86 research outputs found

    Implicit High-Order Flux Reconstruction Solver for High-Speed Compressible Flows

    Full text link
    The present paper addresses the development and implementation of the first high-order Flux Reconstruction (FR) solver for high-speed flows within the open-source COOLFluiD (Computational Object-Oriented Libraries for Fluid Dynamics) platform. The resulting solver is fully implicit and able to simulate compressible flow problems governed by either the Euler or the Navier-Stokes equations in two and three dimensions. Furthermore, it can run in parallel on multiple CPU-cores and is designed to handle unstructured grids consisting of both straight and curved edged quadrilateral or hexahedral elements. While most of the implementation relies on state-of-the-art FR algorithms, an improved and more case-independent shock capturing scheme has been developed in order to tackle the first viscous hypersonic simulations using the FR method. Extensive verification of the FR solver has been performed through the use of reproducible benchmark test cases with flow speeds ranging from subsonic to hypersonic, up to Mach 17.6. The obtained results have been favorably compared to those available in literature. Furthermore, so-called super-accuracy is retrieved for certain cases when solving the Euler equations. The strengths of the FR solver in terms of computational accuracy per degree of freedom are also illustrated. Finally, the influence of the characterizing parameters of the FR method as well as the the influence of the novel shock capturing scheme on the accuracy of the developed solver is discussed

    Invariant preservation in machine learned PDE solvers via error correction

    Full text link
    Machine learned partial differential equation (PDE) solvers trade the reliability of standard numerical methods for potential gains in accuracy and/or speed. The only way for a solver to guarantee that it outputs the exact solution is to use a convergent method in the limit that the grid spacing Δx\Delta x and timestep Δt\Delta t approach zero. Machine learned solvers, which learn to update the solution at large Δx\Delta x and/or Δt\Delta t, can never guarantee perfect accuracy. Some amount of error is inevitable, so the question becomes: how do we constrain machine learned solvers to give us the sorts of errors that we are willing to tolerate? In this paper, we design more reliable machine learned PDE solvers by preserving discrete analogues of the continuous invariants of the underlying PDE. Examples of such invariants include conservation of mass, conservation of energy, the second law of thermodynamics, and/or non-negative density. Our key insight is simple: to preserve invariants, at each timestep apply an error-correcting algorithm to the update rule. Though this strategy is different from how standard solvers preserve invariants, it is necessary to retain the flexibility that allows machine learned solvers to be accurate at large Δx\Delta x and/or Δt\Delta t. This strategy can be applied to any autoregressive solver for any time-dependent PDE in arbitrary geometries with arbitrary boundary conditions. Although this strategy is very general, the specific error-correcting algorithms need to be tailored to the invariants of the underlying equations as well as to the solution representation and time-stepping scheme of the solver. The error-correcting algorithms we introduce have two key properties. First, by preserving the right invariants they guarantee numerical stability. Second, in closed or periodic systems they do so without degrading the accuracy of an already-accurate solver.Comment: 41 pages, 10 figure

    Construction of Modern Robust Nodal Discontinuous Galerkin Spectral Element Methods for the Compressible Navier-Stokes Equations

    Full text link
    Discontinuous Galerkin (DG) methods have a long history in computational physics and engineering to approximate solutions of partial differential equations due to their high-order accuracy and geometric flexibility. However, DG is not perfect and there remain some issues. Concerning robustness, DG has undergone an extensive transformation over the past seven years into its modern form that provides statements on solution boundedness for linear and nonlinear problems. This chapter takes a constructive approach to introduce a modern incarnation of the DG spectral element method for the compressible Navier-Stokes equations in a three-dimensional curvilinear context. The groundwork of the numerical scheme comes from classic principles of spectral methods including polynomial approximations and Gauss-type quadratures. We identify aliasing as one underlying cause of the robustness issues for classical DG spectral methods. Removing said aliasing errors requires a particular differentiation matrix and careful discretization of the advective flux terms in the governing equations.Comment: 85 pages, 2 figures, book chapte
    corecore