Mobile users in an urban environment access content on the internet from
different locations. It is challenging for the current service providers to
cope with the increasing content demand from a large number of collocated
mobile users. In-network caching to offload content at nodes closer to users
alleviate the issue, though efficient cache management is required to find out
who should cache what, when and where in an urban environment, given nodes
limited computing, communication and caching resources. To address this, we
first define a novel relation between content popularity and availability in
the network and investigate a node's eligibility to cache content based on its
urban reachability. We then allow nodes to self-organize into mobile fogs to
increase the distributed cache and maximize content availability in a
cost-effective manner. However, to cater rational nodes, we propose a coalition
game for the nodes to offer a maximum "virtual cache" assuming a monetary
reward is paid to them by the service/content provider. Nodes are allowed to
merge into different spatio-temporal coalitions in order to increase the
distributed cache size at the network edge. Results obtained through
simulations using realistic urban mobility trace validate the performance of
our caching system showing a ratio of 60-85% of cache hits compared to the
30-40% obtained by the existing schemes and 10% in case of no coalition