10,956 research outputs found

    Biometric fusion methods for adaptive face recognition in computer vision

    Get PDF
    PhD ThesisFace recognition is a biometric method that uses different techniques to identify the individuals based on the facial information received from digital image data. The system of face recognition is widely used for security purposes, which has challenging problems. The solutions to some of the most important challenges are proposed in this study. The aim of this thesis is to investigate face recognition across pose problem based on the image parameters of camera calibration. In this thesis, three novel methods have been derived to address the challenges of face recognition and offer solutions to infer the camera parameters from images using a geomtric approach based on perspective projection. The following techniques were used: camera calibration CMT and Face Quadtree Decomposition (FQD), in order to develop the face camera measurement technique (FCMT) for human facial recognition. Facial information from a feature extraction and identity-matching algorithm has been created. The success and efficacy of the proposed algorithm are analysed in terms of robustness to noise, the accuracy of distance measurement, and face recognition. To overcome the intrinsic and extrinsic parameters of camera calibration parameters, a novel technique has been developed based on perspective projection, which uses different geometrical shapes to calibrate the camera. The parameters used in novel measurement technique CMT that enables the system to infer the real distance for regular and irregular objects from the 2-D images. The proposed system of CMT feeds into FQD to measure the distance between the facial points. Quadtree decomposition enhances the representation of edges and other singularities along curves of the face, and thus improves directional features from face detection across face pose. The proposed FCMT system is the new combination of CMT and FQD to recognise the faces in the various pose. The theoretical foundation of the proposed solutions has been thoroughly developed and discussed in detail. The results show that the proposed algorithms outperform existing algorithms in face recognition, with a 2.5% improvement in main error recognition rate compared with recent studies

    Face pose estimation from eyes and mouth

    Get PDF
    Face pose estimation plays an important role in human computer interaction, automatic human behaviour analysis, gaze estimation, virtual reality, pose independent face recognition, etc. Accuracy and speed are the most desirable features of a face pose estimation system. In this paper, a face pose estimation scheme based on the centres of the eyes and mouth is proposed. The proposed method is simple and is, therefore, very effective in terms of computation because it uses only three points, i.e., eyes and mouth centres. The use of only three points increases the pose estimation range and makes the method suitable for real time applications. Tests using the Pointing '04 database show that the proposed scheme is robust and fast

    Effectiveness of Multi-View Face Images and Anthropometric Data In Real-Time Networked Biometrics

    Get PDF
    Over the years, biometric systems have evolved into a reliable mechanism for establishing identity of individuals in the context of applications such as access control, personnel screening and criminal identification. However, recent terror attacks, security threats and intrusion attempts have necessitated a transition to modern biometric systems that can identify humans under unconstrained environments, in real-time. Specifically, the following are three critical transitions that are needed and which form the focus of this thesis: (1) In contrast to operation in an offline mode using previously acquired photographs and videos obtained under controlled environments, it is required that identification be performed in a real-time dynamic mode using images that are continuously streaming in, each from a potentially different view (front, profile, partial profile) and with different quality (pose and resolution). (2) While different multi-modal fusion techniques have been developed to improve system accuracy, these techniques have mainly focused on combining the face biometrics with modalities such as iris and fingerprints that are more reliable but require user cooperation for acquisition. In contrast, the challenge in a real-time networked biometric system is that of combining opportunistically captured multi-view facial images along with soft biometric traits such as height, gait, attire and color that do not require user cooperation. (3) Typical operation is expected to be in an open-set mode where the number of subjects that enrolled in the system is much smaller than the number of probe subjects; yet the system is required to generate high accuracy.;To address these challenges and to make a successful transition to real-time human identification systems, this thesis makes the following contributions: (1) A score-based multi- modal, multi-sample fusion technique is designed to combine face images acquired by a multi-camera network and the effectiveness of opportunistically acquired multi-view face images using a camera network in improving the identification performance is characterized; (2) The multi-view face acquisition system is complemented by a network of Microsoft Kinects for extracting human anthropometric features (specifically height, shoulder width and arm length). The score-fusion technique is augmented to utilize human anthropometric data and the effectiveness of this data is characterized. (3) The performance of the system is demonstrated using a database of 51 subjects collected using the networked biometric data acquisition system.;Our results show improved recognition accuracy when face information from multiple views is utilized for recognition and also indicate that a given level of accuracy can be attained with fewer probe images (lesser time) when compared with a uni-modal biometric system

    3D Reconstruction of Indoor Corridor Models Using Single Imagery and Video Sequences

    Get PDF
    In recent years, 3D indoor modeling has gained more attention due to its role in decision-making process of maintaining the status and managing the security of building indoor spaces. In this thesis, the problem of continuous indoor corridor space modeling has been tackled through two approaches. The first approach develops a modeling method based on middle-level perceptual organization. The second approach develops a visual Simultaneous Localisation and Mapping (SLAM) system with model-based loop closure. In the first approach, the image space was searched for a corridor layout that can be converted into a geometrically accurate 3D model. Manhattan rule assumption was adopted, and indoor corridor layout hypotheses were generated through a random rule-based intersection of image physical line segments and virtual rays of orthogonal vanishing points. Volumetric reasoning, correspondences to physical edges, orientation map and geometric context of an image are all considered for scoring layout hypotheses. This approach provides physically plausible solutions while facing objects or occlusions in a corridor scene. In the second approach, Layout SLAM is introduced. Layout SLAM performs camera localization while maps layout corners and normal point features in 3D space. Here, a new feature matching cost function was proposed considering both local and global context information. In addition, a rotation compensation variable makes Layout SLAM robust against cameras orientation errors accumulations. Moreover, layout model matching of keyframes insures accurate loop closures that prevent miss-association of newly visited landmarks to previously visited scene parts. The comparison of generated single image-based 3D models to ground truth models showed that average ratio differences in widths, heights and lengths were 1.8%, 3.7% and 19.2% respectively. Moreover, Layout SLAM performed with the maximum absolute trajectory error of 2.4m in position and 8.2 degree in orientation for approximately 318m path on RAWSEEDS data set. Loop closing was strongly performed for Layout SLAM and provided 3D indoor corridor layouts with less than 1.05m displacement errors in length and less than 20cm in width and height for approximately 315m path on York University data set. The proposed methods can successfully generate 3D indoor corridor models compared to their major counterpart

    Deep learning for facial emotion recognition

    Get PDF
    The ability to perceive and interpret human emotions is an essential as-pect of daily life. The recent success of deep learning (DL) has resulted in the ability to utilize automated emotion recognition by classifying af-fective modalities into a given emotional state. Accordingly, DL has set several state-of-the-art benchmarks on static affective corpora collected in controlled environments. Yet, one of the main limitations of DL based intelligent systems is their inability to generalize on data with nonuniform conditions. For instance, when dealing with images in a real life scenario, where extraneous variables such as natural or artificial lighting are sub-ject to constant change, the resulting changes in the data distribution commonly lead to poor classification performance. These and other con-straints, such as: lack of realistic data, changes in facial pose, and high data complexity and dimensionality increase the difficulty of designing DL models for emotion recognition in unconstrained environments. This thesis investigates the development of deep artificial neural net-work learning algorithms for emotion recognition with specific attention to illumination and facial pose invariance. Moreover, this research looks at the development of illumination and rotation invariant face detection architectures based on deep reinforcement learning. The contributions and novelty of this thesis are presented in the form of several deep learning pose and illumination invariant architectures that offer state-of-the-art classification performance on data with nonuniform conditions. Furthermore, a novel deep reinforcement learning architecture for illumination and rotation invariant face detection is also presented. The originality of this work is derived from a variety of novel deep learning paradigms designed for the training of such architectures

    QUIS-CAMPI: Biometric Recognition in Surveillance Scenarios

    Get PDF
    The concerns about individuals security have justified the increasing number of surveillance cameras deployed both in private and public spaces. However, contrary to popular belief, these devices are in most cases used solely for recording, instead of feeding intelligent analysis processes capable of extracting information about the observed individuals. Thus, even though video surveillance has already proved to be essential for solving multiple crimes, obtaining relevant details about the subjects that took part in a crime depends on the manual inspection of recordings. As such, the current goal of the research community is the development of automated surveillance systems capable of monitoring and identifying subjects in surveillance scenarios. Accordingly, the main goal of this thesis is to improve the performance of biometric recognition algorithms in data acquired from surveillance scenarios. In particular, we aim at designing a visual surveillance system capable of acquiring biometric data at a distance (e.g., face, iris or gait) without requiring human intervention in the process, as well as devising biometric recognition methods robust to the degradation factors resulting from the unconstrained acquisition process. Regarding the first goal, the analysis of the data acquired by typical surveillance systems shows that large acquisition distances significantly decrease the resolution of biometric samples, and thus their discriminability is not sufficient for recognition purposes. In the literature, diverse works point out Pan Tilt Zoom (PTZ) cameras as the most practical way for acquiring high-resolution imagery at a distance, particularly when using a master-slave configuration. In the master-slave configuration, the video acquired by a typical surveillance camera is analyzed for obtaining regions of interest (e.g., car, person) and these regions are subsequently imaged at high-resolution by the PTZ camera. Several methods have already shown that this configuration can be used for acquiring biometric data at a distance. Nevertheless, these methods failed at providing effective solutions to the typical challenges of this strategy, restraining its use in surveillance scenarios. Accordingly, this thesis proposes two methods to support the development of a biometric data acquisition system based on the cooperation of a PTZ camera with a typical surveillance camera. The first proposal is a camera calibration method capable of accurately mapping the coordinates of the master camera to the pan/tilt angles of the PTZ camera. The second proposal is a camera scheduling method for determining - in real-time - the sequence of acquisitions that maximizes the number of different targets obtained, while minimizing the cumulative transition time. In order to achieve the first goal of this thesis, both methods were combined with state-of-the-art approaches of the human monitoring field to develop a fully automated surveillance capable of acquiring biometric data at a distance and without human cooperation, designated as QUIS-CAMPI system. The QUIS-CAMPI system is the basis for pursuing the second goal of this thesis. The analysis of the performance of the state-of-the-art biometric recognition approaches shows that these approaches attain almost ideal recognition rates in unconstrained data. However, this performance is incongruous with the recognition rates observed in surveillance scenarios. Taking into account the drawbacks of current biometric datasets, this thesis introduces a novel dataset comprising biometric samples (face images and gait videos) acquired by the QUIS-CAMPI system at a distance ranging from 5 to 40 meters and without human intervention in the acquisition process. This set allows to objectively assess the performance of state-of-the-art biometric recognition methods in data that truly encompass the covariates of surveillance scenarios. As such, this set was exploited for promoting the first international challenge on biometric recognition in the wild. This thesis describes the evaluation protocols adopted, along with the results obtained by the nine methods specially designed for this competition. In addition, the data acquired by the QUIS-CAMPI system were crucial for accomplishing the second goal of this thesis, i.e., the development of methods robust to the covariates of surveillance scenarios. The first proposal regards a method for detecting corrupted features in biometric signatures inferred by a redundancy analysis algorithm. The second proposal is a caricature-based face recognition approach capable of enhancing the recognition performance by automatically generating a caricature from a 2D photo. The experimental evaluation of these methods shows that both approaches contribute to improve the recognition performance in unconstrained data.A crescente preocupação com a segurança dos indivíduos tem justificado o crescimento do número de câmaras de vídeo-vigilância instaladas tanto em espaços privados como públicos. Contudo, ao contrário do que normalmente se pensa, estes dispositivos são, na maior parte dos casos, usados apenas para gravação, não estando ligados a nenhum tipo de software inteligente capaz de inferir em tempo real informações sobre os indivíduos observados. Assim, apesar de a vídeo-vigilância ter provado ser essencial na resolução de diversos crimes, o seu uso está ainda confinado à disponibilização de vídeos que têm que ser manualmente inspecionados para extrair informações relevantes dos sujeitos envolvidos no crime. Como tal, atualmente, o principal desafio da comunidade científica é o desenvolvimento de sistemas automatizados capazes de monitorizar e identificar indivíduos em ambientes de vídeo-vigilância. Esta tese tem como principal objetivo estender a aplicabilidade dos sistemas de reconhecimento biométrico aos ambientes de vídeo-vigilância. De forma mais especifica, pretende-se 1) conceber um sistema de vídeo-vigilância que consiga adquirir dados biométricos a longas distâncias (e.g., imagens da cara, íris, ou vídeos do tipo de passo) sem requerer a cooperação dos indivíduos no processo; e 2) desenvolver métodos de reconhecimento biométrico robustos aos fatores de degradação inerentes aos dados adquiridos por este tipo de sistemas. No que diz respeito ao primeiro objetivo, a análise aos dados adquiridos pelos sistemas típicos de vídeo-vigilância mostra que, devido à distância de captura, os traços biométricos amostrados não são suficientemente discriminativos para garantir taxas de reconhecimento aceitáveis. Na literatura, vários trabalhos advogam o uso de câmaras Pan Tilt Zoom (PTZ) para adquirir imagens de alta resolução à distância, principalmente o uso destes dispositivos no modo masterslave. Na configuração master-slave um módulo de análise inteligente seleciona zonas de interesse (e.g. carros, pessoas) a partir do vídeo adquirido por uma câmara de vídeo-vigilância e a câmara PTZ é orientada para adquirir em alta resolução as regiões de interesse. Diversos métodos já mostraram que esta configuração pode ser usada para adquirir dados biométricos à distância, ainda assim estes não foram capazes de solucionar alguns problemas relacionados com esta estratégia, impedindo assim o seu uso em ambientes de vídeo-vigilância. Deste modo, esta tese propõe dois métodos para permitir a aquisição de dados biométricos em ambientes de vídeo-vigilância usando uma câmara PTZ assistida por uma câmara típica de vídeo-vigilância. O primeiro é um método de calibração capaz de mapear de forma exata as coordenadas da câmara master para o ângulo da câmara PTZ (slave) sem o auxílio de outros dispositivos óticos. O segundo método determina a ordem pela qual um conjunto de sujeitos vai ser observado pela câmara PTZ. O método proposto consegue determinar em tempo-real a sequência de observações que maximiza o número de diferentes sujeitos observados e simultaneamente minimiza o tempo total de transição entre sujeitos. De modo a atingir o primeiro objetivo desta tese, os dois métodos propostos foram combinados com os avanços alcançados na área da monitorização de humanos para assim desenvolver o primeiro sistema de vídeo-vigilância completamente automatizado e capaz de adquirir dados biométricos a longas distâncias sem requerer a cooperação dos indivíduos no processo, designado por sistema QUIS-CAMPI. O sistema QUIS-CAMPI representa o ponto de partida para iniciar a investigação relacionada com o segundo objetivo desta tese. A análise do desempenho dos métodos de reconhecimento biométrico do estado-da-arte mostra que estes conseguem obter taxas de reconhecimento quase perfeitas em dados adquiridos sem restrições (e.g., taxas de reconhecimento maiores do que 99% no conjunto de dados LFW). Contudo, este desempenho não é corroborado pelos resultados observados em ambientes de vídeo-vigilância, o que sugere que os conjuntos de dados atuais não contêm verdadeiramente os fatores de degradação típicos dos ambientes de vídeo-vigilância. Tendo em conta as vulnerabilidades dos conjuntos de dados biométricos atuais, esta tese introduz um novo conjunto de dados biométricos (imagens da face e vídeos do tipo de passo) adquiridos pelo sistema QUIS-CAMPI a uma distância máxima de 40m e sem a cooperação dos sujeitos no processo de aquisição. Este conjunto permite avaliar de forma objetiva o desempenho dos métodos do estado-da-arte no reconhecimento de indivíduos em imagens/vídeos capturados num ambiente real de vídeo-vigilância. Como tal, este conjunto foi utilizado para promover a primeira competição de reconhecimento biométrico em ambientes não controlados. Esta tese descreve os protocolos de avaliação usados, assim como os resultados obtidos por 9 métodos especialmente desenhados para esta competição. Para além disso, os dados adquiridos pelo sistema QUIS-CAMPI foram essenciais para o desenvolvimento de dois métodos para aumentar a robustez aos fatores de degradação observados em ambientes de vídeo-vigilância. O primeiro é um método para detetar características corruptas em assinaturas biométricas através da análise da redundância entre subconjuntos de características. O segundo é um método de reconhecimento facial baseado em caricaturas automaticamente geradas a partir de uma única foto do sujeito. As experiências realizadas mostram que ambos os métodos conseguem reduzir as taxas de erro em dados adquiridos de forma não controlada
    corecore