 15% 46%

150 150 1 0 0 1 0 37% 15% 48%

200 200 1 0 0 1 0 50% 15% 35%

250 250 1 0 0 1 0 55% 17% 28%

300 300 0 1 1 0 0 57% 12% 32%

400 400 0 0 1 1 0 78% 12% 10%

500 500 0 0 1 1 0 80% 13% 7%

1 000 1 000 0 0 0 1 1 42% 58% 0%

1 500 1 500 0 1 0 0 1 38% 48% 13%

2 000 2 000 0 0 0 1 1 80% 20% 0%

3 000 3 000 0 0 0 1 1 48% 52% 0%

4 000 4 000 0 0 0 1 1 51% 49% 0%

5 000 5 000 0 0 0 1 1 91% 9% 0%

10 000 10 000 0 1 0 1 0 41% 0% 59%

15 000 15 000 0 1 0 1 0 100% 0% 0%
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Figure 4.6: CO2 emissions

4.5 Conclusions

In this Chapter, a multi-objective supply chain network design problem is addressed. The

problem is formulated as a goal programming model which aims at achieving four objec-

tives. The model represents a real case of supply chain network of an inland waterways

company in France. In this work, an approach for designing environmental SC has been

presented. The model consisted of a multi-objective optimization of economics and en-

vironmental goals. The model considered the long-term strategic decisions: treatment

facility location, transportation modes and material flux.

Sensitivity analysis for the case study is conducted and we check that, improving the

building technology and increasing the facility number in the supply chain can decrease

CO2 emission of the whole network. Regarding to the influence of some parameters on

the SC configuration and transportation mode used, we find that small variability of goals

weight ωi does not affect the solution of our case study.

Finally, in next chapter, we will present a heuristic to solve large scale SCND problems.
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Chapter 5

Heuristic Approach to large scale

Supply Chain Network Design

Problem

The Supply Chain Network (SCN) should be designed in the way that could meet the cus-

tomer needs with an efficient cost. Nowadays, the structure of the supply chain network

is complex and has a considerable size. However, Supply Chain Network Design (SCND)

problems are hard to solve. Such network design problems belong to the class of NP-

hard problems, as several other well-known NP-hard facility location problems(Bloemhof-

Ruwaard et al. (1994), Cornuejols et al. (1991)).

In this chapter, a novel heuristic solution method is developed based on a decomposi-

tion technique, to solve large scale supply chain network design problems. This solution

method, specifically, designed for real size SCN problems that exact methods failed to

solve. The heuristic method is tested on real case instances, and it is compared to an

exact method in solving small instances. Results show that our heuristic outperforms the

exact method in terms of computational time and the size of problems solved.

5.1 Introduction

As we said in chapter 2, for small size supply chain network design problems, exact meth-

ods, such as Branch-and-Bound can be used to solve these problems. For large scale ones,
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exact methods fail because the size of the solution space increases exponentially with the

number of constraints and variables in the network. In these cases heuristics methods

based on Lagrangian relaxation (Pirkul and Jayaraman (1997), Fisher (1985)), Bender

decomposition (Geoffrion and Graves (1974), Benders (1962)), Decomposition techniques

(Sahina and Saral (2007), Jang et al. (2002)) and many others techniques were proposed

to solve the SCND problems in a reasonable computation time.

To cope with this complexity, many researches divided the supply chain network into

several stages, such as: Ereng et al. (1999), Pontrandolfo and Okogbaa (1999) and Vidal

and Goetschalcks (1997).

To solve the supply chain network design problem, Jang et al. (2002) decomposed the

entire supply chain network into three sub-networks: the inbound network, distribution

network and outbound network. The first sub-problem consists of all suppliers to the

manufacturing plants, the second one includes facilities where the final products are man-

ufactured and the distribution facilities, the final sub-network consists of customers and

distributors close to customers. Authors proposed solution methodologies based on the

Lagrangian relaxation for each sub-network. They solved instances that have from 5 to

15 plants, from 10 to 20 warehouses, 10 customers and 10 products.

Lee and Dong (2008) explored the logistic network design for end-of-lease computer prod-

ucts recovery. Due to the problem complexity and the large number of variables and

constraints, they developed a two-stage heuristic approach to decompose the integrated

design of the multi-echelon forward and reverse logistics distribution networks into a

location-allocation problem and a revised network flow problem. Authors generated com-

putational results from a set of twenty-five test problems and the largest instance is

composed of 30 potential treatment facilities, 40 potential hybrid facilities and 100 cus-

tomers. Results suggested that the heuristic solution algorithm performs well in terms

of solution quality and computational time. The average gap between the final solution

obtained by the proposed heuristic approach and the lower bound obtained by CPLEX

ranges from 4% to 12%.

Cheng and Wang (2009) presented a decomposition procedure to solve distribution prob-

lems. They proposed a heuristic approach in which they decomposed a complex global

distribution problem into a combination of sub-problems with basic structures as inde-
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pendent as possible to each other. The idea of their heuristic decomposition procedure

is to divide the large-scale global distribution into some identified sub-problems such as:

facility location problem, location-allocation problem, hub location problem, transporta-

tion problem, travelling salesman problem, vehicle routing problem, etc. Then, each

sub-problem is solved and the global solution is the sum of all these solutions.

Arntzen et al. (1995) presented a multi-period, multi-commodity mixed integer model

to optimize a global supply chain. The objective function includes variable production,

inventory, and shipping costs; fixed production costs, and savings from credit earned for

re-exporting products. They claimed that they solved models that had from 2000 to 6000

constraints and from 5000 to 20000 variables. It is not clear from the article the exact

method of solution applied, but they claimed that using non traditional methods, such as

row factorization and cascaded problem solution, allowed them to get impressive results

and always optimal solutions.

Cole (1995) presented a capacitate fixed-charge multi-commodity network flow model with

side constraints. The side constraints are the non-linear inventory service level constraints

resulting from the assumption of normally distributed demands. He suggested two solu-

tion procedures, and tested three example problems. The largest instance had 4 products,

9 customers, 3 potential plant locations, and 6 potential warehouse locations.

Goetschalckx et al. (1994) presented a generic model for the strategic design of production-

distribution systems. To solve the generic model, they introduced heuristic method that

significantly reduced the solution times compared to standard MIP solutions by a com-

mercial solver. Other heuristic algorithms are presented by Fleischmann et al. (2001) and

Geoffrion et al. (1978).

As evident from the above discussion, first, the decomposition resolution approach is less

used in SCND problems. The lack of these decomposition schemes may be explained by

the fact that due to the multi-level structure of a supply chain network and the interac-

tion of strategic decisions across several levels, it becomes more difficult to decompose the

problem into easier sub-problems. Second, the existing resolution approaches for supply

chain design problems are suited for very small size problems.

How can we get a solution of large scale SCND problem in a reasonable time?

To answer this question, we propose a heuristic algorithm based on decomposition tech-
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nique. Our current study represents a significant improvement over past research by pre-

senting a unified model of the problem that includes numbers, locations and capacities of

warehouses and distribution centers to open and goods quantities to transport throughout

the supply chain network. Also, an efficient heuristic solution procedure based on decom-

position approach is developed in order to get good solution in an acceptable CPU time.

Computational tests with up to 1500 customers, 220 potential warehouses, 220 potential

distribution centers and 220 suppliers are reported.

The rest of the chapter is organized as follows. In section 5.2, the mathematical model

of the SCND problem is introduced. In section 5.3 the three-phase heuristic algorithm

based on decomposition is explained in detail. Then the heuristic phases are discussed and

applied to an application case in section 5.4. In section 5.5, some computational results

about the performance of heuristic are presented. Finally, some concluding remarks are

summarised in section 5.6.

5.2 Mathematical Model

In this section, we present the SCN problem and his mathematical formulation , then we

show the first computational results of the model solved using a commercial solver like

Cplex.

The potential design of a supply chain being considered (see Figure 5.1), is composed of

suppliers, warehouses, distribution centres, and sellers. As depicted in Figure 5.1, prod-

ucts are shipped from suppliers to warehouses, where goods are prepared to be sent to the

next level. Then, they are transported to distribution centers. The distribution centers

insure the storage and the distribution of products to sellers. Warehouses are defined as

the facility where products are received and married with goods going to the same des-

tination, then shipped at the earliest opportunity, without going into long-term storage.

They are located near suppliers and distribution centers. Distribution centers are ones

located near customers and handled most products in four cycles (receive, store, pick, and

ship).

The main assumptions used in the problem formulation are as follow:

–All demands of customers must be satisfied and no returned products from customers
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Figure 5.1: Supply Chain Network

must be collected.

–Products are shipped through a push mechanism in the supply chain network.

–The warehouse serves as a buffer between suppliers and distribution centers.

–Inventory is stored at the distribution centers.

–Products received in a distribution center will be stored before shipment to sellers and

we attributed to each product a unit variable cost of (receive, store, and pick) that will

be called unit storage costs in our case.

–Transportation costs from suppliers to warehouses are lower than from warehouses to

distribution centers.

–Maximal warehouse treatment capacities, minimal treatment capacities are taken into

consideration.

–Maximal distribution center storage capacities, minimal storage capacities are taken into

consideration.

The strategic supply chain network we intend to elaborate should answer the following

questions under uncertainty: (i) how many warehouses and distribution centers should be

installed? (ii) where the new sites should be located? (iii) how much goods should each

warehouse and distribution center handle? (iv) which sellers should be served by each

distribution center? (v) quantities to transport throughout the supply chain network?

We use the same notations and parameters of the previous chapter.
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The total cost (5.1) is composed of fixed warehouse opening costs, fixed distribution cen-

- Numbers:

m number of supplier locations.

n number of possible warehouse locations.

p number of possible distribution center locations.

q number of customer locations.

- Indices :

i supplier index.

j possible warehouse location indices.

k possible distribution center location indices.

l customer index.

- Parameters :

Ai capacity of supplier i.

fcj fixed cost of opening warehouse j.

fj processing costs at warehouse j.

Fmax
j maximum processing capacity at warehouse j.

Fmin
j minimum processing capacity at warehouse j.

dck fixed cost of opening distribution center k.

ck storage costs at distribution center k.

Cmax
k maximum storage capacity of distribution center k.

Cmin
k minimum storage capacity of distribution center k.

µij unit transportation costs of goods between supplier i and warehouse j.

µjk unit transportation costs of goods between warehouse j and distribution center k.

µkl unit transportation costs of goods between distribution center k and customer l.

ter opening costs, transportation costs of goods throughout the supply chain, production

and storage costs. They are calculated in equation (5.1) as follows:

Minimize

[

∑

j∈W

(fcj · xj) +
∑

k∈D

(dck · yk) +
∑

i∈S

∑

j∈W

(µij + fj) · qij +

∑

i∈S

∑

k∈D

(µik + ck) · qik +
∑

j∈W

∑

k∈D

(µjk + ck) · qjk +
∑

k∈D

∑

l∈C

µkl · qkl

]

(5.1)
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µik unit transportation costs of goods between supplier i and distribution center k.

D̃l demand of the customer l.

- Decision variables:

xj =1 if warehouse j is opened, and = 0 otherwise.

yk =1 if distribution center k is opened, and = 0 otherwise.

qij quantity of products transported from supplier i to warehouse j.

qjk quantity of products transported from warehouse j to distribution center k.

qkl quantity of products transported from distribution center k to customer l.

qik quantity of products transported from supplier i to distribution center k.

Subject to

Constraint (5.2) imposes that all goods received by suppliers will be transported to ware-

house:

∑

j∈W

qij +
∑

k∈D

qik = Ai i ∈ S. (5.2)

Constraint (5.3) enforces the flow conservation of products in warehouses level:

∑

i∈S

qij =
∑

k∈D

qjk j ∈ W. (5.3)

Constraint (5.4) limits the warehouse treatment capacity :

Fmin
j · xj ≤

∑

i∈S

qij ≤ Fmax
j · xj j ∈ W. (5.4)

Constraint (5.5) enforces flows conservation of products in distribution centers level:

∑

j∈W

qjk+
∑

i∈S

qik =
∑

l∈C

qkl k ∈ D. (5.5)

Constraint (5.6) limits the distribution center capacity:

Cmin
k ·yk ≤

∑

j∈W

qjk+
∑

i∈S

qik ≤ Cmax
k ·yk k ∈ D. (5.6)

Constraint (5.7) guarantees that customer’s demand will be satisfied:

∑

k∈D

qkl = Dl l ∈ D. (5.7)
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Constraints (5.8), and (5.9) enforce the binary nature of xj and yk :

xj ∈ {0, 1} j ∈ W. (5.8)

yk ∈ {0, 1} k ∈ D. (5.9)

Constraints (5.10), (5.11), (5.12) et (5.13) are standard non-negative constraints:

qij ≥ 0 i ∈ S; j ∈ W. (5.10)

qjk ≥ 0 j ∈ W ; k ∈ D. (5.11)

qkl ≥ 0 k ∈ D; l ∈ C. (5.12)

qik ≥ 0 i ∈ S; k ∈ D. (5.13)

For example, in Table 5.1, where Exp represents instances, S denotes le suppliers num-

ber, W is the warehouses number, DC represents the distribution centers number and

C denotes customers number. To solve a SCND problem with 11 suppliers, 40 potential

Table 5.1: Global MILP model limits

Exp S W DC C Constraints Variables CPU Time (s)

D1 11 10 10 10 732 641 0.22

D6 11 10 10 103 1755 1571 3.58

D7 11 16 20 103 3701 3469 51.59

D10 11 40 63 103 16248 15815 36232

D13 11 100 100 103 46510 45761 16012

D15 11 140 140 140 82762 81761 OM*

D16 11 160 160 160 107385 106241 OM*

*OM: Out of Memory

warehouses, 63 potential distribution centers and 103 customers using an exact method,

we need 36 232 seconds to find the solution. Also, our computational experiences show

that it’s impossible to solve SCND problems using an exact method implemented on com-

mercial solver like Cplex. Limits of the MILP model are recapitulated on Table 5.1. This

is far of our objective, which is to solve a large scale application case with 1500 customers,

220 potential distribution centers, 220 potential warehouses and 220 suppliers.

In the following section, the heuristic algorithm based on decomposition technique is

presented.
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5.3 Heuristic Approach

In this section, we present a heuristic approach to solve the global supply chain problem.

Our aim is to obtain good solutions for large scale SCND problems in a reasonable time.

The core idea behind the heuristic method is to reduce each facilities set of the original

supply chain network as small set. The network is then reduced to a medium size problem

that could be solved using an exact method.

We build the heuristic on ideas developed in two works. We integrate the concept of

decomposition as discussed in Cheng and Wang (2009), the idea of their heuristic de-

composition procedure is to divide the large-scale global distribution into some identified

sub-problems such as: facility location problem, location-allocation problem, hub location

problem, transportation problem, travelling salesman problem, vehicle routing problem,

etc. Then, each sub-problem is solved and the global solution is the sum of all these

solutions.

We also use the concept of decomposition of the entire supply chain network as discussed

in Jang et al. (2002), they decomposed the entire SCN into three sub-networks: The

inbound sub-problem consists of all suppliers to the manufacturing plants, the distribu-

tion sub-problem includes facilities where the final products are manufactured and the

distribution facilities, the outbound sub-network consists of customers and distributors

close to customers. They used the Lagrangian relaxation to solve each sub-network.

To determine the reduced supply chain network of the original huge one presented in

Figure 5.2, it is first decomposed into two-level sub-problems. Then, the well-known p-

median model (Klose and Drexl (2005) and ReVelle et al. (2008)) is used to solve each

sub-problem. Finally the reduced supply chain network is solved using the global MILP

model (5.1)-(5.13). The heuristic are detailed in the following subsections.

5.3.1 Heuristic Structure

The heuristic approach consists of three phases as follows:

Phase 1: Decomposition phase : in this phase we decompose the huge supply chain

network into small sub-networks with decomposition technique. The decomposition pro-

cess continues until the problem is divided into two levels sub-problems that we can solve
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using the p-median model. The detail of this phase will be developed in Section 5.3.2.

Phase 2: Reduction sets phase : in this phase we reduce the huge facilities number

of each set using p-median model in order to obtain the reduced potential sets. The detail

of this phase will be presented in the Section 5.3.3.

Phase 3: Resolution phase : in this phase we solve the global MILP model with the

reduced potential sets got in phase 2.

To clarify these phases, the heuristic method will be explained in the following para-
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Figure 5.2: n level supply chain network

graphs. Consider the n level supply chain network represented in Figure 5.2. The network

includes the origins level, destinations level and intermediate levels. Between origins and

destinations, we specify levels in which location decisions are made. The edges represent

the links between levels on which the goods are delivered and each level of facilities plays

a specific role . We suppose that the flow of goods in this network is oriented from lower

level to higher level facilities (Figure 5.2).

This SCN consists of n levels and each level of type i (i = 1, 2, · · · , n) can contain several

facilities. In order to formulate the problem in mathematical expression, the following

notations are introduced first :
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L1 denotes origins set of the supply chain network, Ln denotes destination set of the sup-

ply chain network. Li presents the set of intermediate level i in the network, (i=2,· · · ,

n− 1).

5.3.2 Decomposition Phase

As said before, this heuristic phase is focused on dividing the original supply chain network

into a set of two-level sub-networks ( Sf1, Sf2, Sf3, · · · , Sb(n−1) ). This phase contains

two steps: Forward step and Backward step. In forward step, we push the goods from

the origins to destinations (Figure 5.3). In backward step, we push the products from

destinations to origins, as shown in Figure 5.3. The number of sub-problems to form is

m = 2×(n-2), n ≥ 2, where n is the levels number of the network.

To decompose the supply chain network (Figure 5.2), we compute the following heuristic

algorithm (Algorithm 5.1). Figure 5.3 shows the decomposition phase. The output of

this phase is a set of two-level sub problems Sfi and Sbj.
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Figure 5.3: Heuristic steps:Decomposition phase and Reduction phase
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Algorithm 5.1: DECOMPOSITION ALGORITHM

Input:

Li: set of level i in the supply chain network.

Output:

Sf : forward sub-problems.

Sb: backward sub-problems.

1 begin

2 /* Forward Step*/

3 for (i = 1 to i = n− 2) do

4 if (i = 1) then

5 Sf(2) ←− {L1, L2}

6 Sf(i+1) ←− {LSf(i) , L(i+1)}

7 /* Backward Step*/

8 for (j = n to j = 3) do

9 if (j = n) then

10 Sb(n−1) ←− {Ln, L(n−1)}

11 Sb(j−1) ←− {LSb(j) , L(j−1)}

12 Return (Sf, Sb)

5.3.3 Reduction Phase

We compute reduction algorithm (Algorithm 5.2) for each sub-problem Sfi and Sbi, in

order to reduce the size of each potential set Li to new reduced set Lri.

The idea of this step, is to keep the same costs or criteria used in the objective function of

the global MILP model to locate warehouses ans distribution centers. This means that, to

reduce the warehouses set, we integrate in the objective function of the p-median problem

warehouse opening costs, production costs and transportation costs, because these costs

are used in the global MIPL model to locate warehouses. Also, to reduce the distribution

centers set, the objective function of the p-median problem contains distribution center

opening costs, storage costs and transportation costs.

In order to calculate the p value, we solve the largest MILP model composed of suppliers
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Algorithm 5.2: REDACTION ALGORITHM

Input:

Sf : forward sub-problems.

Sb: backward sub-problems.

Output:

LSf : reduced set of forward sub-problems.

LSb: reduced set of backward sub-problems.

Lr: reduced set.

1 begin

2 /* Forward Step*/

3 for (i = 1 to i = (n− 2)) do

4 LSf(i+1)
←− p−median(Sf(i+1))

5 /* Backward Step*/

6 for (j = n to j = 3) do

7 LSb(j−1)
←− p−median(Sb(j−1))

8 /* Reduced Sets*/

9 for (i = 2 to i = (n− 1)) do

10 Lri ←− LSf(i) ∪ LSb(i)

11 Return (LSf , LSb, Lr)

set, p warehouses, p distribution centers and customers set, that we can solve using the

commercial software Cplex.

A general p-median problem involves a set of customers and a set of facilities to serve

customer demands (see Drezner and Hachamer (2004), ReVelle and Eiselt (2005), Klose

and Drexl (2005) and ReVelle et al. (2008)).

Let us define parameters and variables of the p-median model (Figure 5.4): S represents

suppliers set and W is potential facilities set. p denotes the number of facilities to open,

fj represents fixed cost of opening facility at candidate node j, cj denotes unit cost of

production goods at candidate facility j, µij is the unit transportation costs of goods

between node i and node j, di denotes quantities supplied by supplier i. Xj =1 if we
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Figure 5.4: p-median network

locate facility at candidate site j, and = 0 else. Yij =1 if goods quantities at node i are

received by a facility at candidate site j, and = 0 else.

Minimize
∑

j∈W

(fj ·Xj) +
∑

j∈W

∑

i∈S

(µij + cj) · di · Yij (5.14)

Subject to

Constraint (5.15) requires that exactly p facilities be located:

∑

j∈W

Xj = p (5.15)

Constraint (5.16) ensures that every demand is assigned to some facility site:

∑

i∈S

Yij = 1 j ∈ W. (5.16)

Constraint (5.17) allows assignment only to sites at which facilities have been located:

Yij −Xj ≤ 0 i ∈ S; j ∈ W. (5.17)

Constraints (5.18) and (5.19) are standard non-negative and integrity constraints:

Xj ∈ {0, 1} j ∈ W. (5.18)

Yij ∈ {0, 1} i ∈ S; j ∈ W. (5.19)

5.3.4 Resolution Phase

After the resolution of the previous two phases, the supply chain network system is reduced

in complexity to the original SCN, due to reduction of the size of the potential sets to

small size sets. In this phase, we solve the reduced supply chain network problem using

the global MILP model (5.1)-(5.13).
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5.4 Application Case

In this section, we apply the proposed heuristic approach to our application case, as shown

in Figure 5.5. We consider a real life supply chain network consists of 220 suppliers, 220

potential warehouse locations, 220 potential distribution center locations , and 1500 sellers

. In order to describe the supply chain network (Figure 5.5), we define notations as follows:
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Figure 5.5: Supply Chain Network

we let L1 denotes suppliers set and L2 denotes warehouses set, L3 presents distribution

centers set, L4 is customers set.

5.4.1 Decomposition Phase

To find a feasible solution for the SCND problem, we start by dividing the problem

into four sub-problems: suppliers-warehouses sub-problem Sf2={L1,L2} (see Figure 5.6

(a)), warehouses-distribution centers sub-problem Sf3={LSf2 ,L3} (see Figure 5.6 (b)),

customers-distribution centers sub-problem Sb3={L4,L3} (see Figure 5.6 (c)) and distri-

bution centers-warehouses sub-problem Sb2={LSb3 ,L2} (see Figure 5.6 (d)).

As illustrated in Figure 5.6. Where LSf2 is the first potential warehouses set obtained

solving sub-problem Sf2. LSb3 denotes second potential distribution centers set obtained

solving sub-problem Sb3.
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(a)                                                (b) 

                                      Forward step 

  

(c)                                                (d) 

                                     Backward step 
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Figure 5.6: Decomposition phase

5.4.2 Reduction Phase

To reduce the huge size of the potential sets of the SCN, p-median model should be run

for each sub-problem. In order to calculate the p value, we solve the largest MILP model

composed of 220 suppliers, p warehouses, p distribution centers and 1500 customers. We

find that p is equal to 14.

For this case, the reduction phase contains four steps as presented in Figure 6.2, which

represent the number of sub-problem obtained in the previous phase. How this reduction

can be achieved will be explained in the following steps.

Step 1

In this step, we apply the p-median model to the first sub-problem Sf2 obtained in the

decomposition phase. As we can see on Figure 5.8, the detail of this step, the sub-

problem Sf2 is composed of two sets: suppliers set L1 and warehouses set L2. To get the

first potential warehouses set LSf2 , we solve the following mathematical model (5.20). In

addition to parameters and variables defined in previous section, let’s introduce those of
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Figure 5.7: Heuristic steps: Decomposition phase and Reduction phase

Figure 5.8: Step 1
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the p-median model: p denotes the number of warehouses to open, which is equal to 7 in

this step. di denotes quantities shipped from the supplier i. Xj =1 if we locate warehouse

at candidate site j, and = 0 else. Yij =1 if goods at node i are served by a warehouse at

candidate site i, and = 0 else.

Minimize
∑

j∈L2

(fcj ·Xj) +
∑

i∈L1

∑

j∈L2

(µij + fj) · di · Yij (5.20)

Subject to

(5.15), (5.16), (5.17), (5.18), (5.19).

The output of this step is the first potential warehouses set LSf1 that we will use in step

4.

Step 2

In this step, we try to reduce potential distribution centers set L3. However, we solve the

p-median problem applied to the second sub-problem Sf3 obtained in the decomposition

phase. Figure 5.9 outlines the detail of this step, the sub-problem Sf3 is composed of two

sets: first potential warehouses set distribution centers set LSf2 and distribution centers

set L3. Parameters and variables used in the p-median model: p denotes the number

Figure 5.9: Step 2

of potential distribution centers to open. di denotes quantities supplied from warehouse

i. Xj =1 if we locate distribution center at candidate site j, and = 0 else. Yij =1 if

distribution center j are served by a warehouse at candidate site i, and = 0 else.
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Minimize
∑

j∈L3

(dcj ·Xj) +
∑

i∈LSf2

∑

j∈L3

(µij + cj) · di · Yij (5.21)

Subject to

(5.15), (5.16), (5.17), (5.18), (5.19).

We fix the number of potential distribution centers to open p = 7, then we solve the

model. The output of this step is the first potential distribution centers set LSf3 that we

will use in step 3.

Step 3

Figure 5.10 outlines the detail of this step. The sub-problem Sb3 contains two sets: the

first potential warehouses set LSb1 and distribution centers set L3. First, we fix the number

of potential distribution centers to open p to 7. Then, we solve the following p-median

problem (5.22) applied to Sb3 sub-problem in order to get the second potential distribution

centers set LSb3 . Before presenting the objective function of the p-median problem, let’s

Figure 5.10: Step 3

define parameters and variables of this model: di denotes demand of customer i. Xj =1

if we locate distribution center at candidate site j, and = 0 else. Yij =1 if demand at

customer i are served by distribution center at candidate site j, and = 0 else.

Minimize
∑

j∈L4

(fcj ·Xj) +
∑

i∈L4

∑

j∈L3

(µij + fj) · di · Yij (5.22)

Subject to

(5.15), (5.16), (5.17), (5.18), (5.19).

123



Outputs of this step are the second potential distribution centers set LSb3 and Lr3= LSf3

∪ LSb3 that we will use in step 5.

Step 4

In this step, the sub-problem Sb2 contains two sets: first potential distribution center set

LSb3 and warehouses set L2 (Figure 5.11). In order to get the second potential warehouses

set LSb2 . We solve the p-median problem applied to this sub-problem

Parameters and variables of this model are: p denotes the number of potential distribution

Figure 5.11: Step 4

centers to open, p = 7 in this step. di denotes quantities supplied from warehouse i. Xj

=1 if we locate warehouse at candidate site j, and = 0 else. Yij =1 if warehouse j are

served by a distribution center at candidate site i, and = 0 else.

Minimize
∑

j∈L2

(dcj ·Xj) +
∑

i∈LSb3

∑

j∈L2

(µij + cj) · di · Yij (5.23)

Subject to

(5.15), (5.16), (5.17), (5.18), (5.19).

Outputs of this step are the second potential warehouses set LSb2 and Lr2= LSf2 ∪ LSb2

that we will use in step 5.

5.4.3 Resolution Phase

Now, we have the reduced supply chain network. As we can see on Figure 5.12, this

network is composed of : suppliers set A, reduced potential warehouses set Lr2={LSf2 ∪
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LSb2}, reduced potential distribution centers set Lr3={LSf3 ∪ LSb3} and customers set D.

We solve the MILP model (5.1)-(5.13) in order to find the optimal supply chain network

solution.

Figure 5.12: Step 5

5.5 Computational Results

In this section we describe numerical experiments using the heuristic algorithm for solving

real case supply chain design problem. We first explain instances and some implementa-

tion details. Then, we highlight the computational efficiencies of our heuristic method.

Finally, we outline the quality of the heuristic solutions in comparison to those obtained

using a MILP model.

5.5.1 Data and Implementation

We consider a real life supply chain network. Our case consists of 220 suppliers, 220

potential warehouse locations, 220 potential distribution center locations , and 1500 sellers

that the company serves. We generated 26 test problems from this real life SCN, to

evaluate the performance of the heuristic methodology and the global MILP model (5.1)-

(5.13). This means that, we reduced randomly the size of customers set from 1500 to

10 customers, the size of distribution centers set from 220 to 10 distribution centers,

warehouses number from 220 elements to 10 warehouses and the size of suppliers set from

220 suppliers to 11 suppliers (Table 5.2).

These instances are complemented on Windows Vista 1.66 GHZ and 2 GB of memory
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and solved by commercial software ILOG OPL 6.3/ CPLEX 12.1.0 (ILOG (2011)).

To solve the Global MILP of some large instances, from instance D15 to instance D26,

we used some specific cuts in order to speed up the resolution (see Paquet et al. (2004)).

Cuts proposed for the model presented here are related to numbers of distribution centres

and warehouses to open. They are defined by equations (5.24) to (5.25). Equation (5.24)

calculates the maximum number of warehouses to open and Equation (5.25) ensures that

the maximum number of distribution centers to open is equal to 4.

∑

j∈W

xj ≤ 2 (5.24)

∑

k∈D

yk ≤ 4 (5.25)

The main characteristics of this SC networks are presented in Chapter 3.

5.5.2 Performance of Heuristic

In this subsection, we discuss the performance of the heuristic algorithm for solving SCND

problems. To measure this performance, we select the following performance indicators:

(i) constraints number; (ii) variables number; (iii) CPU Time.

Constraints number and variables number of the heuristic method obtained solving the

last phase of the approach. The CPU Time of the heuristic presents the addition of the

computational times of all heuristic phases.

Table 5.2 summarizes results of the two approaches global MILP and heuristic.

Results are described by providing suppliers number (S), the potential warehouse sites

number (W), the potential distribution centers number (DC), the constraints number and

variables number.

Table 5.2 reveals that the global MILP model contains more constraints and variables

than the heuristic approach. As we can see, for small instances, from D1 to D6, vari-

ables and constraints number of both models are in the same number level, because the

number of facilities in warehouses set and distribution centers set are static equal to 10.

Increasing the number of facilities in these sets, the difference in number of constraints

and variables between two models go up. For example, for D20 we find that constraints

number is equal to 288 404 and 5 964 using MILP model and heuristic respectively.
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Figure 5.13: Constraints: MILP model vs Heuristic

It is clear that, the use of heuristic method help us to decrease the complexity of the

problem by reducing constraints and variables number. Figure 5.13 shows the increase of

constraints number of MILP model with the growth of the sample size. We compare the

constraints number required for solving a MIL problem to the heuristic, for each experi-

ence. As we can see, the constraints number using MILP model goes up exponentially

with the increase of the instance size, while it increases slowly with the network size using

our heuristic.

Figure 5.14 depicts the increase of variables number of MILP model with the growth

of instance size. We compare the variables number required for solving MILP using

commercial solver to the heuristic, for each experience. It’s clear that using our heuristic,

increasing the instance size the variables number rises from 650 to 5 500 (Table 5.2), while

it rises exponentially ( from 641 to 238 481) with the increase of the instance size using the

global MILP model. Figure 5.15 charts the increase of the computational time with the

growth of the sample size. For each instance, we compare the CPU seconds required for

solving the MILP model to the heuristic algorithm proposed in Section 5.2. The efficacy

of the proposed heuristic is clearly observed. For more detail you can refer to Table 6.8.
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Figure 5.14: Variables: MILP model vs Heuristic
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Figure 5.15: CPU time: MILP model vs Heuristic
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Table 5.2 reveals that solutions of the heuristic approach are not only superior to MILP

solution in terms of the CPU time, but these solutions also lead to smaller number of

constraints and variables.

The computational experimentation compares performances of the proposed heuristic

approach and the MILP approach. Limited computational results show that although

the latter is more effective in solving smaller-sized test instances, the proposed heuristic

approach appears to be more promising for larger test instances.

The quality of heuristic solutions are presented in the following subsection.

5.5.3 Quality of Heuristic Solutions

In this section we compare solutions of the heuristic algorithm to that of MILP model

using the following performance indicators: (i) costs; (ii) Gap; (iii) SC configuration.

- Costs: refers to the sum of all costs that are generated : opening costs, processing costs,

storage and transportation costs.

- Gap: refers to the percentage of cost difference between solutions.

Gap 1 =

(

Heuristic costs−Global MILP costs

Global MILP costs

)

× 100 (5.26)

Gap 2 =

(

Heuristic costs− Lower bound

Lower bound

)

× 100 (5.27)

Where Global MIPL costs represents the objective function value obtained solving the

global MILP. The Heuristic costs is the objective function value of the last step of the

heuristic method. The Lower bound represents the lower bound value of the global MILP

calculated by solver Cplex.

- SC configuration: refers to the supply chain network structure proposed by the mathe-

matical model.

In Table 6.8, we compare the solution obtained from the heuristic algorithm with the

global MILP solution that we got using Cplex solver. We first solve small size instances,

from D1 to D7, we find that the gap between the heuristic solution and the global MILP

solution (Gap 1), for all these instances, is equal to zero percent. We conclude that using

our heuristic, we can establish optimal solution to small sized problems, with an excel-

lent quality. Then, we conduct further experiments to test the heuristic for medium size
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Table 5.2: Constraints and variables numbers: Heuristic vs Global MILP model

MILP Model Heuristic

Exp S W DC C Constraints Variables Constraints Variables

D1 11 10 10 10 732 641 732 641

D2 11 10 10 20 842 741 576 490

D3 11 10 10 40 1062 941 854 742

D4 11 10 10 60 1282 1141 1034 902

D5 11 10 10 80 1502 1341 1214 1062

D6 11 10 10 103 1755 1571 1421 1246

D7 11 16 20 103 3701 3469 2465 2263

D8 11 16 40 103 7581 7289 1859 1675

D9 11 16 63 103 13032 12671 2208 2015

D10 11 40 63 103 16248 15815 1965 1781

D11 11 63 63 103 20411 19909 1859 1675

D12 11 80 80 103 30046 29441 2166 1969

D13 11 100 100 103 46510 45761 2166 1969

D14 11 120 120 120 61342 60481 2546 2330

D15 11 140 140 140 82762 81761 2444 2214

D16 11 160 160 160 107385 106241 3106 2850

D17 11 180 180 180 135202 133921 3335 3062

D18 11 200 200 200 206024 164801 3414 3121

D19 11 220 220 220 248624 198881 4330 4005

D20 11 220 220 400 288404 238481 5964 5474

D21 11 220 220 600 - - 7964 7274

D22 11 220 220 800 - - 10315 9428

D23 11 220 220 1000 - - 12715 11628

D24 50 220 220 1200 - - 17428 16057

D25 100 220 220 1500 - - 24411 22634

D26 220 220 220 1500 - - 18724 16725
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Table 5.3: CPU time: Heuristic vs Global MILP model

Exp S W DC C MILP Model CPU Time (s) Heuristic CPU Time (s)

D1 11 10 10 10 0.22 0.23

D2 11 10 10 20 0.28 0.53

D3 11 10 10 40 1.12 1.94

D4 11 10 10 60 2.2 2.42

D5 11 10 10 80 2.14 2.12

D6 11 10 10 103 3.58 2.06

D7 11 16 20 103 51.59 22.34

D8 11 16 40 103 3482 32.26

D9 11 16 63 103 44777 36.44

D10 11 40 63 103 36232 10.39

D11 11 63 63 103 87548 16

D12 11 80 80 103 8536 22

D13 11 100 100 103 16012 28

D14 11 120 120 120 9822 18

D15 11 140 140 140 81000* 21

D16 11 160 160 160 81000* 31

D17 11 180 180 180 81000* 33

D18 11 200 200 200 81000* 35

D19 11 220 220 220 81000* 43

D20 11 220 220 400 81000* 22

D21 11 220 220 600 - 38

D22 11 220 220 800 - 50

D23 11 220 220 1000 - 76

D24 50 220 220 1200 - 125

D25 100 220 220 1500 - 350

D26 220 220 220 1500 - 550
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problems (D8 to D14). As we can see on Table 6.8, the Gap 1 for these problems ranges

from 0% to 0.52%. To test the heuristic algorithm for large size problems, we increased

suppliers number from 11 to 220, warehouses number from 120 to 220, distribution centers

from 120 to 220 and customers number from 120 to 1 500. In these cases, the heuristic

was able to find solutions in reasonable time. In contrast to the global MILP model that

did not succeed to obtain any solution. The Gap 1 was impossible to calculate, because

we didn’t succeed to solve the problem using the exact MILP model. However, we will use

Gap 2 to compare large size problems. The Gap between the best integer and the heuris-

tic solution (Gap 2) ranges between 1.19% and 9.52%, the Gap 2 average is equal to 5.66%.

In Table 5.5, for instances D1 to D7, the CPU time varied significantly. The time

spent to get the solution by the global MILP model using the solver is at least 10 times

more than the time passed by heuristic approach. For these instances, the supply chain

configurations proposed by the global MILP model and the heuristic are exactly the same.

For example, the SC configuration obtained solving instance D4 using the global MILP

model is: two distribution centres {CD13,CD35} and one warehouse {F35}. We got the

same SC configuration using our heuristic to solve the instance D4 (Table 5.5).

It’s clear that using our heuristic, we can establish optimal solution to small sized prob-

lems, in a reasonable time, even faster than the global MILP model and the quality of

the solution is equal to the global model one.

Then, the computing times using the heuristic to solve medium size instances (D8 to

D14), are largely better than those using the global MILP. For example, the time that

the global MILP model took to solve the problem D9 is equal to 44 777 seconds , while

for the same problem the heuristic took only 37 seconds to get the optimal solution. Also,

for instances D8 to D14, the SC configurations of the both approaches are equals or a

small difference in one distribution center like in D10, the SC configuration proposed

by the global MILP model is {CD35, CD96, CD137, CD49} as distribution centers

and {F137} as warehouse, the SC configuration established by the heuristic algorithm is

{CD35, CD96, CD137, CD219} as distribution centers and {F137} as warehouse.

For experiments D15 to D26, as we can see on Table 5.7, Table 5.8 and Table 5.9, it’s

impossible to solve these instances using global MILP model, all of them are out of mem-
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ory (OM). But, using our heuristic we succeeded to obtain solutions in reasonable time.

Finally, Tables 5.5, 5.6, 5.7, 5.8, 5.9 and 5.10 show the SC configuration and computing

time obtained solving 26 instances using the heuristic algorithm and the global MILP

model.

Table 5.4: Solutions: Heuristic vs Global MILP model

Exp MILP costs (e) Lower bound(e) Heuristic costs (e) Gap 1 (%) Gap 2 (%)

D1 50 969 501 - 50 969 501 0,00% -

D2 49 104 009 - 49 104 009 0,00% -

D3 63 190 371 - 63 190 371 0,00% -

D4 64 479 173 - 64 479 173 0,00% -

D5 64 862 948 - 64 862 948 0,00% -

D6 66 583 537 - 66 583 537 0,00% -

D7 66 583 537 - 66 583 537 0,00% -

D8 60 864 271 - 60 864 271 0,00% -

D9 60 846 506 - 61 053 982 0,34% -

D10 58 253 135 - 58 554 399 0,52% -

D11 58 253 135 - 58 554 399 0,52% -

D12 59 366 319 - 59 591 091 0,38% -

D13 59 197 681 - 59 366 319 0,28% -

D14 47 546 627 - 47 546 627 0,00% -

D15 - 49 077 542 49 659 208 - 1,19%

D16 - 47 518 700 48 390 006 - 1,83%

D17 - 48 255 402 49 807 395 - 3,22%

D18 - 47 738 700 51 964 143 - 8,85%

D19 - 46 192 400 50 588 271 - 9,52%

D20 - 47 549 019 52 010 862 - 9,38%

Average 0,15% 5,66%
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Table 5.5: Configuration: Heuristic vs Global MILP (Part 1)

Global MILP Model Heuristic

Exp CPU Time (s) CD and capacities W and capacities CPU Time (s) CD and capacities W and capaci-

ties

D1 0,22 CD35(10000000);

CD39(115160000)

F35(125160000) 0,23 CD35(10000000);

CD39(115160000)

F35(125160000)

D2 0,28 CD35(45405000);

CD39(79753000)

F35(125160000) 0,53 CD35(45405000);

CD39(79753000)

F35(125160000)

D3 1,12 CD8(26596000);

CD35(98562000)

F35(125160000) 1,94 CD8(26596000);

CD35(98562000)

F35(125160000)

D4 2,2 CD13(84790000);

CD35(40368000)

F13(125160000) 2,42 CD13(84790000);

CD35(40368000)

F13(125160000)

D5 2,14 CD13(16006000);

CD8(44538000);

CD35(64555000)

F35(125160000) 2,12 CD13(16006000);

CD8(44538000);

CD35(64555000)

F35(125160000)

D6 3,58 CD13(16006000);

CD35(64555000)

F35(125160000) 2,06 CD13(48877000);

CD35(76281000)

F35(125160000)

D7 51,59 CD13(48877000);

CD35(76281000)

F35(125160000) 22,34 CD13(48877000);

CD35(76281000)

F35(125160000)
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Table 5.6: Configuration: Heuristic vs Global MILP (Part 2)

Global MILP Model Heuristic

Exp CPU Time (s) CD and capacities W and capacities CPU Time (s) CD and capacities W and capaci-

ties

D8 3482 CD35(61823000);

CD96(19152000);

CD28(44184000)

F35(125160000) 32,26 CD35(61823000);

CD96(19152000);

CD28(44184000)

F35(125160000)

D9 44777 CD35(37884000);

CD96(19152000);

CD137(41848000);

CD50(26274000)

F149(125160000) 36,44 CD35(42042000);

CD96(19152000);

CD137(44590000);

CD219(19374000)

F13(125160000)

D10 36232 CD35(38239000);

CD96(19152000);

CD137(44410000);

CD49(23357000)

F137(125160000) 10,39 CD35(38239000);

CD96(19152000);

CD137(44410000);

CD219(23357000)

F137(125160000)

D11 875487 CD35(38239000);

CD96(19152000);

CD137(44410000);

CD49(23357000)

F137(125160000) 16 CD35(38239000);

CD96(19152000);

CD137(44410000);

CD219(23357000)

F137(125160000)
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Table 5.7: Configuration: Heuristic vs Global MILP (Part 3)

Global MILP Model Heuristic

Exp CPU Time (s) CD and capacities W and capacities CPU Time (s) CD and capacities W and capaci-

ties

D12 8536 CD3(16058000);

CD8(8409200);

CD137(51406000);

CD166(20981000);

CD171(28305000)

F149(125160000) 22 CD8(12088000);

CD137(58460000);

CD166(20981000);

CD171(33630000)

F149(125159000)

D13 16012 CD137(50424000);

CD166(20981000);

CD171(29152000);

CD89(24602000)

F149(125160000) 28 CD3(16058000);

CD8(8409200);

CD137(51406000);

CD166(20981000);

CD171(28305000)

F149(12516000)

D14 9822 CD7(27543000);

DE722(54105000);

DS513(43511000)

F66(12516000) 18 CD7(27543000);

DE722(54105000);

DS513(43511000)

F66(12516000)

D15 OM - - 21 CD8(42758000);

CD123(36330000);

CD133(46071000)

F66(12516000)
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Table 5.8: Configuration: Heuristic vs Global MILP (Part 4)

Global MILP Model Heuristic

Exp CPU Time (s) CD and capacities W and capacities CPU Time (s) CD and capacities W and capaci-

ties

D16 OM - - 31 CD71(40843000);

CD123(29330000);

CD133(54985000)

F66(12516000)

D17 OM - - 33 CD7(27396000);

CD123(18348000);

CD134(79415000)

F66(12516000)

D18 OM - - 35 CD123(21048000);

CD134(71033000);

CD197(33077000)

F153(12516000)

D19 OM - - 43 CD8(39996000);

CD71(20421000);

CD123(16048000);

CD134(48693000)

F153(12516000)
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Table 5.9: Configuration: Heuristic vs Global MILP (Part 5)

Global MILP Model Heuristic

Exp CPU Time (s) CD and capacities W and capacities CPU Time (s) CD and capacities W and capaci-

ties

D20 OM - - 22 CD8(39996000);

CD71(20421000);

CD123(16048000);

CD134(48693000)

F66(12516000)

D21 OM - - 38 CD8(47366000);

CD123(21277000);

CD133(53793000)

F66(12516000)

D22 OM - - 50 CD8(39687000);

CD123(26021000);

CD133(62541000)

F129(128249000)

D23 OM - - 76 CD8(25389000);

CD123(28517000);

CD133(50519000);

CD71(23353000)

F66(127778000)

D24 OM - - 125 CD8(42001000);

CD123(24830000);

CD133(48208000)

DE111(115039000)
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Table 5.10: Configuration: Heuristic vs Global MILP (Part 6)

Global MILP Model Heuristic

Exp CPU Time (s) CD and capacities W and capacities CPU Time (s) CD and capacities W and capaci-

ties

D25 OM - - 350 CD71(34947000);

CD123(30232000);

CD134(64388000)

DEX07(83453000);

ES423(46114000)

D26 OM - - 550 CD8(40726000);

DE722(28210000);

CD123(19442000);

CD134(39197000)

DEX07(127575000)
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5.6 Concluding Remarks

In this chapter, we have proposed a three-phase heuristic decomposition algorithm to solve

a supply chain network design problem. The heuristic consists of three phases which we

can generally define as decomposition phase, reduction phase and resolution phase. In

the decomposition phase, decomposition methods have been introduced in order to divide

the large scale of the SCN into small two-level networks. In reduction phase, a modified

p-median model has been used to reduce the large potential sets into small reduced sets.

In resolution phase, a global MILP model has been used to solve the reduced SCN.

In this chapter, we have developed a practical heuristic for large-scale supply chain net-

work design problems. We have solved a real large-scale supply chain network composed

of 220 suppliers, 220 warehouses, 220 distribution centers and 1 500 customers, in less

than 550 seconds. Computational results are generated from a set of 26 test problems.

The proposed heuristic CPU times increase almost slowly with the system size, which is

favourable for large-scale implementation. The average of heuristic CPU Time is equal

to 5 seconds for small size instances, 24 seconds for medium size problems and only 115

seconds for large scale instances. Moreover, the gap between the final solution obtained

by the proposed heuristic approach and the lower bound of global MILP obtained by

Cplex is equal to 0% in small size instances, less than 0.52% in medium size instances and

in large size problems, the gap ranges from 1.19% to 9.52% and the average gap between

the upper bound of the global MILP model and the solution of the heuristic is equal to

5.66%.

The numerical experiments have indicated that the proposed heuristic solution algorithm

performs well in terms of solution quality and computational time consumed.

Since SCND decisions are strategic and long term in nature, the influence of customers

demand in the establishment of the SCN and the effect of critical supply chain network

parameters are important. We think that it will be useful to consider the uncertainty of

these parameters, for example, by generating scenarios that capture future uncertainty of

the customers demand and costs. In this regard, the stochastic programming will be the

subject of the next chapter.
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Chapter 6

Supply Chain Network Design under

Uncertainty

The deterministic model discussed in the previous chapter provides a base for Supply

Chain Network Design (SCND). Nevertheless, any network design obtained based on this

model, which represents the optimal deterministic configuration, has no assurance of per-

formance for any other future parameter fluctuation. Deterministic models do not handle

uncertainties and information imperfections about expected probable future business en-

vironments (Sabri et Beamon (2000), Klibi et al. (2010), Santoso et al. (2005)). As

we explained in Chapter 2, section 2.4.2, uncertainty modelling becomes an important

challenge for more realistic SCN design.

Most SCND under uncertainty researches model Supply Chain (SC) parameters uncer-

tainties with probability distributions that are usually predicted from historical data.

(Alonso-Ayuso et al. (2003), Guillen et al. (2005), Gupta and Maranas (2003), Santoso

et al. (2005)). However, whenever statistical data are unreliable, or are not even available,

stochastic models may not be the best choice (Wang and Shu (2005)). The Possibility

Theory (Zadeh (1978)) may provide an alternative which is easier and needs less data

than the Probability Theory to deal with SC uncertainties (Dubois et al. (2003)). In this

chapter, we extend the deterministic SCND model presented in chapter 5. We first assume

that we got the statistical data of the customer demands, so, we use two-stage stochastic

programming approach to model the supply chain network under demand uncertainty.

After that, we address uncertainty in all SC parameters: opening costs, production costs,
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storage costs and customers demands. In this case, statistical data of all these parameters

are not available. However, we use possibilistic linear programming approach to model the

problem and we validate the approach in a large real case Textile supply chain network.

6.1 Stochastic Supply Chain Network Design

6.1.1 Introduction

Models discussed in the previous chapter suppose that supply chain design parameters

are deterministic. Whereas, in most cases, the future business environment under which

a supply chain network will operate is unknown and critical parameters such as customer

demands, prices, and capacities are uncertain in the real world. However, the importance

of uncertainty in supply chain design has encouraged researchers to address stochastic

parameters in supply chain design, such as Cheung and Powell (1996), Van Landeghem

and Vanmaele (2002), Yu and Li (2000).

In this part, we use two stages stochastic programming approach to model the problem.

In this approach, uncertain parameters are considered as random variables with an associ-

ated probability distribution and the decision variables are classified into two stages. The

first stage variables correspond to those decisions that need to be made first, before the

realization of the uncertainty. The second stage corresponds to those decisions made after

the uncertainty is announced. After the first stage decisions are taken and the random

events realized, the second stage decisions are subjected to the constraints imposed by

the second stage problem (Birge and Louveaux(1997)).

Santoso et al. (2005) proposed a two stage stochastic programming model and solution

algorithm for solving supply chain network design problems. Their heuristic integrates

the sample average approximation scheme with an accelerated Benders decomposition

algorithm. Authors used the proposed solution approach for solving two realistic supply

chain design problems. The first case network composed of 12 products, 6 suppliers, 17

warehouses, 8 manufacturing plants, 60 scenarios and 17 customers. The network struc-

ture of the second application case was: 13 products, 2 suppliers, 8 manufacturing plants,

60 scenarios and 238 customers. Azaron et al. (2008) developed a multi-objective stochas-

tic programming approach for supply chain design under uncertainty. They considered
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numerous uncertain parameters such as: demands, supplies , processing, transportation,

shortage and capacity expansion costs. Authors used the goal attainment technique,

which is a variation of the goal programming technique, to solve the multi-objective

SCND problem and to generate the Pareto-optimal solutions. Computational results on

network involving 4 suppliers, 4 potential plants, 3 customers and 4 scenarios were pre-

sented. Another example of solving two-stage stochastic supply chain design problems is

Alonso Ayuso et al. (2003). The authors proposed a branch-and-fix heuristic to solve a

real problem. The networks involved 6 plants, 12 products, 24 markets, and 23 scenarios.

Two-stage stochastic supply chain network design models were proposed by MirHassani

et al. (2000), Tsiakis et al. (2001), Vila et al. (2007) and Vila et al. (2008).

As evident from the above discussion, there is a big deal of research in the supply chain

network design under uncertainty, Owen and Daskin (1998). However, research addressing

real size supply chain networks design problems is significantly small in number. Most of

the stochastic supply chain network design literature considers simplified single criterion,

single transportation mode. In addition, the existing stochastic programming approaches

for supply chain design under uncertainty are suited for a very small number of scenarios.

However, this section deals with the design of a multi-criteria, multi-level and multi-modal

supply chain network under uncertainty in order to satisfy the customers demand and to

respect the environmental, social, legislative, and economic requirements. We extend the

second step of our methodology (see chapter 3), with a stochastic mathematical model.

We validate this model on the case study concerning the recycling of sediment waterways

presented in chapter 3.

In this chapter, we look for the optimal supply chain network design to fulfil uncertain

customer demands using two-stage stochastic programming model. The objective is to

minimize the sum of: opening facilities costs, storage costs, production costs and trans-

portation costs. We determine location of treatment facilities and their capacities to

satisfy an estimated annual demand of potential customers.

The remainder of this chapter is organized as follows. Fist, we discuss the modelling

of the problem and indicate how the deterministic SCND model may be extended using

stochastic programming method. Then, the results of the stochastic programming ap-

proach are discussed in Section 6.1.3. Finally, in Section 6.1.4 some concluding remarks
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are presented.

6.1.2 Model Development

In this section, we extend the deterministic Mixed Integer Linear Programming (MILP)

model presented in Chapter 5, to a stochastic programming model, in order to design a

supply chain network under uncertainty.

Consider the supply chain network presented in Chapter 5. In addition to the assump-

tions done before (Chapter 5), we assume that the customers demand are uncertain. As

in Alonso-Ayuso et al. (2003), Guillen et al. (2005) and Santoso et al. (2005), we assume

that we can predict from historical data the probability distributions of the demand un-

certain parameter. As we have only one uncertain parameter, which is customers demand,

and we have the probability distributions of this parameters, we use two stage stochastic

programming approach to model the problem (Santoso et al. (2005)). For more details

about this approach, you can refer to the Chapter 2. The potential design of a supply

chain being considered (see Figure 6.1), is composed of suppliers, warehouses, distribution

centres, and sellers. As depicted in Figure 6.1, products are shipped from suppliers to

 

Suppliers Warehouses Distribution 

centers 
Sellers 

Figure 6.1: Supply Chain Network
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warehouses, where goods are prepared to be sent to the next level. Then, they are trans-

ported to distribution centers. In some new products cases, β% of the goods should be

shipped directly to distribution centers, this percentage are fixed by experts. The distri-

bution centers insure the storage and the distribution of products to sellers. If the number

of warehouses to open is more than one site,γ% of goods received from suppliers should

be transported between warehouses in order to try to keep a quantity balance between

sites. This percentage γ are assigned by experts. Warehouses are defined as the facility

where the products are received and married with goods going to the same destination,

then shipped at the earliest opportunity, without going into long-term storage. They are

located near suppliers and distribution centers. Distribution centers are ones located near

customers and handled most products in four cycles (receive, store, pick, and ship).

In this case it’s very difficult to predict all uncertain SC parameters such as: trans-

portation costs, opening costs, processing costs, storage costs and demand, because the

collection of statistical data becomes increasingly unreliable and these information are

unobtainable in a long time horizon. However, experts do not precisely know their values.

Therefore, we will consider the knowledge of experts about the uncertain SC parameters

as fuzzy data. The technique used to elaborate the fuzzy numbers will be explained in

the next section.

The main assumptions used in the problem formulation are as follow:

We now model our supply chain as two-stage stochastic program. For reasons of sim-

plicity, we denote

the set of feasible solution of first-stage decisions xj and yk by X and Y , the uncer-

tain parameter in this formulation is: demand. The first stage consists of the deciding the

configuration decisions x and y, and the second stage consists of treatment, storage, and

the quantities of goods to transport throughout the supply chain network in an optimal

way. Note that ξ represents the random vector corresponding to the uncertain demands.

The design objective is to minimize the sum of investment costs and expected future
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- Numbers:

m number of supplier locations.

n number of possible warehouse locations.

p number of possible distribution center locations.

q number of customer locations.

r number of scenarios.

- Indices :

i supplier index.

j,j
′

possible warehouse location indices.

k,k
′

possible distribution center location indices.

l customer index.

s scenarios index.

- Parameters :

Ai capacity of supplier i.

f 0
j fixed cost of opening warehouse j.

α percentage of products transported from the suppliers to the distribution centre.

treatment, storage and transportation costs.

Minimize

[

∑

j∈W

(f 0
j · xj) +

∑

k∈D

(c0k · yk) +
∑

s∈R

δs ·Q(x, y, ξ
s)

]

(6.1)

Subject to

x ∈ X ⊆ {0, 1} (6.2)

y ∈ Y ⊆ {0, 1} (6.3)

With Q(x,y,ξs) being the solution of the following second stage problem:

Q(x, y, ξs) =
∑

i∈S

∑

j∈W

µij · q
s
ij +

∑

j∈W

fj
∑

i∈S

qsij +
∑

j∈W

∑

j
′
∈W

µjj
′ · qs

jj
′ +
∑

i∈S

∑

k∈D

µik · q
s
ik +(6.4)

∑

k∈D

ck
∑

i∈S

qsik +
∑

k∈D

∑

k
′
=1

µkk
′ · qs

kk
′ +
∑

j∈W

∑

k∈D

µjk · q
s
jk +

∑

k∈D

ck
∑

j∈W

qsjk +
∑

k∈D

∑

l∈C

µkl · q
s
kl
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fj unit processing costs at warehouse j.

Fmax
j maximum processing capacity at warehouse j.

Fmin
j minimum processing capacity at warehouse j.

γ percentage of products transported between warehouses.

c0k fixed cost of opening distribution center k.

ck unit storage costs at distribution center k.

Cmax
k maximum storage capacity of distribut.center k.

Cmin
k minimum storage capacity of distribution center k.

δ percentage of products transported between distribution centers.

µij unit transportation costs of goods between supplier i and warehouse j.

µjk unit transportation costs of goods between warehouse j and distribution centerk.

µkl unit transportation costs of goods between distribution centerk and customer l.

µik unit transportation costs of goods between supplier i and distribution center k.

µjj
′ unit transportation costs of goods between warehouse j and warehouse j

′

(j
′

6= j).

µkk
′ unit transportation costs of goods between distribution centerk and distribution

center k
′

(k
′

6= k).

θkl distance between distribution center k and customer l.

θmax maximal distance between each customer effected to distribution center.

Ds
l demand of the customer l for scenario s.

δs probability of scenario s.

- Decision variables:

xj =1 if warehouse j is opened, and = 0 otherwise.

yk = 1 if distribution center k is opened, and = 0 otherwise.

qsij quantity of products transported from supplier i to warehouse j in scenario s.

qsjk quantity of products transported from warehouse j to distribution centerk in sce-

nario s .

qskl quantity of products transported from distribution centerk to customer l in scenario

s.
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qsik quantity of products transported from supplier i to distribution center k in scenario s.

qs
jj

′ quantity of products transported from warehouse j to warehouse j
′

(j
′

6= j) in scenario s.

qs
kk

′ quantity of products transported from distribution center k to distribution center k
′

(k
′

6= k) in scenario s.

Constraint (6.5) imposes that all goods received by suppliers will be transported to ware-

house and/or distribution centre:

∑

j∈W

qsij +
∑

k∈D

qsik = Ai i ∈ S; s ∈ R. (6.5)

Constraint (6.6) guarantees the percentage of goods that will be transported directly from

suppliers to distribution centers:

∑

k∈D

qsik = α ·Ai i ∈ S; s = 1, ..., r. (6.6)

Constraint (6.7) enforces the flow conservation of the products between warehouses:

∑

i∈S

qsij +
∑

j
′
∈W

qs
j
′
j
=
∑

k∈D

qsjk +
∑

j
′
∈W

qs
jj

′ j ∈ W ; s ∈ R; (j
′

6= j). (6.7)

Constraint (6.8) guarantees the goods flow between warehouses:

∑

j
′
∈W

qs
jj

′ = γ ·
∑

i∈S

qsij j ∈ W ; s ∈ R(j
′

6= j). (6.8)

Constraint (6.9) limits the warehouse treatment capacity :

Fmin
j · xj ≤

m
∑

i∈S

qsij +
n
∑

j
′
∈W

qs
j
′
j
≤ Fmax

j · xj j ∈ W ; s ∈ R(j
′

6= j). (6.9)

Constraint (6.10) enforces the flow conservation of the products between distribution

centers:

∑

j∈W

qsjk +
∑

i∈S

qsik +
∑

k
′=1

qs
k
′
k
=
∑

l∈C

qskl +
∑

k
′=1

qs
kk

′ k ∈ D; s ∈ R; (k
′

6= k). (6.10)

Constraint (6.11) guarantees the goods flow between distribution centers:

∑

k
′
=1

qs
kk

′ = δ ·

[

∑

i∈S

qsik +
∑

j∈W

qsjk

]

k ∈ D; s ∈ R; (k
′

6= k). (6.11)
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Constraint (6.12) limits the distribution center capacity:

Cmin
k · yk ≤

∑

j∈W

qsjk +
∑

i∈S

qsik +
∑

k
′
∈D

qs
k
′
k
≤ Cmax

k · yk k ∈ D; s ∈ R; (k
′

6= k). (6.12)

Constraint (6.13) guarantees the response time from distribution centers to sellers:

qkl · (θ
max − θkl) ≥ 0 k ∈ D; l ∈ C. (6.13)

Constraint (6.14) guarantees that customers demand will be satisfied:

∑

k∈D

qskl = Ds
l l ∈ C; s ∈ R. (6.14)

Constraints (6.15) and (6.16) enforce the binary nature of xj and yk :

xj ∈ {0, 1} j ∈ W. (6.15)

yk ∈ {0, 1} k ∈ D. (6.16)

Constraints (6.17), (6.18), (6.19), (6.20), (6.21) and (6.22) are standard integrality and

non-negativity constraints:

qsij ≥ 0 i ∈ S; j ∈ W ; s ∈ R. (6.17)

qsjk ≥ 0 j ∈ W ; k ∈ D; s ∈ R. (6.18)

qskl ≥ 0 k ∈ D; l ∈ C; s ∈ R. (6.19)

qsik ≥ 0 i ∈ S; k ∈ D; s ∈ R. (6.20)

qs
jj

′ ≥ 0 j ∈ W ; j
′

∈ W ; s ∈ R; (j
′

6= j). (6.21)

qs
kk

′ ≥ 0 k ∈ D; k
′

∈ D; s ∈ R; (k
′

6= k). (6.22)

6.1.3 Computational results

In this section we describe numerical experiments using the proposed model for solving

realistic supply chain design problem of an international textile company in Europe. We

first describe the characteristics of the test problems and some implementation details,
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then comment on the quality of the two stage stochastic programming solution in compar-

ison to those obtained using deterministic approach. Our application case consists of 11

suppliers, 16 possible warehouse locations , 63 possible distribution center locations , and

103 sellers that the company serves. Our deterministic model and two-stage stochastic

programming model are complemented on Windows Vista 1.66 GHZ and 2 GB of memory

and solved by commercial software ILOG OPL 6.3/ CPLEX 12.1.0. Four scenarios are

generated for two-stage stochastic programming model and all of them are used individ-

ually for deterministic problem. To compare the performance of the deterministic and

stochastic models under each scenario. First, the models were solved. Then, the config-

uration of the stochastic solution is assessed under each scenario by allowing the model

to find his decision variables under each scenario.In order to generate a balanced network

configuration between these various scenarios, we applied stochastic programming with

equal probabilities. The Table 6.1 summarizes the results of the two models deterministic

and stochastic.

Table 6.1: Computational Results

Scenarios Variables Constraints CPU Time (s) Optimal cost (e) Distribution centers Warehouses

S1 12 608 17 820 353 55 533 302 CD7, CD21, CD31,

CD50

F11

S2 12 608 17 820 419 57 319 075 CD7, CD22, CD28,

CD49

F3

S3 12 618 17 820 629 58 543 342 CD7, CD22, CD24,

CD50

F11

S3 12 608 17 820 366 58 567 671 CD7, CD22, CD28,

CD49

F3

Stochastic50 280 71 280 285 976 57 739 990 CD7, CD22, CD28,

CD49

F4

Table 6.1 reveal that the deterministic model contains 12 608 variables and 17 820

constraints, and the computational time is between 353 seconds and 629 seconds. The

Stochastic two-stage programming model contains 50 280 variables and 71 280 constraints,

however the computational time increase to 285 976 seconds. As we can see, for 4 scenarios
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the CPU Time rise to 285 976 seconds, and it can easily go up with the growing of scenario

numbers. In addition the number of variables and constraints for the models shows the

higher degree of complexity of the stochastic model. The use of heuristics methods can

help to use more scenarios and decrease this time, which is one of our future research

topics. To satisfy customers demand and decrease the response time from distribution

centers to sellers to less than 48 hours, the number of warehouses and distribution centers

to open are: 1 and 4 respectively. The stochastic configuration differs from any of the

deterministic configuration of individual scenario.

Table 6.2: Comparison of Deterministic cost to Stochastic cost.

Scenarios Deterministic cost (e) Stochastic cost(e) Stochastic–Optimal (e) % of Stochastic

S1 55 533 302 55 697 279 163 977 0.30%

S2 57 319 075 57 633 243 314 168 0.55%

S3 58 543 342 58 902 208 358 866 0.61%

S4 58 567 671 58 727 230 159 559 0.27%

Average 57 490 847 57 739 990 249 143 0.45%

Table 6.2 shows the differences between the cost given by the Deterministic solution

of each scenario and the cost given by the Stochastic solution for the same scenario. The

Stochastic solution generates more expensive costs than Deterministic solution for each

scenario. The Stochastic average cost is 0.45% more expensive than the Deterministic

average cost.

Values generated by the Deterministic solution and the worst cases are presented in

Table 6.3: Comparison of optimal Deterministic solutions to worst case solutions.

Scenarios Deterministic cost (e) Worst case cost(e) Worst case-Deterministic (e) % of worst case

S1 55 533 302 56 157 021 623 719 1.12%

S2 57 319 075 58 535 292 1 216 217 2.12%

S3 58 543 342 59 414 125 870 783 1.49%

S4 58 567 671 59 269 142 701 471 1.20%

Average 57 490 847 58 343 895 853 047 1.48%

Table 6.3.
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In this comparison the average cost generated by the worst case is 1.48% bigger than the

Deterministic average cost. From row 2 of Table 6.3, we see that the difference between

worst case costs and Deterministic costs attends 1 216 217 (e), which represent 2.12% of

the optimal Deterministic cost.

Table 6.4 compares optimal Stochastic solutions costs to worst case solutions costs.

It is clear that, the stochastic solution costs for all candidate stochastic programming

Table 6.4: Comparison of Stochastic cost to worst case cost.

Scenarios Stochastic cost(e) Worst case cost(e) Worst case-Stochastic (e) % of worst case

S1 55 697 279 56 157 021 459 742 0.83%

S2 57 633 243 58 535 292 902 049 1.57%

S3 58 902 208 59 414 125 511 917 0.87%

S4 58 727 230 59 269 142 541 912 0.92%

Average 57 739 990 58 343 895 603 905 1.05%
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Figure 6.2: Solution costs comparison

solution are smaller than that of the worst case solution. From row 2 of Table 6.4, we

observe that the cost corresponding to the stochastic programming solution 57 633 243 (e)

is smaller than that of the worst case with approximately 900 000 (e), which represents

1.57% of the global cost.

The last row of Table 6.4 displays the average of the results, the stochastic solution is
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approximately 1.05% smaller than the worst case solution, which represents 500 000 (e).

The Figure 6.2 shows the difference between the total costs of the optimal, stochastic and

worst case solutions. The results show that the stochastic configuration is better than

the worst case solution for all scenarios, and not far from the optimal solution of each

scenario.

6.1.4 Concluding Remarks

Determining the optimal supply chain configuration is a difficult problem since a lot of

factors and criteria must be taken into account when designing the network. Therefore, the

practical methodology developed in this theses seems to be the best way of capturing the

high complexity of sustainable supply chain network design problems under uncertainty.

We presented a supply chain design problem model which includes explicitly demand

uncertainty. The two stage stochastic programming formulation of the problem can be

applied to any supply chain that consists of many levels. The results obtained point out,

that supply chain design methods which do not include uncertainty obtain inferior results

if compared with models that formalise it implicitly. The stochastic model could handle

data uncertainty with a reasonable increase in total costs compared with the deterministic

model and therefore it can be concluded that the proposed two-stage programming model

can be used as a robust Model in real cases. In this first part, we assumed that we

have only one uncertain parameter (demand) and that we can predict from historical

data the probability distributions of the demand uncertain parameter. But, in reality,

information data are unreliable or unobtainable and many critical SC parameters are

uncertain such as : productions costs, storage cots, transportation costs, etc. With only

4 scenarios, the computational time of the two-stage stochastic programming model was

equal to 285 976 seconds However, stochastic models may not be the best choice (Wang

and Shu (2005)). In the next part of this chapter, we will try to address uncertainty in

all SC parameters: opening costs, production costs, storage costs and customers demands

assuming that we have not the historical data of these parameters. We will use possibilistic

linear programming approach to model the problem.
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6.2 Possibilistic Supply Chain Network Design

6.2.1 Introduction

In this section, we extend our model studied in this Chapter to a more complex case in

which the supply chain parameters such as customers demand and costs are considered

uncertain, especially as fuzzy numbers. Also, we consider two decision levels, warehouses

to open in the the first level and distribution centers to locate in the second one.

This part has two important contributions. First, it presents a comprehensive possibilistic

model for supply chain network design under uncertainty and an efficient solution pro-

cedure for finding solution to a possibilistic mixed-integer program. The need for such

model by practitioners, in supply chain design, has been highlighted by many authors

such as Sabri and Beamon (2000). And second, it introduces a real world application

case. In our literature survey (Chapitre 2) we have felt a lack of studies in this field.

The complex nature and dynamics of the relationships between supply chain actors imply

an important degree of uncertainty in SCND decisions and sources of these uncertainties

may be environmental or originated from the system itself: lack of information, abun-

dance of information, conflicting evidence, ambiguity, measurement and belief Zimmer-

mann (2001). In the following, we describe these causes in detail:

- Lack of information: a lot of are situations characterized by a lack of information: (i)

Decision under uncertainty is the situation in which a Decision Maker (DM) does not

have any information about which of the possible states of nature will occur. (ii) Decision

making under risk is situation in which the DM knows the probabilities for the occur-

rence of various states. (iii) Approximation: here one does not have to gather sufficient

information to make an exact description, even though this might be possible. (iv) Am-

biguity: certain linguistic information has entirely different meanings, human observer

can normally easily interpret the word correctly if he knows the context of the word. (v)

Measurement: we have some uncertainty about the real measure and we know only the

indicated measure. The quality of measuring technology has increased with time and the

further this technology improves, the more exactly it can measure physical features such

as distance, transportation time, shipment speed, etc (Zimmermann (2001)).

- Abundance of information : this type of uncertainty is due to the limited ability of
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human beings to perceive and process simultaneously large amounts of data (Newell and

Simon (1972)). In that cases, generally DM transforms the available data into perceivable

information by focusing their attention on those features which seems to him most impor-

tant and neglecting all other information or by using coarser grid or rougher granularity.

- Conflicting evidence : uncertainty might also be due to conflicting evidence, there might

be considerable information available pointing to a certain behaviour of a system and ad-

ditionally there might also be information available pointing to another behaviour of the

system. If the two classes of available information are conflicting, then an increase of

information might not reduce uncertainty at all, but rather increase the conflict.

- Belief : is a cause of uncertainty situation in which all information available to the

observer is subjective as a kind of belief in a certain situation. This situation is probably

most disputable (Zimmermann (2001)).

In our real-world application case, a lot of supply chain parameters whose values are as-

signed by experts are uncertain in nature because some informations are unobtainable in

a long time horizon. For example, it’s difficult to predict numerous parameters such as:

transportation costs, opening costs, processing costs, storage costs and demand, because

the collection of statistical data becomes increasingly unreliable. However, experts do not

precisely know their values. Therefore, it is useful to consider the knowledge of experts

about the parameters as fuzzy data.

The main idea in this chapter is to model uncertain parameters as fuzzy triangular num-

bers. Then, to determine locations, numbers, capacities of warehouses capacities of dis-

tribution centers and materiel flow transported throughout the supply chain network by

minimizing the fuzzy objective function composed of the sum of costs cited above.

This part is organized as follows: In section 6.2.2, an additional Possibilistic Linear Pro-

gramming (PLP) literature review is presented. In section 6.2.3, basic fuzzy sets theory

definitions need for the current study are highlighted, PLP model is set out and solution

approach is outlined. Section ??, includes application of the proposed model and offers

an analysis of the computational results. Finally, conclusions are drawn and future lines

of research are discussed in Section 6.2.5.
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6.2.2 Possibilistic Linear Programming

In addition to the Possibilistic Linear Programming literature review presented in Chap-

ter 2 (section 2.4), we try, in this section, to emphasize on research works in possibilistic

supply chain network area.

Chen and Lee (2004) proposed a multi-objective optimisation for a supply chain network

with uncertain market demands and product prices. The authors modelled the uncertain

market demands as a number of discrete scenarios with known probabilities, and used

the fuzzy sets for describing the sellers and buyers incompatible preference on product

prices, and presented computational results on supply chain networks involving up to 1

plant site, 2 distribution centers, 2 retailers and 2 products.

In Wang and Hsu (2005) paper, a generalized closed-loop logistics model is proposed

where the uncertainty is expressed by fuzzy numbers. They developed a mathematical

programming model for this problem involving customer demands, recovery percentage

and landfill rate as fuzzy parameters, and presented a numerical example composed of 3

suppliers, 5 production plants, 3 distribution centers, 2 recycling sites and 4 customers.

Wang and Shu (2007) suggested a possibilistic decision model to determine the supply

chain configuration and inventory policies for new products with unreliable or unavail-

able statistical data. Fuzzy sets were used to model uncertain and flexible supply chain

parameters such as total supply chain cost, demand, service time and lead time. Authors

presented a case study of Computer Assembly Company to evaluate the performance of

the entire supply chain.

Peidro et al. (2009) proposed a fuzzy mathematical programming model for supply chain

planning which considers supply, demand and process uncertainties. The model formu-

lated as a fuzzy mixed integer linear programming model where data are unknown and

modelled by triangular fuzzy numbers. They tested the proposed PLP on a cars supply

chain network involving: 44 suppliers, one manufacturing site, one assembly plant and a

cars assembly plant. Chen and Lee (2004) proposed a multi-objective optimisation for a

supply chain network with uncertain market demands and product prices. The authors

modelled the uncertain market demands as a number of discrete scenarios with known

probabilities, and used the fuzzy sets for describing the sellers and buyers incompati-

ble preference on product prices, and presented computational results on supply chain
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networks involving up to one plant site, two distribution centers, two retailers and two

products.

In Wang and Hsu (2010) paper, a generalized closed-loop logistics model is proposed

where the uncertainty is expressed by fuzzy numbers. They developed a mathematical

programming model for this problem involving customer demands, recovery percentage

and landfill rate as fuzzy parameters, and presented a numerical example composed of 3

suppliers, 5 production plants, 3 distribution centers, two recycling sites and 4 customers.

Pishvaee and Torabi (2010) showed a bi-objective possibilistic mixed integer programming

model to deal with the design of closed-loop supply chain networks under uncertainty. To

solve the proposed model, they introduced an interactive fuzzy solution approach by com-

bining the Jimenez (1996), Jimenez et al. (2007), Torabi and Hassini (2008) and Selim

and Ozkarahan (2008) methods.

6.2.3 Model Development

In this section, we introduce the basic idea of the possibilistic linear programming. Then,

we present the steps of PLP method and the resolution approach. Figure 6.3 outlines the

important steps of the modelling method and the resolution approach.

The starting point in Figure 6.3 is the formulation of the PLP model. Then, the imprecise

coefficients and the fuzzy objective function are transformed into crisp ones. Finally, the

resolution approach is applied. We will first describe the essentials of possibility approach

and then explain all these steps in the following sections.

Uncertainty modeling

Before, we attempt to describe the detail of the steps introduced in (Figure 6.3), we

present the definitions and the concepts of possibility theory suggested by Zadeh in 1965

(Zadeh (1965)).

To deal with the uncertainties, all fuzzy parameters are represented by the (∼) sign over

their symbols. According to Zadeh, a fuzzy set Ã of a universe X is characterised by its

membership function µÃ.

µÃ : X −→ [0, 1 ]
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Figure 6.3: Modelling and resolution method

Where µÃ(x); x ∈ X, is the membership degree or grade of membership of x to Ã.

A fuzzy set B̃ of a universe X is characterised by its membership function µB̃.

µB̃ : X −→ [0, 1 ]

Where µB̃(x); x ∈ X, is the membership degree or grade of membership of x to B̃.

The membership function µC̃(x) of intersection C̃=Ã ∩ B̃ is defined by

µC̃(x) = min{µÃ(x), µB̃(x)}, x ∈ X (6.23)

The membership function µD̃(x) of union D̃=Ã ∪ B̃ is defined by

µD̃(x) = max{µÃ(x), µB̃(x)}, x ∈ X. (6.24)
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The membership function of the complement of a normalized fuzzy set Ã, µÃc(x) is defined

by

µÃc(x) = 1− µÃ(x), x ∈ X. (6.25)

Assume that c̃ij is a triangular fuzzy number, cmij it’s the most likely value of this pa-

rameter, cLij is the most pessimistic value and cRij is the optimistic value. The following

equation µc̃ij(x) can be defined as the membership function of c̃ij:

µc̃ij(x) =



































fcij(x) =
x−cLij

cmij−cLij
if cLij ≤ x ≤ cmij

1 if x = cmij

gcij(x) =
cRij−x

cRij−cmij
if cmij ≤ x ≤ cRij

0 if x ≤ cLij or x ≥ cRij

(6.26)

In practice, a Decision Maker (DM) can construct the triangular possibility distribution

of c̃ij based on the three prominent data (cLij, c
m
ij , c

R
ij). Figure 6.4 presents the triangular

possibility distribution of fuzzy number c̃ij.

According to Heilpern (1992) and Jimenez et al. (2007), expected interval (EI) and
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Figure 6.4: The triangular possibility distribution of c̃ij

expected value (EV ) of triangular fuzzy number c̃ij can be defined as follow:

E
cij
1 =

∫ 1

0

f−1
cij

(x) dx =
1

2
(cLij + cmij ) (6.27)

E
cij
2 =

∫ 1

0

g−1
cij
(x) dx =

1

2
(cmij + cRij) (6.28)

EI(c̃ij) =
[

E
cij
1 , E

cij
2

]

=

[
∫ 1

0

f−1
cij

(x) dx,

∫ 1

0

g−1
cij
(x) dx

]

=

[

1

2
(cLij + cmij ),

1

2
(cmij + cRij)

]

(6.29)
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EV (c̃ij) =
E

cij
1 + E

cij
2

2
=
cLij + 2cmij + cRij

4
(6.30)

Now we consider the following general fuzzy mathematical programming model in which

all parameters are defined as triangular fuzzy numbers, where c̃ij, ãi, b̃i, represent, fuzzy

parameters involved in the objective function and constraints, respectively. x is the crisp

decision vector, z, is to be minimized in the sense of a given PLP problem.

Min (z = c̃ijx)

s.t.

ãix ≥ b̃i, i = 1, . . . , l

ãix = b̃i, i = l + 1, . . . ,m

x ≥ 0.

(6.31)

Using the definition of expected interval (6.29) , expected value (6.30) of a fuzzy number

and α as feasibility degree. Feasibility degree reflects the DM preferences, we found 11

scales of α presented by Kaufmann and Gil Aluja (1992), they attributed to: 0 unaccept-

able solution, 0.1 practically unacceptable solution, 0.2 almost unacceptable solution, ...,

0.9 practically acceptable solution and 1 to completely acceptable solution. The equivalent

crisp α-parametric model (6.32) of the model (6.31) can be written as follows:

Min EV (c̃ij)x

s.t.

[(1− α)Eai
2 + αEai

1 ] x ≥ αEbi
2 + (1− α)Ebi

1 , i = 1, . . . , l
[

(1− α
2
)Eai

2 + α
2
Eai

1

]

x ≥ α
2
Ebi

2 + (1− α
2
)Ebi

1 , i = l + 1, . . . ,m
[

α
2
Eai

2 + (1− α
2
)Eai

1

]

x ≤ (1− α
2
)Ebi

2 + α
2
Ebi

1 , i = l + 1, . . . ,m

x ≥ 0.

(6.32)

This model can not be solved directly. Therefore, a solution procedure is described in the

following section.

Solution approach

There are different approaches to solve PLP problems ( see Buckley and Feuring (2000) ,

Tanaka et al. (2000), Jimenez et al. (2007) , Sakawa (1993), Rommelfanger and Slowinski

(1998)).

Usually a combination of some of this methods is necessary to obtain good results, as in
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Jimenez et al. (2007).

Jimenez et al. (2007) proposed to solve possibilistic problem in an interactive way. The

main steps of this approach are explained below:

In the first step, we solve the crisp linear program (6.32) for each αk (feasibility degree).

We obtain the space S = x0(αk),αk of the αk-acceptable optimal solution of the problem

(6.31) and the possibility distribution of objective value z : z0(αk). Then the Decision

Maker is asked to specify the goal g and its optimist value G. If z ≤ g the DM will find

it totally satisfactory and if z ≥ G, DM satisfaction degree will be null. G̃ membership

function is as follows:

µG̃(z) =



















1 if z ≤ g

λ = G−z
G−g

if g ≤ z ≤ G

0 if z ≥ G

(6.33)

In the second step, we compute the degree of satisfaction of the fuzzy goal G̃ by each

α-acceptable optimal solution. There are several methods to do this, we suggest using an

index proposed by Kabak and Ulengin(1979).

KG̃(z
0(α)) =

∫ +∞

−∞
µG̃(z) · µz̃0(α)(z)dz
∫ +∞

−∞
µz̃0(α)(z)dz

(6.34)

In the third step of Jimenez et al. (2007), we have to look for a balanced solution

between the feasibility degree and the degree of satisfaction. We define two fuzzy sets

M̃ and Ñ with the following membership functions: µM̃(x0(αk)) = αk and µÑ(x
0(αk)) =

KG̃(z
0(αk)), respectively.

Then we find the fuzzy decision D̃ = M̃ ∩ Ñ :

µD̃(x
0(αk)) = αk ·KG̃(z

0(αk)) (6.35)

As we want to have a crisp decision, we propose as a solution to the fuzzy linear program,

those with the highest membership degree in the fuzzy set decision:

µD̃(x
∗) = max

αk

{αk ·KG̃(z
0(αk))} (6.36)

We now present a real application case, where we test both, the PLP model and the

solution approach.

161



Problem definition and possibilistic model

This section presents a possibilistic linear programming formulation of a supply chain

network design problem. We consider the potential supply chain network illustrated in

Figure 6.5, which includes suppliers, warehouses, distribution centers, and sellers.

These questions are answered by the proposed possibilistic model.

 

Suppliers Warehouses Distribution 

centers 
Sellers 

Figure 6.5: Supply Chain Network

Consider a supply chain network N = (O, A), where O is the set of nodes and A is the

set of arcs. The set O consists of the set of suppliers S, the set of potential warehouse

locations W , the set of potential distribution center locations D and the set of customers

C. The supply chain configuration decisions consist of deciding which of the warehouses

and distribution centers to open and determining flow of goods throughout the supply

chain network. We associate a binary variable xi to the first decisions, xi=1, if warehouse

i is opened, and 0 otherwise. We associate a binary variable yi to the second decisions,

yi=1, if distribution center i is opened, and 0 otherwise. The flow decisions concern the

flow of goods from the supplier to the customers. We let qij denote the flow of goods from

a node i to a node j. d̃ci denotes fixed cost of opening distribution center i, f̃ ci denotes

fixed cost of opening warehouse i and µ̃ij denotes unit transportation costs of goods from
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a node i to a node j. Let f̃i be the unit processing costs of products at warehouse i and

c̃j the unit storage costs of goods at distribution center j.

The related cost coefficients in the objective function (6.37) are imprecise in nature be-

cause some parameters are unobtainable in a long time horizon. Accordingly, the objective

function of the proposed model is composed of fixed warehouse opening costs, fixed distri-

bution center opening costs, transportation costs of goods throughout the supply chain,

treatment and storage costs. They are calculated in equation (6.37) as follows:

Minimize
∑

j∈W

(f̃ cj · xj) +
∑

k∈D

(d̃ck · yk) +
∑

i∈S

∑

j∈W

(µ̃ij + f̃j) · qij +

∑

j∈W

∑

j
′
∈W

µ̃jj
′ · qjj′ +

∑

i∈S

∑

k∈D

(µ̃ik + c̃k) · qik +
∑

k∈D

∑

k
′
∈D

µ̃kk
′ · qkk′ +

∑

j∈W

∑

k∈D

(µ̃jk + c̃k) · qjk +
∑

k∈D

∑

l∈C

µ̃kl · qkl (6.37)

Subject to

Constraint (6.38) imposes that all goods produced by suppliers i, denoted by Ãi, should

be transported to warehouse and/or distribution center j:

∑

j∈W

qij +
∑

k∈D

qik = Ãi i ∈ S (6.38)

Constraint (6.39) guarantees the percentage of goods β that should be transported directly

from supplier i to distribution center j:

∑

k∈D

qik = β · Ãi i ∈ S (6.39)

Constraint (6.40) enforces the flow conservation of the products between warehouses:

∑

i∈S

qij +
∑

j
′
∈W

qj′j =
∑

k∈D

qjk +
∑

j
′
∈W

qjj′ j ∈ W, (j
′

6= j) (6.40)

Constraint (6.41) guarantees percentage of products γ that should be transported between

warehouses i :

∑

j
′
∈W

qjj′ = γ ·
∑

i∈S

qij j ∈ W, (j
′

6= j) (6.41)

Constraint (6.42) limits the warehouse processing capacities, where Fmax
j denotes maxi-

mum processing capacity of products at warehouse j and Fmin
j represents the minimum

processing capacity of goods at the same warehouse j:

Fmin
j · xj ≤

∑

i∈S

qij +
∑

j
′
∈W

qj′j ≤ Fmax
j · xj j ∈ W (j

′

6= j) (6.42)
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Constraint (6.43) enforces the flows conservation of the products between distribution

centers:

∑

j∈W

qjk +
∑

i∈S

qik +
∑

k
′
∈D

qk′k =
∑

l∈C

qkl +
∑

k
′
∈D

qkk′ k ∈ D, (k
′

6= k) (6.43)

Constraint (6.44) guarantees the percentage of products δ that should be transported

between distribution centers j :

∑

k
′
∈D

qkk′ = δ ·

[

∑

i∈S

qik +
∑

j∈W

qjk

]

k ∈ D, (k
′

6= k) (6.44)

Constraint (6.45) limits the distribution center capacities, where Cmax
k presents the maxi-

mum storage capacity of products at distribution center k and Cmin
k denotes the minimum

storage capacity of goods at distribution center k:

Cmin
k · yk ≤

∑

j∈W

qjk +
∑

i∈S

qik +
∑

k
′
∈D

qk′k ≤ Cmax
k · yk k ∈ D, (k

′

6= k) (6.45)

Constraint (6.46) guarantees that d̃i demand of each customer i should be satisfied:

∑

k∈D

qkl = d̃l l ∈ C (6.46)

Constraints (6.47), and (6.48) enforce the binary nature of xj and yk :

xj ∈ {0, 1} j ∈ W (6.47)

yk ∈ {0, 1} k ∈ D (6.48)

Constraints (6.49) are standard integrality and non-negativity constraints:

qij ≥ 0 (ij) ∈ A (6.49)
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Equivalent crisp model

Using the above descriptions (6.31)-(6.32), the equivalent auxiliary crisp model of the

SCND model (6.37)-(6.49) can be formulated as follows:

Min z

z =

[

∑

j∈W

(

fcLj + 2fcmj + fcRj
4

)

· xj +
∑

k∈D

(

dcLk + 2dcmk + dcRk
4

)

· yk

+
∑

i∈S

∑

j∈W

(

µL
ij + 2µm

ij + µR
ij + fL

j + 2fm
j + fR

j

4
)·qij

+
∑

i∈S

∑

k∈D

(

µL
ik + 2µm

ik + µR
ik + cLk + 2cmk + cRk
4

)

· qik

+
∑

j∈W

∑

k∈D

(

µL
jk + 2µm

jk + µR
jk + cLk + 2cmk + cRk
4

)·qjk

+
∑

j∈W

∑

j
′
∈W

(

µL

jj
′ + 2µm

jj
′ + µR

jj
′

4

)

· qjj′ +
∑

k∈D

∑

k
′
∈D

(

µL

kk
′ + 2µm

kk
′ + µR

kk
′

4

)

· qkk′

+
∑

k∈D

∑

l∈C

(

µL
kl + 2µm

kl + µR
kl

4

)

· qkl

]

(6.50)

Subject to

∑

j∈W

qij +
∑

k∈D

qik ≥
α

2

(

Am
i + AR

i

2

)

+
(

1−
α

2

)

(

AL
i + Am

i

2

)

i ∈ S (6.51)

∑

j∈W

qij +
∑

k∈D

qik ≤
(

1−
α

2

)

(

Am
i + AR

i

2

)

+
α

2

(

AL
i + Am

i

2

)

i ∈ S (6.52)

∑

k∈D

qik ≥ β

[

α

2

(

Am
i + AR

i

2

)

+
(

1−
α

2

)

(

AL
i + Am

i

2

)]

i ∈ S (6.53)

∑

k∈D

qik ≤ β

[

(

1−
α

2

)

(

Am
i + AR

i

2

)

+
α

2

(

AL
i + Am

i

2

)]

i ∈ S (6.54)

and (6.39), (6.40), (6.41), (6.42), (6.43), (6.44), (6.45).

∑

k∈D

qkl ≥
α

2

(

Dm
l +DR

l

2

)

+
(

1−
α

2

)

(

DL
l +Dm

l

2

)

l ∈ C (6.55)

∑

k∈D

qkl ≤
(

1−
α

2

)

(

Dm
l +DR

l

2

)

+
α

2

(

DL
l +Dm

l

2

)

l ∈ C (6.56)

and (6.46), (6.47), (6.48), (6.49).
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6.2.4 Application to the real case

To validate the proposed model and illustrate the usefulness of the proposed solution

method, several experiments are established and the related results are reported in this

section. The application case concerns the design of a supply chain of an international

textile company in Europe. The potential SCN consists of 11 suppliers, 16 potential

warehouse locations, 63 potential distribution center locations, and 103 sellers that the

company serves. To solve the models, we used commercial software ILOG OPL 6.3 and

CPLEX 12.1.0. We made all test runs on a PC based on a windows Vista 1.66 GHz

processor equipped with 2 GB RAM.

To simplify, we suppose that we have β, γ and δ are equal to zero. To compare the

behaviour of the proposed possibilistic model with its deterministic version. First, the

models are solved. We obtain two solutions: Possibilistic and Deterministic configurations.

Then, the configuration of the PLP solution is assessed to the deterministic model and

solved under each test problem to find his decision variables. To validate the consistency

of the proposed model, twenty two experiments (Table 6.8) were made in which different

parameter values are changed. The corresponding results obtained by both deterministic

and possibilistic methods are compared with each other on these test problems.

The following performance indicators have been selected to be measured: (i) the total

costs, (ii) average service level, (iii) used capacity level, (iv) computational efficiency, (v)

budget using level and (vi) penalty costs.

- Total costs: refers to the sum of all the costs that are generated : opening costs,

processing costs, storage and transportation costs.

- Average Service Level (ASL): refers to the percentage of the amount of goods that can

be supplied to costumers, where q, DR
l , Dl, represent, number of customers, the amount

of goods that can be send to customer l and the demand of customer l, respectively.

ASL =

(

1

q

)

·

q
∑

l=1

DR
l

Dl

× 100 (6.57)

- Used Capacity Level (UCL): refers to the percentage of the capacity used to serve

costumers demand.

UCL =
Used capacity

Total capacity
× 100 (6.58)

166



- Computational efficiency: measures the computational effort necessary for the resolution

of each one of the models: the number of variables, the number of constraints and the

CPU time.

- Used Budget Level (UBL): refers to the percentage of budget or the amount of money

that can be used.

UBL =
Real budget

Estimated budget
× 100 (6.59)

- Penalty Costs (PC): refers to the amount of money that is paid to customers due to not

respect the delivery quantity, ρ present the unit penalty cost.

PC = ρ×

q
∑

l=1

(Dl −D
R
l ) (6.60)

To generate the triangular fuzzy parameters, the three prominent points (cLij, c
m
ij , c

R
ij) are

estimated for each imprecise parameter. The Decision Maker has already adopted the

pattern of triangular possibility distribution for all imprecise coefficients. To do so, the

most likely value (cmij ) of each parameter is firstly generated using the data of the company,

then the most pessimistic (cLij) and optimistic (cRij) values of a fuzzy number (c̃ij) are

calculated as follows:

cLij = (1 - θL) · cmij .

cRij = (1 + θR) · cmij .

Where θL and θR are left and right percentages. These values are assigned by experts.

Deterministic and Possibilistic solutions:

In this section, we apply the resolution method to the real case in oredr to find the

possibilistic solution.

In Table 6.5, we present the feasibility degree α that the DM considerd and the solutions

of the crisp model generated by varying α. The column Distribution centers proposes the

distribution centers to open for each α. Warehouses column gives the set of warehouses

to open. The possibility distribution of the fuzzy objective function are shown in the last

column.

Now, we have the possibility distribution of objective values in Table 6.5. According

to equation (6.33) we will suppose that the DM is fully satisfied with an objective value

lower than 55 · 106 (e) and that he will not be able to assume more than 65 · 106 (e) as
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Table 6.5: α-acceptable optimal solutions (part 1)

α Distribution centers Warehouses Possibility distribution of objective

zL(α) zm(α) zR(α)

0.1 CD7, CD22, CD24, CD49 F9 41 584 000 51 080 000 77 970 000

0.2 CD7, CD22, CD24, CD49 F9 42 180 000 51 825 000 79 088 000

0.3 CD7, CD22, CD24, CD49 F9 42 777 000 52 571 000 80 206 000

0.4 CD7, CD22, CD24, CD49 F9 43 373 000 53 316 000 81 324 000

0.5 CD7, CD22, CD24, CD49 F9 43 969 000 54 062 000 82 442 000

0.6 CD7, CD22, CD24, CD49 F9 44 566 000 54 807 000 83 560 000

0.7 CD7, CD22, CD24, CD49 F9 45 162 000 55 552 000 84 679 000

0.8 CD7, CD22, CD24 F9, F3 47 530 000 57 613 000 89 119 000

0.9 CD7, CD22, CD24 F9, F3 48 124 000 58 355 000 90 232 000

1 CD7, CD22, CD24 F9, F3 48 718 000 59 097 000 91 346 000

global cost. For simplicity we suppose that the membership function is linear, the goal

will be expressed as following:

µG̃(z) =



















1 if z ≤ 55 · 106

65·106−z
65·106−55·106

if 55 · 106 ≤ z ≤ 65 · 106

0 if z ≥ 65 · 106

(6.61)

We refer to equations (6.34) and (6.35) to calculate the compatibility index of each so-

lution with DM’s aspirations ( see equation (6.34)) and the membership degree of each

α-acceptable optimal solution (see equation (6.35)), as shown in Table 6.6. In agreement

with equation (6.36), the solution of the PLP model is the one which has the great-

est membership degree. We can see in Table 6.6 that the greatest membership degree

correspond to 0.32 and the 0.7-feasible optimal solution (Table 6.5) will be the best con-

figuration of the PLP problem.

In Table 6.7, we provide the number of variables, number of constraints, CPU Time, total

costs, distribution centers to open and warehouses to open for the deterministic model

and the probabilistic one. The capacity of each facility are presented between brackets.

Table 6.7 reveals that the deterministic model contains 12 671 variables and 18 765

constraints, and the computational time is equal to 912 seconds. The Possibilistic pro-
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Table 6.6: α-acceptable optimal solutions (Part 2)

Feasibility degree α Satisfaction degree K α.K Optimal cost (e)

0.1 0.66 0.07 55 878 466

0.2 0.63 0.13 56 679 765

0.3 0.60 0.18 57 481 063

0.4 0.56 0.23 58 282 362

0.5 0.53 0.27 59 083 661

0.6 0.50 0.30 59 884 960

0.7 0.46 0.32 60 686 259

0.8 0.35 0.28 63 868 562

0.9 0.32 0.28 64 666 512

1 0.29 0.29 65 464 462

gramming model contains 12 671 variables and 18 868 constraints, the computational time

is 419 seconds. As we can see, the number of variables and constraints for the models

shows that they have the same degree of complexity. In addition, to satisfy customers

demand the warehouses and distribution centers to open are the same for the two models

with different capacities which are {F9} and {CD7, CD22, CD24, CD49} respectively.

Sensitivity analyses

To validate the consistency of the proposed model, twenty two experiments (Table 6.8)

were made in which different parameter values are changed. In the first experiments (1-

11), we analysed the effect of demand changes by changing the demand value and fixing

all other parameters. The next experiments (12-17) are set up to carry out the effect of

costs variations. Experiments (18-22) are designed to evaluate the variation of demand

and costs. Table 6.8 introduces details of the experiments.

The results of these experiments are given in (Table 6.9). We see that the possibilis-

tic model, in general, obtains better performance indicators (UCL, ASL, PC) and UBL)

than the deterministic model. Figure 6.6 presents the UBL values of each test problem.

As we can see, for deterministic model, 14 experiments have a budget using level more

than 100%, which represents 64% of cases. This means that the budget fixed using the
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Table 6.7: Computational Results

Model Variables Constraints CPU Time (s) Total costs (e) Distribution centers Warehouses

Deterministic 12 671 18 765 912 55 493 965 CD7 (37 900 000) F9

CD22 (19 200 000)

CD24 (44 410 000)

CD49 (23 720 000)

Possibilistic 12 671 18 868 419 60 686 259 CD7 (39 740 000) F9

CD22 (19 600 000)

CD24 (45 410 000)

CD49 (24 250 000)

deterministic model (55 493 965 e) is not enough to satisfy the costumers in 64% of these

experiments. Whereas, only 5 test problems have exceeded the budget proposed by the

possibilistic model (60 686 259 e), therefore approximately 23% of test problems passed

the estimated budget. It is clear that the budget fixed by the PLP model is better than

the one proposed by the deterministic model, because with the first one, we succeed to

finance 77% of test cases and satisfy all customers, but with the second one, only 36%

of experiments are feasible to satisfy all customers. Although the possibilistic solution

is 9.3% more expensive than the deterministic one, this difference let us to get a robust

supply chain configuration that can absorb the uncertainty of environment, like price and

demand regulations, at the same time meet changing market requirements.

It can be seen from Table6.9 that the UBL average of deterministic configuration is equal

to 102%, so the majority of the UBL values are more than 100% (Figure 6.6), thus im-

plying that there is no sufficient money to take control of parameters uncertainties. The

UBL average of possibilistic solution (94%) reveals the flexibility and robustness of the

PLP solution in an uncertain environment.

Figure 6.7 shows the evolution of used capacity level varying the demand. As we can see,

increasing the demand the UCL of deterministic and possibilistic configurations rise until

to reach a peak (100%). The deterministic structure (125.23× 106 pcs) attends capacity

peak before the possibilistic one (129 × 106 pcs). According to the results presented in

Table 6.9, the deterministic UCL average (96%) is bigger than the possibilistic one (94%).
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Table 6.8: Experiments

N Experiment Description

1 The demands used in solving deterministic model

2 The demands are decreased by 3%

3 The demands are increased by 3%

4 The demands are increased by 5%

5 Demands The demands are decreased by 5%

6 The demands are increased by 10%

7 The demands are decreased by 10%

8 The demands are increased by 20%

9 The demands are decreased by 20%

10 The demands are increased by 30%

11 The demands are decreased by 30%

12 The costs are decreased by 10%

13 The costs are decreased by 5%

14 The costs are increased by 5%

15 Costs The costs are increased by 10%

16 The costs are increased by 15%

17 The costs are increased by 20%

18 The costs are increased by 2% and demands in-

creases by 2%

19 The costs are increased by 3% and demands in-

creases by 3%

20 Demands and

Costs

The cots are increased by 5% and demands are

decreased by 5%

21 The cots are increased by 10% and demands are

decreased by 8%

22 The cots are increased by 20% and demands are

decreased by 13%
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Table 6.9: Possibilistic vs Deterministic Results

Exp Deterministic Possibilistic

UCL

(%)

ASL

(%)

PC (e) UBL (%) UCL

(%)

ASL

(%)

PC (e) UBL

(%)

1 100% 100% 0 100% 97% 100% 0 91%

2 97% 100% 0 98% 94% 100% 0 89%

3 100% 94% 748 200 102% 100% 100% 0 94%

4 100% 90% 1 252 200 104% 100% 98% 502 000 95%

5 95% 100% 0 96% 92% 100% 0 88%

6 100% 82% 2 508 200 108% 100% 94% 1 758 000 98%

7 90% 100% 0 92% 87% 100% 0 84%

8 100% 67% 5 006 200 115% 100% 86% 4 256 000 105%

9 80% 100% 0 85% 78% 100% 0 77%

10 100% 54% 7 509 412 123% 100% 79% 6 759 212 113%

11 70% 100% 0 77% 68% 100% 0 70%

12 100% 100% 0 90% 97% 100% 0 82%

13 100% 100% 0 95% 97% 100% 0 87%

14 100% 95% 1 233 199 105% 97% 100% 0 96%

15 100% 90% 2 466 398 110% 97% 99% 158 712 101%

16 100% 85% 3 699 597 115% 97% 94% 1 391 911 105%

17 100% 81% 4 728 260 119% 97% 90% 2 420 573 109%

18 100% 96% 500 540 104% 99% 100% 0 95%

19 100% 94% 750 856 105% 100% 100% 0 96%

20 95% 99% 239 348 101% 92% 100% 0 92%

21 92% 97% 800 508 103% 89% 100% 0 94%

22 87% 91% 1 979 624 108% 84% 100% 0 99%

Average96% 92% 1 453 126 102% 94% 97% 749 844 94%
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Figure 6.8: Average service level: Possibilistic vs Deterministic

As a result, this capacity abundance in possibilistic solution is necessary to control the

environment uncertainty, especially when the demand increases. Figure 6.8 exhibits the

average service level of deterministic and PLP models increasing the demand. We note

that for demand between 87.6 × 106 to 129 × 106 pcs the possibilistic ASL is equal to

100%, when the demand attends maximal capacity of the structure (129×106) the service

level starts decreasing to attend approximately 80% when demand goes up to 162.7×106.

For the deterministic configuration, ASL is between 94% and 100% growing the demand

from 87.6 × 106 to 125.23 × 106 pcs, then the level begins to go down (54%) increasing

demand from 125.23 × 106 to 162.7 × 106. These fluctuations are due to the insufficient

budget proposed by the deterministic model although, in these cases we have enough ca-

pacity. As seen in Table 6.9, the PLP models obtain ASL (97%) that are better than the

deterministic model (92%). In all cases, this possibilistic model is more better adapted

to the existing uncertainties in input parameters considered in this work.

Figure 6.9 resumes experiments where the company should pay penalties. The exper-
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Figure 6.9: Penality: Possibilistic vs Deterministic

iments related to Possibilistic model show that when the demand increases from approxi-

mately 88× 106 to 129× 106, the penalty is equal to zero, exception one test problem the

penalty is equal to 2 420 573 (e) which is due to budget insufficiency to satisfy customers

demand. For demand values bigger than 129× 106, when the demand increases, then the

penalty costs increase significantly. On the other hand, the PC of deterministic model

fluctuates between zero and 4 728 260 (e) when the demand is increasing from approxi-

mately 88 × 106 to 129 × 106, then when the demand increases , the penalty value also

increases. In addition, we should pay penalty only five times in the possibilistic case,

which represents 34% of cases, but for the deterministic model we should do it in more

than 73% of cases, as can be seen in Figure 6.9.

6.2.5 Concluding Remarks

Determining the optimal supply chain configuration is a difficult problem since a lot of

factors and parameters must be taken into account when designing the network under

uncertainty. Since most of the parameters in such a problem have imprecise nature, a
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PLP approach was used to model a supply chain network and, a possibilistic program-

ming resolution method was proposed, which is able to find an efficient solution based on

decision maker preferences.

The proposed model has been tested by using data from a real life textile SCN, hence

the results demonstrate the effectiveness of a Possibilistic Linear Programming approach

for SCND under uncertainty. In addition, this model controls the uncertainty sources

identified in SCN problems given lack of information such as demands, costs, process and

supply uncertainties.

The proposed possibilistic formulation is better than the deterministic methods for han-

dling the real situations where precise or certain future informations are not available

for SCND. Additionally, the possibilistic model supply chain performance indicators have

been seen to be clearly better than those of deterministic model, as previously shown. For

example, the average service level of PLP models (97%) are better than the determinis-

tic model (92%). The investment budget proposes by the first model is more important

than the second model, approximately 77% of the test cases are satisfied using the PLP

configuration and only 36% of them are feasible using the deterministic solution. Further-

more, the possibilistic model has not generated an excessive increment of computational

efficiency, then the possibility to model and solve a real life size supply chain problems

under uncertainty.

In the next Chapter, we will present the general conclusions of this thesis.
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Chapter 7

Conclusions and Perspectives

The work presented in this thesis is a relative small contribution in the Supply Chain

research ocean. However, we think that design multi-criteria Supply Chain under uncer-

tainty is really a contemporary issue in many application domains.

Chapter 2 presented a review of mathematical programming models and resolution meth-

ods for Supply Chain Network Design (SCND). We have proposed a classification based

on the analysis of three aspects: supply chain network structure, decision level, supply

chain modeling approach. The conclusions drawn from this chapter affirm that: (i) papers

integrating multiple periods, multiple products, multiple criteria, multiple transportation

modes, multiple objective and uncertainty in SCND context are still scarce, (ii) the most

widely used modeling approach is mixed integer linear programming, where the use of

heuristic algorithms and meta-heuristics to solve the approach stands out, (iii) more pro-

posed models are validated using small numerical examples and the number of case studies

applied to real supply chains are still scare.

Chapter 3 studied our new multi-criteria supply chain network design methodology.

We have integrated many aspects in the design of the optimal sustainable supply chain,

such as: economical, social, environmental and legislative aspects.

Our methodology consists of two different steps. In the first step, we find the best poten-

tial facility locations where the future facilities could be established and different criteria

are satisfied. To model this step, we have combined the Geographic Information System

(GIS) and the AHP method. The second step establishes the optimal supply chain design
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to achieve customer demands and economic criteria using Mixed Integer Linear Program-

ming model.

A computational real case study has demonstrated the methodology’s efficiency, and has

shown that using GIS model to locate potential facilities in the design of sustainable sup-

ply chain network is very useful. In fact, it has provided a good way for integrating many

criteria and constraints such as: location sites far from the urban areas; sites should be

close to commercial zones, roads, railways and landfills; plants should be far from natural

area, airports and agriculture area, etc. Also, the GIS model has reduced the potential

set of locations from the entire country or region to small sustainable locations set. This

speeds up the process of finding the optimal supply chain configuration in the next step.

Our second contribution in this chapter is the study of CO2 emission impacts in the SCND.

We have shown that the integration of the environmental costs and multi-modality in the

mathematical model changes the structure of the supply chain network. It depends on

the environmental policy of the Company. This means that using the model, supply chain

managers could be able to see the impact of integration of the CO2 taxes and multi-modal

transportation network in the strategic decisions of supply chain. That will help them

to select the best strategic supply chain network. From this chapter we have learned

that integration of environmental taxes in the model can be an efficient way to achieve

environmental goals, by choosing the best SCN and clean transportation modes. These

results have also confirmed that to reduce CO2 emissions, we should take into account

multi-modal transport network, in the design of the supply chain.

Therefore, many possible future research avenues can be defined in this context. For in-

stance, GIS has the potential to speed up the process of finding potential locations and to

permit sensitivity analysis that will examine the impact of varying some of the criteria in

a mapping exercise. The results of this analysis can be used to identify general areas to

be further evaluated on a site specific basis using more detailed market place information.

As job opportunities or population features change due to actual development, the model

can be easily revised to reflect these changes. In addition, the second step model should

have objectives to evaluate the impact quality, lead-time and service level in supply chain

design problem. Also, we think that it is very important to compare the results of our

methodology to the existent SCND framework.
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Chapter 4 presented an extension of the second step of the methodology proposed in

Chapter 3. We have proposed a multi-objective supply chain network design problem.

We have formulated the problem as a Goal Programming model which aims at achieving

four economics and environmental goals which are respectively: (i) total costs goal, (ii)

energy consumption costs goal, (iii) waste treatment costs goal and (iv) CO2 emissions

goal. We have conducted a sensitivity analysis for the case study and we have observed

that, improving the building technology and increasing the facility number in the supply

chain can decrease CO2 emission of the whole network. Also, the total cost increase is

expected to be in conflict with the other three goals that aim to reduce the CO2 emission,

energy consumption and waste treatment of the supply chain. Regarding to the influence

of some parameters on the SC configuration and transportation mode used, we have found

that small variability of goals weight ωi does not affect the solution.

Our further research direction is to consider more factors in supply chain, such as social

criteria, quality criteria and taking into account the product life cycle. On the other

hand, we can also extend our research through designing new solution methods to solve

this multi-objective supply chain network design model, such as heuristics and meta-

heuristics.

Chapter 5 proposed a three-phase heuristic decomposition algorithm to solve large-

scale supply chain network design problems. The heuristic consists of three phases which

are: (i) decomposition phase, (ii) reduction phase and (iii) resolution phase. In the de-

composition phase, we divide the large scale supply chain network into small two-layer

networks. In reduction phase, we use a modified p-median model to reduce the large

potential sets into small reduced sets. In resolution phase, we use a global MILP model

to solve the reduced supply chain network.

Very large problems can indeed be solved in a reasonable amount of time with the heuristic,

whereas they cannot be solved with conventional MIP tools within a reasonable amount

of computational time. We have solved a real large-scale supply chain network composed

of 220 suppliers, 220 warehouses, 220 distribution centers and 1 500 customers, in less

than 550 seconds. The numerical experiments have indicated that the proposed heuris-
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tic solution algorithm performs well in terms of solution quality and computational time

consumed. For example, the average of heuristic CPU Time is equal to 5 seconds for

small size instances, 24 seconds for medium size problems and only 115 seconds for large

scale instances. Moreover, the gap between the final solution obtained by the proposed

heuristic approach and the lower bound of global MILP obtained by Cplex is equal to

0% in small size instances, less than 0.52% in medium size instances and in large size

problems, the gap ranges from 1.19% to 9.52% and the average gap between the lower

bound of the global MILP model and the solution of the heuristic is equal to 5.66%.

Future research could consider systems that faced not only deterministic parameters but

also stochastic parameters. The proposed solution approach can be adapted to other

SCN problems such as reverse logistic network design problem. In addition, it would

be interesting to apply this algorithm to more complex supply chains with more stages

and considering the SC parameters uncertainty. Furthermore it is possible to compare

the performance of this heuristic to others resolution methods presented in the literature.

Another unexplored extension of this algorithm is the consideration of a more complex

SCND model with multiple products, multiple periods, multiple objectives and uncertain

SC parameters.

Chapter 6 presented a supply chain design problem which includes explicitly demand

uncertainty. We use two-stage stochastic programming formulation to model the problem.

The results obtained pointed out, that supply chain design methods which do not include

uncertainty obtain inferior results if compared with models that formalise it implicitly.

The stochastic model could handle data uncertainty with a reasonable increase in total

costs compared with the deterministic model and therefore it can be concluded that the

proposed two-stage programming model can be used as a robust model in real cases.

Many possible future research directions can be defined in the area of logistic network

design under uncertainty. For example addressing uncertainty for all variable costs and

potential locations of customers may be attractive direction for future research. Moreover,

time complexity is not addressed in this chapter. However, since the computational time

increases when the size of the problem and the number of scenarios increase. We also need

to reduce the runtime further in order to include more scenarios and add more facilities

180



to the supply chain design decisions. Therefore, developing efficient exact or heuristic

solution methods is also a critical need in this area.

Since most of the parameters in our problem have imprecise nature and the complexity

to solve it by using the two-stage stochastic programming, we have proposed Possibilistic

Linear Programming (PLP) approach to model a supply chain network and which is able

to find an efficient solution based on decision maker preferences in a reasonable time.

The proposed model in this Chapter has been tested by using data from a real life textile

SCN, hence the results have demonstrated the effectiveness of a Possibilistic Linear Pro-

gramming approach for SCND under uncertainty. In addition, this model has controlled

the uncertainty sources identified in SCN problems given lack of information such as de-

mands, costs, process and supply uncertainties.

The proposed possibilistic formulation is better than the deterministic methods for han-

dling the real situations where precise or certain future informations are not available

for SCND. Additionally, the possibilistic model supply chain performance indicators have

been seen to be clearly better than those of deterministic model, as previously shown.

Furthermore, the possibilistic model has not generated an excessive increment of com-

putational efficiency, then the possibility to model and solve a real life size supply chain

problems with more uncertain parameters.

An interesting future research topic is to integrate into the proposed supply chain model

other aspects, such as multi-period, multi-product and multi-objective. In addition, the

CPU time was not an issue in our numerical experiments. However, in other large scaled

practical problems it might be an issue. Therefore, developing an efficient heuristic or

meta-heuristic algorithm to solve the corresponding PLP models should be helpful in

reaching efficient solutions in reasonable time.

This concludes our thesis. Our hope is that it will at least stimulate discussion among

researcher working in Supply Chain Network Design , about the usefulness of considering

Multi-criteria aspect and data uncertainty mixed approaches.
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Appendix A

Figures and Tables

A.1 AHP Example

We start by presenting the AHP example, then we explain how to elaborate the pairwise

comparison matrix and how to calculate the importance ratios.

A company wishes to buy a new production equipment and has defined many aspects

to chose the machine. We assume a firm has three criteria: cost, quality and delivery-

time. The high level in the hierarchy graph concerns the effective selection of the best

equipment; the following level represents criteria that correspond to the firm objectives;

and the last level with the selection of the alternative suppliers.

What weights should you put on each of these equipments? Is the A, B or C the ultimate

machine? Can you ignore any of these criteria ? It’s time for the AHP.

We first provide a matrix for the company’s pairwise comparisons using the evaluation

scale to make pairwise comparisons between criteria importance according to objective

achievement. Let us say that we compared all these criteria and come up with this table

(Table A.1). Table.A.1 is read as follows:

- 1, indicates the equal importance of the criteria.

- 5, indicates that cost is considerably more important than quality.

- 9, indicates that cost is strongly more important than delivery-time.

- 3, indicate that the quality is moderately important than delivery-time.

A little matrix now lets us to turn these comparisons into numerical weight. First, we

want to normalize all weights to a common references, by adding up the weights in a
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Table A.1: Comparison between criteria

Preference signification Cost Quality Delivery-time

Cost 1 5 9

Quality 0.2 1 3

Delivery-time 0.11 0.33 1

Total 1.61 6.33 13

column; then we divide each weight by its column sum. For example, as we can see on

Table A.1, the sum of the weights in the Delivery time column is 13. Then we divide

each weight in Delivery time column by 13 so the weight for cost is 9/13 or 0.69. This

normalizes all weights to a common references. The next step is to calculate the average

Table A.2: Relative importance ratios

Preference signification Cost Quality Delivery-time Raw average

Cost 0.76 0.79 0.69 0.75

Quality 0.15 0.16 0.23 0.18

Delivery-time 0.08 0.05 0.08 0.07

Total 1 1 1 1

of the normalized weights of each criteria to obtain the raw average column in Table A.2.

For example, the weight of the quality criteria is equal to 0.18 (Table A.2).

The AHP has revealed that for this company the cost is the most important criteria.

Without AHP, may we have assumed hat the ultimate criteria was Quality or Delivery

time.

A.2 Figures and Tables
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Figure A.1: Sediments depots in NPDC region
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Figure A.2: Roads network classes in NPDC region

Table A.3: Roads network classes and weights

Classes Weights Classes Weights

0 – 624 9 3 124 - 3 749 5

624 – 1 249 9 3 749 - 4 374 4

1 249 - 1 874 8 4 374 - 4 999 3

1 874 - 2 499 7 4 999 - 5 623 2

2 499 - 3 124 6 5 623 - 6 248 1
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Figure A.3: Railways network classes in NPDC region

Table A.4: Railways network classes and weights

Classes Weights Classes Weights

0 - 2 668 9 13 340 - 16 008 5

2 668 - 5 336 9 16 008 - 18 676 4

5 336 - 8 004 8 18 676 - 21 344 3

8 004 - 10 672 7 21 344 - 24 013 2

10 672 - 13 340 6 24 013 - 26 681 1

Table A.5: Waterways network classes and weights

Classes Weights Classes Weights

0 - 6 206 9 31 032 - 37 238 5

6 206 - 12 412 9 37 238 - 43 445 4

12 412 - 18 619 8 43 445 - 49 651 3

18 619 - 24 825 7 49 651 - 55 858 2

24 825 - 31 032 6 55 858 - 62 064 1
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Figure A.4: Waterways network classes in NPDC region
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Figure A.5: VNF landfills classes
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Table A.6: Landfills classes and weights

Classes Weights Classes Weights

0 - 6 379 9 31 897 - 38 277 5

6 379 - 12 759 9 38 277 - 44 656 4

12 759 - 19 138 8 44 656 - 51 036 3

19 138 - 25 518 7 51 036 - 57 415 2

25 518 - 31 897 6 57 415 - 63 795 1

Legend
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Figure A.6: Brownfield classes in NPDC region

Table A.7: Brownfield classes and weights

Classes Weights Classes Weights

0 - 5 839 9 29 197 - 35 037 5

5 839 – 11 679 9 35 037 - 40 877 4

11 679 – 17 518 8 40 877 - 46 716 3

17 518 - 23 358 7 46 716 - 52 556 2

23 358 - 29 197 6 52 556 - 58 395 1
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Table A.8: Supply chain configuration varying CO2 taxes

N CO2 taxes Potential locations Objective function (e)

Difference(e)

T1 T2 T3 T4 T5 γ 6=0 γ=0

1 0 0 0 0 T4 T5 48 509 520 48 509 520 0.0%

2 10 0 0 0 T4 T5 48 509 822 48 509 520 0.0%

4 100 0 0 0 T4 T5 48 511 474 48 509 520 0.0%

6 200 0 0 0 T4 T5 48 515 341 48 509 520 0.0%

7 300 0 0 0 T4 T5 48 518 166 48 509 520 0.0%

9 400 0 0 0 T4 T5 48 520 968 48 509 520 0.0%

10 500 0 0 0 T4 T5 48 523 771 48 509 520 0.0%

15 1000 0 0 0 T4 T5 48 536 488 48 509 520 0.1%

21 2000 0 0 0 T4 T5 48 560 014 48 509 520 0.1%

22 3000 0 0 0 T4 T5 48 583 363 48 509 520 0.2%

23 4000 T1 0 0 0 T5 48 606 223 48 509 520 0.2%

24 5000 T1 0 0 0 T5 48 628 834 48 509 520 0.2%

29 10000 T1 0 0 0 T5 48 731 450 48 509 520 0.5%

30 11000 T1 0 0 0 T5 48 751 955 48 509 520 0.5%

31 12000 T1 0 0 0 T5 48 772 441 48 509 520 0.5%

32 13000 T1 0 0 0 T5 48 792 915 48 509 520 0.6%

33 14000 T1 0 0 T4 0 48 809 384 48 509 520 0.6%

34 15000 T1 0 0 T4 0 48 825 785 48 509 520 0.7%

35 16000 T1 0 0 T4 0 48 842 185 48 509 520 0.7%

36 17000 T1 0 0 T4 0 48 857 682 48 509 520 0.7%

37 18000 T1 0 0 T4 0 48 873 001 48 509 520 0.7%

38 19000 T1 0 0 T4 0 48 888 320 48 509 520 0.8%

39 20000 T1 0 0 T4 0 48 903 639 48 509 520 0.8%

40 21000 T1 0 0 T4 0 48 918 958 48 509 520 0.8%

41 22000 T1 0 0 T4 0 48 934 277 48 509 520 0.9%

42 100000 T1 0 0 T4 0 50 129 100 48 509 520 3.3%

43 200000 T1 0 0 T4 0 50 660 861 48 509 520 6.5%
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Table A.9: CO2 Emissions varying CO2 taxes

N CO2 taxes Potential locations CO2 Emissions (T)

T1 T2 T3 T4 T5 γ 6=0 γ=0 Difference (%)

1 0 0 0 0 T4 T5 980 980 0.0%

2 10 0 0 0 T4 T5 302 980 69.2%

4 100 0 0 0 T4 T5 290 980 70.4%

6 200 0 0 0 T4 T5 286 980 70.8%

7 300 0 0 0 T4 T5 280 980 71.4%

9 400 0 0 0 T4 T5 280 980 71.4%

10 500 0 0 0 T4 T5 280 980 71.4%

15 1000 0 0 0 T4 T5 240 980 75.5%

21 2000 0 0 0 T4 T5 235 980 76.0%

22 3000 0 0 0 T4 T5 233 980 76.2%

23 4000 T1 0 0 0 T5 226 980 76.9%

24 5000 T1 0 0 0 T5 205 980 79.0%

29 10000 T1 0 0 0 T5 205 980 79.1%

30 11000 T1 0 0 0 T5 205 980 79.1%

31 12000 T1 0 0 0 T5 205 980 79.1%

32 13000 T1 0 0 0 T5 205 980 79.1%

33 14000 T1 0 0 T4 0 164 980 83.3%

34 15000 T1 0 0 T4 0 164 980 83.3%

35 16000 T1 0 0 T4 0 164 980 83.3%

36 17000 T1 0 0 T4 0 153 980 84.4%

37 18000 T1 0 0 T4 0 153 980 84.4%

38 19000 T1 0 0 T4 0 153 980 84.4%

39 20000 T1 0 0 T4 0 153 980 84.4%

40 21000 T1 0 0 T4 0 153 980 84.4%

41 22000 T1 0 0 T4 0 153 980 84.4%

42 100000 T1 0 0 T4 0 153 980 84.4%

43 200000 T1 0 0 T4 0 153 980 84.4%
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Table A.10: Transportation modes used varying CO2 taxes

N CO2 taxes Potential locations Transportation Modes Optimal Solution (e)

T1 T2 T3 T4 T5 % Roads % Waters % Trains

1 0 0 0 0 T4 T5 9.3% 80.7% 10% 48 509 520

2 10 0 0 0 T4 T5 0.0% 78% 22% 48 509 822

4 100 0 0 0 T4 T5 0% 75.3% 24.7% 48 511 474

6 200 0 0 0 T4 T5 0% 74.7% 25.3% 48 515 341

7 300 0 0 0 T4 T5 0% 54.7% 45.3% 48 519 567

9 400 0 0 0 T4 T5 0% 54.7% 45.3% 48 523 771

10 500 0 0 0 T4 T5 0% 54.7% 45.3% 48 526 526

15 1000 0 0 0 T4 T5 0% 53.3% 46.7% 48 538 824

21 2000 0 0 0 T4 T5 0% 52.0% 48.0% 48 583 363

22 3000 0 0 0 T4 T5 0% 36.7% 63.3% 48 606 223

23 4000 T1 0 0 0 T5 0.7% 36.7% 62.7% 48 628 834

24 5000 T1 0 0 0 T5 0.7% 36.7% 62.7% 48 649 368

29 10000 T1 0 0 0 T5 0.7% 36.7% 62.7% 48 751 955

30 11000 T1 0 0 0 T5 0.7% 36.7% 62.7% 48 772 441

31 12000 T1 0 0 0 T5 0.7% 36.7% 62.7% 48 792 915

32 13000 T1 0 0 0 T5 1.3% 25.3% 73.3% 48 809 384

33 14000 T1 0 0 T4 0 1.3% 25.3% 73.3% 48 825 785

34 15000 T1 0 0 T4 0 1.3% 25.3% 73.3% 48 842 185

35 16000 T1 0 0 T4 0 2.0% 25.3% 72.7% 48 857 682

36 17000 T1 0 0 T4 0 2.0% 25.3% 72.7% 48 873 001

37 18000 T1 0 0 T4 0 2.0% 25.3% 72.7% 48 888 320

38 19000 T1 0 0 T4 0 2.0% 25.3% 72.7% 48 903 639

39 20000 T1 0 0 T4 0 2.0% 25.3% 72.7% 48 918 958

40 21000 T1 0 0 T4 0 2.0% 25.3% 72.7% 48 934 277

41 22000 T1 0 0 T4 0 2.0% 24.7% 73.3% 50 129 100

42 100000 T1 0 0 T4 0 2.0% 24.7% 73.3% 51 660 861

43 200000 T1 0 0 T4 0 50 660 861 48 563 113 48 509 520 0%
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Figure A.7: GIS Model
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Table A.11: Law demand case

Treatment facility

Scenarios Optimal solution cost (e) T1 T2 T3 T4 T5

S1 21 499 647 0 0 0 0 1

S2 22 371 138 1 0 0 0 0

S3 22 663 786 0 0 0 0 1

S4 23 190 979 0 0 0 0 1

S5 22 734 047 0 0 0 0 1

S6 22 557 098 1 0 0 0 0

S7 22 136 323 0 0 0 0 1

S8 22 915 831 0 0 0 0 1

S9 22 373 920 1 0 0 0 0

S10 22 880 011 0 0 0 0 1

S11 22 663 442 1 0 0 0 0

S12 21 497 861 0 0 0 0 1

S13 21 845 157 0 0 0 0 1

S14 22 014 339 1 0 0 0 0

S15 22 841 817 0 0 0 0 1

S16 22 416 860 0 0 0 0 1

S17 21 890 644 0 0 0 0 1

S18 22 862 889 0 0 0 0 1

S19 22 840 508 0 0 0 0 1

S20 22 511 297 0 0 0 0 1

S21 22 685 309 1 0 0 0 0

S22 22 011 263 0 0 0 0 1

S23 21 669 811 0 0 0 0 1

S24 22 607 973 1 0 0 0 0
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Table A.12: Medium demand case

treatment facilities

Scenarios Objective Value (e) T1 T2 T3 T4 T5

S25 51 537 458 0 0 0 1 1

S26 47 741 375 1 0 0 0 1

S27 48 164 175 0 0 0 1 1

S28 49 404 226 0 0 0 1 1

S29 51 771 159 1 0 0 0 1

S30 47 241 512 0 0 0 1 1

S31 48 872 672 1 0 0 0 1

S32 51 381 933 1 0 0 0 1

S33 48 471 592 1 0 0 0 1

S34 46 914 566 0 0 0 1 1

S35 49 214 544 0 0 0 1 1

S36 46 952 201 1 0 0 0 1

S37 47 050 298 0 0 0 1 1

S38 49 170 072 0 0 0 1 1

S40 48 368 435 1 0 0 0 1

S41 47 266 430 1 0 0 0 1

S42 46 956 496 0 0 0 1 1

S43 49 962 501 1 0 0 0 1

S44 67 772 882 1 0 0 1 1

S45 47 581 870 0 0 0 1 1

S46 46 315 504 0 0 0 1 1

S47 48 817 042 0 0 0 1 1

S48 46 963 658 0 0 0 1 1

S49 67 421 795 1 0 0 1 1
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Table A.13: High demand case

Treatment facility

Scenarios Objective Value (e) T1 T2 T3 T4 T5

S50 74 846 906 1 0 0 1 1

S51 76 158 613 1 0 0 1 1

S52 76 181 000 1 0 0 1 1

S53 74 754 634 1 0 0 1 1

S54 74 195 625 1 0 0 1 1

S55 77 318 660 1 0 0 1 1

S56 71 685 345 1 0 0 1 1

S57 76 215 353 1 0 0 1 1

S58 74 372 451 1 0 0 1 1

S59 76 026 390 1 0 0 1 1

S60 76 804 009 1 0 0 1 1

S61 72 449 642 1 0 0 1 1

S62 75 644 260 1 0 0 1 1

S63 73 683 304 1 0 0 1 1

S64 74 667 875 1 0 0 1 1

S65 76 076 986 1 0 0 1 1

S66 75 289 961 1 0 0 1 1

S68 73 296 110 1 0 0 1 1

S69 73 296 110 1 0 0 1 1

S70 73 335 197 1 0 0 1 1

S71 76 956 521 1 0 0 1 1

S72 75 403 173 1 0 0 1 1

S73 76 787 453 1 0 0 1 1

S74 75 981 418 1 0 0 1 1

194



195



195�
�

Bibliography 
Aghezzaf, E. (2005).  Capacity planning and warehouse location in supply chains with uncertain 
demands, Journal of the Operational Research Society, 56, 453–462. 

Ahmed,  S., Sahinidis, N.V. ( 2003).  An approximation scheme for stochastic integer programs 
arising in capacity expansion. Operations Research, 51, 461-471. 

Akyol, D.E. , Bayhan, G. M. (2007). A review on evolution of production scheduling with neural 
networks, Computers & Industrial Engineering, 53, 95–122. 

Alçada-Almeida, L.,  Coutinho-Rodrigues, J., Current, J. (2009). A multiobjective modeling approach 
to locating incinerators, Socio-Economic Planning Sciences, 43, 111–120. 

Aliev, R.A., Fazlollahi,  B., Guirimov,  B.G., Aliev,  R.R.  (2007). Fuzzy-genetic approach to 
aggregate production–distribution planning in supply chain management. Information Sciences, 177, 
4241–4255. 

Alonso-Ayuso, A., Escudero, L.F., Garin, A., Ortuno, M.T., Perez, G. (2003).  An approach for 
strategic supply chain planning under uncertainty based on stochastic 0–1 programming. Journal of 
Global Optimization, 26, 97-124. 

Altiparmak, F., Gen, M., Lin, L., Paksoy, T. (2006). A genetic algorithm approach for multiobjective 
optimization of supply chain networks. Computers and Industrial Engineering, 51, 196–215. 

Ambrosino, D., Scutellà, M.G. (2005).   Distribution network design: New problems and related 
models, European Journal of Operational Research, 165, 610– 624. 

Amiri, A. (2006). Designing a distribution network in a supply chain system: Formulation and 
efficient solution procedure. European Journal of Operational Research , 171, 567-576. 

Amrani,  H., Martel, A., Zuerey, N., Makeeva, P.  (2008). A Variable Neighborhood Search Heuristic 
for the Designof Multicommodity Production-Distribution Networks with Alternative Facility 
Congurations. CIRRELT Research Document,Universit Laval, Canada , 35. 

Amtzen, B.C., Brown, G.G., Harrison, T.P.,  Trafton, L.L. (1995), Global supply chain management at 
Digital Equipment Corporation, Interfaces,  25 (1), 69-93. 

Andersson, H.,  Hoff, A., Christiansen, M., Hasle, G., Lokketangen, A. (2010) .  Industrial aspects and 
literature survey: Combined inventory management and routing, Computers & Operations Research 
37, 1515–1536. 

Aouni, B., Kettani, O. (2001). Goal Programming model: A glorious history and a promesing future. 
International Journal of Operational Research, 133, 225-231. 

Aras, H., Erdurmuse, S., Koc, E., (2002) . Multi-criteria selection for a restauration location in Taipei, 
Hospital Management, 21, 171–187. 

Arcview.9.3. (2010). Arcview Manual. http://www.esrifrance.fr/ArcView.asp 

Arntzen, B., Brown, G., Harrison, T., Trafton, L. (1995). Global supply chain management at digital 
equipment corporation. Interfaces , 21 (1), 69-93. 



196�
�

Azaron, A., Borwn, K.N., Tarim, S.A., Modarres, M. (2008). A multi-objective stochastic 
programming approach for supply chain design considering risk. International Journal of Production 
Economics, 116, 129–138. 

Banks, E. (2006). Catastrophic risk: Analysis and Management. Wiley Finance. 

Barahona, F.,  Chudak,  F.A. (2005). Near-optimal Solutions to Large-scale Facility Location 
Problems. Discrete Optimization 2, 35-50. 

Barbosa-Povoa.  (2009).  Sustainable supply chains . Computer aided chemical engineering. Elsevier: 
Brazil, 127-132 

Barda, O.H. , Dupuis,  J., Lencioni, P. (1990).  Multicriteria location of thermal power plants, 
European Journal of Operational Research, 45,  332–346. 

Barros, A.I., Dekker, R.,  Scholten, V. (1998).   A two-level network for recycling sand: A case study, 
European Journal of Operational Research, 110, 199–214. 

Bellman, R.E., Zadeh, L. (1970) .  Decision making in a fuzzy environment, Management Science. 17,  
141–164.   

Benders, J. F. (1962). Partitioning procedures for solving mixed-variable programming problems, 
Numerische Mathematik, 4, 238–252 

Ben-Haim, Y., Elishakoff, I. (1990). Convex Models of Uncertainty in Applied Mechanics, Elsevier, 
Amsterdam. 

Berry, D., Towill, DR., Wadsley,  N. (1994). Supply chain management in the electronics products 
industry. International Journal of Physical Distri-bution and Logistics Management, 24(10), 20–32. 

Birge J.R., Louveaux , F. (1997). Introduction to Stochastic Programming, Springer. 

Bloemhof-Ruwaard, J.M., Salomon, M., Van Wassenhove, L.N. (1994), On the coordination of 
product and byproduct flows in two-level distribution networks: Model formulations and solution 
procedures, European Journal of Operational Research,79, 325-339. 

Bojarski, A.D., Lainez, J.M., Espuna, A., Puigjaner, L. (2009). Incorporating environmental impacts 
and regulations in a holistic supply chains modeling: An LCA approach. Computers Chemical 
Engineering, 33(10), 1747-1759. 

Bok,  J., Lee,  H., Park,  S. (1998). Robust investment model for long-range capacity expansion of 
chemical processing networks under uncertain demand forecast scenarios. Computers and Chemical 
Engineering, 22, 7, 1037-1049. 

Bouzembrak, Y., Allaoui, H., Goncalves, G., Masson, E., Bouchriha, H., Baklouti, M. (2010). 
Sustainable Multimodal Supply Chain Design for recycling waterways sediments. 8th International 
Conference of Modeling and Simulation - MOSIM10, May 10-12, Hammamet, Tunisia. 

Bowersox, D.J., Closs, D.J., Cooper, M.B. (2002). Supply Chain Logistics Management. McGrawHill 
Irwin, Boston, MA. 

Brown, G.G.,  Olson, M.P. (1994), Dynamic factorization in large-scale optimization, Mathematical 
Programming , 64, 17- 51. 



197�
�

Brown, G.G., Graves, G.W., Honczarenko, M.D. (1987).  Design and operation of a  multicommodity 
production/ distribution system using primal goal decomposition. Management Science, 33 (11), 
1469–1480. 

Buckley, J.J. (1988). Possibilistic programming with triangular fuzzy numbers. Fuzzy Sets and 
Systems, 26, 135–138.  

 Buckley, J.J. (1989).  Solving  possibilistic  linear programming  problems. Fuzzy Sets and Systems, 
31, 329–341.  

Canel, C.,  Khumawala,  B.M., Law, J., Loh, A. (2001).  An algorithm for the capacitated, multi-
commodity multi-period facility location problem, Computers & Operations Research, 28, 411–427. 

Canel, C.,  Khumawala, B.M. (1997) . Multi-period international facilities location: An algorithm and 
application, International Journal of Production Economics, 35, 1891–1910. 

Cantarella, G.E., Vitetta, A.  (2006). The multi-criteria road network design problem in an urban area, 
Transportation, 33, 567–588. 

Canbolat, Y.B.,  Chelst, K.,  Garg, N. (2007).  Combining decision tree and MAUT for selecting a 
country for a global manufacturing facility, Omega, 35, 312– 325. 

Carlsson, D.,  Rönnqvist, M.  (2005) . Supply chain management in forestry – Case studies at södra 
cell AB, European Journal of Operational Research, 163, 589–616. 

Charnes, A., Cooper, W.W.  (1961). Management Models and Industrial Applications of linear 
Programming, Wiley, New York. 

Charnes, A., Cooper, W.W., Ferguson, R.  (1955). Optimal estimation of executive compensation by 
linear programming Management Science, 1 , 138-151. 

Chen, C.L , Lee, W.C. (2004) . Multi-objective optimization of multi-echelon supply chain networks 
with uncertain product demands and prices, Computers and Chemical Engineering, 28, 1131–1144. 

Cheng, C. B., Wang, K. P. (2009). Solving a vehicle routing problem with time windows by a 
decomposition technique and a genetic algorithm. Expert Systems with Applications, 36(4), 7758-
7763. 

Chopra, S., Meindl, P. (2004) . Supply Chain Management: Strategy, Planning and Operation. 
Prentice Hall, Upper Saddle River, USA. 

Christopher, M., Lee, H. (2004). Mitigating supply chain risk through improved confidence. 
International Journal of Physical Distribution & Logistics Management, 34, 5, 388-396. 

Christopher, M.  (2001). Logistics and supply chain management: creating value-added networks. 
Second edition, Great Britin. 

Cohen, M.A., Fisher, M., Jaiknamar, R. (1989). International manufacturing and distribution 
networks: A normative model framework, in: K. Ferdows, ed, Managing International Manufacturing, 
North-Holland, Amsterdam, 67-93. 

Cohen, M.A.,   Kleindorfer, P.R. (1993). Creating value through operations: The legacy of Elwood S. 
Buffa, in: R.K. Satin, ed., Perspectives in Operations" Management (Essays in Honor of Elwood S. 
Buffh), Kluwer Academic Publishers, Boston, MA, 3-21. 

 



198�
�

 

Cohen, M.A., Lee, H.L. (1985). Manufacturing strategy: Concepts and methods, Chapter 5.In: 
Kleindorfer, P.R. (Ed.), The Management of Productivity and Technology in Manufacturing. Plenum 
Press, New York, 153– 188. 

Cohen, M.A., Lee, H.L. (1989). Resource deployment analysis of global manufacturing and 
distribution networks.Journal of Manufacturing Operations Management, 2, 81–104. 

Cohen, M.A., Moon, S. (1991). An integrated plant loading model with economies of scale and 
scope.European Journal of Operational Research, 50 (3), 266–279. 

Cole, M.H. (1995). Service considerations and the design of strategic distribution 
systems.Unpublished Doctoral Dis-sertation, Georgia Institute of Technology, Atlanta, GA. 

Cordeau, J.F., Pasin, F., Solomon, M.M. (2006). An integrated model for logistics network design. 
Annals of Operations Research, 144, 59-82. 

Cornuejols  G.,  Nemhauser G.,  Wolsey L.  A.  (1990). The incapacitated  facility  location  problem.  
In P.  Mirchandani and  R.  Francis,  editors,  Discrete Location Theory,  John Wiley and Sons, New 
York, 119-171. 

Cornuejols, G.,  Sridharan, R.,  Thizy, J.M. (1991). A comparison of heuristics and relaxations for the 
capacitated plant location problem, European Journal of Operational Research, 50, 280-297. 

Coyle,  J. J., Bardi,  E. J.,  Langley, C. J. Jr.  (2003). The Management of Business Logistic: A Supply 
Chain Perspective (7th ed.). Mason: South-Western. 

Daskin, M.,  Snyder, L.,  Berger, R. (2005). Facility location in supply chain design. Logistics 
Systems: Design and Optimization. Springer, New York, 39-65. 

Daskin, M.S., Coullard, C.,  Shen, Z.J.M. (2002).  An inventory-location model: Formulation, solution 
algorithm and computational results, Annals of Operations Research, 110, 83–106. 

Dehghanian, F.,  Mansour, S. (2009). Designing sustainable recovery network of end-of-life products 
using genetic algorithm, Resources, Conservation and Recycling . 53, 559–570. 

Diaby  M.,   Martel,  A.  (1993).  Dynamic  lot  sizing  for   multiechelon  distribution   systems   with  
purchasing  and transportation price discounts. Operations Research, 41, 1.   

Dogan, K.,  Goetschalckx, M. (1999).  A primal decomposition method for the integrated design of 
multi-period production–distribution systems, IIE Transactions, 31, 1027–1036. 

Dong, M. (2006). Development of supply chain network robustness index. International Journal of 
Services Operations and Informatics, 1, 1/2, 54-66.  

Drezner, Z.,   Hamacher, H.W. (2004). Facility Location: Applications and Theory, Springer, New 
York. 

Dubois, D., Fargier, H., Fortemps, P. (2003). Fuzzy scheduling: Modelling flexible constraints vs. 
coping with incomplete knowledge. European Journal of Operational Research, 147 (2), 231–252. 

Dupacova, J. (1996). Scenario-based stochastic programs: Resistance with respect to sample. Annals 
of Operations Research. 64, 21-38 

Dyer, M., & Stougie, L. (2006). Computational complexity of stochas- tic programming problems. 
Mathematical Programming, 106(3), 423–432. 



199�
�

 

Eksioglu, B., Vural, A.V., Reisman, A. (2009). The vehicle routing problem: A taxonomic review, 
Computers and  Industrial Engineering, 57, 1472–1483. 

Elhedhli, S., Gzara, F. (2008). Integrated design of supply chain networks with three echelons, 
multiple commodities and technology selection. IIE Transactions, 40 (1), 31–44. 

Ereng, S. S., Simpson, N.C., Vakharia, A.J. (1999). Integrated production/distribution planning in 
supply chains: An invited review. European journal of Operational Research, 115, 219-236. 

Erlebacher, S.J., Meller, R.D. (2000).   The interaction of location and inventory in designing 
distribution systems, IIE Transactions, 32, 155–166. 

Erol, I., Ferrell , W.G. (2004) . A methodology to support decision making across the supply chain of 
an industrial distributor. International Journal of Production Economics, 89 (1), 119–129. 

Eskigun,  E., Uzsoy,  R., Preckel, P.V.,  Beaujon, G. ,  Krishnan, S., Tew, J.D. (2005) .  Outbound 
supply chain network design with mode selection, lead times and capacitated vehicle distribution 
centers, European Journal of Operational Research, 165, 182–206. 

Eppen, G., Kipp, M.R., Schrage,  L. (1989). A Scenario Approach to Capacity Planning. Operations 
Research 37, 517-527. 

Farahani, R.Z. , Asgari, N. (2007) .  Combination of MCDM and covering techniques in a hierarchical 
model for facility location: A case study, European Journal of Operational Research, 176,  1839–1858. 

Farahani, R.Z. , SteadieSeif, M. (2010).  Asgari, N. Multiple criteria facility location problems: A 
survey, Applied Mathematical Modelling, 34, 1689–1709. 

Fernández, J. ,  Pelegrín, B. , Plastria,  F. ,  Tóth, B. (2007).  Planar location and design of a new 
facility with inner and outer competition: an interval lexicographical- like solution procedure, 
Networks Spatial Econ, 7, 19–44. 

Field, David B. (1973).  Goal Programming for Forest Management, Forest Science, 19, 125-135. 

Fleischmann, M., Beullens, P., Bloemhof-Ruwaard, J.M., Wassenhohve, V. (2001). The impact of 
product recovery on logistics network design. Production and Operations Management, 10 (2), 156–
173. 

Haimes, Y.Y. (2004). Risk modeling, Assessment, and Management. Second edition. Wiley.   

Heilpern, S. (1992). The expected valued of a fuzzy number Fuzzy Sets and Systems., 47, 81-86. 

Higgs, G. (2006). Integrating multi-criteria techniques with geographical information systems in waste 
facility location to enhance public participation, Waste Management Research, 24, 105–117. 

Higle, J.L.,  Sen, S. (1996). Stochastic Decomposition: A Statistical Method for Large Scale 
Stochastic Linear Programming, Kluwer Academic Publishers, Dordrecht 

Hinojosa, Y., Kalcsics, J., Nickel, S.,  Puerto, J., Velten, S. (2008).  Dynamic supply chain design with 
inventory, Computers & Operations Research, 35, 373–391. 

Hinojosa, Y.,  Puerto,  J.,  Fernández,  F.R. (2000).  A multiperiod two-echelon multi- commodity 
capacitated plant location problem, European Journal of Operational Research, 123, 271–291. 

Hsu, H.M., Wang, W.P.  (2001).  Possibilistic programming in production planning of assembly-to-
order environments. Fuzzy Sets. and Systems 119, 59–70. 



200�
�

 

Huang, G.Q., Lau, J.S.K., Mak, K.L. (2003). The impacts of sharing production information on supply 
chain dynamics: a review of the literature. International Journal of Production Research, 41, 1483–
1517. 

Huchzermeier,  A.,  Cohen, M. (1996). Valuing Operational Flexibility under Exchange Rate Risk. 
Operations Research, 44, 1, 100-113. 

Hugo, A. , Rutter, P. , Pistikopoulos, A. , Amorelli, G.  (2005). Hydrogen infrastructures strategic 
planning using multi-objective optimization . International Journal of Hydrogen Energy, 30, 1523-
1534. 

Hwang, C.L., Yoon, K., (1981). Multiple Attribute Decision Making: Methods and Applications. 
Springer, Berlin. 

Hwang, H.S.  (2002) .  Design of supply-chain logistics system considering service level, Computers 
& Industrial Engineering, 43, 283–297. 

Gass, S.I. (1986). A process for determining priorities and weights for large-scale linear goal 
programmers, Journal of the Operational Research Society, 37, 779-785. 

Gass, S.I. (1986). The settings of weights in linear goal programming, Computers and Operations 
Research, 14, 227-229. 

Geoffrion, A.M., Graves, G.W.,  Lee, S.J. (1978). Strategic distribution system planning: A status 
report, in: A.C. Hax, ed., Studies in Operations Management, North-Holland, Amsterdam, 179-204. 

Geoffrion, A.M., Graves, G,W.,  Lee, S.J. (1982).  A management support system for distribution 
planning, INFOR 20/4, 287-314. 

Ghiani, G.,  Laporte, G. , Musmanno, R. (2004). Introduction to Logistics Systems Planning and 
Control, Wiley, New York. 

Giannoccaro, I., Pontrandolfo, P.,  Scozzi,  B. (2003).  A Fuzzy Echelon Approach for Inventory 
Management in Supply Chains,  European Journal of Operational Research, 149, 185.  

Grossi, P.,  Kunreuther,  H. (2005). Catastrophe modeling: A new approach to managing risk, 
Springer-Verlag, New York. 

Grossmann, I. E.  (2004).  Challenges in the new millennium: Product discovery and design, 
enterprise and supply chain optimization, global life cycle assessment. Computers and Chemical 
Engineering, 29(1), 29-39. 

Goetschalcks,  M.,  Fleischmann,  B.  (2008). Strategic network design. Supply Chain Management 
and Advanced Planning, 117–132. 

Goetschalckx, M., Nemhanser, G., Cole, M.H., Wei, R., Dogan, K., and Zang, X. (1994). Computer 
aided design of industrial logistic systems, in: Proceedings of the Third Triennial Symposium on 
Transportation Analysis (TRISTAN III), Capri, Italy, 151-178. 

Goetschalckx, M. , Vidal, C.J., Dogan, K. (2002) .  Modeling and design of global logistics systems: 
A review of integrated strategic and tactical models and design algorithms, European Journal of 
Operational Research, 143, 1–18. 

 



201�
�

Goh, M., Lim, J.I.S., Meng, F. (2007). A stochastic model for risk management in global supply chain 
networks. European Journal of Operational Research, 182, 164–173. 

Guan, Z. ,  Philpott, A.B. (2011). A multistage stochastic programming model for the New Zealand 
dairy industry, International Journal of Production, 134, 289–29 

Guillen, G.,  Grossmann, I.E.  (2009).  Optimal design and planning of sustainable chemical supply 
chains under uncertainty . AIChE Journal, 55(1), 99-121 

Guillen, G., Mele, F.D., Bagajewicz, M.J., Espuna, A., Puigjaner, L. (2005). Multiobjective supply 
chain design under uncertainty. Chemical Engineering Science, 60, 1535–1553. 

Gunnarsson, H., Rönnqvist, M., Lundgren, J.T. (2004). Supply chain modelling of forest fuel, 
European Journal of Operational Research, 158, 103–123. 

Gupta A.,   Maranas,  C.  D.  (1999). A  hierarchical  Lagrangean  relaxation  procedure  for  solving  
midterm  planning  problems. Industrial and Engineering Chemistry Research, 38, 1937-1947. 

Gutierrez, G.J., Kouvelis, P., Kurawala,  A. (1996). A robustness approach to uncapacitated network 
design problems. European Journal of Operational Research 94, 362-376.  

Ignizio, J.P, (1976). Goal Programming and Extensions, Lexington Books, Lexington, MA. 

Ijiri, Y. (1965) Management Goals Accounting for Control, North Holland, Amesterdam, 1965. 

Jang, Y.J., Jang, S.Y.,   Chang, B.M.,  Park, J.  (2002).  A combined model of network design and 
production/distribution planning for a supply chain network, Computers & Industrial Engineering,  43 
, 263-281. 

Jayaraman, V., Guide, V. Jr.,  Srivastava, R. (1999). A closed-loop logistics model for 
remanufacturing, Journal of the Operational Research Society,  50, 497– 508. 

Jayaraman, V.,  Patterson, R.A.,  Rolland, E.  (2003).  The design of reverse distribution networks: 
Models and solution procedures, European Journal of Operational Research, 150, 128–149. 

Jayaraman, V.,  Pirkul, H. (2001). Planning and coordination of production and distribution facilities 
for multiple commodities, European Journal of Operational Research, 133, 394–408. 

Johnson,  J.L. (1999). Strategic integration in distribution channels: managing the interfirm 
relationship as a strategic asset. Academy of Marketing Science Journal, 27 (1), 4-18. 

Jones, T.C.,  Riley, D.W. (1985).  Using Inventory for Competitive Advantage through Supply Chain 
Management.  International Journal of Physical Distribution and Materials Management. 5, 16-26. 

Jimenez,  M. (1996) Ranking fuzzy numbers through the comparison of its expected intervals, 
International Journal of Uncertainty, Fuzziness and Knowledge Based Systems., 4, 379-388. 

Jimenez,  M. ,  Arenas, M.,  Bilbao, A.,  Rodriguez, M.V. (2007).  Linear programming with fuzzy 
parameters: an interactive method resolution, European Journal of Operational Research, 177, 1599–
1609. 

Kabak, O., Ülengin, F. (2010).  Possibilistic linear-programming approach for supply chain 
networking decisions, European Journal of Operational Research, 209, 253–264. 

Kahraman, C., Ruan,  D., Dogan, I. (2003). Fuzzy group decision-making for facility location 
selection. Information Sciences, 157, 135-153. 



202�
�

Kall, P., Mayer, J . (2005). Stochastic Linear Programming. Springer, NewYork. 

Kallrath, J.  (2002). Combined strategic and operational planning  an MILP success story in chemical 
industry. Or Spectrum,  24, 315–341. 

Karabakal, N., Günal, A.,  Ritchie, W. (2000). Supply-chain analysis at Volkswagen of America, 
Interfaces, 30, 46–55. 

Kaufmann, A., Gil Aluja, J. (1992). Tecnicas de Gestion de empresa. Previsiones, decisiones, 
yestrategias, Peramide., 10, Madrid. 

Keskin, B.B.,  Ülster, H.  (2007). Meta-heuristic approaches with memory and evolution for a multi-
product production/distribution system design problem, European Journal of Operational Research, 
182, 663–682. 

Kleindorfer,  P.R.,  Saad, G.H. (2005). Managing disruption risks in supply chains. Production and 
Operations Management 14, 1, 53-68.  

Klibi, W., Martel,  A., Guitouni, A. (2010) The design of robust value-creating supply chain networks: 
A critical review, European Journal of Operational Research., 203 (2), 283–293. 

Klose, A., Drexl, A. (2005). Facility location models for distribution system design. European Journal 
of Operational Research , 162, 4-29. 

Ko, H.J., Evans, G.W.  (2007). A genetic algorithm-based heuristic for the dynamic integrated 
forward/reverse logistics network for 3PLs, Computers & Operations Research, 34, 346–366. 

Kouvelis, P., Rosenblatt, M.J. (2002).  A mathematical programming model for global supply chain 
management: Conceptual approach and managerial insights, in: J. Geunes, P.M. Pardalos, H.E. 
Romeijn (Eds.), Supply Chain Management: Models, Applications, and Research directions, Applied 
Optimization, Kluwer, Dordrecht, 245–277. 

Kouvelis,  P., Yu,  G. (1997). Robust discrete optimization and its applications. Kluwer Academic 
Publishers.  

Lababidi, H.M.S., Ahmed, M.A.,  Alatiqi, I.M.,  Al-enzi, A.F. (2004).  Optimizing the supply chain of 
a petrochemical company under uncertain operating and economic conditions. Industrial and 
Engineering Chemistry Research, 43, 63– 73. 

Lahdelma, R., Salminen, P., Hokkanen, J. (2002). Locating a waste treatment facility by using 
stochastic multicriteria acceptability analysis with ordinal criteria, European Journal of Operational 
Research, 142, 345–356. 

Lee,  D.H.,  Dong,  M. (2008). A heuristic approach to logistics network design for end- of-lease 
computer products recovery, Transportation Research Part E: Logistics and Transportation Review, 
44, 455–474. 

Lee, S.M. (1972). Goal Programming for Decision Analysis, Auerbach, Philadelphia. 

Leung , S.C.H., Tsang, S.O.S., Ng, W.L., Wu, Y. (2007).  A robust optimization model for multi-site 
production planning problem in an uncertain environment.  European  Journal of Operational 
Research, 181, 224–238. 

 Leung, S. C. H.,   Wub, Y. (2004). A robust optimization model for stochastic aggregate production 
planning, Production Planning and Control,  15.  



203�
�

Liang, T.-F., Cheng, H.-W. (2008) . Application of fuzzy sets to manufacturing/ distribution planning 
decisions with multi-product and multi-time period in supply chains. Expert Systems with 
Applications 36, 3367–3377. 

Lieckens, K., Vandaele, N. (2007).  Reverse logistics network design with stochastic lead times, 
Computers & Operations Research, 34, 395–416. 

Lin, J.R.,  Nozick, L.K.,  Turnquist, M.A. (2006).  Strategic design of distribution systems with 
economies of scale in transportation, Annals of Operations Research, 144, 161–180. 

Listes, O.,  Dekker, R. (2005).  A stochastic approach to a case study for product recovery network 
design, European Journal of Operational Research, 160, 268–287. 

Liu,  M. L.,  Sahinidis, N. V. (1997).  Process Planning in a Fuzzy Environment, European Journal of 
Operational Research 100, 142. 

Liu, X., Sun, J. (2004). A new decomposition technique in solving multistage stochastic linear 
programs by infeasible interior point methods, Journal of Global Optimization, 28(2), 197-215. 

Lowe, T.J., Wendell , R.E., Hu,  G. (2002).  Screening Location Strategies to Reduce Exchange Rate 
Risk. European Journal of Operational Research 136, 573-590. 

Lu, Z.,  Bostel, N. (2007).  A facility location model for logistics systems including reverse flows: The 
case of remanufacturing activities, Computers & Operations Research, 34, 299–323. 

Ma, H., Davidrajuh,  R.  (2005).  An iterative approach for distribution chain design in agile virtual 
environment, Industrial Management and Data Systems, 105, 815–834. 

MacCarthy, B.L., Atthirawong, W. (2003). Factors affecting location decisions in international 
operations a Delphi study. International Journal of Operations & Production Management 23, 794–
818. 

Mak, W.K.,  Morton, D.P.,  Wood, R.K.  (1999). Monte Carlo bounding techniques for determining 
solution quality in stochastic programs, Operations Research Letters, 24, 47–56. 

Manuj, I.,  Mentzer,  J. (2008). Global Supply Chain Risk Management, Journal of Business Logistics 
29, 1, 133-155. 

Marin, A.,  Pelegrin,  B. (1998). The return plant location problem: modeling and resolution. 
European Journal of Operational Research, 104, 375–392. 

Martel, A. (2005). The design of production-distribution networks: A mathematical programming 
approach. In: Geunes, J., Pardalos, P. (Eds.), Supply Chain Optimization. Springer,  265-306. 

Matos , M.A. (2007).  Decision under risk as a multicriteria problem. European Journal of Operational 
Research, 181, 1516–1529. 

Meixell, M.J.,  Gargeya, V. B. (2005).  Global supply chain design: A literature review and critique, 
Transportation Research, Part E 41, 531–550. 

Melachrinoudis, E.,  Messac, A., Min, H. (2005). Consolidating a warehouse network: A physical 
programming approach, International Journal of Production Economics, 97, 1–17. 

Melachrinoudis, E.,  Min, H.  (2007). Redesigning a warehouse network, European Journal of 
Operational Research, 176,  210–229. 



204�
�

Melo, M.T.,  Nickel, S., Saldanha-da-Gama, F. (2006).  Dynamic multi-commodity capacitated 
facility location: A mathematical modeling framework for strategic supply chain planning, Computers 
& Operations Research, 33, 181–208. 

Miller, A. C., Rice, T. R. (1983). Discrete approximations of probability distributions. Management 
Science, 29(3), 352-362. 

Min, H.,  Ko, H.J.,  Ko, C.S. (2006).  A genetic algorithm approach to developing the multi- echelon 
reverse logistics network for product returns, Omega, 34, 56– 69. 

Mincirardi, R.,  Paolucci, M., Robba, M. (2002)  A multiobjective approach for solid waste 
management, in: Andrea E. Rizzoli, Anthony J. Jakeman (Eds.), Proceedings of the 1st Biennial 
Meeting of the iEMSs, Integrated Assessment and Decision Support, 205–210. 

Miranda, P.A., Garrido, R.A.  (2004).  Incorporating inventory control decisions into a strategic 
distribution network design model with stochastic demand, Transportation Research Part E: Logistics 
and Transportation Review, 40, 183–207. 

MirHassani, S.A., Lucas, C., Mitra, G., Messina, E., Poojari, C.A. (2000).  Computational solution of 
capacity planning models under uncertainty. Parallel Computing, 26, 511-538. 

Mohamed,  Z.M. (1999). An integrated production-distribution model for a multi-national company 
operating under varying exchange rates. International Journal of Production Economics, 58, 81-92. 

Mulvey, J.M, Vanderbei, R.J., Zenios, S.A. (1995). Robust optimization of large-scale systems. 
Operations Research, 43, 264-281. 

Nagurney, A., Liu, Z.  (2006). Optimal endogenous carbon taxes for electric power supply chains with 
power plants. Mathematical and Computer Modelling, 44, 899–916. 

Novosol, 2009. Solvay sustainable development, http://www.solvaysustainable.com. 

Owen, S.H.,  Daskin, M.S. (1998). Strategic Facility Location: A Review. European Journal of 
Operational Research, 111, 423-447. 

Özlen, M., Azizo�lu, M. (2009) .  Multi-objective integer programming: a general approach for 
generating all non-dominated solutions. European Journal of Operational Research, 199, 25–35. 

Paksoy, T., Ozceylan, E., Weber, G.W.  (2010).  A multi-objective model for optimization of a green 
supply chain network. Proceedings of PCO 2010, 3rd Global Conference on Power Control and 
Optimization, February 24, Gold Coast, Queensland,  Australia. 

Pan, S.,  Ballot, E., Fontane, F.  (2009). The reduction of greenhouse gas emissions from freight 
transport by merging supply chains . International Conference of Industrial Engineering and Systems 
Managment, IESM, Montreal, Canada. 

Parra, M.A.,  Terol,  A.B., Gladish, B.P., Rodriguez, M.V. (2005). Solving a multi-objective 
possibilistic problem through compromise programming, European Journal of Operational Research, 
164, 748–759. 

Pati, R.K., Vrat, P., Kumar, P. (2008).   A goal programming model for paper recycling system, 
Omega, 36,  405–417. 

Pawlak, Z. (1991). Rough Sets: Theoretical Aspects of Reasoning about Data, Dordrecht-Kluwer 
Academic Publishing. 



205�
�

Peidro, D., Mula, J., Poler, R., Verdega, J.L. (2009) Fuzzy optimization for supply chain planning 
under supply, demand and process uncertainties, Fuzzy Sets and Systems, 160, 2640-2657. 

Petrovic,  D.,  Roy, R.,  Petrovic, R. (1998).  Modeling and Simulation of a Supply Chain in an 
Uncertain Environment, European Journal of Operational Research, 109, 299.  

Petrovic,  D.,  Roy, R.,  Petrovic, R. (1999).  Supply Chain Modeling Using Fuzzy Sets,  Int. J. Prod. 
Econ., 59, 443. 

Pishvaee, M.S., Torabi, S.A. (2010) A possibilistic programming approach for closed-loop supply 
chain network design under uncertainty, Fuzzy Sets and Systems., 161, 2668-2683. 

Pirkul, H., Jayaraman, V. (1998). A Multi- Commodity , Multi-Plant , Capacitated Facility Location 
Problem: Formulation and Efficient Heuristic solution, Computers & Operational Research, 25, 869-
878. 

Pomper,  C.   L. (1976) .    International  Investment  Planning:  An  integrated  Approach.  North-
Holland  Publishing Company.  

Pontrandolfo, P., Okogbaa, O.G. (1999). Global manufacturing: A review and framework for planning 
in a global corporation. International Journal of Production Research, 37 (1), 1-19. 

Ramudhin, A., Chaabane, A. (2010). Carbon market sensitive sustainable supply chain network 
design. International Journal of Management Science and Engineering Management, 5 (1), 30–38. 

ReVelle, C.S. ,  Eiselt, H.A. ,  Daskin,  M.S.  (2008).   A bibliography for some fundamental problem 
categories in discrete location science, European Journal of Operational Research, 184, 817–848. 

ReVelle, C.S.,  Eiselt, H.A. (2005) .  Location analysis: A synthesis and survey, European Journal of 
Operational Research, 165, 1–19. 

Ridlehoover, J.  (2004). Applying Monte Carlo Simulation and risk analysis to the facility location 
problem. The Engineering Economist 49, 3, 237-252. 

Ringuest, J.L. (1992).  Multiobjective Optimization: Behavioral and Cumputational Considerations, 
Kluwer Academic Publishers, Boston, 1992. 

Rizk, N., Martel, A., D’amours, S. (2006). Multi-item dynamic production–distribution planning in 
process industries with divergent finishing stages. Computers and Operations Research, 33, 3600–
3623. 

Rizk, N., Martel, A., D’amours, S. ( 2008). Synchronized production-jdistribution planning in a 
single-plant multi-destination network. Journal of the Operational Research Society, 59, 90–104. 

Romero, C. (1991). Handbook of critical issues in goal programming, Progamon Press, Oxford. 

Romeijn,  H.E., Shu,  J., Teo, C.P. (2007).  Designing two-echelon supply networks, European Journal 
of Operational Research, 178,  449–462. 

Rommelfanger, H., Slowinski, R. (1998).  Fuzzy linear programming with single or multiple objective 
functions. In: Slowinski, R. (Ed.), Fuzzy Sets in Decision Analysis, Operation Research and Statistics. 

Rosenblatt, M. J.,  Lee, H. L. (1987), A robustness approach to facilities design, International Journal 
of Production Research, 25(4), 479–486. 

Ruszczy�ski, A. (1989). An augmented Lagrangian decomposition method for block diagonal linear 
programming problems, Operations Research Letters, 8, 287-294. 



206�
�

Ruszczynski,  A.,   Shapiro,  A. (2003).  Stochastic Programming Models. Chapter 1 in Handbooks in 
OR. & MS. Vol.10, A. Ruszczynski, A. Shapiro Editors, Elsevier. 

Saaty, T.L. (1980). Analytic Hierarchy Process, Planning, Priority Setting, Resource Allocation. 
McGraw-Hill, New York. 

Sabri, E., Beamon, B. (2000). A multi-objective approach to simultaneous strategic and operational 
planning in supply chain design. The International Journal of Management Science 28 (5), 581–598. 

Sakawa, M. (1993). Fuzzy sets and interactive multi-objective optimization. New York: Plenum Press. 

Salema, M.I.,  Barbosa-Póvoa,  A.P.,  Novais,  A.Q.  (2007).  An optimization model for the design of 
a capacitated multi-product reverse logistics network with uncertainty, European Journal of 
Operational Research, 179, 1063-1077. 

Salema, M.I.,  Póvoa, A.P.B.,  Novais, A.Q. (2006).  A warehouse-based design model for reverse 
logistics, Journal of the Operational Research Society,  57, 615-629. 

Saltelli, A., Tarantola, S.,  Campolongo, F.,  Ratto , M. (2004). Sensitivity Analysis in Practice: A 
Guide to Assessing Scientific Models. Wiley.   

Santoso, T. , Ahmed, S., Goetschalckx, M., Shapiro, A. (2005). A stochastic programming approach 
for supply chain network design under uncertainty, European Journal of Operational Research, 167, 
96–115. 

SEDIBET. (2007). présentation des projets financés au titre de l’´edition 2006  du programme 
”Recherche Génie Civil et Urbain”,http://www.agence-nationalerecherche.fr. 

Selim, H.,  Ozkarahan, I. (2008).  A supply chain distribution network design model: an interactive 
fuzzy goal programming-based solution approach, International Journal of Advanced Manufacturing 
Technology, 36, 401–418. 

Sen, S.,  Higle, J.H. (1999). An introductory tutorial on stochastic linear programming models. 
Interfaces 29, 2, 33-61. 

Shafer, G. (1990). Perspectives on the theory and practice of belief functions. International Journal of 
Approximate Reasoning 3, 1-40. 

Sheffi, Y. (2005). The resilient enterprise: overcoming vulnerability for competitive advantage. MIT 
Press Books.  

Shapiro, A.,  Homem-de-Mello, T.  (1998). A simulation-based approach to stochastic programming 
with recourse. Mathematical Programming, 81, 301–325. 

Shapiro, A.,  Philpott, A., A , Tutorial on Stochastic Programming, technical report, March 21, 2007. 

Shapiro, J.F.  (2001).  Modeling the Supply Chain, Brooks/Cole-Thomson, Belmont, CA. 

Shaw, A.W., Some Problems in Market Distribution, Havard University Press, 1915. 

Shu, J.,  Teo, C.-P.,  Shen, Z.J.M. (2005).  Stochastic transportation-inventory network design 
problem, Operations Research, 53, 48–60. 

Shulman, A. (1991) . An algorithm for solving dynamic capacitated plant location problems with 
discrete expansion sizes. Operations Research, 39 (3), 423–436. 

Schultmann, F.,  Engels, B.,  Rentz, O. (2003).  Closed-loop supply chains for spent batteries, 
Interfaces ,33,  57–71. 



207�
�

Simchi-Levi,  D., Kaminsky,  P.,  Simchi-Levi,  E. (2000).  Designing and Managing the Supply 
Chain.  Boston:  McGraw-Hill Higher Education.  

Simchi-Levi, D. , Kaminsky, P. , Simchi-Levi,  E. (2004) .  Managing the Supply Chain: The 
Definitive Guide for the Business Professional, McGraw-Hill, New York. 

Simchi-Levi,  D., Kaminsky,  P.,  Simchi-Levi, E. (2003).  Designing and Managing the Supply 
Chain: Concepts Strategies and Case Studies. Second Edition, McGraw-Hill, Irwin, Boston, MA. 

Snyder, L.V.,  Daskin M. S. (2005). Reliability Models for Facility Location: The Expected Failure 
Cost Case. Transportation Science, 39, 400-416. 

Snyder, L.V.,  Daskin,  M. S. ( 2006).  Stochastic p-Robust location problems. IIE Transactions 38, 
11, 971-985. 

Sourirajan, K.,  Ozsen, L.,  Uzsoy, R. (2007) .  A single-product network design model with lead time 
and safety stock considerations, IIE Transactions, 39, 411– 424. 

Srivastava, S. K.  (2007).  Green supply-chain management: A state-of-the-art literature review the art 
literature review, International Journal of Management Reviews, 1468-2370. 

Stranlund, J. (2007). The regulatory choice of noncompliance in emissions trading programs. 
Environmental and Resource Economics, 38 (1), 99–117. 

Sule, D.R., 2001. Logistics of facility location and allocation. Marcel Dekker Inc., New York. 

Syam, S. (2002) .  A model and methodologies for the location problem with logistical components, 
Computers and Operations Research, 29, 1173-1193. 

Tan, KC.,  Kannan, VR.,  Handfield,  RB . (1998). Supply chain management: supplier performance 
and firm performance, International Journal of Purchasing and Materials Management, 34, 2–9. 

Takriti, S., Ahmed, S. (2004). On Robust optimization of two-stage systems. Math. Program, 99, 109– 
126. 

Timpe, C.H., Kallrath, J. (2000) . Optimal planning in large multi-site production networks.  European 
Journal of Operational Research, 126, 422–435. 

Toni, A.D., Tonchia, S. (2001). Performance measurement systems: models, characteristics, and 
measures. International Journal of Operations and Production Management, 21(1/2), 46–70. 

Torabi, S.A., Hassini, E. (2008). An interactive possibilistic programming approach for multiple 
objective supply chain master planning. Fuzzy Sets and Systems, 159, 193–214. 

Troncoso, J.J.,  Garrido, R.A.  (2005).  Forestry production and logistics planning: An analysis using 
mixed-integer programming, Forest Policy and Economics, 7, 625–633. 

Tsiakis, P., Shah, N., Pantelides, C.C. (2001).  Design of multiechelon supply chain networks under 
demand uncertainty. Industrial and Engineering Chemistry Research, 40, 3585–3604. 

Tüshaus, U.,  Wittmann, S. (1998). Strategic logistic planning by means of simple plant location: A 
case study, in: B. Fleischmann, J.A.E.E. van Neunen, M.G. Speranza, P. Stähly (Eds.), Advances in 
Distribution Logistics, Springer, New York, 241–263. 

Tuzkaya, G., Önüt, S., Tuzkaya, U.R., Gülsün, B. (2008).  An analytic network process approach for 
locating undesirable facilities: an example from Istanbul, Turkey, Journal of Environmental 
Management, 88 (4),  970–983. 



208�
�

Van Landeghem, H., Vanmaele, H. (2002). Robust planning: a new paradigm for demand chain 
planning. Journal of Operation Management 20 (6), 769–783 

Van Ommeren,  J.C.W.,  Bumb, A.F.,  Sleptchenko, A.V. (2006) . Locating repair shops in a 
stochastic environment, Computers & Operations Research, 33, 1575– 1594. 

Vidal, C.J.,  Goetschalckx, M.  (2001). A global supply chain model with transfer pricing and 
transportation cost allocation, European Journal of Operational Research, 129,  134–158. 

Vidal, C.J.,  Goetschalckx,  M. (1997). Strategic production–distribution models: a critical review 
with emphasis on global supply chain models. European Journal of Operational Research, 98, 1–18. 

Vila, D., Martel, A., Beauregard, R. (2006). Designing Logistics Networks in Divergent Process 
Industries: A Methodology and its Application to the Lumber Industry. International Journal of 
Production Economics , 102, 358-378. 

Vila, D., Martel, A., Beauregard, R. (2007). Taking market forces into account in the design of 
production–distribution networks: A positioning by anticipation approach. Journal of Industrial and 
Management Optimization, 3 (1), 29-50. 

Vila, D., Martel , A., Beauregard,  R. (2008). The Strategic Design of Forest Industry Supply Chains. 
INFOR, Forthcoming. 

Wang, J., Shu,  Y.F. ( 2007) . A possibilistic decision model for new product supply chain design. 
European Journal of Operational Research, 177, 1044–1061. 

Wang, R.C.,  Liang, T.F.  (2005).  Applying  possibilistic linear programming to aggregate production 
planning, International Journal of Production Economics, 98, 328-341. 

William, H. (2007). Combining analytic hierarchy process and goal programming for logistics 
distribution network design. IEEE International Conference on Systems, Man, and Cybernetics, 714–
719. 

Wilhelm, W.,  Liang, D.,  Rao, B., Warrier, D.,  Zhu, X.,  Bulusu, S. (2005).  Design of international 
assembly systems and their supply chains under NAFTA, Transportation Research Part E: Logistics 
and Transportation Review, 41, 467–493. 

Wood, D.F.,  Barone, A.P., Murphy, P.R., Wardlow, D.L. (2002).  International Logistics. 
AMACOM, New York. 

Wouda, F.H.E., Van Beek, P., Van der Vorst,  J.G.A.J.,  Tacke, H. (2002). An application of mixed-
integer linear programming models on the redesign of the supply network of Nutricia Dairy & Drinks 
Group in Hungary, OR Spectrum, 24 ,449–465. 

Wu, Y. (2006).  Robust optimization applied to uncertain production loading problems with import 
quota limits under the global supply chain management environment, International Journal of 
Production Research, 44, 849-882. 

Yan, H.,  Yu, Z.,  Cheng, T.C.E. (2003). A strategic model for supply chain design with logical 
constraints: Formulation and solution, Computers & Operations Research, 30 2135–2155. 

Yu, C.S.,  Li,  H.L. (2000). A robust optimization model for stochastic logistic problems. International 
Journal of Production Economics, 64, 385-397.  

Zadeh, L.A. (1978).  Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems 1, 3–28. 



209�
�

Zadeh, L.A. (1965). Fuzzy sets, Information and Control, 8, 338-353. 

Zimmermann, H.L. (2001).  Fuzzy set theory and its application, Kluwer Academic Publishers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

�

�

�

�

�

�

�

�


	Introduction
	Problem statement
	Research Contribution
	Outline of Dissertation

	Literature Review on Supply Chain Network Design
	Introduction
	Decision Levels
	Strategic level
	Tactical Level
	Operational Level

	Supply Chain Network Structure
	Supply Chain Network Modelling Approaches
	Deterministic SCND Models
	SCND Models Under Uncertainty
	Resolution Methods

	Concluding Remarks

	Multi-criteria Supply Chain Network Design
	Introduction
	Problem description
	SCND evaluation criteria
	Multi-modality in SCND

	Approach presentation
	STEP 1: Multi-criteria selection model for potential facility locations
	STEP 2: Mathematical model solving supply chain network design

	Case study
	Supply Chain Network

	Application of the Approach
	STEP 1: Multi-criteria selection model for potential facility location
	STEP 2: Mathematical model solving supply chain network design

	Concluding remarks

	Multi-objective Supply Chain Network Design
	Introduction
	Goal Programming
	Normalisation Techniques

	Problem Formulation
	Mathematical Model
	Goal Programming Model

	Computational Results
	Goal Programming weights
	Solutions
	Sensitivity Analysis

	Conclusions

	Heuristic Approach to large scale Supply Chain Network Design Problem
	Introduction
	Mathematical Model
	Heuristic Approach
	Heuristic Structure
	Decomposition Phase
	Reduction Phase
	Resolution Phase

	Application Case
	Decomposition Phase
	Reduction Phase
	Resolution Phase

	Computational Results
	Data and Implementation
	Performance of Heuristic 
	Quality of Heuristic Solutions

	Concluding Remarks

	Supply Chain Network Design under Uncertainty
	Stochastic Supply Chain Network Design
	Introduction
	Model Development
	Computational results
	Concluding Remarks

	Possibilistic Supply Chain Network Design
	Introduction
	Possibilistic Linear Programming
	Model Development
	Application to the real case
	Concluding Remarks


	Conclusions and Perspectives
	Figures and Tables
	AHP Example
	Figures and Tables


