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Design and Evaluation of the Optimal Cache
Allocation for Content-Centric Networking

Yonggong Wang, Zhenyu Li, Gareth Tyson, Steve Uhlig, and Gaogang Xie

Abstract—Content-centric networking (CCN) is a promising framework to rebuild the Internet’s forwarding substrate around the

concept of content. CCN advocates ubiquitous in-network caching to enhance content delivery, and thus each router has storage

space to cache frequently requested content. In this work, we focus on the cache allocation problem, namely, how to distribute the

cache capacity across routers under a constrained total storage budget for the network. We first formulate this problem as a content

placement problem and obtain the optimal solution by a two-step method. We then propose a suboptimal heuristic method based on

node centrality, which is more practical in dynamic networks with frequent content publishing. We investigate through simulations the

factors that affect the optimal cache allocation, and perhaps more importantly we use a real-life Internet topology and video access logs

from a large scale Internet video provider to evaluate the performance of various cache allocation methods. We observe that network

topology and content popularity are two important factors that affect where exactly should cache capacity be placed. Further, the

heuristic method comes with only a very limited performance penalty compared to the optimal allocation. Finally, using our findings, we

provide recommendations for network operators on the best deployment of CCN caches capacity over routers.

Index Terms—Cache allocation, CCN, on-path, optimization, centrality

Ç

1 INTRODUCTION

UBIQUITOUS in-network caching of content is a key fea-
ture of content-centric networking (CCN) [1]. This

architecture proposes to re-build the Internet’s forwarding
substrate around the concept of content, where nodes can
issue interest packets that are forwarded (at layer-3) to
sources that can, in return, serve data packets. To achieve
this, each content chunk is allocated a globally unique
identifier that all network entities, including routers, can
comprehend. Through this, it becomes possible for any
router to cache data packets and, subsequently, serve future
requests via its cache, rather than forwarding interests to
the origin of the content. Many benefits are expected,
including improved performance [2], [3], lower network
costs [4], and superior resilience.

Despite the elegance of this concept, there are a number
of challenges to be addressed. Perhaps most notable is the
potentially huge cost that would be involved in deploying
ubiquitous cache storage on every router. In practice, with
current technologies, this would be extremely expensive
and energy intensive; for example, a CCN router with 10 TB
of cache space using Flash-based solid-state drives (SSDs)

would cost $300;000 and consume 500 W of power [5]. This
leads us to conclude that, if deployments were achieved, a
huge range of CCN router models would exist, with net-
works intelligently deploying high capacity ones only in the
areas that need them the most. We therefore argue that
one of the key challenges in CCN’s future deployment is
the cache allocation problem: given a finite set of cache storage
and a specific topology, how should the storage be distrib-
uted across the CCN routers?

This problem has been studied extensively in other
domains, with optimization techniques being used to cal-
culate optimal cache allocation in multi-cache networks,
such as CDNs [6], [7], web caching [8], [9] and IPTV [10],
[11]. These, however, are based on specific applications
and are only suitable for particular types of topologies
(e.g., hierarchical, adaptive overlay structures). Instead, the
constraints become far tighter in CCN, as caches are co-
located with the (layer-3) infrastructure. Therefore, it is not
possible to flexibly build your own (layer-7) cache topology
as with traditional forms of cache allocation. This is further
exacerbated by the fact that, practically speaking, only on-
path caching is allowed, with interest packets always
following FIB entries.

Past work has proven inconclusive in this domain, with a
lack of consensus. For example, Rossi and Rossini [12]
found that allocating more cache space in the “core” of the
network would improve the performance of CCN when
compared to homogeneous allocation. Subsequently, Psaras
et al. [13] and Fayazbakhsh et al. [14] concluded the oppo-
site: it would be better to allocate capacity at the edge.
Indeed, one of the key challenges identified in CCN is pre-
cisely this: where exactly should cache capacity be placed
[15], the core, the edge or a mix of both?

This paper seeks to address this gap, exploring the rea-
sons behind some of these apparently conflicting results.
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We correlate this problem with cache allocation and pro-
pose an optimal cache allocation algorithm to discover the
key factors that impact the performance of caching in CCN.
Furthermore, we propose a heuristic algorithm to compute
a practically feasible and near-optimal cache allocation. We
use both synthetic and real-life network topologies and con-
tent access logs to evaluate the impact of various factors
and the performance of proposed algorithms. To summa-
rize, we make the following contributions:

� We investigate the cache allocation problem in CCN,
proposing an optimal solution for computing which
CCN routers should be enabled with caching, and
exactly how much storage should be allocated.

� We propose a practically feasible centrality-based
heuristic method that does not depend on global
content distribution information as required by
the optimal solution. Our heuristic mechanism
offers a key tool for assisting network operators
in these decisions.

� We utilize our optimal solution to explore the key
factors that impact the performance of cache alloca-
tion via extensive simulations. In particular, we
perform the first comprehensive evaluation that con-
siders the following factors: topology, network size,
content popularity characteristics and object replace-
ment strategies.

� We use real-life Internet topology and video content
request logs to examine the performance of various
cache allocation methods. The results reveal that
compared with the exact optimal solution, the heu-
ristic allocation comes with limited cache perfor-
mance penalty. We also provide recommendations
to network operators on the choosing of cache alloca-
tion policy.

While the exact optimal allocation and some preliminary
results have been presented in [16], the heuristic mechanism
and the experiments using a real-life Internet topology and
video access logs are newly added in this extended version.

The remainder of the paper is organized as follows. In
Section 2, we discuss related work. In Section 3, a detailed
model of CCN caching is presented, before proposing opti-
mization techniques, both exact and heuristic. In Section 4,
we perform simulations to explore the key factors that
impact cache allocation and network performance. In
Section 5, we bring together our findings to delineate a
number of considerations. Finally, we conclude in Section 6.

2 RELATED WORK

We classify related work into two groups: (1) cache alloca-
tion methods in CCN; and (2) optimization methods for cur-
rent multi-cache networks.

2.1 Cache Allocation in CCN

Awealth of research has recently inspected the performance
of caching in CCN, e.g., [2], [4], [17], [18], [19], [20], [21].
These works perform extensive simulation studies, provid-
ing a range of insights, including performance modeling [2],
[17], deployment incentives [4], and cache routing [18]. All
of them consider homogeneous deployments, where all

routers have the same cache size. In practice, however, these
homogeneous deployments are extremely unlikely. Instead,
a variety of router types will exist, with networks deploying
appropriately sized caches in strategic locations.

To our knowledge, there are only a few works that have
considered heterogeneous cache allocation policies. Rossini
and Rossi [12] were the first to study the cache allocation
problem in CCN. They propose to deploy more cache space
in the “core” routers of the network, rather than at the edge,
and conclude that the gain brought by cache size heteroge-
neity is actually very limited. In contrast, a later work [13]
concludes the opposite, finding that keeping larger caches
at the edge is, in fact, more effective. Similarly, Fayazbakhsh
et al. [14] questioned the necessity of ubiquitous caching
and concluded that most of the performance benefits can be
achieved by edge caching alone. We re-visit this apparent
contradiction in Section 4. Our heuristic allocation differs
from [12] in that we use the centrality metric for selecting
the cache location. The cache quota allocated to routers is
further computed using a greedy algorithm, rather than
proportional to the centrality metric of routers as in [12].

Beyond the considerations of previous work, we also
note that no prior research has considered factors outside
the topology, e.g., the content popularity distribution. Our
work brings perspective on the conclusions of previous
work, as well as shedding light on various aspects of cache
allocation.

2.2 Optimization Methods in Multi-Cache Network

The process of cache allocation is typically realized using
content placement optimization algorithms, i.e., through
solving the facility location problem. This has been exten-
sively studied in different areas (e.g., the web), where two
general approaches have been taken: Capacitated Facility
Location (CFL) and un-capacitated facility location (UFL),
where the capacity of a node is the maximum number of cli-
ents it can serve simultaneously, not the cache capacity.

Krishnan et al. [8] formulate en-route web caching as a
standard UFL problem in a tree topology, and present solu-
tions based on both dynamic programming and greedy heu-
ristics, where the objective is to minimize the remaining
traffic flow. Jiang and Bruck [9] also address coordinated
en-route web caching. They show that this can be achieved
without pre-fetching or pre-positioning by a central control-
ler. However, the mentioned approaches treat the content
files in the network as an un-splittable commodity. This
assumption is not practical in CCN, where content is split
into chunks.

In [6], a two-step algorithm is developed to solve the
multi-commodity UFL problem with total capacity con-
straints in trees, and to provide approximations for general
graphs. Similarly, [7] discusses the multi-commodity UFL
problem, where each node has its own cache capacity con-
straint. The authors in [11] and [10] add the bandwidth of
links as additional constraints in the contexts of CDNs and
IPTV networks, respectively. Although these works are
closely related to ours, it is not applicable to a CCN environ-
ment, which has certain unique constraints, namely: (1)
exclusive use of on-path caching; (2) opportunistic caching,
rather than pre-fetching; (3) unchangeable locations of avail-
able cache points, i.e., routers; and (4) diverse topologies
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that do not match predetermined templates. For example,
most of the optimal solutions in CDNs [6], [7] or IPTV [10],
[11] assume off-path caching, and rely on file pre-fetching.
Similarly, all aforementioned works in web caching [8], [9]
or more recent cloud caching [22], [23] employ fixed hierar-
chical tree topologies. It is important to study this issue in
more generalized network topologies, oriented towards
CCN’s design, rather than in an application-specific context.

3 OPTIMAL CACHE ALLOCATION IN CCN

Before exploring the factors that impact cache allocation
in CCN, it is necessary to devise a mechanism to compute
their allocation optimally. Without this, it becomes impos-
sible to differentiate between external impact factors (e.g.,
content popularity) and simply poor allocation decisions.
This section delineates an exact optimization algorithm to
solve the cache allocation problem, providing the upper
bounds of performance. This optimality, however, comes
at a high computational cost, making it infeasible for cal-
culating large-scale and dynamic deployments. We thus
expand this work by proposing a centrality-based heuris-
tic method capable of handling Internet-scale topologies.
We propose the former to enable an exact study of the
impact of cache performance, whereas we propose the lat-
ter as a key tool for network operators to help inform
cache deployments.

3.1 Cache Allocation Problem

A CCN network can be modeled as an undirected graph
G ¼ ðV;EÞ, where V is the set of CCN routers with cache
space, and E is the set of links in the network. Each content
server/client is attached to a node in V . For simplicity, we
do not distinguish the end-hosts from the CCN routers they
are attached to. Due to the aggregation of hierarchical
names in CCN, we also assume that, in most circumstances,
at most one FIB entry will exist in each router for each con-
tent item, i.e., from the perspective of an individual client,
only one destination exists for each object [24].

In our model, each content chunk, fi 2 F , therefore has a
single node, vs 2 V , chosen as its origin server, denoted as
sðfiÞ ¼ vs. A content chunk is the minimum operating unit
in cache management, and is called a cache entry in the rest
of this paper. All content chunks are assumed to have the
same size, which is normalized to be 1. When a request for
fi is sent from node vt, pathðvt; sðfiÞÞ ¼ pathðvt; vsÞ ¼
fvt; . . . ; vsg denotes the path that the interest packet takes,
where vt and vs are the client and server, respectively. Any
intermediate router could satisfy the interest with a cached
chunk. If node va is the first encountered router with a
cached copy of the content, then the forwarding path
fvt; . . . ; vsg will be reduced to fvt; . . . ; vag, and the length of
the reduction fva; . . . ; vsg is defined as the benefit of caching
fi at va for node vt, denoted as bi;a;t. A simple example in
Fig. 1 illustrates the definition of the benefit. Note that the
cache benefit used in our optimal allocation algorithm is
gauged through the traffic reduction via caching, which is
measured by the reduction in hop count for interest packets
(as in [4]). To calculate the benefit for a particular content,
we multiply the length of the reduction bi;a;t with the proba-
bility, pi, of the content fi being requested.

As we measure the caching benefit by the reduction in
hops taken by an interest packet, the objective of our optimi-
zation is to compute an allocation of cache capacity among
a topology of routers such that the aggregate benefit is maxi-
mized (in line with previous optimization work [8], [9]). In
other words, we aim to minimize the remaining traffic flow
in the network. The key constraint is total cache capacity, as
each network operator will have a finite amount of cache
storage. The challenge is therefore to appropriately allocate
this finite capacity across their infrastructure.

We formulate the optimal content placement problem in
CCN as follows:

Maximize:

X

fi2F

X

vt;va2V
pi � xi;a � bi;a;t: (1)

Subject to:

X

fi2F
pi ¼ 1 (2)

xi;a ¼ f0; 1g; 8fi 2 F; va 2 V (3)

X

fi2F

X

va2V
xi;a � ctotal; (4)

where xi;a is a binary variable taking the value 1 if content fi
is cached at node va. We assume that each content, fi, is
originally requested with the same probability pi at each cli-
ent. Eq. (4) states that the total cache space in the network is
less than the constraint ctotal. As the source of content fi,
sðfiÞ, is determined by the content fi uniquely, we do not
need to consider this dimension in Eq. (1). The optimal con-
tent placement in CCN is therefore described by the set
xi;a; fi 2 F; va 2 V that maximizes the traffic saving. Finally,
the optimal cache allocation can be calculated throughP

fi2F xi;a; va 2 V .

3.2 Overview of Optimal Cache Allocation
Algorithm

The objective function Eq. (1) can be rewritten as

max
X

fi2F

X

vt;va2V
pi � xi;a � bi;a;t

 !
(5)

Fig. 1. Example illustrating the benefit of content placement. vt and vs
denote the client and server of content fi. The traffic flow corresponding
to request fi at vt without caching is 3 (measured in hops). If fi is cached
at va, the traffic flow will be reduced to 1. Therefore, the benefit of cach-
ing fi at va for node vt is 2, bi;a;t ¼ 2.
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¼ max
X

fi2F
pi
X

vt;va2V
xi;a � bi;a;t

 !
(6)

¼ max
X

fi2F
pi � bcii

 !
; (7)

where bcii is the benefit of allocating ci cache entries
1 for con-

tent fi across the whole network. Eq. (7) satisfies the stan-
dard knapsack problem formulation: how to get the largest
benefit by allocating cache space for the set of content
objects, F , where allocating ci cache entries for fi will pro-

vide benefit pi � bcii . Therefore, we formulate the optimized
content placement problem in CCN as a general knapsack
problem. As the probability of requesting content, pi, is sup-
posed to be known (a feasible method for obtaining pi is

described in [21]), bcii in Eq. (7) is our main focus.
Considering that CCN exploits on-path caching, the ben-

efits of caching not only depend on the cache locations
(Xi ¼ fxi;a; va 2 V g), but also on the location of the origin
server (sðfiÞ for fi). We assume that the interest packet

always follows the shortest path to the server. Thus, bcii in
Eq. (7) is the benefit of Xi for all nodes on the shortest path
tree (SPT) rooted at sðfiÞ, implying that the mapping
between content fi and its original server sðfiÞ is an impor-
tant input to the optimization.

Fig. 2 provides an example graph where node ve serves
file fi. We define the flow of a node as the number of
requests per time unit at that node, including the requests
from the node itself as well as from its downstream nodes.
We assume that each node in the tree will generate one
request per time unit. Therefore, the total traffic flow with-
out caching can be calculated by summing the flow at each

node. The benefit of allocating b
ci
i is then equal to the total

traffic flow for file fi without caching minus the remaining
flow with ci cache entries. Table 1 lists the remaining flow
and the benefit of allocating ci cache entries with the opti-
mal placement (obtained by the method proposed in [8]).

As Eq. (7) satisfies the standard knapsack problem for-
mulation, the content placement problem in CCN can be
divided into two sub-problems: (1) the cache location prob-
lem in the SPT; and (2) the knapsack problem to solve the
whole of Eq. (7). The former problem has been solved in
[25] as a k-means problem with Oðcn2Þ complexity, where c
is the number of cache nodes and n is the total number of

nodes in the graph. Typically, the latter is solved through
dynamic programming. As the k-means problem in trees
has been proven to be piecewise linear non-decreasing con-
cave [26], the knapsack of different contents can be solved
optimally through a greedy method.

3.3 Optimal Cache Algorithm Description

Algorithm 1 provides an outline of the exact optimization
algorithm used to compute the optimal cache allocation.
The notations are summarized in Table 2.

In Algorithm 1, the first step computes the benefit of
cache placement on the SPT rooted at each server vs 2 sðF Þ;
the second step computes the incremental benefit of the cth
(0 < c < n) cache entry for each content; the third step allo-
cates the cache space by choosing the largest benefit incre-
ment in F greedily; the last step maps X using C and Y a;c,
where C ¼ fcig; fi 2 F . It is noteworthy that the algorithm
does not require the exact popularity of a content item, but
only the popularity distribution of all content items.

The output of Algorithm 1, X, is a N � n binary array
describing the optimal content placement in the network
with ctotal cache entries. Finally, the sum of the columns
(or rows) of X,

P
fi2F xi;a; va 2 V (

P
va2V xi;a; fi 2 F ), can be

considered as the optimal cache allocation across nodes
(or contents).

The complexity of the above algorithm is mostly deter-
mined by steps 1 and 3. By using the max-heap data struc-
ture, the greedy algorithm in step 3 can be implemented at
a complexity of OðctotallogNÞ, where N is the number
of content items. Given that the complexity of the cache

Fig. 2. The shortest path tree rooted at the server e. The number in the
circle denotes the flow of the node.

TABLE 2
Summary of Notations

Notation Meaning

V Set of nodes
E Set of edges
F Set of content chunks
n n ¼ jV j
N N ¼ jF j
va Node a; va 2 V; a � n
fi ith popular content,fi 2 F; i � N
sðfiÞ Server of content fi
pi Probability that content fi is requested
ci Cache capacity allocated for content fi
xi;a Binary variable indicating cache fi on node va
ya;cb Binary variable indicating node vb is one of the c

optimal locations in the SPT rooted at va
bi;a;t Benefit of caching fi on node va for node vt
b
ci
i Benefit of caching fi with ci entries
bsca Benefit of c optimal entries on SPT rooted at va

TABLE 1
The Benefit of Cache Allocation for fi (b

ci
i )

ci (locations) Remaining flow Benefit bcii

0 9 0
1 (a) 3 6
2 (a, d) 2 7
3 (a, d, b) 1 8
4 (a, d, b, c) 0 9

1. A cache entry is a fixed-size item of cache space in a router, equal
to the size of one data chunk.
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location problem in the SPT is Oðsn3Þ in step 1, the overall

complexity of our optimization method is maxðOðsn3Þ;
OðctotallogNÞÞ; s � n; ctotal < nN , where s ¼ jsðF Þj is the
number of servers. Although this optimal approach would
not scale to Internet-wide deployments, it provides a refer-
ence to explore cache performance in CCN.

Algorithm 1. Exact optimal cache allocation algorithm.

" Step 1
1: for all vs; vs 2 sðF Þ do
2: for all c; 0 < c < n do
3: Compute bscs and ys;cb as in [25]
4: Y s;c  fys;cb g; vb 2 V
5: end for
6: end for

" Step 2
7: for all c; 0 < c < n do
8: bci  bsca; fi 2 F; va ¼ sðfiÞ
9: Dbci  bci � bc�1i ; fi 2 F
10: end for

" Step 3
11: ci  0; 8fi 2 F
12: while

P
fi2F ci < ctotal do

13: i argmaxjjfj2F ðDb
cj
j � pjÞ

14: ci  ci þ 1
15: end while

" Step 4
16: xi;a  ysðfiÞ;cia ; 8va 2 V; fi 2 F
17: X ¼ fxi;ajfi 2 F; va 2 V }

3.4 Heuristic Cache Allocation Algorithm

The solution from the previous section, although optimal, is
not practically relevant for a dynamic environment where
the publishing or the deletion of content is so frequent that
it is costly to maintain global information. We thus further
propose a heuristic method suitable for highly dynamic
networks. The most important differences from the exact
method include:

� We use a heuristic method to obtain the approximate
optimal cache locations in the SPT, rather than the
dynamic programming in the exact method. We pre-
fer the top centrality nodes as the cache locations,
which dramatically reduces the computing complex-
ity of finding the cache location.

� We do not require the exact location information of
content servers, but make the assumption that it fol-
lows a certain kind of distribution. Without loss of
generality, we assume that each node in the network
has the same probability to be chosen as the origin
server of any content.

Our heuristic is based on the observation that the optimal
cache location in SPT trees highly overlaps with the top cen-
trality metric nodes, irrespective of the root node location.
In other words, no matter where the original server for con-
tent is located, the top centrality nodes are systematically
good candidates for caching it. We provide an explanation
for this. First, there is a small compact core in any scale-free
network, from which almost all other nodes are within a
distance of loglogðnÞ [27]. The core is composed by the nodes

whose degree is larger than n1=loglogðnÞ, which is proved to be
almost fully meshed. During the SPT building process
(from a certain root node), one of the core nodes will be
reached in few hops first, then most descendants will be
reached from the high-degree neighbors of the core node(s).
Given the very small diameter of scale-free networks (in the
order of logðnÞ=loglogðnÞ), the generated SPT will be flat
with few high fan-out nodes in it.

Next, we recall that the benefit of caching on a node is
calculated by the flow of the node multiplied by the distance
to the SPT root. Since the distance to the SPT root is less than
the diameter of the topology, which is relatively small com-
paring with the variety of node flow, the benefit of caching
on a node is dominated by the traffic passing through it.
Obviously, two types of nodes have a high amount of traffic
on the SPT: 1) the high fan-out nodes, and 2) the nodes
between high fan-out nodes and the root. Consistent with
[8], which found little performance loss using the greedy
method compared to exact dynamic programming, we also
choose the cache location by finding the largest traffic nodes
greedily. Given that core nodes are fully-meshed, almost all
neighbors of the core node in the SPT are not part of the
SPT, meaning that caching at one of these core nodes will
not affect the traffic of the others. Therefore, when choosing
the optimal cache locations on any SPT with the greedy
method, the core nodes with higher fan-out and more traffic
will be appropriate candidates.

Fig. 3 shows the overlap between the top degree nodes
and the optimal cache locations. Let DCi denote the top i
degree centrality (DC) nodes in the network; OPTi;j

denotes the i optimal cache locations on the SPT rooted at
node j. The overlap of top degree nodes and the optimal
locations of the SPT rooted at node j is DCi \OPTi;j; the
overlap ratio of the SPT rooted at node j with i cache
entries is jDCi \OPTi;jj=i. In Fig. 3, the x-axis is the num-
ber of cache entries allocated to a certain content, and the
y-axis is the expectation of the overlap ratio if its original
server is randomly chosen among all the network nodes
uniformly. Here, we rely on three scale-free topologies gen-
erated by the BA model [28], with different degree distri-
bution parameters. We observe that about 3=4 of the
optimal cache locations coincide with the top degree
nodes, especially when the scale-free exponent is small.
We therefore claim that the top degree nodes are good can-
didates for the optimal cache locations.

Based on the above observations, Algorithm 2 provides a
description of our heuristic algorithm in CCN. In the

Fig. 3. Overlap between the optimal cache locations and the top degree
nodes (n ¼ 1,000).
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algorithm, bshc
a denotes the benefit of allocating cache

entries on the top c centrality nodes in the SPT rooted at
node va. The first step computes the centrality of each node;
the second step calculates the benefit of allocating cache
entries to the top c centrality nodes, bsc, 0 < c < n; the third
step computes the incremental benefit of the cth (0 < c < n)
cache entry for each content; the fourth step allocates the
cache space by choosing the largest benefit increment in F
greedily; the last step maps X using C and node centrality,
where C ¼ fcig; fi 2 F .

Algorithm 2.Heuristic Cache Allocation Algorithm.

" Step 1
1: for all va; va 2 V do
2: Compute the centrality of va
3: end for

" Step 2
4: for all va; va 2 V do
5: for all c; 0 < c < n do
6: Select top c centrality nodes as caching locations
7: Compute bshc

a

8: end for
9: end for

" Step 3
10: for all c; 0 < c < n do
11: bshc  P

va2V bshc
a=n

12: end for
13: for all c; 1 < c < n do
14: Dbshc  bshc � bshc�1

15: end for
" Step 4

16 ci  0; fi 2 F
17 while

P
fi2F ci < ctotal do

18: i argmaxjjfj2F ðDbshcj � pjÞ
19: ci  ci þ 1
20: end while

" Step 5
21: for all fi; fi 2 F do
22: S  set of top ci centrality nodes
23: for all vj; vj 2 S do
24: xi;j  1
25: end for
26: end for
27: X ¼ fxi;jjvj 2 V; fi 2 Fg

Similar to the exact method, when the heuristic content
placementX is obtained, the corresponding cache allocation
can be easily calculated by summing all content placements
at each node. However, unlike the optimization method, X
in Algorithm 2 finds the best content caching in a statistical
sense. In other words, in any network where each content
has one fixed origin server, some distributed cache replace-
ment policies may beat the exact pre-fetching based on X.
Therefore, we suggest to use the right cache replacement
strategy together with the heuristic cache allocation in
highly dynamic networks. From the experiments of Sec-
tion 4, we find that the heuristic allocation with the LFU
cache replacement strategy provides comparable perfor-
mance to the optimal allocation with pre-fetching.

The computational complexity of the heuristic is decided
by the most time consuming steps: step 2 and step 4. In

step 2, the complexity of calculating the benefit of a SPT
bshc

a, 0 < c < n is OðnÞ, n ¼ jV j. Thus, the complexity of

computing bshc, 0 < c < n is Oðn2Þ. The complexity of
step 4 is the same as in Algorithm 1, OðnNlogðNÞÞ, N ¼ jF j.
Therefore, the overall complexity of the heuristic is

maxðOðn2Þ, OðnNlogðNÞÞÞ. Given that the node degree is
our default centrality metric, we assume in this paper
that the complexity of computing centrality is less than
OðnNlogðNÞÞ.

4 ANALYSIS OF CACHE ALLOCATION

This section explores the key factors that impact cache allo-
cation, as well as how accurately our heuristic can inform
these allocations. As of yet, there is no consensus on what
factors should be considered in CCN cache allocation. There
is not even consensus, broadly speaking, on where caches
should be allocated: the core, the edge, or a combination of
both [12], [13], [14], [15]. As such, using our optimal algo-
rithm (OPT), we begin by exploring the types of deploy-
ment that could benefit from caching, and how capacity
should be allocated among them. Then, we evaluate how
our heuristic performs compared to the optimal allocation.

4.1 Experiment Setup

We have developed a discrete event based simulator that
models caching behavior in various graph structures.
Similarly to [4], we are primarily interested in the reduction
in the hop count, and therefore we do not model traffic con-
gestion or processing delay as in [14]. Although our light-
weight simulator cannot capture the data plane features
as done by, e.g., ndnSIM [29] or ccnSim [30], it manages to
handle topologies with thousands of nodes, which is critical
for our experiments. Configuring the simulator consists of
topology generation and request pattern generation.

To study a range of configured topologies, we rely on
synthetic generation. This allows us to control various prop-
erties of interest, e.g., the degree distribution and clustering.
Here, we focus on power-law networks, as Internet-like
graphs have similar features [31]. To generalize our results
more, we also utilize two different flavors of power-law
graph [31]. First, we employ the Barab�asi-Albert (BA) model
[28] to emulate topologies with a few high centrality nodes
(default g ¼ 2:5 and m ¼ 2); this gives insight into an
“ideal” caching scenario (i.e., high request overlap).
However, it does not necessarily best model the real world
and, therefore, we also utilize the Watts-Strogatz (WS)
small-world topology model [32] to capture clustering. This
results in more realistic topologies (e.g., an ISP network
[33]) that allow us to better map our implications to current
network deployments. In this model, first, each node vi is
assigned an expected degree ki, which is actually obtained
from the BA model in our experiment. Then, all nodes are
uniformly distributed on a ring space. Finally, links are set
among nodes according to the expected degree and the met-
ric distance on the ring. For example, the probability that
link fvi; vjg exists is proportional to kikj=d

a
i;j. A higher a

value will create more clustering. By default, each generated
topology consists of 1,000 router nodes. Once we generate
the topology, we attach 100 servers, sharing 10,000 objects.
We randomly choose their individual points of attachment,
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before distributing the objects across the sources uniformly.
During each time interval, all objects are requested by each

node separately using a Zipf distribution:
PN

i¼1ðc=ibÞ ¼ 1

(b ¼ 1).2 Besides, by default, the global cache capacity is set
as ctotal ¼ 1% which is normalized by nN . This allows us to
capture the impact of both the number of nodes and the
number of content files. Finally, we use a measured network
topology and a real-life content access logs for evaluation.

4.2 Importance of Cache Allocation

Before investigating the key factors that impact cache alloca-
tion in CCN, we investigate the importance of cache alloca-
tion itself. More specifically, we would like to confirm that
optimal cache allocation has a direct impact on perfor-
mance, as opposed to cache capacity alone. We carry out
simulations with our optimal algorithm (OPT, Algorithm 1),
alongside several other cache allocation schemes. The cache
replacement policy used in all tests is LFU, except the opti-
mized method which depends on global knowledge and
pre-fetching.

Fig. 4 presents the cache performance of different
algorithms. The x-axis presents the global cache capacity
(ctotal), which is normalized by the number of nodes mul-
tiplied by the number of content files (i.e., nN). We mea-
sure the performance by the fraction of traffic that
remains in the network, shown on the y-axis. To improve
comparability, we also normalize the remaining traffic in
Fig. 4a as a fraction of the homogeneous allocation.

The heuristic allocations based on closeness centrality
(CC), graph centrality (GC) and eccentricity centrality (EC)
taken from [12] contribute little to the cache performance.
They provide less than 5 percent in traffic reduction. In fact,
EC actually results in an increase in traffic, due to its nega-
tive correlation with other centrality metrics [12]. In con-
trast, the other three metrics, degree centrality, betweenness
centrality and stress centrality (SC), offer far greater traffic
saving. Interestingly, among the three useful centrality
based allocations, BC and SC are more effective when the
total cache space is relatively small, whereas DC has better
performance when the total budget is more than 1 percent.
We find that BC and SC never allocate cache space to stub
nodes, regardless of the overall capacity budget. This policy
is reasonable when the total budget is small and all the
cache resources are obtained by the core nodes, but it is inef-
ficient when there is spare cache capacity that could be
placed on the home gateways provided to users. None of
these existing algorithms approach the gains made by the
optimal algorithm.

Fig. 4b also shows the total benefit, measured by the frac-
tion of traffic removed via caching. Note that we do not
show CC, EC and GC due to their poor performance. We
see that with increased cache capacity, the benefits increase
logarithmically. We observe that the homogeneous alloca-
tion cannot benefit from this logarithmic law and performs
quite poorly when the total cache budget is small. For exam-
ple, to achieve a traffic reduction of 20 percent, the homoge-
neous allocation will require over 10 times more cache
space compared to the optimal allocation. This highlights
the importance of an appropriate cache allocation scheme,
as opposed to cache size alone. We therefore confirm that
cache placement does have a significant impact on network
performance in CCN. Further, we have also shown that our
optimized algorithm offers far superior results to the exist-
ing state-of-the-art.

4.3 Impact of the Topology Structure

Next, we seek to discover if the core or the edge is the most
appropriate place for caches. We define the nodes with a
high centrality metric value as the “core” and the nodes
with low centrality metric value as the “edge”. Using the
topology models detailed in Section 4.1, we create a variety
of network topologies (controlled by the parameters g and
a) and compute the optimal cache placements using the
OPT algorithm. The larger the value of g, the heavier the
power-law, meaning that the network is more strongly hier-
archical, resulting in a few highly central nodes. As a

increases, the clustering in the network also increases. In
contrast, small values of a correspond to network topologies
more similar to random networks.

Fig. 5a presents the distribution of traffic savings across
various cache sizes in the network. We observe that the BA
topology does consistently better with small cache capaci-
ties when compared to WS. The reason for this behavior is
that a BA topology will tend to have central nodes that
aggregate a lot of requests, and therefore benefit more from
caching. For example, the BA topology (g ¼ 2:1) can achieve
over 30 percent traffic reduction with a cache size of just
0:1 percent. This can be compared against the WS topology
which achieves less than 20 percent for an equivalent cache

Fig. 4. Caching performance of different allocation methods. HM:
homogenous allocation; DC: Degree Centrality; BC: Betweenness Cen-
trality; CC: Closeness Centrality; EC: Eccentricity Centrality; GC: Graph
Centrality; SC: Stress Centrality; OPT: optimal cache allocation.

2. Although typical, we do not use a to denote the skew factor, due
to its previous use in parameterizing the WS graph.
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capacity. The explanation for this behavior is that the WS
topology has more path diversity, and therefore benefits
less from aggregation. As a consequence, in a WS topology,
more cache locations must be used across the network, espe-
cially towards the edge, which decreases the cache effi-
ciency as popular content will be replicated across multiple
caches. This trend becomes even worse for larger values of
a in the WS model (more clustering), resulting in even lower
caching performance. Despite the lower traffic savings, we
believe that placing caches at the edge is still desirable for
smaller networks that do not benefit from large levels of
aggregation.

We next investigate how the content is distributed across
the caches. Ideally, one would wish to reduce the level of
redundancy in regions of the network, to improve cache uti-
lization (assuming that performance, rather than resilience,
is the aim). Fig. 5b presents the cumulative distribution
function (CDF) of the distribution of content in the caches;
for example, it shows that the majority of cache capacity is
allocated to the most popular object (file index 0). More
interestingly, we see that the topology has a notable impact
on how capacity is allocated to each file. We find that the
WS topology (particularly when a ¼ 1) allocates a large
fraction of the capacity to the top few objects. This happens
because it is impossible to aggregate large portions of the
requests to caches, as there is no single “core” to operate as
a prominent caching point. Instead, by pushing caches
towards the edge, it becomes necessary to fill each cache
with the same popular objects.

Finally, Fig. 5c presents how the capacity is distributed
across all routers in the network. Lower node indexes indi-
cate nodes that are closer to the core. Once again, we see a
similar trend to Fig. 5b. With more decentralized topolo-
gies, it becomes necessary to spread the cache capacity
across the network towards the edge, as highlighted by the
WSmodels. In contrast, the BA topologies result in far more
centralized cache placement, where content is primarily
stored in the core, i.e., skewed towards lower node indexes.
This suggests that different deployments could require
entirely different allocation approaches, and therefore that
a one-size-fits-all approach would be inappropriate. It is
important to remember that here we discuss a global net-
work with a “core”. In practice, the Internet has been seen
tomove away from a hierarchical topology towards a flatter
andmore similar topology toWS than BA [34]. As such, not
only does optimality differ between different networks, but
it will also differ over time across thewhole Internet.

4.4 Impact of Network Size

We now investigate how the number of nodes in the net-
work impacts placement in Fig. 6. The homogeneous alloca-
tion consistently achieves low performance. For instance,
when n ¼ 2k, the optimal allocation with c ¼ 0:001 achieves
the same traffic savings as the homogeneous allocation with
10 times more cache capacity. We also see that the benefit of
the optimal allocation is proportional to the network size, n,
while the homogeneous allocation is actually quite insensi-
tive to the network size.

We also note another important repercussion of this find-
ing in relation to [12], which concluded that the heteroge-
neous allocation brings little improvement compared with
the homogeneous allocation. Initially, this seemed to be in
stark contrast to our findings. However, closer inspection
highlighted that the experiments in [12] were only based on
topologies with 68 nodes or fewer. Instead, it appears from
our results that the benefits of the heterogeneous allocation
only become apparent with larger topologies. Considering
that CCN is expected to target large networks or even an
Internet-scale deployment, we expect that heterogeneous
cache placements will be highly relevant. Either way, this
shows that as the deployment of CCN increases in scale, the
need for appropriate cache allocation will become increas-
ingly important.

4.5 Impact of Content Popularity

To investigate the impact of content popularity distribu-
tion, Fig. 7 presents the impact that differing levels of
skew have on performance. Specifically, we vary the skew
parameter, b, where the probability that the ith object

Fig. 6. The remaining traffic in different networks sizes, from 100 to 2;000
nodes.

Fig. 5. Impact of topology properties using BA and WS models.
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being requested is proportional to 1=ib. The experiments
are performed using the BA topology. The node index
along the x-axis refers to the attachment order in the BA
model; lower values indicate nodes in the core also with a
larger centrality metric value.

Fig. 7 shows that a less skewed popularity distribution
(i.e., smaller b) results in more cache space allocated in the
core. Indeed, it then becomes necessary to consolidate cache
capacity across a larger number of consumers to ensure suffi-
cient interest overlap to generate cache hits. This means that
highly skewed popularity request patterns (e.g., YouTube
[35], mobile VoD system [36]) will be better served by edge
caching, while more uniform popularity distributions (e.g.,
catch-up TV [37]) would be better served by core caching.

Another important observation is that as b increases, the
performance of the optimal allocation begins to converge
towards that of homogeneous allocation. We can see that as
the range of objects being requested becomes more skewed,
evenly distributing the caches towards the edge of the
network becomes more effective. This allows each stub net-
work to serve its own consumers effectively, without requir-
ing the aggregation of consumers offered by in-core
caching. This latter point has the additional advantage of
reducing transit traffic, as well as delay. Optimal cache allo-
cation might therefore be suited to help ISPs reduce their
transit costs.

On the other hand, the allocations in proportion to
degree centralit, betweenness centrality and stress centrality
are only suitable for certain content popularity. In other
words, besides the total cache budget (Fig. 4), content popu-
larity is another key factor that impacts the performance of
centrality-based cache allocation.

Another important factor is the number of objects. Fig. 8
plots the amount of traffic saving in the optimal and homo-
geneous allocations, where the cache capacity, normalized
by nN , is 1 percent. Through this, the total cache capacity in
the network increases with the volume of content files N .
We see that greater savings (i.e., less remaining traffic) can
be achieved as the number of objects increases in proportion
to the cache capacity. This occurs because the number of
objects requested increases at a sub-linear rate compared to
the number of objects themselves, allowing the caches to
consolidate their capacity better. One could say that this is
optimistic; as such, Fig. 8 also presents the results when
maintaining a constant total cache capacity (100 entries per

node on average). In this case, the traffic saving decreases
approximately logarithmically with the number of content
items in both allocations.

Consequently, we conclude that the increasing scale of
the content will, indeed, need to be matched by increasing
the scale of caching resources. However, the superior loga-
rithmic decrease in performance suggests that significant
effort should be spent on cache allocation deployment poli-
cies, in an attempt to mitigate the costs of the constant
cache expansion.

4.6 Impact of Cache Replacement Policy

As the theoretical optimal allocation algorithm in this paper
is obtained using optimal object placement, it requires ora-
cle-based pre-fetching, which is, of course, impractical in a
real-world context. Consequently, we evaluate the perfor-
mance of different well-known replacement strategies with
the optimal allocation.

To illustrate the relative cache performance compared to
the pre-fetching method (exact optimal placement), the
remaining traffic on the y-axis in Fig. 9 is normalized using
the one achieved by the optimal placement. Besides the
default cache replacement strategy (LFU), we also experi-
ment with several other algorithms: (1) Least Recently Used
(LRU) with “cache everything everywhere” [1]; (2) LRU
with the centrality-based caching policy [19] (CEN); (3) LRU
with LCD caching policy [38]; and (4) LRU with fixed cach-
ing probability [19] (LRU/p,p ¼ 0:5).

Fig. 9 shows that the caching performance of the optimal
allocation is much better than the homogeneous allocation
for all replacement strategies. Therefore, the benefit of het-
erogeneous optimal cache placement does not require ora-
cle-based pre-fetching: significant gains can be made with
various simple cache replacement strategies.

We also find that the allocation of cache resources
impacts the performance of these replacement methods. For
example, with a homogeneous cache allocation, LCD is
found to be the best with low cache capacities, confirming
the findings of [20]. However, with the optimal cache alloca-
tion, it does worst at these low capacities. In this scenario,
nearly all the cache space in the network is allocated to a
few core nodes. Therefore, there are not enough cache nodes
to form the multi-hop cache paths as LCD requires (unlike
in the homogeneous allocation).

Fig. 8. The effect of the number of content files on the traffic saving. The
dash lines show the traffic saving where the cache capacity is increased
with the content volume. The solid lines show the traffic saving where
the total cache capacity is fixed.

Fig. 7. The optimal allocation of different content popularity. b is the Zipf
skew parameter.
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Similar variability is also observed in LFU, which has the
best performance in most scenarios, apart from the homoge-
neous allocation when the total cache budget is less than
0.01 percent. We find that the cache space allocated to each
node is so small in the homogeneous allocation that it can-
not estimate the probability of arriving content properly.
In this situation, reducing the cache replacement times
(as CEN and LCD do) or avoiding the amplification of
replacement errors (as LCD) is helpful to improve perfor-
mance. This shows that there is no one-size-fits-all replace-
ment strategy for different cache allocations. Instead,
network operators will need to choose the most suitable
replacement strategy according to their network environ-
ment as well as the cache allocation method in use.

4.7 Cache Performance of Heuristic Allocation

We next confirm that our heuristic allocation can offer equiv-
alent results without the high computational costs. Fig. 10
compares the performance of the heuristic mechanism
(HDC) against both the optimal allocation (OPT) and the
homogeneous allocation (HM). We choose to inspect perfor-
mance while varying the popularity skew and the degree
distribution, as they are themost important practical metrics.

Fig. 10a shows that the heuristic allocation offers superior
performance to simple homogeneous allocation across all
popularity skews. More importantly, the heuristic approach
closely approximates optimality consistently, regardless
of popularity skew. In fact, the performance penalty is
bounded by only 4 percent on average. As such, even the
worst-case performance of the heuristic algorithm can offer
significant improvements. Fig. 10b also presents the caching
performance of the heuristic allocation with different

topologies, which are generated using the BA model. Once
again, the heuristic method shows close performance to the
optimal cache allocation throughout. Interestingly, it also
exhibits superior performance in more hierarchical topolo-
gies, where node degree centrality displays higher variabil-
ity. Despite these variations, the performance penalty for
different topologies is always below 5 percent.

The results confirm that the heuristic algorithm can
achieve near optimality, outperforming traditional homoge-
neous allocations. As such, we argue that our centrality
based heuristic scheme is a powerful tool for network plan-
ners, particularly those who wish to shape their deploy-
ments more dynamically. Unlike the optimal solution, the
heuristic approach also does not require the specific server
location information.

4.8 Cache Performance Based on Measured
Datasets

The above experiments use synthetic topologies and content
request profiles, which allow us to examine the cache per-
formance in various experimental scenarios. To have an
understanding of our optimal allocation algorithm in a
practical situation, we further use a real-life Internet topol-
ogy and a collection of access logs from a commercial Inter-
net video provider. The topology is obtained from [39],
providing the connectivity between cities from the China
Telecom network. The graph is made of 321 nodes, 1,507
links, has an average path length of 2.84 hops, and an aver-
age degree of 9.39. The video access logs are obtained from
[40], which were collected from PPTV,3 a leading video

Fig. 10. Cache performance of heuristic compared to optimal and homo-
geneous allocations. Node degree is used as the heuristic centrality met-
ric. There are 256 nodes with 64 content servers in this scenario.

Fig. 9. Caching performance of different replacement strategies. The
cache performance of replacement strategies is normalized by optimal
oracle-based pre-fetching.

3. http://www.pptv.com/
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provider in China, for two weeks at the end of 2011. In total,
we obtained approximately 7.9 million requests across 264 k
videos. Fig. 11 shows the video popularity derived from the
access logs in log-log scale. The video popularity roughly
follows a Zipf distribution with b ¼ 0:8. The geographical
locations (at city-level) of clients of individual requests are
available in the video access logs. We use such location
information to map the source of each request to the corre-
sponding node in the topology. The original severs of indi-
vidual videos, on the other hand, are attached to the nodes
that are selected uniformly at random.

Fig. 12 shows the performance of different cache alloca-
tion algorithms, including optimal allocation (OPT), heuris-
tic allocation based on degree centrality (HDC), and other
four algorithms based only on topological properties: pro-
portional allocation by degree centrality, homogeneous allo-
cation (HM), homogeneous allocation only on core nodes
(CORE) and homogeneous allocation only on edge nodes
(EDGE). As expected, the optimal allocation obtains the best
cache performance. Our heuristic allocation based on cen-
trality performs close to the optical allocation with less than
a 4 percent performance penalty.

Of the four allocation algorithms based on topology
properties, DC achieves the best caching performance. Nev-
ertheless, its performance can only approach the optimal
allocation when the cache capacity grows to as large as
10 percent. Recall that our centrality based heuristic alloca-
tion differs from DC in that the heuristic algorithm uses the
content popularity distribution information to allocate
cache space to nodes with high centrality values, while DC
directly allocates cache space to nodes in proportional to the
centrality values. In other words, in the case that the content
popularity information is available, our heuristic allocation
is the best choice. Otherwise, if such information is not
available (e.g., when severing a particular type of contents
for the first time), allocation in proportion to node degree is
a better choice.

5 SUMMARY OF FINDINGS

The previous section has explored the key factors that
impact optimal cache allocation. Clearly, our results can-
not be directly applied to a specific practical deployment,
but we can draw a number of general conclusions from
our study:

� Allocating cache capacity across the network in a
homogeneous manner is highly suboptimal. Instead,
capacity should be allocated in a heterogeneous
manner. The benefits of this, however, only become
apparent with larger networks (e.g., >100 nodes).
We argue that CCN router design should therefore
ensure that cache capacity is easily pluggable and
extensible.

� The topology has a significant impact on the optimal
cache placement. In inter-AS type topologies (i.e.,
similar to BA), cache capacity should be pushed into
the core as much as possible. This allows requests to
be effectively aggregated, improving hit rates, due to
the high level of interest path co-location. In contrast,
ISP-type networks (i.e., similar to WS) should dis-
tribute capacity in a more homogeneous manner,
pushing storage towards the customer edge due to a
lack of a well-defined core.

� The type of content popularity handled by the net-
work will alter the optimal deployment. Demand
that is more uniformly distributed is better handled
by pushing caches into the core (e.g., an Internet
Exchange Point [41]) to better aggregate requests.
For highly skewed demands, caches must be pushed
to the edge.

� As the number of objects increases, the importance of
strategic cache placement also increases. Homoge-
neous allocation strategies do substantially worse,
while the performance of the optimal allocation
decreases in an approximately logarithmic manner.

� The benefit of heterogeneous optimal cache placement
does not require oracle-based pre-fetching. Significant
gains can be made with simple cache replacement
strategies. Furthermore, the cache replacement strat-
egy can have a notable impact on performance.

� Compared with the exact optimal solution, the heu-
ristic allocation comes with limited cache perfor-
mance penalty. Given that the heuristic allocation is
independent of the server information for content
items, it is suited to highly dynamic networks where
content is frequently published. This makes the
approach a valuable tool for any network planners
wishing to deploy CCN infrastructure.

� In practice, network operators should make the
decision of cache allocation based on the available

Fig. 12. The cache performance of different allocations using real
dataset.

Fig. 11. Video popularity follows the Zipf distribution.
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information of network topology and content access
patterns. In case that both network topology proper-
ties and content access patterns are available, opti-
mal cache allocation or centrality based heuristic
allocation are preferred. However, in case the
content popularity distribution information is un-
available, allocation proportional to node degree is a
better choice.

6 CONCLUSION

This work has presented an exact optimization method to
find the optimal cache allocation in CCN. We have explored
many factors that affect cache placement, and how they sub-
sequently impact performance (measured by traffic reduc-
tion). We also proposed a centrality-based heuristic for
dynamic networks with frequent content publishing. Our
experiments, using both synthetic and real-life traces, have
shown that the benefits of heterogeneous cache allocation
are significant. We have found that many aspects may affect
cache performance, including topological characteristics
and content request patterns. This highlights that a one-
size-fits-all approach is very unlikely to be optimal for
CCN’s deployment. Instead, network operators must make
the decision of cache allocation based on their network
topology and content access patterns.

There are several directions for future work. First, our
work relies on the aggregated content popularity distribu-
tion. However, content might exhibit different temporal
dynamics, which would possibly affect the performance of
cache replacement policies. It is thus wise to investigate
how the temporal dynamics impact the cache performance
using both the optimal and heuristics allocation algorithms.
Second, although Internet video services will be the domi-
nant applications in term of traffic, the future Internet will
also host other types of contents like web content and cloud
storage. As such, it is also important to analyze the cache
allocation with other forms of content.
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