
Optimal Cache Allocation for Content-Centric Networking
Wang, Y; Li, Z; TYSON, G; Uhlig, S; Xie, G; 21st IEEE International Conference on Network

Protocols (ICNP)

•	© 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be

obtained for all other uses, in any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating new collective works, for resale

or redistribution to servers or lists, or reuse of any copyrighted component of this work in

other works.

For additional information about this publication click this link.

http://qmro.qmul.ac.uk/xmlui/handle/123456789/10846

Information about this research object was correct at the time of download; we occasionally

make corrections to records, please therefore check the published record when citing. For

more information contact scholarlycommunications@qmul.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen Mary Research Online

https://core.ac.uk/display/77039571?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://qmro.qmul.ac.uk/xmlui/handle/123456789/10846

Optimal Cache Allocation for
Content-Centric Networking

Yonggong Wang1, Zhenyu Li1, Gareth Tyson2, Steve Uhlig2, and Gaogang Xie1

1Institute of Computing Technology, Chinese Academy of Sciences, {wangyonggong, zyli, xie}@ict.ac.cn
2Queen Mary, University of London, {gareth.tyson, steve}@eecs.qmul.ac.uk

Abstract—Content-Centric Networking (CCN) is a promis-
ing framework for evolving the current network architecture,
advocating ubiquitous in-network caching to enhance content
delivery. Consequently, in CCN, each router has storage space
to cache frequently requested content. In this work, we focus
on the cache allocation problem: namely, how to distribute the
cache capacity across routers under a constrained total storage
budget for the network. We formulate this problem as a content
placement problem and obtain the exact optimal solution by a
two-step method. Through simulations, we use this algorithm to
investigate the factors that affect the optimal cache allocation
in CCN, such as the network topology and the popularity of
content. We find that a highly heterogeneous topology tends to
put most of the capacity over a few central nodes. On the other
hand, heterogeneous content popularity has the opposite effect, by
spreading capacity across far more nodes. Using our findings, we
make observations on how network operators could best deploy
CCN caches capacity.

I. INTRODUCTION

Ubiquitous in-network caching of content is a key feature of
Content-Centric Networking (CCN) [1]. This architecture pro-
poses to re-build the Internet’s forwarding substrate around the
concept of content, where nodes can issue interest packets that
are forwarded (at layer-3) to sources that can, in return, serve
data packets. To achieve this, each content chunk is allocated
a globally unique identifier that all network entities, including
routers, can comprehend. Through this, it becomes possible
for any router to cache data packets and, subsequently, serve
future requests via its cache, rather than forwarding interests
to the origin of the content. Many benefits are expected,
including improved performance [2], lower network costs [3],
and superior resilience.

Despite the elegance of this concept, there are a number
of challenges to be addressed. Perhaps most notable is the
potentially huge cost that would be involved in deploying
ubiquitous cache storage on every router. In practice, with
current technologies, this would be extremely expensive and
energy intensive; for example, a CCN router with 10 TB
of cache space using Flash-based Solid-State Drives (SSDs)
would cost $300, 000 and consume 500 W of power [4]. This
leads us to conclude that, if deployments were achieved, a
huge range of CCN router models would exist, with networks
intelligently deploying high capacity ones only in the areas
that need them the most. We therefore argue that one of
the key challenges in CCN’s future deployment is the cache
allocation problem: given a finite set of cache storage and a

fixed topology, how should the storage be distributed across
the CCN routers?

This problem has been studied extensively in other do-
mains, with optimization techniques being used to calculate
optimal cache allocation in multi-cache networks, such as
CDNs [5], [6], Web caching [7], [8] and IPTV [9], [10].
These, however, are based on specific applications and are only
suitable for particular types of topologies (e.g., hierarchical,
adaptive overlay structures). Instead, the constraints becomes
far tighter in CCN, as caches are co-located with the (layer-
3) infrastructure. Therefore, it is not possible to flexibly build
your own (layer-7) cache topology as with traditional forms of
cache allocation. This is further exacerbated by the fact that,
practically speaking, only on-path caching is allowed, with
interest packets always following FIB entries.

Past work has proven inconclusive in this domain, with a
lack of consensus. For example, Rossi and Rossini [11] found
that allocating more cache space in the “core” of the network
would improve the performance of CCN when compared to
homogeneous allocation. After that, Psaras et al. [12] and
Fayazbakhsh et al. [13] concluded the opposite: it would be
better to allocate capacity at the edge. Indeed, one of the key
challenges identified in CCN is precisely this: where exactly
should cache capacity be placed [14], the core, the edge or a
mix of both?

This paper seeks to address this gap, exploring the reasons
behind some of these conflicting results. More generally, we
aim to discover the key factors that impact the performance
of caching in CCN. We correlate these findings with cache
allocation, highlighting how an intelligent allocation policy
can dramatically increase performance. We show that a one-
size-fits-all approach would be entirely inappropriate and that,
instead, different networks must make measured decisions
based on their individual operating conditions. To summarize,
we make the following key contributions:
• We investigate the cache allocation problem in CCN,

proposing an optimal solution for computing which CCN
routers should be enabled with caching, and exactly how
much should be allocated.

• We utilize our solution to explore the key factors that
impact the performance of cache allocation via exten-
sive simulations. We perform the first comprehensive
evaluation that considers the following factors: topology,
network size, content popularity characteristics and ob-

ject replacement strategies. To achieve this, we exploit
multiple synthetic topology models that capture different
types of network to characterize the types of deployments
suitable for each. In conjunction, we utilize various
popularity distributions and replacement algorithms to
similarly understand their interactions.

• We provide an analysis of the key considerations that net-
work operators should take into account when deciding
their own cache allocation policy.

The remainder of the paper is organized as follows. In
Section II, we discuss related work. In Section III, a detailed
model of CCN caching is presented, before employing opti-
mization techniques to resolve the cache allocation problem in
CCN. In Section IV, we perform simulations to explore the key
factors that impact cache allocation and network performance.
Following this, in Section V, we bring together our findings
to delineate a number of considerations that should be made
by network operators during CCN’s deployment. Finally, we
conclude the paper in Section VI.

II. RELATED WORK

We classify related work into two groups: (1) cache alloca-
tion methods in CCN; and (2) optimization methods for current
multi-cache networks, such as CDNs, the Web and IPTV.

A. Cache allocation in CCN

A wealth of recent research has inspected the performance
of caching in CCN, e.g., [2], [3], [15], [16], [17], [18], [19].
These works perform extensive simulation studies, providing
a range of insights, including performance modeling [2], [15],
deployment incentives [3] and cache routing [16]. All of
them however consider homogeneous deployments, where all
routers have the same cache size. In practice, however, these
homogeneous deployments are extremely unlikely. Instead, a
wealth of router types will exist, with networks deploying
appropriately sized caches in strategic locations.

We know of only three works that have considered het-
erogeneous cache allocation policies. Rossi and Rossini [11]
were the first to study the cache allocation problem in CCN.
They propose to deploy more cache space in the “core” routers
of the network, rather than at the edge. They use several
metrics to measure the centrality of routers, including degree,
closeness and betweenness. Through this, they allocate cache
capacity proportionally to the centrality metric of a router, and
conclude that the gain brought by cache size heterogeneity is
actually very limited. In contrast, a later work [12] concludes
the opposite, finding that keeping larger caches at the edge
is, in fact, more effective. Similarly, Fayazbakhsh et al. [13]
questioned the necessity of ubiquitous caching and concluded
that most of the performance benefits can be achieved by
edge caching alone. We re-visit this apparent contradiction in
Section IV.

Beyond the considerations of the previous work, we also
note that no prior research has considered factors outside the
topology, e.g., the content popularity distribution. Our work

brings perspective on the conclusions of previous work, as
well as shedding light on various aspects of cache allocation.

B. Optimization methods in multi-cache network

The process of cache allocation is typically realized using
content placement optimization algorithms. In other words,
it solves the Facility Location Problem. This has been ex-
tensively studied in alternate domains (e.g., the Web), where
two general approaches have been taken: Capacitated Facility
Location (CFL) and Un-capacitated Facility Location (UFL),
where the capacity of a node means the maximum number of
clients it can serve simultaneously, not the cache capacity.

Krishnan et al. [7] formulate en-route web caching as a
standard UFL problem in a tree topology, and present solutions
based on both dynamic programming and greedy heuristics,
where the objective is to minimize the remaining traffic flow.
Jiang and Bruck [8] also address coordinated en-route web
caching. Perhaps most importantly, they show that this can be
achieved without pre-fetching or pre-positioning by a central
controller. However, all of the mentioned approaches treat the
content files in the network as an un-splittable commodity. In
contrast, this is not practical in CCN, which separates content
into chunks.

In [5], a two-step algorithm is developed to solve the
multi-commodity UFL problem with total capacity constraints
in trees, and to provide approximations for general graphs.
Similarly, [6] discusses the multi-commodity UFL problem,
where each node has its own cache capacity constraint. [10]
and [9] add the bandwidth of links as additional constraints
in the contexts of CDNs and IPTV networks, respectively.
Although this work is closely related, it is not applicable to
a CCN environment, which has certain unique constraints,
namely: (1) exclusive use of on-path caching; (2) opportunistic
caching, rather than pre-fetching; (3) unchangeable locations
of available cache points, i.e., routers; and (4) diverse topolo-
gies that do not match predetermined templates. For example,
most of the optimal solutions in CDNs [5], [6] or IPTV [9],
[10] assume off-path caching, and rely on file pre-fetching.
Similarly, all aforementioned work in web caching [7], [8]
employ fixed hierarchical tree topologies, that simply would
not exist in CCN. It is therefore important to study this issue in
more generalized network topologies, oriented towards CCN’s
design, rather than in an application-specific context.

III. OPTIMAL CACHE ALLOCATION IN CCN

Before exploring the factors that impact cache allocation
in CCN, it is necessary to devise a mechanism to compute
their allocation optimally. Without this, it becomes impossible
to differentiate between external impact factors (e.g., content
popularity) and simply poor allocation decisions. This section
delineates an exact optimization algorithm to solve the cache
allocation problem, providing the upper bounds of perfor-
mance. Note that we do not intend this approach for large-scale
use by real network operators but, instead, exploit it later as
a basis for our evaluation.

vs
fi

vt
va
fi

fi

bi,a,t

Fig. 1. Example illustrating the benefit of content placement. vt and vs
denote the client and server of content fi. The traffic flow corresponding to
request fi at vt without caching is 3 (measured by hops). If fi is cached at
va, the traffic flow will be reduced to 1. Therefore, the benefit of caching fi
at va for node vt is 2, bi,a,t = 2.

A. Cache allocation problem

A CCN network can be modeled as a undirected graph
G = (V,E), where V is the set of CCN routers with cache
space, and E is the set of links in the network. Each content
server/client is attached to a node in V . For simplicity, we
do not distinguish the end hosts from the CCN routers they
are attached to. Due to the aggregation of hierarchical names
in CCN, we can also assume that, in most circumstances, at
most one FIB entry will exist in each router for each content
item, i.e., from the perspective of an individual client, only
one destination exists for each object [20].

In our model, each content chunk, fi ∈ F , will therefore
have a single node, vs ∈ V , chosen as its origin server, denoted
as s(fi) = vs. A content chunk is the minimum operating unit
in cache management, and is called a cache entry in the rest of
this paper. All content chunks are assumed to have the same
size, which is normalized to be 1. When a request for fi is sent
from node vt, path(vt, s(fi)) = path(vt, vs) = {vt, · · · , vs}
denotes the path that the interest packet takes, where vt and
vs are the client and server, respectively. Any intermediate
router could satisfy the interest with a cached chunk. If node
va is the first encountered router with a cached copy of the
content, then the forwarding path {vt, · · · , vs} will be reduced
to {vt, · · · , va}, and the length of the reduction {va, · · · , vs}
is defined as the benefit of caching fi at va for node vt, denoted
as bi,a,t. A simple example in Fig. 1 illustrates the definition
of the benefit. Note that the cache benefit used in our optimal
allocation algorithm is measured through the traffic reduction
via caching, which is measured by the reduction in hop count
for interest packets (as in [3]). To calculate the benefit for
a particular content, we multiply the length of the reduction
bi,a,t with the probability, pi, of the content fi being requested.

As we measure the caching benefit by the reduction in hops
taken by an interest packet, the objective of our optimization is
to compute an allocation of cache capacity among a topology
of routers such that the aggregate benefit is maximized (in line
with previous optimization work [7], [8]). In other words, we
aim to minimize the remaining traffic flow in the network. The
key constraint is total cache capacity, as each network operator
will have finite accessibility to cache storage. The challenge
is therefore to appropriately allocate this finite capacity across
their infrastructure.

We formulate the optimal content placement problem in
CCN as follows:

Notation Meaning
V Set of nodes
E Set of edges
F Set of content chunks
n n = |V |
N N = |F |
va Node a, va ∈ V, a ≤ n
fi i-th popular content,fi ∈ F, i ≤ N
s(fi) Server of content fi
pi Probability that content fi is requested
ci Cache capacity allocated for content fi
xi,a Binary variable indicating cache fi on node va
bi Benefit of caching fi with Xi placement
bi,a Benefit of caching fi on node va for all nodes
bi,a,t Benefit of caching fi on node va for node vt
b
ci
i Benefit of caching fi with ci entries
bsca Benefit of deploying c cache entries on SPT rooted at va
α Clustering control parameter in WS model
β Zipf distribution exponent
γ Degree distribution parameter in scale-free topology

TABLE I
SUMMARY OF NOTATIONS.

Maximize: ∑
fi∈F

∑
vt,va∈V

pi · xi,a · bi,a,t (1)

Subject to: ∑
fi∈F

pi = 1 (2)

xi,a = {0, 1},∀fi ∈ F, va ∈ V (3)∑
fi∈F

∑
va∈V

xi,a ≤ ctotal (4)

where xi,a is a binary variable taking the value 1 if content
fi is cached at node va. We assume that each content, fi,
is originally requested with the same probability pi at each
client. bi,a,t is the benefit of caching fi at va for client
vt. Eq. (4) states that the total cache space in the network
is less than the constraint ctotal. As the source of content
fi, s(fi), is determined by the content fi uniquely, we do
not need to consider this dimension in Eq. (1). The optimal
content placement in CCN is therefore described by the set
xi,a, fi ∈ F, va ∈ V that maximizes the traffic saving.
Finally, the optimal cache allocation can be calculated through∑
fi∈F

xi,a, va ∈ V .

B. Overview of Optimal Cache Allocation Algorithm
The objective function Eq. (1) can be rewritten as:

max(
∑
fi∈F

∑
vt,va∈V

pi · xi,a · bi,a,t) (5)

= max(
∑
fi∈F

pi
∑

vt,va∈V
xi,a · bi,a,t) (6)

= max(
∑
fi∈F

pi · bcii) (7)

where bcii is the benefit of allocating ci cache entries1 for
content fi across the whole network. Eq. (7) satisfies the

1A cache entry is a fixed-size item of cache space in a router (equal to the
size of one data chunk).

File fi Cache size ci Remaining flow Benefit bcii
f5 0 9 0
f5 1 3 6
f5 2 2 7
f5 3 1 8
f5 4 0 9

TABLE II
THE BENEFIT OF CACHE ALLOCATION FOR A GIVEN CONTENT FILE (bcii).
THE SPT ROOTED AT ve IS CHOSEN AS AN EXAMPLE (THE RIGHTMOST

TREE IN FIG. 2).

standard knapsack problem formulation: how to get the largest
benefit by allocating cache space for the set of content objects,
F , where allocating ci cache entries for fi will provide
benefit pi · bcii . Therefore, we formulate the optimized content
placement problem in CCN as a general knapsack problem.
As the probability of requesting content, fi, is supposed to
be known, bcii in Eq. (7) is our main focus in the following
algorithm.

Considering that CCN exploits on-path caching, the benefits
of caching do not only depend on the cache locations (Xi =
xi,a, va ∈ V) but also the location of the origin server (s(fi)
for fi). We assume that the interest packet always follows the
shortest path to the server. Thus, bcii in Eq. (7) is the benefit of
Xi for all nodes on the shortest path tree (SPT) rooted at s(fi),
implying that the mapping between content fi and its original
server s(fi) is an important input to the optimization. Fig. 2
provides an example graph and its SPTs rooted at different
content servers. In Fig. 2, we assume that there are 5 content
files in this graph, and each content file is served at one node.
In this example, we assign node ve as the server of file f5. We
define the flow of a node as the number of requests per time
unit at that node. We assume that each node in the tree will
generate one request per time unit. Therefore, the total traffic
flow without caching can be calculated by summing the flow
at each node. The remaining flow and the benefit of allocating
c5 cache entries with the optimal placement (obtained by the
method proposed in [7]) are listed in Table II.

The content placement problem in CCN can be divided into
two sub-problems: (1) the cache location problem in the SPT
to obtain bcii in Eq. (7); and (2) the knapsack problem to solve
the whole of Eq. (7). The former problem has been solved in
[7], as a k−means problem with O(cn2) complexity, where
c is the number of cache nodes and n is the total number
of nodes in the graph. Typically, the latter is solved through
dynamic programming. As the k − means problem in trees
has been proven to be piecewise linear non-decreasing concave
[21], the knapsack of different contents in Eq. (4) can be
solved optimally through a greedy method.

C. Algorithm Description

We now provide an outline of the exact optimization algo-
rithm used to compute the optimal cache allocation:

1) Compute the benefit of cache placement on the SPT
rooted at each server,va,va ∈ s(F).

a) Compute the benefit of deploying c cache entries

on the SPT rooted at va, bsca, c = {0, · · · , n − 1}
following the dynamic programming method de-
scribed in [7], [22];

b) Save the optimal cache location Y a,c obtained from
the above dynamic programming for future use,
where Y a,c = {ya,cb }, vb ∈ V , ya,cb is a binary
value that indicates whether node vb is one of the
c optimal locations in the SPT rooted at va.

2) Compute the incremental benefit of the cth cache entry
for content fi, denoted as ∆bci .

a) bci = bsca, fi ∈ F, va = s(fi), c = {0, · · ·n− 1}.
b) ∆bci = bci − b

c−1
i , fi ∈ F, c = {1, · · ·n− 1}

3) Allocate the cache space by choosing the largest benefit
increment in F greedily.

a) Initially, ci = 0, fi ∈ F , where ci denotes the
number of cache entries allocated for content fi;

b) ci = ci + 1, ∆bcii · pi = max{∆bcjj · pj , fj ∈ F},
where pi is the probability of requesting content
fi;

c) if
∑
fi∈F

ci < ctotal, go to b);else, iteration stop.

4) Map X using C and Y a,c, where C,C = {ci}, fi ∈ F .
a) X = {xi,a = y

s(fi),ci
a } fi ∈ F, va ∈ V , where

Xi,a is a binary variable indicating that cache fi
on node va

The output of this algorithm, X , is a N × n binary array
describing the optimal content placement in the network with
ctotal cache entries. Finally, the sum of the columns (or rows)
of X ,

∑
fi∈F

xi,a, va ∈ V (
∑
va∈V

xi,a, fi ∈ F), can be seen as

the optimal cache allocation across nodes (or contents).
As the k − means problem in trees has been proven to

be piecewise linear non-decreasing concave [21], the greedy
solution is also optimal. In other words, the knapsack problem
can be solved greedily. The complexity of the above algorithm
is mostly determined by steps 2 and 3. By using the max-
heap data structure, the greedy algorithm in step 3 can be
implemented at a complexity of O(ctotallogN), where N
is the number of contents. Given that the complexity of
the cache location problem in the SPT is O(sn3) in step
2, the overall complexity of our optimization method is
max(O(sn3), O(ctotallogN)), s ≤ n, ctotal < nN , where
s = |s(F)| is the number of servers. Although this optimal
approach would not scale to Internet-wide deployments, it
provides an appropriate basis to explore the cache performance
in CCN.

IV. ANALYSIS OF CACHE ALLOCATION

This section explores the key factors that impact cache
allocation. As of yet, there is no consensus on what factors
should be considered in CCN cache allocation. There is not
even consensus, broadly speaking, on where caches should be
allocated: the core, the edge, or a combination of both [11],
[12], [13], [14]. Therefore, we utilize our optimal algorithm
to understand the types of deployment that could benefit from
caching, and how capacity should be allocated among them.

a

a b
c

d

e

a

b

c d

e

a

c

b d

e

d

a e

b c

d

e

b

a

c

1 1

1

2

0 0 0

4 4 43

32 21

1

1

1

1

1 1

1 1

b c

d

e

0 0

Fig. 2. The shortest path trees (SPTs) rooted at different content servers. The number in the circle denotes the flow of the node, which is defined as the
number of requests for content per time unit at that node, including the requests from the node itself as well as from its downstream nodes. Each node in the
network generates one request per time unit.

A. Experiment setup

First, we detail the methodology taken to achieve our goals.
We have developed a discrete event based simulator that
models caching behavior in various graph structures. As with
[3], we are primarily interested in reducing hop counts, and
therefore we do not model traffic congestion or processing
delay as done in [13]. Although our lightweight simulator
cannot capture the data plane features as done by, e.g., ndnSIM
[23] or ccnSim [24], it manages to handle topologies with
thousands of nodes, which is critical for our experiments.
Configuring the simulator consists of topology generation and
request patterns generation, which we discuss in the following
paragraphs.

To study a range of configured topologies, we rely on syn-
thetic generation. This allows us to control various properties
of interest, e.g., the degree distribution and clustering. Here,
we focus on power-law networks [25], as Internet-like graphs
have similar features [26]. To generalize our results more, we
also utilize two different flavors of power-law graph [27].
First, we employ the Barabási-Albert (BA) model [28] to
emulate topologies with a few high centrality nodes (default
γ = 2.5 and m = 2); this gives insight into an “ideal”
caching scenario (i.e., high request overlap). However, it does
not necessarily best model the real world and, therefore, we
also utilize the Watts-Strogatz (WS) small-world topology
model [29] to capture clustering. This results in more realistic
topologies (e.g., an ISP network [30]) that allows us to better
map our implications to current network deployments. In this
model, firstly, each node vi is assigned an expected degree
κi, which is actually obtained from the BA model in our
experiment. Then, all nodes are uniformly distributed on a
ring space. Finally, links are set among nodes according to
the expected degree and the metric distance on the ring. For
example, the probability that link {vi, vj} exists is proportional
to κiκj/d

α
i,j . A higher α value will create more clustering.

By default, each generated topology consists of 1,000 router
nodes. Once we generate the topology, we attach 100 servers,
sharing 10,000 objects. We randomly choose their individual
points of attachment, before distributing the objects across
the sources uniformly. For simplicity, we do not distinguish
the end hosts from the router nodes they are attached to.

During each time interval, all objects are requested by each

node separately using a Zipf distribution:
N∑
i=1

(c/iβ) = 1

(β = 1).2 Finally, by default, the global cache capacity is
set as ctotal = 1% which is normalized by nN .

B. Importance of Cache Allocation

Before investigating the key factors that impact cache
allocation in CCN, we investigate the importance of cache
allocation itself. More specifically, we would like to confirm
that optimal cache allocation has a direct impact on per-
formance, as opposed to cache capacity alone. To achieve
this, we perform simulations of our optimal algorithm (OPT),
alongside several other cache allocation schemes. We therefore
recreate the algorithms detailed in [11], as well as our own.
The cache replacement policy used in all tests is LFU, except
the optimized method which depends on global knowledge and
pre-fetching. Details about the impact of the cache replacement
policy will be explored later.

Fig. 3 presents the cache performance of the different
algorithms using the aforementioned default simulation param-
eters. The x-axis presents the global cache capacity (ctotal),
which is normalized by the number of nodes multiplied by the
number of content files (i.e., nN). This allows us to capture the
impact of both the number of nodes and the number of content
files. We measure the performance by the fraction of traffic that
remains in the network, shown on the y-axis. If, for example,
ctotal = 1 (100%), then the fraction of remaining traffic will be
0. To improve comparability, we also normalize the remaining
traffic in Fig. 3(a) as a fraction of the homogeneous allocation.

The heuristic allocations based on closeness centrality (CC),
graph centrality (GC) and eccentricity centrality (EC) con-
tribute little to the cache performance. All achieve well below
5% in reductions. In fact, EC actually results in an increase in
traffic, due to the negative correlation coefficient value with
other centrality metrics in [11]. In contrast, the other three
metrics, degree centrality (DC), betweenness centrality (BC)
and stress centrality (SC), offer far greater traffic saving. Inter-
estingly, among the three useful centrality based allocations,

2Although typical, we do not use α as the skew factor, due to its previous
use in parameterizing the WS graph.

10
−5

10
−4

10
−3

10
−2

10
−1

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Cache capacity

R
em

ai
ni

ng
 tr

af
fic

 (
N

or
m

al
iz

ed
 b

y
H

M
)

HM
DC
BC
CC
EC
GC
SC
OPT

(a) Remaining traffic normalized by homogeneous allocation
performance.

10
−5

10
−4

10
−3

10
−2

10
−1

0

0.2

0.4

0.6

0.8

1

Cache capacity

T
ra

ffi
c

sa
vi

ng

HM
DC
BC
SC
OPT

(b) Traffic saving of cache allocation.

Fig. 3. Caching performance of different allocation methods.
HM:homogenous allocation; DC: Degree Centrality; BC: Betweenness Cen-
trality; CC: Closeness Centrality; EC: Eccentricity Centrality; GC: Graph
Centrality; SC: Stress Centrality; OPT: optimal cache allocation.

BC and SC are more effective when the total cache space
is relatively small, whereas DC has better performance when
the total budget is more than 1%. We find that the BC/SC
allocation methods never allocate cache space to stub nodes,
regardless of the overall capacity budget. This policy might
be reasonable when the total budget is small and all the cache
resources are obtained by the core nodes, but it is inefficient
when there is spare cache capacity that could be placed on the
home gateways provided to users. As expected, none of these
existing algorithms approach the gains made by the optimal
algorithm (OPT).

Fig. 3(b) also shows the total benefit, measured by the
fraction of traffic removed via caching. Note that we do not
show CC, EC and GC due to their poor performance. We
see that with increased cache capacity, the benefits increase
logarithmically. We observe that the homogeneous allocation
cannot benefit from this logarithmic law and performs quite
poorly when the total cache budget is small. For example, to
achieve a traffic reduction of 20%, the homogeneous allocation
will require over 10 times more cache space compared to the
optimal allocation. This highlights the importance of a proper

cache allocation scheme, as opposed to cache size alone. We
therefore confirm that cache placement does have a significant
impact on network performance. Further, we have also shown
that our optimized algorithm offers far superior results to the
existing state-of-the-art.

C. Edge vs. core: impact of the topology structure

Here, we seek to understand the impact of the topology
on cache allocation. More generally, we seek to discover
if the core or the edge is the most appropriate place for
caches to be situated. We define the nodes with high centrality
metric value as the “core” and the nodes with low centrality
metric value as the “edge”. Using the topology models detailed
in Section IV-A, we create a variety of network topologies
(controlled by the parameters γ and α) and compute the
optimal cache placements using the OPT algorithm. The larger
the value of γ, the heavier the power-law, meaning that the
network is more strongly hierarchical resulting in a few highly
central nodes. As α increases, the clustering in the network
also increases. In contrast, small values of α correspond to
network topologies close to random networks.

Fig. 4(a) presents the distribution of traffic savings across
various cache sizes in the network. For example, it shows that,
for the BA topology (γ = 2.5), at least 20% of traffic is saved
with a 1% cache size. We observe that the BA topology does
consistently better with small cache capacities when compared
to WS. The reason for this behavior is that a BA topology will
tend to have central nodes that aggregate a lot of requests,
and therefore benefit more from caching. For example, the
BA topology (γ = 2.1) can achieve over 30% reductions with
a cache size of just 0.1%. This can be compared against the
WS topology which gets well below 20% for an equivalent
cache capacity. This occurs because the WS topology has more
path diversity, and therefore benefits less from aggregation.
As a consequence, in a WS topology, more caches must be
placed across the network, especially towards the edge, which
also decreases the cache efficiency (popular content will be
replicated in many caches). This trend becomes even worse for
larger values of α in the WS model (more clusters), resulting
in even lower performance. Despite the lower traffic savings,
we believe that placing caches at the edge is still desirable
for smaller networks that do not benefit from large levels of
aggregation.

We next investigate how the content is distributed across
the caches. Ideally, one would wish to reduce the level of
redundancy in regions of the network, to improve cache
utilization (assuming that performance, rather than resilience,
is the aim). Fig. 4(b) presents the cumulative distribution
function (CDF) of the distribution of content in the caches;
for example, it shows that the majority of cache capacity
is allocated to the most popular object (file index 0). More
interestingly, we see that the topology has a notable impact
on how capacity is allocated to each file. We find that the WS
topology (particularly when α = 1) allocates a large fraction
of the capacity to the top few objects. This happens because
it is impossible to aggregate large portions of the requests to

caches, as there is no single “core” to operate as a prominent
caching point. Instead, by pushing caches towards the edge,
it becomes necessary to fill each cache with the same popular
objects.

Finally, Fig. 4(c) presents how the capacity is distributed
across all routers in the network. Lower node indexes indicate
nodes that are closer to the core. Once again, we see a similar
trend to that in Fig. 4(b). With more decentralized topologies,
it becomes necessary to spread the cache capacity across the
network towards the edge, as highlighted by the WS models.
In contrast, the BA topologies result in far more centralized
cache placement, where content is primarily stored in the core
(skewed towards lower node indexes). This suggests that dif-
ferent deployments could require entirely different allocation
approaches, suggesting that a one-size-fits-all approach would
be completely inappropriate.

D. Impact of network size

So far, we have seen that the topological structure of
the network can have a significant impact on the optimal
cache placement. As of yet, however, we have only dealt
with a single network size (1k). We now investigate how the
number of nodes in the network impacts placement. Fig. 5
illustrates the effect of the network size, n, in CCN, where
both homogeneous and optimal allocation are evaluated. Note
that we present both because the homogeneous allocation is the
de-facto consideration in most prior work, while the optimal
allocation is the upper-end benchmark.

Once again, we can see that the homogeneous allocation
is suboptimal, consistently achieving low performance. For
instance, when n = 2k the optimal allocation with c = 0.001
achieves the same traffic savings as the homogeneous alloca-
tion with 10 times more cache capacity. We also see that the
benefit of the optimal allocation is proportional to the network
size, n, while the homogeneous allocation is actually quite
insensitive to the network size. Specifically, in the homoge-
neous experiments, the traffic savings remain fairly constant
for all network sizes. This suggests that network providers
who demand predictable savings rather than optimal savings
may actually prefer the simplicity of such a deployment.

We also note another important repercussion of this finding
in relation to [11], which concluded that the heterogeneous
allocation brings little improvement compared with the homo-
geneous allocation. Initially, this seemed to be in stark contrast
to our findings, however, closer inspection highlighted that the
experiments in [11] were only based on topologies with 68
nodes or fewer. Instead, it appears from our results, that the
benefits of the heterogeneous cache allocation only become
apparent with larger topologies. Considering that CCN is tar-
geted at larger networks or even an Internet-scale deployment,
it seems likely that heterogeneous cache placements would be
highly relevant.

E. Impact of content popularity

Caching, of course, relies heavily on the skewed distribution
of popularity among objects, and CCN is no different. To

0 500 1000 1500 2000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Topology size(n)

R
em

ai
ni

ng
 tr

af
fic

OPT/c=0.01
OPT/c=0.001
HM/c=0.01
HM/c=0.001

Fig. 5. The remaining traffic in different sized networks, from 100 to 2, 000
nodes.

investigate this, Fig. 6 presents the impact that differing levels
of skew have on the performance (note that for completeness
we also include DC, BC, SC placement schemes, as well
as optimal). Specifically, we vary the skew parameter, β,
where the probability that the ith object being requested is
proportional to 1/iβ . The node index along the x-axis refers
to the attachment order in the BA model; lower values indicate
nodes in the core also with a large centrality metric value. The
experiments are performed using the BA topology.

Fig. 6 shows that a less skewed popularity distribution
(i.e., smaller β) results in more cache space allocated in
the core. Indeed, it then becomes necessary to consolidate
cache capacity between a larger number of consumers to
ensure sufficient interest overlap to generate cache hits. For
example, an edge cache serving 10 consumers is unlikely to
generate any hits for unpopular objects, as there would not
be enough requests. In contrast, a core cache serving 100k
consumers is far more likely to find subsequent requests for
unpopular objects. This means that highly skewed popularity
request patterns (e.g., YouTube [31], mobile VoD system [32]
or Vimeo [33]) will be better served by edge caching, while
more uniform popularity distributions (e.g., catch-up TV [34])
would be better served by core caching.

Another important observation is that as β increases, the
performance of the optimal allocation begins to converge
towards that of the homogeneous allocation. We can see that as
the range of objects being requested becomes more skewed, it
becomes more effective to evenly distribute the caches towards
the edge of the network. This allows each stub network to
serve its own consumers effectively, without requiring the
aggregation of consumers offered by in-core caching. This
latter point has the further advantage of reducing transit traffic,
as well as delay. Optimal cache allocation might therefore be
suited to help ISPs reduce their transit costs.

Whereas the popularity distribution of objects has a notable
impact, a further important factor is the number of objects.
Fig. 7 plots the amount of remaining traffic in the optimal
and homogeneous allocations, where the cache capacity, nor-
malized by nN , is 1%. Through this, the total cache capacity

0.1 1 10 100
0

0.2

0.4

0.6

0.8

1

Cache size(Normalized)(%)

T
ra

ff
ic

 sa
ve

d

BA:γ=2.1
BA:γ=2.5
BA:γ=3
WS:α=0
WS:α=0.5
WS:α=1

(a) Benefit of caching in optimal location

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Files ordered by content rank(%)

C
D

F
(C

ac
he

 c
ap

ac
ity

)

BA:γ=2.1
BA:γ=2.5
BA:γ=3
WS:α=0
WS:α=0.5
WS:α=1

(b) Cache allocation of content files

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

Nodes ordered by cache capacity(%)

C
D

F
 (

C
ac

he
 c

ap
ac

it
y)

BA:λ=2.1
BA:λ=2.5
BA:λ=3
WS:α=0
WS:α=0.5
WS:α=1

(c) Cache allocation over nodes

Fig. 4. Impact of topology properties using BA and WS models.

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Node index

C
D

F
(c

ac
he

 c
ap

ac
ity

)

β=0.5
β=0.6
β=0.7
β=0.8
β=0.9
β=1.0
β=1.1
β=1.2
β=1.3
β=1.4
β=1.5
DC
BC
SC

HM

Fig. 6. The optimal allocation of different content popularity. β is the
Zipf skew parameter. Heuristic methods based on degree centrality (DC),
betweenness centrality (BC) and stress centrality (SC) are also shown in blue
lines (note β does not change their allocations).

in the network increases with the volume of content files N .
We see that greater savings (i.e., less remaining traffic) can be
achieved as the number of objects increase in proportion to
the cache capacity. In other words, the remaining traffic will
actually be reduced if the caches can increase proportionally
with the increasing number of objects. This occurs because
the number of objects requested increase at a sub-linear rate
compared to the number of objects, allowing the caches to
consolidate their capacity better. One could say that this is
optimistic; as such, Fig. 7 also presents the results when
maintaining a constant total cache capacity (100 entries per
node on average). In this case, the remaining traffic increases
approximately logarithmically with the number of content
items in both allocations. Consequently, we conclude that the
increasing scale of the content will, indeed, need to be matched
by increasing the scale of caching resources. As caches are co-
located with the routing infrastructure, this will not be trivial
in terms of deployment; it certainly will not be as easy as
expanding resources in a traditional Web cache.

1 2 3 4 5 6 7 8 9 10
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Number of content files (×104)

R
em

ai
ni

ng
 tr

af
fi

c

OPT/c=0.01
HM/c=0.01
OPT/cN=100
HM/cN=100

Fig. 7. The effect of the number of content files (104 < N < 105) on
the remaining traffic. The blue lines show the remaining traffic where the
cache capacity is increased with the content volume. The black lines show
the remaining traffic where the total cache capacity is fixed (100 cache entries
per node on average).

F. Impact of cache replacement policy

As mentioned in the previous sections, the optimal cache al-
location alone cannot guarantee optimal cache performance in
CCN. Instead, it must be combined with a suitable replacement
strategy. As the theoretical optimal allocation algorithm in this
paper is obtained using optimal object placement, it requires
oracle-based pre-fetching, which is, of course, impractical in a
real-world context. Consequently, we evaluate the performance
of different well-known replacement strategies with the opti-
mal allocation. Furthermore, to study the impact of allocation
on the replacement policy, we also repeat the same experiment
with the homogeneous allocation.

To illustrate the relative cache performance compared to the
pre-fetching method (exact optimal placement), the remaining
traffic on the y-axis is normalized using that achieved by
the optimal placement. Besides the default cache replacement
strategy (LFU), we also experiment with several other algo-
rithms: (1) Least Recently Used (LRU) and “cache everything
everywhere” [1]; (2) LRU with the centrality-based caching
policy [18] (CEN); (3) LRU with LCD caching policy [35];
and (4) LRU with fixed caching probability (p = 0.5).

Fig. 8 shows that the caching performance of the optimal
allocation is much better than the homogeneous allocation for
all replacement strategies. Therefore, the benefits of heteroge-
neous optimal cache placement does not require oracle-based
pre-fetching: significant gains can be made with various simple
cache replacement strategies.

We also find that the allocation of cache resources impacts
the performance of these replacement methods. For example,
with a homogeneous cache allocation, LCD is found to be
the best with low cache capacities, confirming the findings
of [19]. However, with the optimal cache allocation, it does
worst at these low capacity levels. In this scenario, nearly all
the cache space in the network is allocated to a few core nodes.
Therefore, there are not enough cache nodes to form the multi-
hop cache paths as LCD requires (unlike in the homogeneous
allocation).

Similar variability is also observed in LFU, which has the
best performance in most scenarios, apart from the homo-
geneous allocation when the total cache budget is less than
0.01%. We find that the cache space allocated to each node is
so small in the homogeneous allocation that it cannot estimate
the probability of arriving content properly. In this situation,
reducing the cache replacement times (as CEN and LCD do)
or avoiding the amplification of replacement errors (like LCD)
is helpful to improve performance. This shows that there is
no one-size-fits-all replacement strategy for different cache
allocations. Instead, network operators will need to choose
the best fit replacement strategy according to their network
environment as well as the cache allocation method in use.

V. SUMMARY OF FINDINGS

The previous section has explored the key factors that
impact optimal cache allocation. This is an important tool for
any network planner who is considering a CCN deployment.
Clearly, our results cannot be directly applied to a specific
practical deployment, but we can draw a number of general
conclusions from our study:
• Allocating cache capacity across the network in a homo-

geneous manner is highly suboptimal. Instead, capacity
should be allocated in a heterogeneous manner. The ben-
efits of this, however, only become apparent with larger
networks (e.g. > 100 nodes). We argue that router design
should therefore ensure that cache capacity is easily
pluggable and extensible to support this philosophy.

• The topology has a significant impact on the optimal
cache placement. In inter-AS type topologies (i.e., similar
to BA), cache capacity should be pushed into the core as
much as possible. This allows requests to be effectively
aggregated, improving hit rates, due to the high level of
interest path co-location. In contrast, ISP-type networks
(i.e., similar to WS) should distribute capacity in a more
egalitarian manner, pushing storage towards the customer
edge due to a lack of a well defined core.

• The type of content popularity handled by the network
will alter the optimal deployment. Demand that is more
uniformly distributed (e.g., [34]) is better handled by

10
−5

10
−4

10
−3

10
−2

10
−1

1

1.1

1.2

1.3

1.4

1.5

Cache capacity

R
em

ai
ni

ng
 tr

af
fic

(N
or

m
al

iz
ed

 b
y

pr
e−

fe
tc

hi
ng

)

LFU

LRU

CEN

LCD

LRU/0.5

(a) Optimal allocation.

10
−5

10
−4

10
−3

10
−2

10
−1

1

1.2

1.4

1.6

1.8

2

2.2

Cache capacity

R
em

ai
ni

ng
 tr

af
fic

(N
or

m
al

iz
ed

 b
y

pr
e−

fe
tc

hi
ng

)

LFU
LRU
CEN
LCD
LRU/0.5

(b) Homogeneous allocation.

Fig. 8. Caching performance of different replacement strategies. The cache
performance of replacement strategies are normalized by optimal oracle-based
pre-fetching.

pushing caches into the core (e.g., an Internet Exchange
Point [36]) to better aggregate requests. For highly
skewed demand, caches must be pushed to the edge; this,
however, creates high levels of redundancy in which many
replicas of the same content are created.

• As the number of these objects increases, the importance
of strategic cache placement also increases. Homoge-
neous allocation strategies do substantially worse, while
the performance of the optimal allocation decreases in an
approximately logarithmic manner.

• The benefits of heterogeneous optimal cache placement
does not require oracle-based pre-fetching. Significant
gains can be made with simple cache replacement strate-
gies. Furthermore, the cache replacement strategy can
have a notable impact on performance. Cache allocation
also impacts the performance of cache replacement meth-
ods.

VI. CONCLUSION AND FUTURE WORK

In this work, an exact optimization method has been pre-
sented to find the optimal cache allocation in CCN. Using
this, we have explored the many factors that affect cache

placement, and how they subsequently impact performance
(measured by traffic reduction). Our experiments have shown
that the benefits of heterogeneous cache allocation are sig-
nificant. Through this, we have found that many aspects may
affect cache performance, including topological properties and
content request patterns. Importantly, this highlights that a
one-size-fits-all approach will never be optimal during CCN’s
deployment and, instead, network operators must make well
informed decisions on where they allocate capacity.

A number of interesting avenues of future work remain
in this area. Our evaluation is based on a formal model of
topology and workload. In the future, we need to evaluate
the performance of the different caching strategies in real-
world topologies with more complex workload models. For
example, we wish to include request models that consider
temporal and spatial locality, as well as the server and client
distribution. Although including these aspects would make the
model more complex, we believe it could show even better
gains from caching. Last, it is also necessary to investigate
other performance metrics beyond traffic removal, e.g., delay
and transit costs. We will further connect this to more real-
world concerns, such as the impact that this might have on
inter-AS business arrangements and incentives.

VII. ACKNOWLEDGMENTS

This work was supported by the National Basic Research
Program of China with Grant 2012CB315801, the National
Natural Science Foundation of China (NSFC) with Grants
61133015 and 61272473, the National High-tech R&D Pro-
gram of China with Grant 2013AA013501, and by the
Strategic Priority Research Program of CAS with Grant
XDA06010303. The work was also supported by the EC EINS
and EPSRC IU-ATC projects.

REFERENCES

[1] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” in ACM CoNEXT,
2009.

[2] I. Psaras, R. G. Clegg, R. Landa, W. K. Chai, and G. Pavlou, “Modelling
and evaluation of ccn-caching trees,” in IFIP Networking, 2011.

[3] G. Tyson, S. Kaune, S. Miles, Y. El-khatib, A. Mauthe, and A. Taweel,
“A trace-driven analysis of caching in content-centric networks,” in Proc.
of IEEE ICCCN, 2012.

[4] D. Perino and M. Varvello, “A reality check for content centric network-
ing,” in Proc. of the first workshop on Information-centric networking,
2011.

[5] N. Laoutaris, V. Zissimopoulos, and I. Stavrakakis, “Joint object place-
ment and node dimensioning for internet content distribution,” Informa-
tion Processing Letters, vol. 89, no. 6, pp. 273–279, 2004.

[6] N. Laoutaris, V. Zissimopoulos, and I. Stavrakakiss, “On the optimiza-
tion of storage capacity allocation for content distribution,” Computer
Networks, vol. 47, no. 3, pp. 409–428, 2005.

[7] P. Krishnan, D. Raz, and Y. Shavitt, “The cache location problem,”
IEEE/ACM Trans. Networking, vol. 8, no. 5, pp. 568–582, 2000.

[8] A. Jiang and J. Bruck, “Optimal content placement for en-route web
caching,” in Proc. of IEEE NCA, 2003, pp. 9–16.

[9] D. Applegate, A. Archer, V. Gopalakrishnan, S. Lee, and K. Ramakr-
ishnan, “Optimal content placement for a large-scale VoD system,” in
ACM CoNEXT, 2010.

[10] S. Borst, V. Gupta, and A. Walid, “Distributed caching algorithms for
content distribution networks,” in IEEE INFOCOM, 2010.

[11] D. Rossi and G. Rossini, “On sizing ccn content stores by exploiting
topological information,” in Proceedings of IEEE INFOCOM NOMEN
workshop, 2012.

[12] I. Psaras, W. K. Chai, and G. Pavlou, “Probabilistic in-network caching
for information-centric networks,” in Proceedings of the second work-
shop on Information-centric networking, 2012.

[13] S. Fayazbakhsh, Y. Lin, A. Tootoonchian, A. Ghodsi, T. Koponen,
B. Maggs, K. Ng, V. Sekar, and S. Shenker, “Less pain, most of the
gain: Incrementally deployable icn,” in ACM SIGCOMM, 2013.

[14] A. Ghodsi, S. Shenker, T. Koponen, A. Singla, B. Raghavan, and
J. Wilcox, “Information-centric networking: seeing the forest for the
trees,” in Proceedings of the 10th ACM Workshop on Hot Topics in
Networks, 2011.

[15] E. J. Rosensweig, J. Kurose, and D. Towsley, “Approximate models for
general cache networks,” in IEEE INFOCOM, 2010.

[16] R. Chiocchetti, D. Rossi, G. Rossini, G. Carofiglio, and D. Perino,
“Exploit the known or explore the unknown?: hamlet-like doubts in
icn,” in Proceedings of the second workshop on Information-centric
networking, 2012.

[17] C. Fricker, P. Robert, J. Roberts, and N. Sbihi, “Impact of traffic mix on
caching performance in a content-centric network,” in Proc. of NOMEN
workshop, 2012, pp. 310–315.

[18] W. K. Chai, D. He, I. Psaras, and G. Pavlou, “Cache less for more in
information-centric networks,” in IFIP Networking, 2012, pp. 27–40.

[19] D. Rossi and G. Rossini, “Caching performance of content centric net-
works under multi-path routing (and more),” Relatório técnico, Telecom
ParisTech, 2011.

[20] J. Choi, J. Han, E. Cho, T. Kwon, and Y. Choi, “A survey on content-
oriented networking for efficient content delivery,” IEEE Communication
Magazine, vol. 49, no. 3, pp. 121–127, 2011.

[21] R. Shah, “Faster algorithms for k-median problem on trees with smaller
heights,” 2003.

[22] A. Tamir, “An o(pn2) algorithm for the p-median and related problems
on tree graphs,” Operations Research Letters, vol. 19, no. 2, pp. 59–64,
1996.

[23] A. Afanasyev, I. Moiseenko, and L. Zhang, “ndnsim: Ndn simulator for
ns-3,” University of California, Los Angeles, Tech. Rep, 2012.

[24] (2012) The ccnsim homepage. [Online]. Available: http://perso.telecom-
paristech.fr/ drossi/index.php?n=Software.ccnSim

[25] Q. Chen, H. Chang, R. Govindan, S. Jamin, S. Shenker, and W. Will-
inger, “The origin of power laws in Internet topologies revisited,” in
IEEE INFOCOM, 2002.

[26] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law relation-
ships of the Internet topology,” in ACM SIGCOMM, 1999.

[27] H. Tangmunarunkit, R. Govindan, S. Jamin, S. Shenker, and W. Will-
inger, “Network topology generators: degree-based vs. structural,” in
ACM SIGCOMM, 2002.

[28] A. Barabási and R. Albert, “Emergence of scaling in random networks,”
science, vol. 286, no. 5439, pp. 509–512, 1999.

[29] D. J. Watts and S. H. Strogatz, “Collective dynamics of’small-
world’networks.” Nature, vol. 393, no. 6684, pp. 409–10, 1998.

[30] B. Quoitin, V. V. den Schrieck, P. Francois, and O. Bonaventure, “IGen:
Generation of Router-level Internet Topologies through Network Design
Heuristics,” in Proceedings of the 21st International Teletraffic Congress,
2009, pp. 1 – 8.

[31] M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, and S. Moon, “Analyzing the
Video Popularity Characteristics of Large-scale User Generated Content
Systems,” IEEE/ACM Trans. Netw., vol. 17, no. 5, pp. 1357–1370, 2009.

[32] Z. Li, J. Lin, M.-I. Akodjenou, G. Xie, M. A. Kaafar, Y. Jin, and
G. Peng, “Watching videos from everywhere: a study of the pptv mobile
vod system,” in Proceedings of the 2012 ACM conference on Internet
measurement conference, ser. IMC ’12.

[33] N. Sastry, “How to tell head from tail in user-generated content cor-
pora,” in Proc. International Conference on Weblogs and Social Media
(ICWSM), 2012.

[34] H. Abrahamsson and M. Nordmark, “Program popularity and viewer
behaviour in a large tv-on-demand system,” in ACM IMC, 2012.

[35] N. Laoutaris, H. Che, and I. Stavrakakis, “The lcd interconnection of
lru caches and its analysis,” Performance Evaluation, vol. 63, no. 7, pp.
609–634, 2006.

[36] B. Ager, N. Chatzis, A. Feldmann, N. Sarrar, S. Uhlig, and W. Willinger,
“Anatomy of a large european ixp,” in ACM SIGCOMM, 2012.

