98 research outputs found

    ICNにおけるストリーミングコンテンツ配信のインネットワークキャッシング方式

    Get PDF
    早大学位記番号:新7734早稲田大

    Design and Evaluation of the Optimal Cache Allocation for Content-Centric Networking

    Get PDF
    Content-centric networking (CCN) is a promising framework to rebuild the Internet's forwarding substrate around the concept of content. CCN advocates ubiquitous in-network caching to enhance content delivery, and thus each router has storage space to cache frequently requested content. In this work, we focus on the cache allocation problem, namely, how to distribute the cache capacity across routers under a constrained total storage budget for the network. We first formulate this problem as a content placement problem and obtain the optimal solution by a two-step method. We then propose a suboptimal heuristic method based on node centrality, which is more practical in dynamic networks with frequent content publishing. We investigate through simulations the factors that affect the optimal cache allocation, and perhaps more importantly we use a real-life Internet topology and video access logs from a large scale Internet video provider to evaluate the performance of various cache allocation methods. We observe that network topology and content popularity are two important factors that affect where exactly should cache capacity be placed. Further, the heuristic method comes with only a very limited performance penalty compared to the optimal allocation. Finally, using our findings, we provide recommendations for network operators on the best deployment of CCN caches capacity over routers

    Study and analysis of mobility, security, and caching issues in CCN

    Get PDF
    Existing architecture of Internet is IP-centric, having capability to cope with the needs of the Internet users. Due to the recent advancements and emerging technologies, a need to have ubiquitous connectivity has become the primary focus. Increasing demands for location-independent content raised the requirement of a new architecture and hence it became a research challenge. Content Centric Networking (CCN) paradigm emerges as an alternative to IP-centric model and is based on name-based forwarding and in-network data caching. It is likely to address certain challenges that have not been solved by IP-based protocols in wireless networks. Three important factors that require significant research related to CCN are mobility, security, and caching. While a number of studies have been conducted on CCN and its proposed technologies, none of the studies target all three significant research directions in a single article, to the best of our knowledge. This paper is an attempt to discuss the three factors together within context of each other. In this paper, we discuss and analyze basics of CCN principles with distributed properties of caching, mobility, and secure access control. Different comparisons are made to examine the strengths and weaknesses of each aforementioned aspect in detail. The final discussion aims to identify the open research challenges and some future trends for CCN deployment on a large scale

    Performance Analysis and Optimisation of In-network Caching for Information-Centric Future Internet

    Get PDF
    The rapid development in wireless technologies and multimedia services has radically shifted the major function of the current Internet from host-centric communication to service-oriented content dissemination, resulting a mismatch between the protocol design and the current usage patterns. Motivated by this significant change, Information-Centric Networking (ICN), which has been attracting ever-increasing attention from the communication networks research community, has emerged as a new clean-slate networking paradigm for future Internet. Through identifying and routing data by unified names, ICN aims at providing natural support for efficient information retrieval over the Internet. As a crucial characteristic of ICN, in-network caching enables users to efficiently access popular contents from on-path routers equipped with ubiquitous caches, leading to the enhancement of the service quality and reduction of network loads. Performance analysis and optimisation has been and continues to be key research interests of ICN. This thesis focuses on the development of efficient and accurate analytical models for the performance evaluation of ICN caching and the design of optimal caching management schemes under practical network configurations. This research starts with the proposition of a new analytical model for caching performance under the bursty multimedia traffic. The bursty characteristic is captured and the closed formulas for cache hit ratio are derived. To investigate the impact of topology and heterogeneous caching parameters on the performance, a comprehensive analytical model is developed to gain valuable insight into the caching performance with heterogeneous cache sizes, service intensity and content distribution under arbitrary topology. The accuracy of the proposed models is validated by comparing the analytical results with those obtained from extensive simulation experiments. The analytical models are then used as cost-efficient tools to investigate the key network and content parameters on the performance of caching in ICN. Bursty traffic and heterogeneous caching features have significant influence on the performance of ICN. Therefore, in order to obtain optimal performance results, a caching resource allocation scheme, which leverages the proposed model and targets at minimising the total traffic within the network and improving hit probability at the nodes, is proposed. The performance results reveal that the caching allocation scheme can achieve better caching performance and network resource utilisation than the default homogeneous and random caching allocation strategy. To attain a thorough understanding of the trade-off between the economic aspect and service quality, a cost-aware Quality-of-Service (QoS) optimisation caching mechanism is further designed aiming for cost-efficiency and QoS guarantee in ICN. A cost model is proposed to take into account installation and operation cost of ICN under a realistic ISP network scenario, and a QoS model is presented to formulate the service delay and delay jitter in the presence of heterogeneous service requirements and general probabilistic caching strategy. Numerical results show the effectiveness of the proposed mechanism in achieving better service quality and lower network cost. In this thesis, the proposed analytical models are used to efficiently and accurately evaluate the performance of ICN and investigate the key performance metrics. Leveraging the insights discovered by the analytical models, the proposed caching management schemes are able to optimise and enhance the performance of ICN. To widen the outcomes achieved in the thesis, several interesting yet challenging research directions are pointed out

    Offloading Content with Self-organizing Mobile Fogs

    Get PDF
    Mobile users in an urban environment access content on the internet from different locations. It is challenging for the current service providers to cope with the increasing content demand from a large number of collocated mobile users. In-network caching to offload content at nodes closer to users alleviate the issue, though efficient cache management is required to find out who should cache what, when and where in an urban environment, given nodes limited computing, communication and caching resources. To address this, we first define a novel relation between content popularity and availability in the network and investigate a node's eligibility to cache content based on its urban reachability. We then allow nodes to self-organize into mobile fogs to increase the distributed cache and maximize content availability in a cost-effective manner. However, to cater rational nodes, we propose a coalition game for the nodes to offer a maximum "virtual cache" assuming a monetary reward is paid to them by the service/content provider. Nodes are allowed to merge into different spatio-temporal coalitions in order to increase the distributed cache size at the network edge. Results obtained through simulations using realistic urban mobility trace validate the performance of our caching system showing a ratio of 60-85% of cache hits compared to the 30-40% obtained by the existing schemes and 10% in case of no coalition

    Optimal Cache Allocation for Content-Centric Networking

    Get PDF
    This work was supported by the National Basic Research Program of China with Grant 2012CB315801, the National Natural Science Foundation of China (NSFC) with Grants 61133015 and 61272473, the National High-tech R&D Program of China with Grant 2013AA013501, and by the Strategic Priority Research Program of CAS with Grant X-DA06010303. The work was also supported by the EC EINS and EPSRC IU-ATC projects
    corecore