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We introduce new, elementary Monte Carlo methods to speed up
and greatly simplify the manipulation of permutation groups (given by
a list of generators). The methods are of a combinatorial character,
using only elementary group theory. The key idea is that under certain
conditions, “random subproducts’’ of the generators successfully
emulate truly random elements of a group. We achieve a nearly optimal
O(n®log® n) asymptotic running time for membership testing, where n
is the size of the permutation domain. This is an improvement of two
orders of magnitude compared to known elementary algorithms and
one order of magnitude compared to algorithms which depend on
heavy use of group theory. An even greater asymptotic speedup is
achieved for normal closures, a key ingredient in group-theoretic com-
putation, now constructible in Monte Carlo time O(n?log® n), i.e.,
essentially linear time {as a function of the input length ). Some of the
new techniques are sufficiently general to allow polynomial-time
implementations in the very general model of “black box groups”
{group operations are performed by an oracle ). in particular, the normal
closure algorithm has a number of applications to matrix-group com-
putation. It should be stressed that our randomized algorithms are not
heuristic: the probability of error is guaranteed not to exceed a bound
€> 0, prescribed by the user. The cost of this requirement is a factor of
|log €| in the running time. ' 1995 Academic Press, Inc.

1. INTRODUCTION
1.1. A Brief Summary

We introduce new, simple, and efficient Monte Carlo
algorithms to perform basic manipulation of permutation
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groups. We measure efficiency in terms of asymptotic worst-
case time bounds; ie., our time bounds are guaranteed to
hold for any input. In the case of Monte Carlo algorithms,
the time bounds are guaranteed regardless of the random
string used during the execution of the algorithm (but a
small, user-prescribed probability of erroneous output
exists).

The permutation groups considered are given by a list of
generators. The basic task is to transform this list into a data
structure called a strong generating set (SGS). Given an
SGS, one can rapidly determine the order of G and decide
membership in G.

Strong generating sets were introduced by Sims [Si] in
the 1960s and are used extensively in computational group
theory. Variants of Sims’s elementary algorithm for con-
struction of an SGS have been known to have &(n*) worst
case behavior [ Kn]}, where » is the cardinality of the per-
mutation domain. It was only with extensive references to
consequences of the classification of finite simple groups
that a much more involved algorithm of Babai, Luks, and
Seress reduced the worst case running time to O~(n*)
[ BLS2], where the tilde refers to a (log n)* factor.

Using randomization in a novel way, we achieve
considerable further speedup in basic permutation group
manipulation. We are able to construct an SGS in Monte
Carlo time O~(n*), nearly matching the running time of
Gaussian elimination which is a (very) particular case. As a
consequence, we can determine the order of G in Monte
Carlo time O~(r?) and subsequently perform membership
tests in O(n?) time per test.

A most impressive speedup is achieved for the important
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problem of finding rormal closures, which was previously
thought to depend on prior construction of an SGS. We can
now construct normal closures in Monte Carlo time
O~ (n?), ie., essentially linear time. (The input typically
consists of O(n) permutations and thus has length O(n?).)
Applied to low-ranks systems of linear equations, these
methods achieve a speedup over Gaussian elimination.
Some of the new techniques are sufficiently general to
allow polynomial-time implementations in “black box
groups” (group elements are encoded by strings of uniform
length, and the group operations are performed by an
oracle). In particular, the normal closure algorithm leads to
polynomial-time Monte Carlo algorithms to test solvability
and nilpotence of black box groups (given, as are all our
groups, by a list of generators). These results apply to
matrix groups over finite fields (since their elements are
encoded automatically as strings of uniform length; the
oracle is replaced by matrix multiplication/inversion
routines). Nontrivially, the results also apply to finite
matrix groups over the rationals and over algebraic number
fields [ BBR]. {Finiteness of such groups can be tested in
polynomial time [ BBR ].) The normal closure algorithm is
used extensively in [ BeB], resulting in polynomial-time Las
Vegas algorithms to find the order and structural elements
such as a composition chain in finite matrix groups over
algebraic number fields and to uncover a considerable por-
tion of the structure in matrix groups over finite fields. We
should mention that Luks [ Lu] has given polynomial-time
deterministic algorithms to test solvability and nilpotence of
finite matrix groups. Assuming (as does [ BeB]) in the case
of finite fields the tractability of arithmetic problems that are
inherent even to the abelian case (e.g., factoring certain
integers of the form p* —1 and discrete log), he also gives
deterministic methods for finding the order and many struc-
tural elements of solvable matrix groups. On the other
hand, no deterministic polynomial-time solution of the nor-
mal closure problem has yet been found for matrix groups.
Our algorithms are nearly optimal, as indicated, for large
classes of permutation groups. For the important subcase of
groups with small (polylogarithmic size) bases, nearly linear
time Monte Carlo algorithms have been found, using
entirely different methods. These are described in a separate
paper [ BCFS].
A preliminary version of this paper appeared in
[BCFLS].

1.2. Strong Generators, Normal Closure

Given a chain G=Gy2 G, =2 - - 2G,,= 1 of subgroups
of a finite group G, an SGS with respect to this chain is a set
T < G such that T~ G, generates G, for each i Sims [Si]
introduced this concept with respect to the point stabilizer
subgroup chain for finite permutation groups acting on »
points. In that case G acts on the set @ ={1, .., n}, and G,
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is the pointwise stabilizer of the initial segment {1, .., i}
(and m < n). Strong generating sets provide the basic data
structure in essentially all polynomial-time algorithms for
permutation groups.

Let G be a group given by a list of s generators. The first
asymptotically analyzed variant of Sims’s SGS algorithm
[FHL] ran in time O(n®+sn?). This was subsequently
improved by Knuth [Kn] and Jerrum [Je] to O(r® + sn?).
Knuth’s version follows Sims’s most closely. It is also shown
in [ Kn] that if G is given by a certain randomized list, then
the algorithm actually requires 2(n’) time on average. Sub-
sequent asymptotic improvements are most conveniently
stated in the O~ (“soft-oh”) notation which we define.

Notation. Let f, g be two real-valued functions over the
positive integers. We say that f(n) = O ~( g(n)) if there exists
a positive constant ¢ such that for every sufficiently large n,

f(n)< g(n) (log n)“.

If f and g are functions of more than one variable, the
argument of the log will be the product of those variables,

eg.,
f(n, s)< g(n, s) (log(ns))°.

The notorious #> bound was brought down by Babai,
Luks, and Seress [BLS2] in an O~ (n*+ sn?) algorithm
which digs deeply into the normal structure of G and
requires several consequences of the classification of finite
simple groups for its analysis. This algorithm was recently
improved to O~(sn®) [BLS3, BLS4]. We note that it it
reasonable to assume that s <» and in fact often s 1s much
smaller (s =2 is a frequent case).

In the present paper we achieve considerable Monte Carlo
speedups over the previously known algorithms. (Monte
Carlo algorithms will be defined in the next section.) A
further advantage of the new algorithms is that their
analysis is completely elementary, and purely combinatorial
in nature.

One of the first difficulties to overcome is the growth of
the number of generators for subgroups constructed.
Although any set of > 2n generators of a permutation group
of degree n is redundant [ Ba2], we may not know which
generators to delete. Our first result solves this problem:

THEOREM 1.1.  One can construct O{n) generators for a
permutation group of degree n from an initially given set of s
generators in Monte Carlo time O(snlog n).

Henceforth when using the expression “we construct a
subgroup,” it is understood that we construct a list of O(n)
generators for that subgroup; and, if not specified
otherwise, the input groups are also assumed to be given by
lists of O(n) generators. Here are our main results for
permutation groups G < Sym(Q), where |Q2| =n.
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THEOREM 1.2. (i) Given a group G and a subgroup H,
each by a list of s generators, one can construct the normal
closure of H in G in Monte Carlo time O~ (n* + ns);

(i) Given a group G by a list of s generators and a point
X €eQ, one can construct the stabilizer of x in Monte Carlo
time Olksnlog n), where k is the length of the orbit of x;

(iii) Given a group G by a list of s generators, one can
construct the point stabilizer chain (SGS) in Monte Carlo
time O~ (n* 4 ns). One can determine the order of G within
the same time bound and set up Jerrum’s “labeled branching”
data structure which supports membership tests for G in
O(n?) time per test. The algorithm can be upgraded to Las
Vegas, running in time O(n*+snlogn) (no hidden log
Sactors).

(Las Vegas algorithms are randomized algorithms that
never err. See Section 1.3 for more about this concept.)

Using Jerrum’s “labeied branching” data structure [Je]
we keep the space required by these algorithms at
O~ (n* + ns), i.e., linear compared to a typical input of O(n)
permutations. The O~ (r?) time bound is optimal within a
polylog factor in the sense that it includes Gaussian elimina-
tion as a very special case.

The Las Vegas upgrade is obtained by combining our
Monte Carlo algorithm with the O(n*) deterministic strong
generation test of Cooperman and Finkelstein [ CF1]. This
might be significant in implementations because it allows
one to take advantage of favorable circumstances by early
termination.

Previous polynomial-time randomized algorithms for
permutation groups have been largely limited to heuristic
algorithms that were difficult to analyze. Rigorously
analyzed methods have typically presumed uniformly dis-
tributed random group elements [ Bal, CFS]. However, no
method is known to generate uniform random elements of
G without first constructing a strong generating set. (A ran-
dom walk method exists to construct nearly uniformly dis-
tributed random elements in a group directly in polynomial
time [ Ba3]. While near-uniformity would suffice for our
purposes, the time bounds in [Ba3] are not competitive
with those presented here.)

The main idea elaborated in the present paper is that
under certain circumstances, products of random subsets
of the generators can successfully emulate truly random
elements (see Section 2.2). This idea seems to have appeared
first in the superfast Las Vegas handling of the symmetric
group by Babai, Luks, and Seress [ BLS2]. There, it is
shown that O(logn) random subproducts are likely to
generate a subgroup H with orbit structure identical to G.
This yields, in particular, O(log n) generators of a doubly
transitive subgroup in Monte Carlo time O(|S|nlogn)
assuming that G=<{S§) is doubly transitive. Both the
number of generators thus obtained and the time required
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are almost an order of magnitude smaller than the O(n)
generators obtained deterministically in time O(}S| n?).

1.3. Reliability and Spreader Sets of Permutations

A Monte Carlo algorithm is a randomized algorithm that
may give a wrong answer or report failure with guaranteed
small probability. We note that many heuristic randomized
algorithms are known to perform well in the practice of
computational group theory. However, we should stress
here that our bounds on the probability of error/failure are
guaranteed and are prescribed by the user.

A Las Vegas algorithm is a Monte Carlo algorithm that
never gives a wrong answer. (The term was introduced in
[Bal]; cf [Joh, p.437].) The running time of a Monte
Carlo algorithm is defined with respect to error/failure
probability 1/4. The penalty for requiring the probability to
be < eis an increase by a factor of O(log(1/¢)) in the timing.
(Run the algorithm many times and take a majority vote.)

Our Monte Carlo algorithms are not Las Vegas, so we
shall never be sure of the correctness of the output. The
probability of error, however, can be made less than
exp( —(log n)¢) for any constant C within the time bounds
stated.

Combining our algorithm with the deterministic O(n*)
time “strong generating test” of Cooperman and Finkelstein
[CF1], we obtain an O(n*) Las Vegas SGS algorithm,
which requires elementary group theory only. (Note,
however, that now, an O~ (sr’) deterministic SGS algo-
rithm also exists; that algorithm invokes the classification of
finite simple groups [BLS4].) [BeB] provides further
examples where the Monte Carlo normal closure routine is
employed in a Las Vegas algorithm (determining the order
and a composition chain in finite matrix groups over
algebraic number fields).

It would be desirable to increase the reliability of our
algorithms to exponential without the loss of an extra order
of magnitude in running time. This depends on whether or
not an explicit construction can be found to replace a set of
random permutations used in the algorithm. We state this
problem below.

Let M={l,..m}, M=Mu{0,m+1}, Hc M, and
H=Hu{0,m+1}. For xe H, let

Oplx)= H}ln [x— ¥l
ye A\{x}
(distance to nearest neighbor). Define 6(H)=73 _,04(x)
and spread(H)=dJ(H)/m. Obviously, 0<spread(H)< 1.
We use this quantity, the spreading factor of H, to measure
how evenly the set H is spread out within M. We say that H
1s ¢-spread if spread(H) > ¢.

DerFiviTION 1.3, Let P={n,,..,n,} be a set of per-
mutations of the set M ={1,2, .., m}. We call P an (¢, m)-
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spreader if for every nonempty set H < M, at least one of the
sets H™ is e-spread (j=1, .., r). The greatest such ¢ is the
spreading factor of P.

TueoreM 1.4.  With large probability, a set of r = O(log m)
random permutations is a (e, m)-spreader, where ¢ is an
absolute constant.

We shall show in Section 3 that ¢ ~ {s can be achieved,
but this result is not the strongest possible. We conjecture
that the spreading factor of O(log m) random permutations
is considerably better, possibly even ¢ ~ 1.

Spreaders will be a key component of some of our algo-
rithms, including the superefficient normal closure. The
reliability of the random spreaders given by Theorem 1.4 is
I —m < for an arbitrary constant ¢’. Because of the crucial
role they play, it would be of great importance to construct
guaranteed spreaders either by way of a Las Vegas construc-
tion or by an explicit construction, or at least to improve
their reliability to exponential.

1.4. Black Box Groups

Some of the new algorithms are so general, they work
even in the “black box group” model. In this model, intro-
duced in [ BSz], group elements are encoded by strings of
uniform length », and group operations are performed by an
oracle (the black box). If the group G is given by the strings
representing a set of generators, then G is called a black box
group. Note that the order of such a group is |G| < 2"

The most important implementations of the black box
group model are matrix groups over finite fields and over
algebraic number fields (see the comments in Section 1.1).
Over finite fields, even the membership problem is unlikely
to be solvable in polynomial time since, even in the case of
1 x 1 matrices, membership is closely related to finding dis-
crete logarithms, a task not believed to be solvable in poly-
nomial time. (However, using an oracle for discrete log, a
lot can be achieved in polynomial time; cf. the comments in
Section 1.1.)

While the rudimentary task of membership testing
remains intractable, some global structural properties of the
group can be determined in Monte Carlo polynomial time,
even in the general context of black box groups.

THEOREM 1.5. Let G be a black box group with elements
encoded as strings of length n. Suppose G is given by a list of
s generators. Then the number of generators can be reduced
to O(n) by a Monte Carlo algorithms consisting of O(s log n)
group operations. Moreover, if both G and a subgroup H are
given by O(n) generators, then the normal closure of H in G
can be constructed by a Monte Carlo algorithm consisting of
O~ (n) group operations.

COROLLARY 1.6. Let G be as in Theorem 1.5. Then one
can perform each of the following tasks in Monte Carlo poly-

571/50,2-8
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nomial time: (a) construct the commutator subgroup; (b)
decide whether or not G is (bl) solvable or (b2) nilpotent. If
G is solvable, the commutator chain can be constructed; if G
is nilpotent, the descending central series can be constructed.

The proof of these results is a simple combination of the
algorithm to reduce the number of generators and the fast
normal closure algorithm (cf. Sections 2.2 and 3). It uses the
observation that the length of a strictly increasing chain of
subgroups of a black box group G is < n (since |G| <2").

1.5. Pruning Redundant Systems of Linear Equations

There is a curious consequence of the generator pruning
algorithm to low rank matrices. If a matrix over a field F has
m rows and rank r then Gaussian elimination requires
@(mr) row operations to determine the rank or to solve a
system of linear equations.

If r = o(m) but r itself is not bounded, we can achieve con-
siderable savings by first replacing the m rows by a set of
O(r) rows using reduction of generators (Theorem 2.7).
With large probability, the rows obtained will generate the
same row space. The new rows are obtained as sums of sub-
sets of the original rows and will require O(m log r) row
operations to compute. Subsequently we can complete the
work by Gaussian elimination, using O(r?) row operations.

COROLLARY 1.7. A system of m linear equations of rank
r can be solved (or found inconsistent) by a Monte Carlo
algorithm using O(r* + mlog r) row operations.

(Note that Gaussian elimination would require O(mr)
row operations. )

A “repeated doubling” trick achieves this complexity even
if no a priori estimate of r is available.

2. RANDOM SUBPRODUCTS

In this section, random subproducts are defined and our
first technical goal, reduction of the number of generators,
is achieved. This algorithm works in general even for black
box groups. The application to low rank systems of equa-
tions stated in Section 1.5 follows immediately. As another
application, we achieve a second main goal, efficient
computation of generators for a stabilizer subgroup in a
permutation group.

2.1. Estimating Sums of Dependent Random Variables

In the algorithms here and throughout the paper,
progress will be measured by the sum of random dependent
(0, 1)-variables with guaranteed lower bounds on their
expectations, given any history of preceding steps. In
estimating the probability that sufficient progress has been
made, the following lemma will come handy. The result
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appears to be folklore but we have not found a convenient
reference.

Let £,,&,, .. be a sequence of discrete random variables.
A history for &, is a condition of the form U, = {{,=«a,, ..,
&, =a;_,}. We shall say that £, has expectation > p under
any history if E(£,| U,) = p for any history U, which occurs
with positive probability Prob(U,)>0. We say that the
sequence {£,} dominates the sequence {(,} (of the same
length)} if for every i/ we have &, = {; (with probability 1). A
Bernoulli trial with expectation p is a (0, 1)-variable 1 such
that Prob(z=1) =p.

Lemma 2.1. Let0< p<1. Let &, &,, ... be asequence of
random (0, 1)-variables such that each &, has expectation = p
under any history. Then there exists a sequence 1,, 15, ... of
independent Bernoulli trials with expectation p, dominated by

& Eay

Proof. We use the sequence &, .., &, to construct the
variable 7,. Given a history U, of &, .., &;_, as above, let
Prob(¢, = 1| U;) =g, By assumption, g,,> p. Let 7, be a
random variable such that »,| U, is a Bernoulli trial with
expectation ry, = p/q,,. Since the histories {events) of the
form U, partition the probability universe, #, is well-defined.
We assume that the », | U, are independent of each other and
of all the £, collectively. Now we set 7,:=¢&,57,,.

It is clear that 7, 1s a random (0, 1)-variable and 7, <&,
(always). Moreover, E(t,|U)=E|U)En,|U)=qy -
(p/q)=p. Since the events U, partition the probability
universe, E(zr;) =p. It is immediate then that E(z,|V,)=p
holds under any combined history V; of the £; and the n,,
(j<i—1), and therefore the same holds under any history
of the 7;. Consequently the z, are fully independent (their
distribution does not depend on their histories). We also
have E(t,))=p. |

It follows that Chernoff’s powerful bound for the sum of
independent Bernoulli trials can be applied directly to our
dependent variables.

COROLLARY 2.2. Under the conditions of Lemma 2.1, the
following inequality holds for any positive integer t and any
e>0:

!

Prob ( Y &<(1—e) pt) e P2,

=1

Proof. This is what Chernoff’s bound asserts for the 7,in
the place of the &, (cf. [ AS, p. 235, Theorem A4]). |

2.2. Reduction of Generators

DerFINITION 2.3, A subproduct of a sequence of group
elements (g, g5,..» &) 18 a product of the form
gigs - g, where e,€{0,1}. To obtain a random sub-
product, select the ¢, independently from the uniform dis-
tribution over {0, 1}. A random subproduct of length I is

BABAI ET AL.

obtained as follows; first select a subsequence of length / of
the g; uniformly from the (*) possibilities; then form a ran-
dom subproduct of them (with respect to the inherited
ordering). (Note that in this terminology, a random sub-
product of length / is expected to be a product of //2 terms.)

Suppose now that G acts on the set £ and assume that
Kc Qis not stabilized by G. Then, as observed in [ BLS2,
Section 6.2], with probability > 1, K is not stabilized by a
random subproduct of the generators of G. The following
statement is easily seen to be equivalent to this observation.

LEMMA 24. If K is a proper subgroup of the group G
and (g, g5, .., &;) are generators of G, then for a random
subproduct g =g g%t ... g%, we have Prob(g¢ K)> 1.

Proof. Let j be the largest subscript such that g,¢ K.
Then g =ag?b, where a depends on e, .., e; , only, and
be K. Let us now fix the values of all the e, except ;. There
are two cases to consider. If ae K then ¢, =1 implies g ¢ K;
if a¢ K then ¢;=0 implies g¢ K. Thus in either case,
Prob(g¢ K)=1. |

THEOREM 2.5. Let G=<{S) be afinite group. Let |S| = s,
and let L be a known upper bound on the length of all sub-
group chains in G. Then, using O(s log L) group operations,
one can with fixed but high probability find a generating set
S’ with |S'| = O(L).

Proof. Assume s>4L or else there is nothing to do.
Starting from S’ = (¥, successively place in §’, ¢L random
subproducts each of length s/L. We claim that after this
phase, with high probability, all but at most L of the
elements of S are in {S').

Here is a heuristic reason. If the claim were false then, for
a randomly chosen g € S, we would have Prob(g¢ (8')) >
L/s. So each of the ¢L random subproducts would have
probability at least a:=(1~—(1—L/s)*")/2=(1~1/e)/
2x0.316 of not being in the previously constructed {S’).
For sufficiently large ¢, this would violate the bound L on
the length of subgroup chains.

The reason why this argument is not precise is that under
a condition on the outcome (such as the condition that we
end up having many elements left out of (8’ ), our choices
are no longer uniform and independent.

An application of Corollary 2.2 will help make this argu-
ment precise. Let g,, g,, ... denote the random subproducts
constructed by the procedure, and let G; denote the sub-
group generated by {g,, ., g;}. Let & be the indicator
variable taking value &,=1 if either |S\G,|<LorG,_,isa
proper subgroup of G,; else set £, = 0. Now it is clear that for
every i, Prob(£,=0| U,) < a, where U, is a condition fixing
the values of g, ..., g,_, arbitrarily.

It follows that the &, satisfy the conditions of Lemma 2.1
and therefore by Corollary 2.2 we obtain that for any con-
stant ¢> 1/(1 —a)=a 1.462, it is exponentially likely (as a
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function of L) that %, £, > L. But then, this inequality
implies that |S\G_, | <L, since a subgroup chain cannot
grow more than L times.

We now continue the description of the procedure. Our
initial phase capitalized on the intuition that, initially, even
relatively short random subproducts have a fair chance of
increasing the current subgroup {(.5').

After the initial round discussed above, we continue
augmenting S’ with subproducts of S of increasing lengths
for log L more rounds. (We may assume that L =2* for
some integer k.) Let T, denote S’ after the ith round, so we
are very likely to start with T, satisfying |S\{T,>| < L. In
the ith round, the goal is to reduce the number d,:=
IS\{T.>| below L/2’. To this end, we fix a new constant ¢’
and in the ith round add ¢’L/2‘ random subproducts of S of
length 2°~'s/L.

Suppose our goal has been met in round i—1: d,_, <
L/2'~'. We claim that under this condition, Prob(d; <
L/2)>1—e 7 % for some constant ¢” > 0 not depending
onc.

Let the random subproducts generated in the ith round
be g,, 85, ... Set H,;=<{T,_\, g;,.., g&_1, (the current
group) and R, = S\H, (the generators remaining outside).

Let &, denote the indicator of the event that either |R)| <
L/2" or g, (considered as a product of elements of §)
contains exactly one element of R;. This latter event will
guarantee that that element enters {S'>. Hence in this case
progress is being made: |R,,,|=|R;|—1, while in the
former case the goal of the ith phase has already been
achieved.

Clearly, if X, ., & >L/2" then fewer than L/2°
elements of S are not in 7. Hence Corollary 2.2 implies that
in order to prove our claim, it is enough to give a positive
constant lower estimate for Prob(¢;=1).

Let B, denote the set of those elements of § selected in
order to create the random subproduct g; (|B,| =2'"'s/L).
If 1/2'~' > |R,| 2 L/2" then the probability that B, contains
exactly one element of R, is

A\2i- s/ —1 )] \2~ 's/L
2i-1 2=t 1 S—lel—k
A | Ry

k=0

1 L/2i— 1 2i~1s/L 1
(1 —.
>2< s—2“'s/L> %3¢

If B, contains a unique element of 4 € R; then with proba-
bility 3, # will occur in g;. Hence Prob(&; = 1) > 1/(4e?).

The bounds we obtained for error probabilities for each
round form a geometric progression dominated by the last
term which is an arbitrarily small constant, depending
{exponentially) on our choice of ¢’. [}
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An alternative algorithm uses spreaders (cf. Section 1.3)
with similar efficiency (cf. Section 3.2.)

In applying these results to permutation groups, we
require the following lemma from [ Ba2, CST].

LEMMA 2.6.  Any subgroup chain in S, has length at most
2n—3.

Consequently, L=2n is a valid bound for permutation
groups of degree n.

When applying Theorem 2.5 to black box groups where
elements are encoded by binary strings of length », we may
use the obvious upper bound log|G| < » on the length of
subgroup chains.

2.3. Group Closure Systems

The proof of Theorem 2.5 actually yields a more general
result. Let U be an arbitrary set and @ a family of subsets of
U closed under intersections, such that Ue @. We call the
pair (U, @) a closure system. The members of & are called
closed sets; and the closure cl(S) of a subset §is the intersec-
tion of all closed sets containing S. The set S is said to
generate its closure. We call (U, &) a group closure system if,
in addition, U is a group under a certain operation and all
closed subsets are subgroups. (Note that not all subgroups
need to be closed.)

Examples of group closure systems abound; consider
groups with any sublattice of their subgroups, e.g., the
normal subgroups, or rings with any sublattice of their
subrings, e.g., their ideals, or vector spaces and their
subspace lattice.

THEOREM 2.7. Let (U, @) be a group closure system.
Assume that U is generated by a finite set S, |S| =s, and let
L be a known finite upper bound on the length of all chains of
closed sets. Then, using O(slog L) group operations, one can
with fixed but high probability find a generating set S’ with
|8’ = O(L).

The proof is identical with that of Theorem 2.5. An
application of this result to the subspaces of the row space
of a matrix justifies the argument given in Section 1.5. (Take
L to be the rank of the matrix.)

2.4. Schreier Generators and Point Stabilizers

Our next task, of great importance for permutation
groups, is to construct generators for subgroups of small
index. The common technique is Schreier generators, which
we now define.

DermviTION 2.8. A (right) transversal of the subgroup H
in the group G is a complete set of (right) coset repre-
sentatives of H in G.

DEerFmNITION 29, Let G=(S§) be a group, H a sub-
group, and T a transversal of H in G. For each te T and



302

g€ S, let ¢’ be the unique element of 7T such that rge Ht'.
Then the element 1gr' ' is called a Schreier generator of H.

The total number of Schreier generators is | S| - |T].
Fact 2.10. The Schreier generators generate H.

See [ Ha, Lemma 7.2.2] for a proof.

The difficulty with (repeatedly) using Schreier generators
is in their rapidly growing number. This obstacle is removed
using Theorem 2.5: first we construct the Schreier
generators; then we reduce their number to O{L). All this
takes O(|S] {T|log L) group operations, assuming that we
can quickly determine ¢ from tg (1€ T, g € S). We apply this
result to the point stabilizers in permutation groups.

THEOREM 2.11. Let G=<{S) <Sym(R2) be a permuta-
tion group of degree n=1Q|, |S| =s, and let x € Q. Then we
can find a set of O(n) generators of the stabilizer subgroup G,
in Monte Carlo time O(nsk log n), where k is the length of the
G-orbit of x. The storage requirement is O(n* + sn).

Proof. To construct a transversal of G, in G, we con-
sider the action of the generators of G on the orbit x“. This
is described by a graph which has sk (directed) edges,
labeled by generators. A coset representative corresponding
to point y of this orbit can be obtained as the product of
labels along the x — y path in a spanning tree. This requires
a total of O(sk + kn) time.

Now the sk Schreier generators are constructed in time
O(nsk). Finally the reduction of their number to O(n) is
accomplished via Theorem 2.5 in time O{nsk log n).

Computing all Schreier generators at the same time
requires O(skn) storage which, at a typical application with
s=0(n), k=6(n), gives the prohibitively large @(a*). In
order to avoid this blowup, we store only the elements of the
transversal for G, in G. Whenever a Schreier generator is
needed (as an element of a random subproduct in the reduc-
tion procedure of Theorem 2.5), we compute it from the
transversal and then we discard it. This modification multi-
plies the running time only by a constant factor and reduces
the storage requirement to O(n?) (besides the O(sn) storage
required for §). |

It follows that we can construct the entire stabilizer chain
in Monte Carlo time O(n* log n), by repeated application of
Theorem 2.11, using the trivial bound k < n.

We have thus obtained a strikingly simple SGS con-
struction in O~ (n*) Monte Carlo time. (An analogous
deterministic bound, but with a few extra log factors, has
previously been reached using the classification of finite
simple groups [ BLS2].) Combined with the O(n*) deter-
ministic strong generation test of Cooperman and
Finkelstein [ CF1], this Monte Carlo algorithm is upgraded
to Las Vegas without loss of efficiency.
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We mention that with a slightly different application of
random subproducts, one can achieve a little better, O(n*)
Las vegas time [CF2].

3. ASYMPTOTICALLY VERY FAST MONTE CARLO
NORMAL CLOSURE

The normal closure of a subgroup H in a group G is the
smallest normal subgroup of G containing H. The methods
of the previous section can be used to construct the normal
closure in time O(n") in permutation groups of degree n. In
this section we shall use spreaders (cf. Section 1.3) to
achieve an even faster algorithm.

THEOREM 3.1. If HS G < S, then the normal closure of
H in G can be constructed in Monte Carlo time O(n* log* n).

Here we assume that both G and H are given by lists of
O(n) generators. This assumption is justified in view of
Theorem 2.5 {cf. Lemma 2.6).

The key concept responsible for the speedup is random
prefixes. The idea is that once we compute a long product
of generators, it seems wasteful to use it only once. Since all
the prefixes have been computed along the way, we wish to
use the prefixes as well. We randomize the prefixes in two
different ways. First, we randomize the order in which the
elements are multiplied together; then we select at random
which prefix we want to use.

In order to ensure that a random prefix will indeed
behave like a random subproduct in the sense that it will
have a good chance of adding something to our current sub-
group, we require that the order in which the elements are
arranged spreads out the generators which are not in our
current subgroup. Since we do not know, a priori, which
generators these are, we instead require that every non-
empty set be spread out; ie, we need a spreader set of
permutations (cf. Section 1.3}.

3.1. Random Spreaders

We use the terminology and notation introduced in
Section 1.3.

LemMMA 3.2, Let H be a random subset of size h+#0 of
M={1, .., m} and 35< & < {s. Then Prob(spread(H) > ¢) >
1 — ", where ¢ = (15¢)'.

Proof. If |H| =z e&(m + 1) then spread(H) = |H|/
(m+ 1)=& with probability L. If I<h<4and h<e(m+1)
then we compute the proportion g of the h-element subsets
a, <a,< --- <a, of M for which aq;—a,_,=2Te(m+1)/h7
for 1<i<h+1, withay,:=0and a,,, :=m+1. For such
sets H, spread(H)>=H e(m+1)/h) =& Introducing the
notation d=[e(m+ 1)/h7]— 1,
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Prob(spread(H) = ¢) = ¢

_(m—(h+1)d>/(m>>(m—h+l—(h+l)d>"
- h ‘/' h m—h+1

_(1 (h+1)d)" |yt
T\ m—h+1 m—h+1
>1_(h+l).g(m—l—l)

m—h+1

(h+1)elm+1) 15
>1—(1_6)(m+1)>1—(h+1)s<14>
>1—(15¢)"4.

In the case S <h<e(m+ 1), we consider H as the range
of an injective function f from Hy:={1,2, .., h} to M. We
also define H,:=H,uU {0, h+1} and extend f by setting
f0):=0and f(A+1):=m+ 1.

Let k:=|h/2] We estimate the probability of the
event A(c) that there exist k distinct elements of H, , a, 4, ...,
Ay gys Qats voes Ao gy o Apys o Argyn 25Kk <3 for 1<i<,
Y. k,=k, such that fla, )< fla,;,\)<fla,;)+c(m+]1)
forall 1 €i</, 1 <j<k,— 1. Suchk elements can be chosen

<h+l>( ! >(h+2—1)!
1) \k=21) (h+2=k)

ways, since the elements a, ,,da,,,..,a;, are from Hg\
{h+ 1} ; from this set, we have to choose a (k — 2/)-element
subset to determine those a, ; which have &, = 3; finally, fixing
the two subsets of the a;,, there are (h+2—1}h+1-1)---
(h+ 3 — k) choices for the remaining a, ;.

Fixing the set of a, ;, we can define /by first choosing the
(random) values f{a; ) for 1 <i</ and then continuing
with the choice of f(a, ;) for j>2. The probability that
fla, ) falls between f(a; ;) and f(a; ;) +c(m+1) is at
most c¢(m + 1)/(m +1— (k—1)); hence

h+1 {
Prob(A(c)) <( / ) <k—21>

x(h+2—l)!<c(m+l))""
(h+2—=kW\m+1—k)

Since k<h/2<e(m+1)12<(m+ 1)/30,
1 —k) > 3. We claim that

(h+1>( / )(h+2—1)! 20h\K
AVESY, (h+2—k)!<<7) :

and so Prob(A(c)) < (15ch/2) .
For A <200, (*) can be checked by computer. For larger
values, we use Stirling’s formula. Note that the sequence

(m+1)/(m+

(%)

571:50.:2-9
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V2nn (nfe)/n!, n=0,1,.. is monotone increasing with
limit 1; so substituting the appropriate ./2nn (n/e)" for the
factorials gives an upper estimate for the left-hand side of
(*).

Using that for 1< x <1,

(3x — D11 =2x)' 72 > 4%(29¢/8)* |,

(31 —k)¥ K (k—2D% " can be estimated from below
by k'4(29¢/8)' "%, Also, (h+2—k)"+2 %> e2(p/2)i+2-%
Using these estimates, it is straightforward to check that ()
holds.

If A(c) fails then for at least h—k elements xe H,
O (x) = c(m+1). In particular, if 4 is even then we choose
c¢:=2¢/h and obtain that spread(H)>=(h—k)c=¢ with
probability greater than 1 —(15¢)* ‘> 1 —(15¢)" If h 1s
odd then we choose c¢:=2¢/(h+1) and obtain that
spread(H )= (h—k)c=¢ with probability greater than
1 —(15eh/(h+ 1) =121 —(15eh/(h+ 1))F — D4 >
1 —(15¢)"*. (The last inequality is the only point in the
proof where we used the lower bound ¢ > 35.) 1

Now we are ready to prove Theorem 1.4.
1 < 1

THEOREM 33. Let s <e <, C>0, r>(4+
4(C+ 1) log m)/log(1/(15¢)), and P={p,, .., p,} a set of r
random permutations of {1,2, ..., m} Then P is an (g, m)-

spreader with probability at least 1 —m ™€,

Proof. Let H be a nonempty subset of {1, 2, .., m} and
|H| =h. By Lemma 3.2, the probability that spread(H) <¢
for all permutations in P is at most (15¢)""*. Hence the
probability that not all nonempty subsets are ¢-spread is at
most

¥ ('Z) (15647 = (1 + (15e)7)™ — 1

h=1

<2(156Y* m<m~C,

where the last inequality is equivalent to the condition
imposedonr. |

3.2. Random Prefixes and Fast Normal Closure

DEerFINITION 3.4. A random prefix of a sequence of group
elements (g,, g2, -, &) Is an instance of a product of the
first i elements, for i a random integer chosen uniformly
from 1 through k.

Random prefixes provide an alternative to random
subproducts. Given G={S) and an (g, |S|) spreader P,
| P| = r, the elements of P define r orderings of S. We say that
g is a random prefix of S obtained from P if g is a random
prefix of S in the ordering defined by a randomly chosen
element of P.
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LEMMA 35 Let G=<(S>, P an (g |S|)-spreader,
|P|=r, and K< G, K#G. Moreover, let g be a random
prefix of S obtained from P. Then Prob(g¢ K)=¢/(2r).

Proof. LetH:={s5eS:s¢K}andleta, <a,< - <a,
denote the positions corresponding to the elements of H in
the randomly chosen permutation pe P. We also define
a,:=0 and a,,,:=|S|+1 and let g, denote the random
prefix of S corresponding to the first j elements of p. Then,
forafixed 1 <i<h eitherg ¢ Kforalla, ,<j<a,org;¢K
for all a;<j<a,,, (it is also possible that both of these
events occur). So Prob(g ¢ K) = spread({ay, .., a,})/2 and,
since P is an (¢, |S])-spreader, spread({a,, ... a,}) > ¢ with
probability at least 1/r. |

Lemma 3.5 provides a method to reduce the number of
generators of G with roughly (up to a logarithmic factor)
the same efficiency as Theorem 2.5. Given a bound L on the
length of subgroup chains of G, a combination of
Lemma 3.5 and Corollary 2.2 immediately gives that c¢Lr/e
random prefixes of S obtained from P generate G with
exponentially small error.

Our main goal in this section is the fast generation of nor-
mal closures. This application is based on the following
lemma.

LEMMA 3.6, Suppose that H< G but H is not a normal
subgroup of G. Let G={S¢>, H={S,>, P an (& |Ss})-
spreader, |Pl=r,, and Q an (&, |Syl|)-spreader, |Q|=r,.
Moreover, let g and h be random prefixes of S and Sy,
respectively, obtained from P and Q. Then Prob(h* ¢ H) >
e )(4ryry).

Proof. By hypothesis, K := {keG: H*=H} # G.
Hence, by Lemma 3.5, Prob(g ¢ K} > ¢/(2r,). If g¢ K then
X:=H*¢ '~ H=+H. Thus, by Lemma 3.5, Prob(h¢ X)>
£/(2r,). Combining the two probabilities, we obtain

Prob(h® ¢ H) = ¢&*/(4r,r,). 1

Our main result applies to black box groups where » is
the length of the strings representing each group element. It
also applies to permutation groups of degree »n. In both
cases, we know that all subgroup chains have length O(n).

THEOREM 3.7. Let G and K< G be finite groups and
assume all subgroup chains in G have length O(n), where n is
a parameter. Assume further that G and K are given by
generating sets of sice O(n). Then one can construct O(n)
generators for the normal closure of K in G with fixed
but arbitrarily high probability using O(nlog®n) group
operations.

Proof. The algorithm for constructing a sequence 7 of
generators of the normal closure, denoted by (K%, is
described first. Fix >0, say €=+ and construct an
e~spreader P={n,,..,7n,} <8, for some large enough
value of m (m will be of the order O(nlog®n)), where
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r= O(log m) = O(log n). (According to Theorem 3.3, a set
of random permutations will suffice.)

Let S¢ and S be sequences of the generators for X and
G. Initially set T to Sg. Precompute all r(|T|+|Sq))
prefixes resulting from the members of P being applied to T
and to S, separately. (We use the identity element for
padding, ie., to fill slots if m is greater than |S,| or the
current size of 7.} Since T will be augmented at each step,
the prefixes corresponding to T must be stored in balanced
search trees, in the following way: the elements of T are
stored, in the given order, at the leaves of a balanced binary
tree (including those elements to be computed in the future;
their current value is the identity). Each internal node will
represent the product of the elements at the leaves in the
corresponding subtree. A new element of T is inserted by
replacing the identity element (which currently occupies its
leaf) by its actual value. Note that each insertion-update
costs O(log m) group operations only. We maintain one
such tree for each =;.

Now select two members 7, and =, of P at random. Take
a random prefix r of 7™ and conjugate it by a random prefix
of §,7.

By Lemma 3.6, if (T # ( K“) then, with probability at
least &%/(4r?), the new conjugate ¢ will belong to ( K>\
(T>.

Append ¢ to T and update each of the r trees. (One would
like to add the conjugate to T only if it is not already in
{ T, but this cannot be efficiently tested.) Stop when Cnr?
conjugates have been added to 7. Finally reduce the number
of generators of (T to O(n).

The usual application of Corollary 2.2 shows correctness.
The timing is dominated by the time it takes to update the
dynamic trees. There will be O(nr?) updates, each at the cost
of O(log n) group operations on each of r trees. Noting that
r= O(log n}, we obtain the stated time bound. |

4. POINT STABILIZER CHAINS IN MONTE
CARLO O(n* log* n)

4.1. The Resulr

Finally, enough machinery has been developed to present
the faster algorithm for constructing point stabilizer sequen-
ces and solving the group membership problem.

THEOREM 4.1.  Given O(n) generators of a finite permuta-
tion group G acting on n points, one can consiruct a strong
generating set of size O{n log n) for G in O(n* log® n) Monte
Carlo time. The space requirement of the procedure is
O(n?log n).

The result, a strong generating set U, is returned as a
sequence corresponding to a chain of subgroups G=G, >
G,> - 2 G, =1oflength k <2nsuch that J%_, U[ j]isa
set of generators for G,.
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It is possible that U is not a strong generating set of G for
any subgroup chain consisting of pointwise set stabilizers in
a permutation action of G; in any case, no such action will
be evident from the algorithm. Each member G, of the chain
will act on its own domain 2, where Q=0Q,< .-. €,
and |Q;| <2n.

However, U will enable us to generate uniformly dis-
tributed random elements of G in O(n?) time per element
and so, by a method of Cooperman, Finkelstein, and
Sarawagi [CFS], we can construct an SGS V for the
pointwise stabilizer subgroup chain on the original per-
mutation domain 2 in O(nlog? G|)= O(n*log*n) time,
justifying the title of this section. This new SGS supports
membership testing in O(n®logn) time and requires
O(n? log n) space. Furthermore, in O(n?logn) time, it is
possible to construct a labelled branching from V on Q, sup-
porting membership testing in O(n?) time and requiring
O(n?) space by Cooperman and Finkelstein [ CF1].

In contrast to the previously fastest published algorithm
[BLS2], this new algorithm does not require results from
the classification of finite simple groups. The algorithm does
run faster if appeal is made to the result from the classifica-
tion that only S, and A4, are 6-transitive, and so the algo-
rithm is presented in a form which takes advantage of that
result. An old result [ Wi] by Wielandt shows that among
permutation groups of degree », only S, and A, are
(3 log n)-transitive. A weaker result by Jordan [Jo] states
that only S, and A, are t-transitive, where ¢ =clog?n/
loglogn. (The algorithmic foundation for the routine
Fast-Giant below is provided by a simple proof of the
last result by Babai and Seress [ BS].) Using one of these
weaker results on transitivity adds a factor of logn and
log? n, respectively, to the running time.

42. A Lemma on Primitive Groups

First we recall certain concepts from permutation groups,
which form the basis of a divide-and-conquer strategy. The
point stabilizer subgroup (defined in the first section)
stabilizing x is denoted G, . The pointwise set stabilizer sub-
group containing all group elements fixing {a,, .., a;} is
denoted G, . For G actmg on £, the orbit 0 = Q of
xe under G'is denoted x© = ={x%: ge G}. A trivial orbit
consists of a single point. G is transitive on Q {or just tran-
sitive, where the action is clear) if {2 contains only one orbit
under G. G is intransitive otherwise. G is doubly transitive if
G acts transitively on the set of n(n — 1) ordered pairs of dis-
tinct elements from Q. For ¥ < Q such that ¥°=¥, we
denote by G¥ the set of permutations of G restricted to map-
pings on ¥ alone. If there exists a set B < 2 with |B] > 2 and
B # Q such that for each g € G either BS=Bor B n B= (5,
then B is a block of imprimitivity of G. G is imprimitive if it
is transitive and has a block of imprimitivity. If G is tran-
sitive and not imprimitive, then it is primitive. A primitive
group which is not doubly transitive is called uniprimitive.
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One of the elements of our strategy is an “anti-greedy”
choice of the point to be stabilized in the current permuta-
tion domain: this point will always be selected from the
smallest nontrivial orbit under the current group action.
This choice is motivatred by Theorem 2.11 which says that
the cost of computing the stabilizer of a point is propor-
tional to the length of its orbit.

To ensure that this strategy is indeed effective, we need to
bound the total length of all orbits visited. These orbits are
by no means disjoint, yet we require an O(» log #) bound on
their total length (Lemma 4.4). The bound will be based on
the following combinatorial lemma for primitive groups,
which is of interest in its own right.

LEMMA 4.2, Let G be a primitive permutation group.
Assume that the stabilizer G, has an orbit of length d > 2.
Then every nontrivial subgroup of G has a nontrivial orbit of
length <d.

Proof. Let 4 < Q denote an orbit of G_ of length d. (2
is the permutation domain.) Consider the orbital graph X
corresponding to 4. X is a directed graph with vertex set
and edge set {(x%, y¢): ge G, ye 4}. Note that in X, every
vertex has out-degree d. Clearly G acts as automorphisms
of X. Since G is primitive, X must be strongly connected
(directed paths exist between any pair of vertices). Indeed,
otherwise the strongly connected components would be
blocks of imprimitivity ; therefore they would be singletons,
ruling out directed cycles. But every vertex has out-degree
d > 0; therefore directed cycles exist.

If H< G, is nontrivial then there exists a point not fixed
by H. Let us consider a directed path x=x,, x,, ... con-
necting x to such a point. Let x; be the first point on this
path not fixed by H (i = 1). Then all points in the orbit x
are out-neighbors of x;_, in X (since x/ | = {x;_,}); hence

Ixl<d 1

4.3. The Strategy

Roughly speaking, the algorithm always tries to compute
generators for the stabilizer of a point in the smallest orbit
of the group at hand and add the transversal of the point
stabilizer to U, the SGS to be constructed. Moreover, it tries
to work In primitive groups; hence, if the action on the
smallest orbit is imprimitive then it adds blocks of
imprimitivity to the permutation domain and first computes
the pointwise stabilizer of these blocks. The last considera-
tion is that if the primitive group at hand is a giant (sym-
metric or alternating group) then, counting transitivity, the
algorithm recognizes it and switches to a routine designed
especially to handle the giants.

The algorithm will proceed in phases. Initially we set the
current group to G, = G and the current domain to 2, = 2.
Phase i/ begins with possibly augmenting the domain to
2,28, and constructing a proper subgroup G,<G,_,.
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As discussed above, there will be two types of phases:
point-stabilizing phases and giant-elimination phases. In
the former case, G, is the stabilizer of a point in 2, from an
orbit with primitive G, _,-action. In the latter case, G, is the
pointwise stabilizer of the orbit ¢ on which G, | acts as a
giant,

Along the way, the algorithm constructs the set U of
strong generators. Initially, U= ¢&. In a point-stabilizing
phase, a transversal of G, in GG, _, is added to U. In a giant-
elimination phase on orbit ¢, an SGS for G{_, is added to
U, encoded in a labelled branching [Je] using |(’| —1
permutations (in order to satisfy the space constraints).

DErFINITION 4.3. A group element g is sifted through a
subgroup chain G=G,> G, > - - > G, with residue h if g
can be factored as g = hu, ---u,, where u, is a (right) coset
representative of G, in G,_, and he G.

Labelied branchings allow one to sift group elements, test
membership, and generate random group elements as fast as
complete coset tables. For completeness, we recall their
definition in the case of giants. In the case of Sym((),
¢=1{x,,x,,..,x,}, the labelled branching consists of
m—1 permutations p,, P>, .., P,,_, such that for all
I<ksm-—1, p, fixes x, .., x,_, and x%=x;,,. For
Alt(¢), the labelled branching contains p,, p,, .., p,,_2 a8
above while p,, _, fixes x,, .., x,,_;and xZr-L=x,.

Since we always move to proper subgroups, the length of
our subgroup chain will be less than 2n (Lemma 2.6).

Our fast normal closure routine plays a critical role in
consructing the pointwise stabilizer of an orbit ¢ with giant
action. We say that a set T< K is a set of normal generators
for the group K if X is the normal closure of 7. Normal
generators for the pointwise stabilizer of an orbit with giant
action come from two sources: the residues of sifting the
generators of G,_ | through the stabilizer chain of ¢ (accom-
plished via the labeled branching representation of an SGS
for the giant action on (¢); and the defining relations of the
giant (see [ BLS2, Lemma 7.2]).

4.4. The Procedure

Throughout the algorithm, the points of the permutation
domain are marked by integers, denoting the priority for
which ones we want to stabilize first. Initially, each point
has mark 0; if G is not transitive then the points of the
smallest orbit get mark 1; if the action on this orbit is not
primitive, a system of blocks of imprimitivity is added with
mark 2; etc. Higher mark means higher priority.

The main routine is SGS(H, ¥), where H is a group
acting on the set ¥. In the notation of the previous sub-
sections, H is G, and ¥ is the corresponding domain €2, with
the fixed points deleted. The output is a strong generating
set. Descriptions of the subsidiary routines are deferred for
later.
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Given a group G acting on £2, one initially sets the global
variable n to €}, U=¢J, and transitivity to 0.
Groups always will be given by O(n) generators (by
Theorem 2.5, we may suppose that G is given this way ). We
set the mark m(x)=0forall xe 2. SGS(G, £2) is then called.
All internal calculations on permutations are carried out on
all n points and possibly additional points (such as points
corresponding to the action on blocks).

PROCEDURE SGS

Input: (H, ¥) where H is a group acting on ¥.
Global variables: n, transitivity.
Output: strong generating set in the form of the
sequence U described above.
If ¥ =5 then STOP.
mark < max{m(x): xe ¥}
¢« {xe¥: m(x)=mark}
CASE:
H° is intransitive:
transitivity « 0
Let ¢, « smallest orbit of H*
For xe ¢, m(x)—mark + 1
Call SGS(H, ¥)
H¢ is imprimitive:
Let B~ Blocks(H, ¢)
Y—BUOY¥
For xe B, m{x) —mark + 1
Call SGS(H,¥)
Else: [ H® is primitive ]
transitivity « transitivity +1
If transitivity =6 then
[H is Sym(C) or Alt(C)]
Call Fast-Giant(H, ¢, ¥)
[It adds an SGS of H 10 U]
T—Normal-Generators (H, ¢, P\C)
H«—Normal-Closure(T, H, ¥\()
Call SGS{H, ¥\()
Else
x < first( )
H_ «Point-Stab(H, x, ¢, ¥)
U« Uu (transversal of H_ in H)
Call SGS(H,, ¥\{x})

The subsidiary routines are now described and timings
given. With the descriptions of the subsidiary routines, it
will be clear that the algorithm is correct. Descriptions of
the routines are given first, followed by a proof of timing for
Theorem 4.1.

In previous sections, imings were first calculated in terms
of the number of group operations, the actual timing (in
terms of pointer manipulations) being n-times the result.
Here we deviate from this method and report directly the
number of pointer manipulations, in order to make the
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accounting compatible with the cost of the graph theoretic
subroutines.

Recall that n refers to the full set of points on which G
originally acts, while we may consider the action of a sub-
group H (or its homomorphic image) acting nontrivially on
a set ¥. In all cases, we assume that H is defined by O(n)
generators Gen(H ). Further, we can always assume that
|¥| < 2n, since adding the action on blocks of imprimitivity
is the only way in which ¥ can grow. Doing so, adds a new
orbit with at most half as many points as the original orbit
on which the group was acting.

Blocks(H, (). Returns blocks of imprimitivity for A
acting on ¢". This assumes that H is transitive on ¢. It can
be done in time O(|Gen(H)| |0}*) < O(n|0|*) [At].

Point-Stab(H, x, ¢, ¥). This returns O(n) gener-
ators for H_in O(|¢| n* log n) Monte Carlo time, by appeal
to Theorem 2.11. In that process, a transversal for H_ in H
1s also constructed.

Fast-Giant(H, ¢, ¥): If the restriction of H to act
on 0, H?, is either Sym(() or Aly(¢) then the routine adds
a set of size O(|C]) to U whose restriction to ¢ is a strong
generating set for H®. Given O(n) generators of H, one can
find O(log|¢|) group elements of H which generate H® in
their action on € in time O(n? log(|¢}), by a technique using
random subproducts described in [BLS2, Section 6.2].
Then O( || log|¢|) Schreier generators for a point stabilizer
subgroup of H can be constructed in time O(n|®| log|®)).
Since the point stabilizer subgroup of H® must also be sym-
metric or alternating, continuing the same method one can
alternately find reduced generating sets of size O(log|®|)
and point stabilizers. Altogether, an SGS for H® is con-
structed in O(n|0{?log? €|) time such that each point
stabilizer is generated by O(log|(’|) elements. In O(n]@|?)
further time, the two generators of H® needed for the
presentation of H® in [BLS2, Section 7] and a labelled
branching constructed from these two generators can be
obtained. We add this labelled branching to U. Note that
since || = O(n), the total time requirement of this sub-
routine is O(r?|@] log?|0|).

Normal-Generators(H, ¢, Y\O). Group
elements 7T (called normal generators) are constructed
whose action on ( is trivial, such that {(7#) = H¥\’. For
a general description, see [ BLS2, Lemma 7.1]. In this set-
ting, the routine is invoked only when ¢ is an orbit on which
H acts as the symmetric or alternating group. Having
constructed a point stabilizer chain for the points of ¢,
all generators of H are sifted through the point stabilizer
chain in time O(n?|©}), until their residue acts trivially on ¢.
The residues are added to the set 7. Then, a presentation
for H® of size |¢| is added to T and the conjugates
{h¢: ge Gen(H), he Gen(H®)} are sifted as in [BLS2}.
(Note that H“ has only two generators.) Thus the overall
timing to create the normal generators will be O(n?|(]).
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Normal-Closure(T, H, ¥\¢). The normal closure
can be executed in time O(n*log* n) by Theorem 3.1.

4.5. Timing

We estimate the total time requirement of calls to these
subroutines during the execution of the algorithm. First we
observe that |Q2,| < 2n for all i. Indeed, Q2 forms the set of
leaves of a forest defined in an obvious manner with nodes
corresponding to certain blocks of imprimitivity. All
auxiliary points added to £ are internal nodes of this forest
with at least two children each.

Next we claim that 3 |¢| < 2n, where ¢ runs over orbits
of intermediate groups H such that Fast-Giant(H, ¢, ¥)
is called. This is true since these orbits are disjoint. We
obtain immediately that calls to Fast-Giant add O(n)
permutations to U and the total time requirement for
calls of Fast-Giant, Normal-Generators, Normal-
Closure is O(n®log*n). To estimate the total cost, we
need the following lemma.

LeMMA 4.4. The total length of all orbits selected during
the procedure is O(n log n).

Proof. As we have seen in the previous paragraph, the
total length of orbits in calls of Fast-Giant is O(n).
Hence, it is enough to estimate the total length of orbits in
calls of Point-Stab. This is where Lemma 4.2 will be
required.

Each recursive call of Point-Stab has its “current
orbit™ ¢; let us call the points of ¢ active in that phase. We
claim that each point is active in O(log n) phases only. Since
the total number of points is < 2n, the conclusion follows by
counting the incidences of current orbits and their (active)
points in two ways.

Let x be a point (original or auxiliary). Let ¢, o
0,> --- >0, be the sequence of current orbits containing x
and let n; = |0}

We claim that either n, ., =n,— 1 orn,, ; <n,;/2 and that
the former cannot occur more than five times in a row.
Clearly, this implies the claimed O(log n) bound.

The former case (minimum descent ) occurs exactly when
the action on the current orbit is doubly transitive and its
stabilizer is primitive. If this continues more than five times
in a row, the orbit experiences 6-transitive action, hence a
giant, and the subsequent call to Fast-Giant terminates
the orbit.

The action on the current orbit is always primitive. Sup-
pose now that it is not doubly transitive. Then the stabilizer
is intransitive, therefore at least one of its orbits has size
d < (n;—1)/2. But then, by Lemma 4.2, whenever x becomes
active again, the smallest orbit has size < d; therefore
n . <ng

Suppose now that the current orbit is doubly transitive
but that its stabilizer is imprimitive. Then the algorithm
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switches to a new orbit consisting of auxiliary points
representing blocks of imprimitivity of ¢,, and all those
points will be fixed before x becomes active again. This
means that ¢, _ | is included in a block of imprimitivity of ¢;
hence n,, , <n;/2. |

Lemma 4.4 and Theorem 2.11 immediately imply that the
total cost of calls to Point-Stab is O(Y n?|C|logn)=
O(n* log? n). Lemma 4.4 also implies that the number of
transversal elements added to U is O(nlog n). As a third
application of Lemma 4.4, we observe that the total cost
of calls of Blocks is O(I n|€|?)= O(n'log?n). This
concludes the proof of Theorem 4.1. |}

5. OPEN PROBLEM

The following problem, mentioned in Section 1.3, is of
considerable interest because it affects the reliability of our
most efficient algorithms.

Problem. Construct an explicit set P, of O(log m) per-
mutations of a set of m elements such that P, is a (¢, m)-
spreader for some constant ¢ > 0. (See Section 1.3 for the
definition of spreader.)
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