986 research outputs found

    Smartphone as a Portable Detector, Analytical Device, or Instrument Interface

    Get PDF
    The Encyclopedia Britannia defines a smartphone as a mobile telephone with a display screen, at the same time serves as a pocket watch, calendar, addresses book and calculator and uses its own operating system (OS). A smartphone is considered as a mobile telephone integrated to a handheld computer. As the market matured, solid-state computer memory and integrated circuits became less expensive over the following decade, smartphone became more computer-like, and more more-advanced services, and became ubiquitous with the introduction of mobile phone networks. The communication takes place for sending and receiving photographs, music, video clips, e-mails and more. The growing capabilities of handheld devices and transmission protocols have enabled a growing number of applications. The integration of camera, access Wi-Fi, payments, augmented reality or the global position system (GPS) are features that have been used for science because the users of smartphone have risen all over the world. This chapter deals with the importance of one of the most common communication channels, the smartphone and how it impregnates in the science. The technological characteristics of this device make it a useful tool in social sciences, medicine, chemistry, detections of contaminants, pesticides, drugs or others, like so detection of signals or image

    Biosensors for Diagnosis and Monitoring

    Get PDF
    Biosensor technologies have received a great amount of interest in recent decades, and this has especially been the case in recent years due to the health alert caused by the COVID-19 pandemic. The sensor platform market has grown in recent decades, and the COVID-19 outbreak has led to an increase in the demand for home diagnostics and point-of-care systems. With the evolution of biosensor technology towards portable platforms with a lower cost on-site analysis and a rapid selective and sensitive response, a larger market has opened up for this technology. The evolution of biosensor systems has the opportunity to change classic analysis towards real-time and in situ detection systems, with platforms such as point-of-care and wearables as well as implantable sensors to decentralize chemical and biological analysis, thus reducing industrial and medical costs. This book is dedicated to all the research related to biosensor technologies. Reviews, perspective articles, and research articles in different biosensing areas such as wearable sensors, point-of-care platforms, and pathogen detection for biomedical applications as well as environmental monitoring will introduce the reader to these relevant topics. This book is aimed at scientists and professionals working in the field of biosensors and also provides essential knowledge for students who want to enter the field

    Flexible Electrode Array System for Sweat Analysis in Vitro Information

    Get PDF
    Sweat is a kind of liquid secreted to the body surface by human sweat glands, and its composition is highly related to the physiological state of the human body. Flexible wearable devices can dynamically monitor the change of sweat composition and the state of motion in real-time, which makes it become an important means for clinical and physiological research. In this thesis, a sensing system based on the flexible electrode array, which mainly includes a flexible electrode array and portable signal acquisition and processing system module, is designed and used for dynamic sweat detection. The system is characterized by high sensitivity, high selectivity, and repeatability, enabling online sweat composition analysis in vitro or wearable situations. Flexible electrode array mainly includes ion-selective electrodes (ISEs), enzyme electrodes, and reference electrodes. The ISEs include sodium and potassium selective electrodes. Enzyme electrodes include glucose and lactate oxidase electrodes. Reference electrodes are two pseudo-Ag/AgCl reference electrodes, both of which also act as counter electrodes. Signal acquisition and processing module mainly include voltage signal amplification, current signal amplification, filtering, signal selection, and A/D conversion circuit. This thesis studies the response characteristics of the electrode array to four kinds of sweat components. The sensitivity of ISEs and enzyme electrodes can be obtained by using an electrochemical workstation: The voltage response sensitivity of potassium ISE is 60.8 mV/lg[c(K+)]; The voltage response sensitivity of sodium ISE is 45.9 mV/lg[c(Na+)]; The current response sensitivity of glucose oxidase electrode is 2.28 μA·L/mmol; The current response sensitivity of lactate oxidase electrode is 45 nA·L/mmol. At the same time, the selectivity of ISEs is studied, and the experiment shows that both potassium and sodium ISE have a good anti-interference ability with low sensitivity against temperature. The sensitivity of potassium, sodium, glucose and lactate electrodes can still maintain a good linear relationship and meet the sensitivity requirements by using the portable signal acquisition and processing system. Combined with the "Clip Plate Method", sodium ion, glucose, and lactate of sweat sample collected from sportive volunteers are measured and analyzed, and the detecting of oxygen saturation and heart rate is also carried out in real-time, through which it can be found that the composition of sweat will change with the motion state and individual differences, providing a reference for the follow-up single targeted detection. In the thesis, a new type of enzyme electrode based on viologen compounds is developed, which has simple technological process and good stability, and the current response sensitivity of glucose and lactate oxidase electrode based on sulfhydryl viologen is measured as -0.234 μA·L/mmol and -41.7 nA·L/mmol, which shows improved linearity and stability compared with conventional enzyme electrode

    Electrochemical Plug-and-Power e-readers for Point-of-Care Applications

    Get PDF
    Point-of-Care diagnostic tests enable monitor health conditions and obtain fast results close to the patient, reducing medical costs, and allowing the control of infectious outbreaks. The interest in developing Point-of-Care devices is increasing due to they are suitable for a wide variety of applications. This doctoral thesis focuses on the development of Plug-and-Power electronic readers (e- readers) for electrochemical detections and the demonstration of their possibilities as Point-of-Care diagnostic testing. The solutions proposed in this study make it possible to improve Point-of-Care tests whose premises are laboratory decentralization, personalized medicine, rapid diagnosis, and improvement of patient care. Developed electronic readers can be powered from a conventional system, such as a USB port or a lithium battery, or can be defined as self-powered systems, capable of extracting energy from alternative energy sources, such as fuel cells, defining Plug-and-Power systems. The designed electrochemical detection devices in this thesis are based on low-power consumption electronic instrumentation circuits. These circuits are capable of controlling the sensing element, measuring its response, and representing the result quantitatively. The implemented devices can work with both electrochemical sensors and fuel cells. Furthermore, it is possible to adapt its measurement range, enabling its use in a wide variety of applications. Thanks to their reduced energy consumption, some of these developments can be defined as self-powered platforms able to operate only with the energy extracted from the biological sample, which in turn is monitored. These devices are easy-to-use and plug-and-play, enabling those unskilled individuals to carry out tests after prior training. Moreover, thanks to their user-friendly interface, results are clear and easy to understand. This doctoral dissertation is presented as an article compendium and composed of three publications detailed in chronological order of publication. The first contribution describes an innovative portable Point-of-Care device able to provide a quantitative result of the glucose concentration of a sample. The proposed system combines an e-reader and a disposable device based on two elements: a glucose paper-based power source, and a glucose fuel cell-based sensor. The battery-less e-reader extracts the energy from the disposable unit, acquires the signal, processes it, and shows the glucose concentration on a numerical display. Due to low-power consumption of the e-reader, the whole electronic system can operate only with the energy extracted from the disposable element. Furthermore, the proposed system minimizes the user interaction, which only must deposit the sample on the strip and wait a few seconds to see the test result. The second publication validates the e-reader in other scenarios following two approaches: using fuel cells as a power element, and as a dual powering and sensing element. The device was tested with glucose, urine, methanol, and ethanol fuel cells and electrochemical sensors in order to show the adaptability of this versatile concept to a wide variety of fields beyond clinical diagnostics, such as veterinary or environmental fields. The third study presents a low-cost, miniaturized, and customizable electronic reader for amperometric detections. The USB-powered portable device is composed of a full- custom electronic board for signal acquisition, and software, which controls the systems, represents and saves the results. In this study, the performance of the device was compared against three commercial potentiostats, showing comparable results to those obtained using three commercial systems, which were significantly more expensive. As proof of concept, the system was validated by detecting horseradish peroxidase samples. However, it could be easily extended its scope and measure other types of analytes or biological matrices since it can be easily adapted to detect currents a wide range of currents.Las pruebas de diagnostico Point-of-Care permiten monitorizar las condiciones de salud y obtener resultados rápidos cerca del paciente, reduciendo los costes médicos y permitiendo controlar brotes infecciosos. El interés por desarrollar dispositivos de Point- of-Care está aumentando debido a que son aplicables a una amplia variedad de aplicaciones. Esta tesis doctoral se centra en el desarrollo de lectores electrónicos (e-readers) Plug-and- Power para detecciones electroquímicas y la demostración de sus posibilidades como pruebas de diagnóstico de punto de atención (Point-of-Care). Las soluciones propuestas en este trabajo permiten mejorar las pruebas Point-of-Care, cuyas premisas son la descentralización de laboratorio, la medicina personalizada, el diagnóstico rápido y la mejora de la atención al paciente. Los lectores electrónicos desarrollados pueden ser alimentados desde un sistema convencional, como puede ser un puerto USB o una batería de litio, o definirse como sistemas autoalimentados, capaces de extraen energía de fuentes alternativas de energía, como celdas de combustible (fuel cells), definiendo así sistemas Plug-and-Power. Los dispositivos de detección electroquímica diseñados se basan en circuitos de instrumentación electrónica de bajo consumo. Estos circuitos son capaces controlar el elemento de sensado, medir su respuesta y representar el resultado de forma cuantitativa. Los dispositivos implementados pueden trabajar tanto con sensores electroquímicos como con fuel cells. Además, es posible adaptar su rango de medida, permitiendo su utilización en una amplia variedad de aplicaciones. Gracias a su reducido consumo de energía, algunos de estos desarrollos pueden definirse como plataformas autoalimentadas capaces de operar solo con la energía extraída de la muestra biológica, que a su vez es monitorizada. Estas plataformas electrónicas son fáciles de usar y Plug-and-Play, permitiendo que personas no cualificadas puedan utilizarlas después de un previo entrenamiento. Además, gracias a su interfaz fácil de usar, los resultados son claros y fáciles de interpretar

    Cellulose-Based Biosensing Platforms

    Get PDF
    Cellulose empowers measurement science and technology with a simple, low-cost, and highly transformative analytical platform. This book helps the reader to understand and build an overview of the state of the art in cellulose-based (bio)sensing, particularly in terms of the design, fabrication, and advantageous analytical performance. In addition, wearable, clinical, and environmental applications of cellulose-based (bio)sensors are reported, where novel (nano)materials, architectures, signal enhancement strategies, as well as real-time connectivity and portability play a critical role

    Epidermal sensors for monitoring skin physiology

    Get PDF
    Wearable sensors are revolutionizing personalised healthcare and have continuously progressed over the years in both research and commercialization. However, most efforts on wearable sensors have been focused on tracking movement, spatial position and continuous monitoring of vital signs such as heart rate or respiration rate. Recently, there is a demand to obtain biochemical information from the body using wearables. This demand stems from an individuals’ desire for improved personal health awareness as well as the drive for doctors to continuously obtain medical information for a patients’ disease management. Epidermal sensors are a sub-class of wearable sensors that can intimately integrate with skin and have the potential for monitoring physical changes as well as detecting biomarkers within skin that can be related to human health. The holy grail for these types of sensors is to achieve continuous real-time monitoring of the state of an individual and the development of these sensors are paving the way towards personalised healthcare. However, skin is highly anisotropic which makes it challenging to keep epidermal sensors in consistent contact with skin. It is important that these sensors remain in contact with skin in order to measure its electrical properties and acquire high fidelity signals. The key objective of this thesis is to develop thin conformable, stretchable epidermal sensors for tracking changes in skin physiology. The initial iteration of the screen printed epidermal sensor comprised of a flexible silver film. Impedance spectroscopy was used to understand the electrical signals generated on skin and it was used to measure relative changes due to varying water content. However, this iteration was more suited for single use. The next chapters explore different ink formulations and adherence methodologies to enhance the epidermal sensors adherence to skin. Impedance spectroscopy was used to characterise the electrical signals from these different epidermal sensor iterations, while tensile testing and on-body assessment was used to characterise its mechanical properties. The final chapter focused on investigating the use of phenyl boronic acid (PBA) functionalized hydrogels to modify the epidermal sensor with responsive hydrogel materials to enable chemical sensing of analytes relevant to skin physiology. Impedance spectroscopy was used to characterise and understand the electrical signals generated by the binding interaction of the PBA and analytes using the sensor. Overall, the work demonstrates the challenges of developing these epidermal sensors as well as presenting their potential for continuous monitoring of human skin in the future

    Communication system for a tooth-mounted RF sensor used for continuous monitoring of nutrient intake

    Get PDF
    In this Thesis, the communication system of a wearable device that monitors the user’s diet is studied. Based in a novel RF metamaterial-based mouth sensor, different decisions have to be made concerning the system’s technologies, such as the power source options for the device, the wireless technology used for communications and the method to obtain data from the sensor. These issues, along with other safety rules and regulations, are reviewed, as the first stage of development of the Food-Intake Monitoring projectOutgoin

    New Electrochemical Sensors for Decentralized Analysis

    Get PDF
    Nous sensors electroquímics per a analisis decentralitzats és una tesis que emmarca diferents aspectes del desenvolupament de sensors potenciomètrics, des de la seva fabricació, el diseny adequat, i finalment, la seva aplicabilitat en escenaris reals. En el context actual, l'evolució de la tecnologia, especialment l'aparició a nivell global d'internet, i la disponibilitat d'aquesta a baix cost han permès la creació d'eines que ens permeten connectar el món físic i, en el cas d'aquesta tesis, el món químic a la xarxa. Aquesta connexió aporta un nou grau dins l'escala de valor per a la societat actual. Concretament, aquesta aportació tecnològica va adreçada a superar els nous reptes de l'actualitat, com poden ser la sostenibilitat del sistema sanitari a causa de l'embelliment de la societat, el control medioambiental, així com també mantenir la seguretat per a la societat del benestar del futur. Així doncs, aquesta tesis presenta solucions efectives per al desenvolupament d'eines de captació d'informació que serviràn per nudrir a la societat de major coneixement. Conseqüentment, produint nous negocis al voltant, de la fabricació, processament i creació de valor entorn a aquestes dades. La recerca i desenvolupament de sensors potenciomètrics integrats a la roba per detectar els nivells d'electròlits i sensors senzills de paper per a la determinació de biomolècules, com la glucosa, són alguns dels objectius aconseguits en aquesta tesis. A més a més, sensors integrats en globus permeten l'estudi de les seves propietats mecàniques i electroquímiques, així com també, aporten noves solucions a problemes reals. Totes aquestes aplicacions serveixen de portals de captació d'informació química cap a la integració dins la nova societat de la informació.Nuevos sensores electroquímicos para analisis decentralizados es una tesis que enmarca diferentes aspectos del desarrollo de sensores potenciométricos, desde su fabricación, el diseño adecuado, i finalmente, su aplicabilidad en escenarios reales. En el contexto actual, la evolución de la tecnología, especialmente la aparición a nivel global de internet, y la disponibilidad de esta a bajo coste han permitido la creación de herramientas que nos permiten conectar el mundo físico y, en el caso de esta tesis, el mundo químico a la red. Esta conexión aporta un nuevo grado dentro la escala de valor para la sociedad actual. Concretamente, esta aportación tecnológica va dirigida a superar los nuevos retos de la actualidad, como pueden ser la sostenibilidad del sistema sanitario a causa del envejecimiento de la poblacion, el control medioambiental, así como también mantener la seguridad para la sociedad del bienestar del futuro. Entonces, esta tesis presenta soluciones efectivas para el desarrollo de herramientas de captación de información que servirán para nutrir a la sociedad de un mayor conocimiento. Por consiguiente, produciendo nuevos negocios alrededor, de la fabricación, procesado i creación de valor en los datos obtenidos. La investigación y desarrollo de sensores potenciométricos integrados en la ropa para detectar los niveles de electrolitos y sensores simples en papel para la determinación de biomoléculas, como la glucosa, son algunos de los objetivos conseguidos en esta tesis. Además, sensores integrados en globos permiten el estudio de sus propiedades mecánicas y electroquímicas, así como, aportando nuevas soluciones a problemas reales. Todas estas aplicaciones sirven de portales de captación de información química hacia la integración dentro de la nueva sociedad de la información.ew Electrochemical Sensors for Decentralized Analysis is a thesis that wisely discuss the developments of potentiometric sensors, from the fabrication step, the use of a suitable design, to the applicability in real scenarios. Nowadays, the evolution of technology, specially the creation of the global internet network, and the low-cost availability of such technology have allowed the development of tools that connect the physical world and, addressed in this thesis, the chemical world into the network. This connection adds a new level in the value chain for the present society. Precisely, this technology approach is focus on circumvent new present challenges of society. For instance, sustainability of the healthcare system caused by the population aging, environmental monitoring, as well as, keep security and safety to the welfare of society of the future. Therefore, this thesis presents successful solutions for the development of tools to gather chemical information. This information will nurture society with high-value knowledge. Accordingly, new business development from, sensing products, data treatment and information management are going to be created. Research and development of potentiometric sensors integrated into garments for electrolyte detection and simple sensors built in paper for biomolecules determination, such as glucose, and liquid monitoring, such as sweat, are some of the accomplished objectives from this thesis. Furthermore, balloon-embedded sensors allow the study of the mechanical and electrochemical properties of the electrodes, as well as, contributing with new solutions to real problems. All the applications developed in this thesis are utilized as gateways for chemical information acquisition towards the integration into the new information society

    Innovative IoT Solutions and Wearable Sensing Systems for Monitoring Human Biophysical Parameters: A Review

    Get PDF
    none3noDigital and information technologies are heavily pervading several aspects of human activities, improving our life quality. Health systems are undergoing a real technological revolution, radically changing how medical services are provided, thanks to the wide employment of the Internet of Things (IoT) platforms supporting advanced monitoring services and intelligent inferring systems. This paper reports, at first, a comprehensive overview of innovative sensing systems for monitoring biophysical and psychophysical parameters, all suitable for integration with wearable or portable accessories. Wearable devices represent a headstone on which the IoT-based healthcare platforms are based, providing capillary and real-time monitoring of patient’s conditions. Besides, a survey of modern architectures and supported services by IoT platforms for health monitoring is presented, providing useful insights for developing future healthcare systems. All considered architectures employ wearable devices to gather patient parameters and share them with a cloud platform where they are processed to provide real-time feedback. The reported discussion highlights the structural differences between the discussed frameworks, from the point of view of network configuration, data management strategy, feedback modality, etc.Article Number: 1660openRoberto De Fazio; Massimo De Vittorio; Paolo ViscontiDE FAZIO, Roberto; DE VITTORIO, Massimo; Visconti, Paol

    Sensor integration into microfluidic systems: trends and challenges

    Get PDF
    The combination of sensors and microfluidics has become a promising approach for detecting a wide variety of targets relevant in biotechnology. Thanks to recent advances in the manufacturing of microfluidic systems, microfluidics can be manufactured faster, cheaper, and more accurately than ever before. These advances make microfluidic systems very appealing as a basis for constructing sensor systems, and microfluidic devices have been adapted to house (bio)sensors for various applications (e.g. protein biomarker detection, cell culture oxygen control, and pathogen detection). This review article highlights several successfully integrated microfluidic sensor systems, with a focus on work that has been published within the last two years. Different sensor integration methods are discussed, and the latest trends in wearable- and smartphone-based sensors are described
    corecore