142,338 research outputs found

    Composition problems for braids: Membership, Identity and Freeness

    Get PDF
    In this paper we investigate the decidability and complexity of problems related to braid composition. While all known problems for a class of braids with three strands, B3B_3, have polynomial time solutions we prove that a very natural question for braid composition, the membership problem, is NP-complete for braids with only three strands. The membership problem is decidable in NP for B3B_3, but it becomes harder for a class of braids with more strands. In particular we show that fundamental problems about braid compositions are undecidable for braids with at least five strands, but decidability of these problems for B4B_4 remains open. Finally we show that the freeness problem for semigroups of braids from B3B_3 is also decidable in NP. The paper introduces a few challenging algorithmic problems about topological braids opening new connections between braid groups, combinatorics on words, complexity theory and provides solutions for some of these problems by application of several techniques from automata theory, matrix semigroups and algorithms

    On the Expansion of Group-Based Lifts

    Get PDF
    A kk-lift of an nn-vertex base graph GG is a graph HH on n×kn\times k vertices, where each vertex vv of GG is replaced by kk vertices v1,,vkv_1,\cdots{},v_k and each edge (u,v)(u,v) in GG is replaced by a matching representing a bijection πuv\pi_{uv} so that the edges of HH are of the form (ui,vπuv(i))(u_i,v_{\pi_{uv}(i)}). Lifts have been studied as a means to efficiently construct expanders. In this work, we study lifts obtained from groups and group actions. We derive the spectrum of such lifts via the representation theory principles of the underlying group. Our main results are: (1) There is a constant c1c_1 such that for every k2c1ndk\geq 2^{c_1nd}, there does not exist an abelian kk-lift HH of any nn-vertex dd-regular base graph with HH being almost Ramanujan (nontrivial eigenvalues of the adjacency matrix at most O(d)O(\sqrt{d}) in magnitude). This can be viewed as an analogue of the well-known no-expansion result for abelian Cayley graphs. (2) A uniform random lift in a cyclic group of order kk of any nn-vertex dd-regular base graph GG, with the nontrivial eigenvalues of the adjacency matrix of GG bounded by λ\lambda in magnitude, has the new nontrivial eigenvalues also bounded by λ+O(d)\lambda+O(\sqrt{d}) in magnitude with probability 1keΩ(n/d2)1-ke^{-\Omega(n/d^2)}. In particular, there is a constant c2c_2 such that for every k2c2n/d2k\leq 2^{c_2n/d^2}, there exists a lift HH of every Ramanujan graph in a cyclic group of order kk with HH being almost Ramanujan. We use this to design a quasi-polynomial time algorithm to construct almost Ramanujan expanders deterministically. The existence of expanding lifts in cyclic groups of order k=2O(n/d2)k=2^{O(n/d^2)} can be viewed as a lower bound on the order k0k_0 of the largest abelian group that produces expanding lifts. Our results show that the lower bound matches the upper bound for k0k_0 (upto d3d^3 in the exponent)

    Homomorphic encryption and some black box attacks

    Full text link
    This paper is a compressed summary of some principal definitions and concepts in the approach to the black box algebra being developed by the authors. We suggest that black box algebra could be useful in cryptanalysis of homomorphic encryption schemes, and that homomorphic encryption is an area of research where cryptography and black box algebra may benefit from exchange of ideas

    Efficient quantum algorithms for some instances of the non-Abelian hidden subgroup problem

    Get PDF
    In this paper we show that certain special cases of the hidden subgroup problem can be solved in polynomial time by a quantum algorithm. These special cases involve finding hidden normal subgroups of solvable groups and permutation groups, finding hidden subgroups of groups with small commutator subgroup and of groups admitting an elementary Abelian normal 2-subgroup of small index or with cyclic factor group.Comment: 10 page

    An Efficient Quantum Algorithm for some Instances of the Group Isomorphism Problem

    Full text link
    In this paper we consider the problem of testing whether two finite groups are isomorphic. Whereas the case where both groups are abelian is well understood and can be solved efficiently, very little is known about the complexity of isomorphism testing for nonabelian groups. Le Gall has constructed an efficient classical algorithm for a class of groups corresponding to one of the most natural ways of constructing nonabelian groups from abelian groups: the groups that are extensions of an abelian group AA by a cyclic group ZmZ_m with the order of AA coprime with mm. More precisely, the running time of that algorithm is almost linear in the order of the input groups. In this paper we present a quantum algorithm solving the same problem in time polynomial in the logarithm of the order of the input groups. This algorithm works in the black-box setting and is the first quantum algorithm solving instances of the nonabelian group isomorphism problem exponentially faster than the best known classical algorithms.Comment: 20 pages; this is the full version of a paper that will appear in the Proceedings of the 27th International Symposium on Theoretical Aspects of Computer Science (STACS 2010

    Fast Monte Carlo Algorithms for Permutation Groups

    Get PDF
    AbstractWe introduce new, elementary Monte Carlo methods to speed up and greatly simplify the manipulation of permutation groups (given by a list of generators). The methods are of a combinatorial character, using only elementary group theory. The key idea is that under certain conditions, "random subproducts" of the generators successfully emulate truly random elements of a group. We achieve a nearly optimal O(n3 logcn) asymptotic running time for membership testing, where n is the size of the permutation domain. This is an improvement of two orders of magnitude compared to known elementary algorithms and one order of magnitude compared to algorithms which depend on heavy use of group theory. An even greater asymptotic speedup is achieved for normal closures, a key ingredient in group-theoretic computation, now constructible in Monte Carlo time O(n2 logcn), i.e., essentially linear time (as a function of the input length). Some of the new techniques are sufficiently general to allow polynomial-time implementations in the very general model of "black box groups" (group operations are performed by an oracle). In particular, the normal closure algorithm has a number of applications to matrix-group computation. It should be stressed that our randomized algorithms are not heuristic: the probability of error is guaranteed not to exceed a bound ϵ > 0, prescribed by the user. The cost of this requirement is a factor of |log ϵ| in the running time

    Algorithms for group isomorphism via group extensions and cohomology

    Full text link
    The isomorphism problem for finite groups of order n (GpI) has long been known to be solvable in nlogn+O(1)n^{\log n+O(1)} time, but only recently were polynomial-time algorithms designed for several interesting group classes. Inspired by recent progress, we revisit the strategy for GpI via the extension theory of groups. The extension theory describes how a normal subgroup N is related to G/N via G, and this naturally leads to a divide-and-conquer strategy that splits GpI into two subproblems: one regarding group actions on other groups, and one regarding group cohomology. When the normal subgroup N is abelian, this strategy is well-known. Our first contribution is to extend this strategy to handle the case when N is not necessarily abelian. This allows us to provide a unified explanation of all recent polynomial-time algorithms for special group classes. Guided by this strategy, to make further progress on GpI, we consider central-radical groups, proposed in Babai et al. (SODA 2011): the class of groups such that G mod its center has no abelian normal subgroups. This class is a natural extension of the group class considered by Babai et al. (ICALP 2012), namely those groups with no abelian normal subgroups. Following the above strategy, we solve GpI in nO(loglogn)n^{O(\log \log n)} time for central-radical groups, and in polynomial time for several prominent subclasses of central-radical groups. We also solve GpI in nO(loglogn)n^{O(\log\log n)} time for groups whose solvable normal subgroups are elementary abelian but not necessarily central. As far as we are aware, this is the first time there have been worst-case guarantees on a no(logn)n^{o(\log n)}-time algorithm that tackles both aspects of GpI---actions and cohomology---simultaneously.Comment: 54 pages + 14-page appendix. Significantly improved presentation, with some new result
    corecore