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Abstract

In this paper we investigate the decidability and complexity of problems related to braid
composition. While all known problems for a class of braids with three strands, B3, have
polynomial time solutions we prove that a very natural question for braid composition, the
membership problem, is NP-complete for braids with only three strands. The membership
problem is decidable in NP for B3, but it becomes harder for a class of braids with more strands.
In particular we show that fundamental problems about braid compositions are undecidable for
braids with at least five strands, but decidability of these problems for B4 remains open. Finally
we show that the freeness problem for semigroups of braids from B3 is also decidable in NP.

The paper introduces a few challenging algorithmic problems about topological braids open-
ing new connections between braid groups, combinatorics on words, complexity theory and pro-
vides solutions for some of these problems by application of several techniques from automata
theory, matrix semigroups and algorithms.

1 Introduction

In this paper we investigate the decidability and complexity for a number of problems related to
braid composition. Braids are classical topological objects that attracted a lot of attention due to
their connections to topological knots and links as well as their applications to polymer chemistry,
molecular biology, cryptography, quantum computations and robotics [14, 15, 23].

The discovery of various cryptosystems based on the braid group inspired a new line of research
about the complexity analysis of decision problems for braids, including the word problem, the gen-
eralized word problem, root extraction problem, the conjugacy problem and the conjugacy search
problem [17, 18, 24, 25, 26]. For many problems the polynomial time solutions were found, but it
was surprisingly shown by M. S. Paterson and A. A. Razborov in 1991 that another closely related
problem, the non-minimal braid problem, to be NP-complete [28].

Non-minimal Braid Problem: Given a word ω in the generators σ1, . . . , σn−1 and their
inverses, determine whether there is a shorter word ω′ in the same generators which represents the
same element of the n-strand braid group Bn?

The main result of this paper is to show another NP-hard problem for braids in B3, i.e. with only
three strands. The problem can be naturally formulated in terms of composition (or concatenation)
of braids which is one of the fundamental operations for the braid group.

Given two geometric braids, we can compose them, i.e. put one after the other making the
endpoints of the first one coincide with the starting points of the second one. There is a neutral
element for the composition: it is the trivial braid, also called identity braid, i.e. the class of the
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geometric braid where all the strings are straight. Two geometric braids are isotopic if there is a
continuous deformation of the ambient space that deforms one into the other, by a deformation
that keeps every point in the two bordering planes fixed.

· = −−−−−↔ ↔

In this paper we study several computational problems related to composition of braids: Given a
set of braids with n strands B = β1, . . . , βk ∈ Bn. Let us denote a semigroup of braids, generated
by B and the operation of composition, by 〈B〉.

• Membership Problem. Check whether exist a composition of braids from a set B that is
isotopic to a given braid β, i.e. is β in 〈B〉 ?

• Identity Problem. Check whether exist a composition of braids from a set B that is isotopic
to a trivial braid.

• Group Problem. Check whether for any braid β ∈ B we can construct the inverse of β by
composition of braids from B, i.e. is a semigroup 〈B〉 a group?

• Freeness Problem. Check whether any two different concatenations of braids from B are
not isotopic, i.e. is a semigroup of braids 〈B〉 free?

B3 B4 B5

Membership Problem NP-complete ? Undecidable
Group/Identity Problem NP ? Undecidable

Freeness Problem NP ? Undecidable

In contrast to many polynomial time problems we show that the membership problem for
B3 is NP-hard1 by using a combination of new and existing encoding techniques from automata
theory, group theory, matrix semigroups [3, 6] and algebraic properties of braids [14]. Then we
prove that the membership problem for B3 is decidable in NP, which is the first non-trivial case
where composition is associative, but it is non-commutative. The main idea of the NP algorithm
is to reduce the membership problem for B3 into the emptiness problem for context-free valence
grammars, which is already known to be an NP-complete problem. Note that this improves the
first decidability result shown in [29]. The membership problem for braids in B3 has a very close
connection with other non-trivial computational problems in matrix semigroups. For instance, the
braid group B3 has a close relationship with the modular group PSL(2,Z) since the braid group
B3 is the universal central extension of PSL(2,Z). Recently, the problem of deciding whether
a finitely generated matrix semigroup in PSL(2,Z) contains the identity matrix is proven to be
NP-complete [4]. Note that the proposed NP algorithm for the membership problem for B3 was
inspired by the work of several authors on the membership problem for 2 × 2 matrix semigroups
[3, 6, 13, 20]. We also show that fundamental problems about the braid compositions such as the
identity and freeness problems are undecidable for braids with at least five strands, but decidability

1Note that proposed NP-hardness construction is not directly applicable for the identity problem in B3.
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of these problems for B4 remains open. It is worth mentioning that there is no embedding from
a set of pairs of words into B4 [1]. Hence, these problems might be decidable for B4 since our
undecidability proofs for B5 essentially rely on the embedding from a set of pairs of words into B5.

Recently, there have been several papers on games on braids [9, 10, 21] where one player called
the attacker tries to reach the trivial braid and the other player called the defender tries to keep
the attacker from reaching the trivial braid based on the composition of braids from a finite set.
Halava et el. [21] proved that it is undecidable to check for the existence of a winning strategy in
B3 from a given non-trivial braid and in B5 from the trivial braid.

2 Preliminaries

2.1 Words and Automata

Given an alphabet Γ = {1, 2, . . . ,m}, a word w is an element w ∈ Γ∗. We denote the concatenation
of two words u and v by either u · v or uv if there is no confusion. For a letter a ∈ Γ, we denote
by a or a−1 the inverse letter of a, such that aa = ε where ε is the empty word. We also denote
Γ = Γ−1 = {1, 2, . . . ,m} and for a word w = w1w2 · · ·wn, we denote w = w−1 = w−1

n · · ·w−1
2 w−1

1 .
The free group over a generating set H is denoted by FG(H), i.e., the free group over two

elements a and b is denoted as FG({a, b}). For example, the elements of FG({a, b}) are all the
words over the alphabet {a, b, a−1, b−1} that are reduced, i.e., that contain no subword of the form
x · x−1 or x−1 · x (for x ∈ {a, b}). Note that x · x−1 = x−1 · x = ε.

Let Σ = Γ ∪ Γ. Using the notation of [2], we shall also introduce a reduction mapping which
removes factors of the form aa for a ∈ Σ. To that end, we define the relation ⊢⊆ Σ∗ × Σ∗ such
that for all w,w′ ∈ Σ∗, w ⊢ w′ if and only if there exists u, v ∈ Σ∗ and a ∈ Σ where w = uaav and
w′ = uv. We may then define by ⊢∗ the reflexive and transitive closure of ⊢.

Lemma 1 ([2]). For each w ∈ Σ∗ there exists exactly one word r(w) ∈ Σ∗ such that w ⊢∗ r(w)
does not contain any factor of the form aa, with a ∈ Σ.

The word r(w) is called the reduced representation of word w ∈ Σ∗. As an example, we see
that if w = 132211 3 1 ∈ Σ∗, then r(w) = ε.

Using standard notations, a deterministic finite automaton (DFA) is given by quintuple
(Q,Σ′, δ, q0, F ) where Q is the set of states, Σ′ is the input alphabet, δ : Q × Σ′ → Q is the
transition function, q0 ∈ Q is the initial state and F ⊆ Q is the set of final states of the automaton.
We may extend δ in the usual way to have domain Q×Σ′∗. Given a deterministic finite automaton
A, the language recognized by A is denoted by L(A) ⊆ Σ′∗, i.e. for all w ∈ L(A), it holds that
δ(q0, w) ∈ F .

Lemma 2. For any given n ∈ Z, n ≥ 3 there is a DFA Pn over a group alphabet Σ, |Σ| = 2n, with
n+ 2 states and 2n edges such that the only word w ∈ L(Pn) and r(w) = ε, has length |w| = 2n.

Proof. We adapt the proof of a related result over deterministic finite automata (DFA) recently
shown in [2]. Define alphabets Γ = {1, 2, . . . , n}, Γ = {1, 2, . . . , n} and Σ = Γ ∪ Γ. It is shown in
[2] that for any n ≥ 3, there exists a DFA An, with n + 1 states over Σ, such that for any word
w ∈ Σ∗ where w ∈ L(An) and r(w) = ε then |w| ≥ 2n−1. Their proof is constructive and we shall
now show an adaption of it. Let Q = {q0, . . . , qn+2} and q0 be the initial state and {qn+2} is the
final state. We define the transition function δ : Q× Σ∗ → Q of the DFA such that:

3



δ(qa, c) =















q1, if c = 1 and a = 0;
qa+1, if c = a and 1 ≤ a ≤ n;
q0, if c = a and 2 ≤ a ≤ n− 1,
qn+2, if c = n and a = n+ 1;

All other transitions are not defined. The structure of this DFA can be seen in Figure 1. The only

q0start q1

q2

q3qn−1 · · ·qnqn+1

qn+2

1

1

2

2

3

3n− 2

n− 1

n− 1n

n

Figure 1: A deterministic finite automaton where the length of minimum non empty word w such
that r(w) = ε is 2n.

path leading to a state qn, for any n ≥ 3 with an empty reduced word has length 2n − 2. The
path for reaching state q2 with an empty reduced word has length 2 and there are no other paths
leading to q2 with an empty reduced word. Let us assume that another path is leading to q2 via a
path where the larger index of a reachable state on this path is j. Then at least one symbol j is
not canceled in the reduced word leading to q2. Consider a path from qi to gi+1 which corresponds
to reduced word v then it should be of the form v = i · u · i where a word u is an empty word and
it corresponds to a path from a state q0 to qi otherwise the reduced word of v is not empty.

Let us assume that the path leading to a state qi with an empty reduced word, i.e r(w) = ε has
length 2i − 2. Then the path for reaching state i+1 with a reduced word equal to the empty word
can be represented as a path w · i · ui where r(u) = ε. Since w is the only path to reach qi from q0
then we have the required path has a form w·i·wi and its length is (2i−2)+1+(2i−2)+1 = 2i+1−2.
Finally we add two extra transitions to make the length of a path to be 2n.

Lemma 3. For any given s ∈ Z which has a binary representation of size m, i.e. m = ⌈log2(s)⌉,
there is a DFA Ms over a group alphabet Σ, |Σ| = O(m2), with O(m2) states such that the only
word w ∈ L(Ms) and r(w) = ε, has a length |w| = s.

Proof. Let us represent s as the following power series

αm2m + αm−12
m−1 + . . .+ α22

1 + α12
0, where αi ∈ {0, 1}.

For each non-zero αi and i ≥ 3 we will contract the automaton Pi from Lemma 2 using unique
non-intersecting alphabets for each automaton to avoid any possible cancellation of words between
different parts of our final automaton. Also for non-zero α1, α2 and α3 we define three different
automata P1, P2, P3 having a linear structure with one ε transition, two consecutive ε transitions
and four consecutive ε transitions, which will give us paths of length 20, 21 and 22.

Then we will use a resulting set of automata Pi1 , Pi2 , . . . Pil to build a single automaton by
merging the initial state of Pit with the final state of Pit+1

for all t = 1 . . . l − 1 and defining the
initial state of Pi1 as the initial state of automaton Ms and the final state of Pil as the final state
of Ms. It is easy to see that following the Lemma 2 each Pit will reach its own final state having
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an empty word iff the number of executed transition is 2it . So finally we build a DFA Ms over a
group alphabet, such that the only word w ∈ L(Ms) and r(w) = ε, has a length |w| = s.

The DFA Ms over a group alphabet Σ, will have |Σ| = O(m2), O(m2) states and O(m2)
transitions, since there are no more then m parts Pi1 , Pi2 , . . . Pil and each part Pit has only it + 2
states. Moreover the only word w ∈ L(Ms) and r(w) = ε, has a length |w| = s.

2.2 Context-Free Valence Grammar

A (context-free) valence grammar over Zk is a context-free grammar in which every production has
an associated value from Z

k [16, 22]. A string in the language of the grammar can be derived in the
usual way under the additional constraint that the sum of the associated values of the productions
used in the derivation add up to 0 ∈ Z

k.
Formally, a valence grammar G is specified as a quadruple (N,Σ, R, S), where N is a set of

nonterminals, Σ is a set of terminals, R ⊆ N × (N ∪ T )∗ × Z
k is a set of productions, and S ∈ N

is the axiom. For an element (A,w,x) ∈ R, we write A
x
−→ w, where A → w is the underlying

production and x ∈ Z
k is the associated value of the production.

Let αAβ be a word over N ∪ Σ, where A ∈ N and A
x
−→ γ ∈ R. Then, we say that A can

be rewritten as γ and the corresponding derivation step is denoted (αAβ, r) ⇒ (αγβ, r + x). The

reflexive, transitive closure of ⇒ is denoted by
∗

⇒ and the (context-free) valence language generated

by G is L(G) = {w ∈ Σ∗ | (S,0)
∗

⇒ (w,0)}.

Lemma 4. The emptiness problem for context-free valence grammars is NP-complete.

Proof. It is known that the reachability problem in integer vector addition systems (Z-VAS) is NP-
complete [12]. Thus, NP-hardness follows from the fact that a valence grammar G = (N,Σ, R, S)
is a Z-VAS if R ⊆ N × (N ∪ {ε}) × Z

k and N = {S}.
Moreover, the NP upper bound of the emptiness problem for context-free commutative gram-

mars with integer counters (Z-CFCGs) [12] applies to the valence grammars since we can ignore
the order of nonterminals and terminals when we consider the emptiness of the grammars.

2.3 Braids

The braid groups can be defined in many ways including geometric, topological, algebraic and
algebro-geometrical definitions [19]. Here we provide algebraic definition of the braid group.

Definition 1. The n-strand braid group Bn is the group given by the presentation with n − 1
generators σ1, . . . , σn−1 and the following relations σiσj = σjσi, for |i − j| ≥ 2 and σiσi+1σi =
σi+1σiσi+1 for 1 ≤ i ≤ n− 2. These relations are called Artrin’s relation.

Definition 2. Words in the alphabet {σ , σ−1} will be referred to as braid words 2.

We say that a braid word w is positive if no letter σ−1
i occurs in w. The positive braids form a

semigroup denoted by B+
n . There is one very important positive braid known as the fundamental

n-braid, ∆n. The fundamental braid of the group Bn (also known as Garside element) can be

written with n(n−1)
2 Artin generators as: ∆n = (σn−1σn−2 . . . σ1)(σn−1σn−2 . . . σ2) . . . σn−1.

Geometrically, the fundamental braid is obtained by lifting the bottom ends of the identity
braid and flipping (right side over left) while keeping the ends of the strings in a line. The inverse
of the fundamental braid ∆n is denoted by ∆−1

n .

2 Whenever a crossing of strands i and i + 1 is encountered, σi or σi
−1 is written down, depending on whether

strand i moves under or over strand i+ 1.
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∆ =
σ1

σ2

σ1

σ2

σ1

σ2

=
σ1

σ
−1
1

σ2

σ
−1
2

= =

Let B3 = {σ1, σ2|σ1σ2σ1 = σ2σ1σ2} be the group with three braids. Let ∆ be the Garside
element: ∆ = σ1σ2σ1. Let τ : B3 → B3 be automorphism defined by σ1 → σ2, σ2 → σ1. It is
straightforward to check that

∆β = τ(β)∆, ∆−1β = τ(β)∆−1, β ∈ B3. (1)

Lemma 5 ([27]). Two positive words are equal in B3 if and only if they can be obtained from
each other by applying successively the relation σ1σ2σ1 = σ2σ1σ2 . A positive word is left or right
divisible by ∆ if and only if it contains the subword σ1σ2σ1 or σ2σ1σ2 .

Lemma 6 (Garside normal form [19, 14]). - Every braid word w ∈ Bn can be written uniquely as
∆kβ, where k is an integer and β is a positive braid of which ∆ is not a left divisor.

Two braids are isotopic if their braid words can be translated one into each other via the
relations from the Definition 1 plus the relations σiσ

−1
i = σ−1

i σi = 1, where 1 is the identity (trivial
braid).

Let us define a set of natural problems for semigroups and groups in the context of braid
composition. Given a finite set of braids B, a multiplicative semigroup 〈B〉 is a set of braids that
can be generated by any finite composition of braids from B.

The membership problem asks, given a braid β ∈ Bn and a finite set of braids B ⊆ Bn, whether
there exists a composition Y1Y2 · · ·Yr, with each Yi ∈ B such that Y1Y2 · · ·Yr = β. In other words,
is β ∈ 〈B〉? In the membership problem, when braid β is the trivial braid, we call this problem
the identity problem. The identity problem for semigroups is a well-known challenging problem
which is also computationally equivalent to another fundamental problem in group theory called
the group problem. The problem is, given a finitely generated semigroup S, to decide whether a
subset of the generator of S generates a non-trivial group [13]. Finally, the freeness problem is to
decide whether the given semigroup of braids 〈B〉 is free.

3 Membership Problem in the Braid Group B3 is NP-complete

In this section, we show that the membership problem for braids in the braid group B3 is NP-
complete. We also prove that the freeness problem in B3 can be decided in NP based on the NP

algorithm for the membership problem.

3.1 NP-hardness of the Membership Problem in B3

First we show that the membership problem is NP-hard for braids in B3. Our reduction will use the
the the subset sum problem which is a famous NP-complete problem. In the subset sum problem,
we are given a positive integer x and a finite set of positive integer values S = {s1, s2, . . . , sk} and
asked whether there exists a nonempty subset of S which sums to x.

We will require the following encoding between words over an arbitrary group alphabet and a
binary group alphabet, which is well known from the literature.

Lemma 7. Let Σ′ = {z1, z2, . . . , zl} be a group alphabet and Σ2 = {c, d, c, d} be a binary group
alphabet. Define the mapping α : Σ′ → Σ∗

2 by:
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α(zi) = cidci, α(zi) = cidci,

where 1 ≤ i ≤ l. Then α is a monomorphism 3 (see [8] for more details). Note that α can be
extended to domain Σ′∗ in the usual way.

Lemma 8 ([7]). Let Σ2 = {c, d, c, d} be a binary group alphabet and define f : Σ∗

2 → B3 by:
f(c) = σ1

4, f(c) = σ1
−4, f(d) = σ2

4, f(d) = σ2
−4. Then mapping f is a monomorphism.

The above two morphisms give a way to map words from an arbitrary sized alphabet into the
set braid words in B3. We will later require the following corollary concerning mappings f and α
to allow us to argue about the size of braid words constructed by f ◦ α.

Corollary 1. Let α and f be mappings as defined in Lemma 7 and Lemma 8, then:

f(α(zj)) = f(cjdcj) = σ1
4jσ2

4σ1
−4j

and the length of a braid word from B3 corresponding to the symbol zj ∈ Σ′ is 8j + 4.

Now we prove that the membership problem for braid semigroups in B3 is NP-hard.

Lemma 9. The membership problem is NP-hard for braids from B3

Proof. We shall use an encoding of the subset sum problem (SSP) into a set of braids from B3.
Define an alphabet Σ = Σ′ ∪ {∆,∆},Σ′ = {1, 2, . . . , k + 2, 1, 2, . . . , k + 2} that will be extended
during the construction.

We now define a set of words W which will encode the SSP instance. Note that the length of
words in the following set is not bounded by a polynomial of the size of the SSP instance, however
this is only a transit step and will not cause a problem in the final encoding. In particular the unary
representation of a number s by a word ∆2s will be substituted by a set of words of a polynomial
size of i, j and s that will generate a unique word i ·∆2s · j.

W =

{1 ·∆2s1 · 2, 1 · ε · 2,
2 ·∆2s2 · 3, 2 · ε · 3,
...

...

k ·∆2sk · (k + 1), k · ε · (k + 1),

(k + 1) ·∆
2x

· (k + 2)} ⊆ Σ∗

Figure 2 shows the way in which the words of W can be combined to give the identity for the

1 2 3 · · · k k + 1 k + 2

∆2s1

ε

∆2s2

ε

∆2sk

ε
∆

2x

Figure 2: The initial structure of a product which forms the identity on labels.

reduced word on labels in the graph structure. The above assumption will mean that we start from
node 1 of the graph and choose either as1 or ε to move to node 2. This corresponds to w1 being
equal to either 1 · ∆2s1 · 2 or 1 · ε · 2. We follow such nondeterministic choices from node 1 until
we reach a node sk+2. At this point, if we chose si1 , si2 , . . . , sil , such that they sum to x, then the
reduced representation of w will equal 1 ·k + 2. If there does not exist a solution to the subset sum

3A monomorphism is an injective homomorphism.
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problem, then it will not be possible to reach the empty word concatenating the labels on a graph
structure so it would be possible to get a word 1 · k + 2, since it will be only 1 · w′ · k + 2, where
w′ 6= ε.

Using the encoding idea from Lemma 3 we replace each transition from state i to state j labelled
with ∆2sj by the automaton M2s and then will encode each transition form M2s from a state x
to state y with the label z ∈ Σ by the braid word f(α(x)) · (σ1σ2σ3)

2 · f(α(z)) · f(α(y)) following
Corollary 1. We use ∆2 = (σ1σ2σ3)

2 rather then ∆ to have unchanged structure of words since ∆2

is commutative with any word in B3. Also each word of the following type i · ε · j, where i, j ∈ Σ′

can be directly encoded by a braid f(α(i)) · f(α(i)) .
The number of states, the alphabet size and the number of edges for each M2si automaton are

of the order O(m2), where m is log2si. Thus we have that the whole automaton after replacing all
∆2si transitions by M2si will be encoded with the finite number of words of the order O(k · log2s),
where s is the maximal element of {s1, s2, . . . , sk} and the length of each braid word is of the order
O(k · log2s). In addition to that we add k words representing ε transitions.

Using Lemma 7, we encode the set of words W into a set of braid words over the alphabet
{σ1, σ

−1
1 , σ2, σ

−1
2 }, where the total number of letters will be only polynomially increased. So finally

the SSP has a solution if and only if the braid f(α(1))·f(α(k + 2)) belongs to the defined semigroup
of braid words.

3.2 NP algorithm for the Membership Problem in B3

In this section, we show that the membership problem in B3 is decidable in NP. Note that the
decidability of the membership problem has already been solved in [29] but the time complexity
of the proposed algorithm is exponential. The main idea of the algorithm proposed in [29] is as
follows. Let us suppose that we are given a set B = {β1, β2, . . . , βn} of braid words and a braid
word β for which we need to decide whether β can be generated by the set B. We first convert
the given braids βi for 1 ≤ i ≤ n into the unique Garside normal form ∆kiβ+i where ki ∈ N is an
integer and β+i is a positive braid word by Lemma 6.

First, we construct an automaton which accepts a regular language LB = {∆kiβ+i | 1 ≤ i ≤ n}+

over the alphabet {σ1, σ2,∆,∆
−1} which is the set of non-empty products of braid words from B

in the Garside normal form. Then, we iteratively insert transitions labelled by any power of the
fundamental braid ∆ whenever we find a sequence of transitions from the automaton corresponding
to ∆x for any x ∈ N. As we may have cycles in the process of inserting transitions, some transitions
are labelled by ∆Expr(x1,x2,...,xm), where expr(x1, x2, . . . , xm) is a linear expression over the variables
x1, x2, . . . , xm. Now we solve the membership problem by nondeterministically choosing a sequence
of transitions and solving the system of linear Diophantine equations that consist of the equations
labeling the chosen transitions from the automaton. Hence we show that the problem is decidable
but in exponential time as the construction of the automaton takes exponential time.

Here we tackle the membership problem in B3 in a slightly different way to obtain the NP

upper bound. We first construct a (context-free) valence grammar generating every braid word
corresponding to the input braid β and compute the intersection of the valence grammar and the
regular language LB which is the set of non-empty products of braid words from B. Now we can
see that the membership problem in B3 can be reduced to the emptiness problem for context-free
valence grammars in polynomial time and it follow from Lemma 4 that the membership problem
in B3 is also in NP. In the following we first prove that there exists a context-free valence grammar
that generates the set of all braid words equal to the given braid β.

Lemma 10. Given a braid word β ∈ B3, there exists a context-free valence grammar G over the
alphabet Σ = {σ1, σ2,∆,∆

−1} such that L(G) is the set of all braid words over Σ which are equal
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to β.

Proof. First, we convert the given braid β into the Garside normal form β+∆k. Note that k ∈ Z

is an integer and β+ = σi1σi2σi3 · · · σin ∈ B+
3 is a positive braid of length n where ij = {1, 2} for

1 ≤ j ≤ n.
We define a valence grammar G = (N,Σ, R, S), where

• N = {S} ∪ {S1, S2, . . . , Sn−1} ∪ {S1, S2, . . . , Sn−1} ∪ {Aeven, Aodd, Aany} is a finite set of non-
terminals,

• Σ = {σ1, σ2,∆,∆
−1} is a set of terminals,

• R is a finite set of productions, and

• S is the axiom.

We define R to contain the following production rules:

• S
−k
−−→ Aevenσi1S1 | Aoddr(σi1)S1,

• Sj
0
−→ Aevenσij+1

Sj+1 | Aoddr(σij+1
)Sj+1 for 1 ≤ j ≤ n− 2,

• Sj
0
−→ Aevenr(σij+1

)Sj | Aoddσij+1
Sj+1 for 1 ≤ j ≤ n− 2,

• Sn−1
0
−→ AevenσinAany | Aoddr(σin)Aany,

• Sn−1
0
−→ Aevenr(σin)Aany | AoddσinAany,

• Aeven
0
−→ ε | AevenAeven | AoddAodd,

• Aeven
1
−→ σ2Aoddσ2Aevenσ1 | σ1Aevenσ2Aoddσ2 | σ1Aoddσ1Aevenσ2 | σ2Aevenσ1Aoddσ1,

• Aodd
1
−→ ∆,

• Aodd
−1
−−→ ∆−1,

• Aodd
0
−→ AevenAodd | AoddAeven,

• Aodd
1
−→ σ1Aevenσ2Aevenσ1 | σ1Aoddσ1Aoddσ1 | σ2Aevenσ1Aevenσ2 | σ2Aoddσ2Aoddσ2, and

• Aany
0
−→ Aeven | Aodd.

Note that we can derive every braid word corresponding to the ∆k where k is an even (respectively,
odd) integer from the nonterminal Aeven (respectively, Aodd). In particular, the following derivation
relation holds:

(Aeven, 0)
∗

⇒ (ω, k),

where ω is a braid word corresponding to ∆k for an even integer k. Similarly, Aodd can be replaced
by every braid word corresponding to ∆m where m is an odd integer.

Now it remains to prove that the valence grammar G actually generates every braid word which
is equal to the given braid β by the relations of the braid group B3. First, we show that the
every braid word generated by G is equal to the given braid β. Since the ‘S’-nonterminals should
be substituted by regular type productions of G (containing at most one ‘S’-nonterminal on the
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right-hand side) to derive words consisting of terminals, we see that the following derivation should
be performed in any case:

(S, 0)
∗

⇒ (A0r
p(1)(σi1)A1r

p(2)(σi2)A2 · · ·An−1r
p(n)(σin)An,−k), (2)

where

p(x) =

{

0, if |{k | 0 ≤ k < x, Ak = Aodd}| ≡ 0 mod 2,

1, otherwise.

In other words, p(x) has a value of 0 if the number of Aodd appearing in front of the xth terminal
symbol of the positive braid β+ is even. Now we move the word generated by ‘A’-nonterminals
to the right by Equation (1). After moving every ‘A’-nonterminals to the right, we obtain the
following braid word:

σi1σi2 · · · σinA0A1 · · ·An.

It is easy to see that ‘A’-nonterminals can be substituted by some braid word which is equal to ∆k

as claimed above, and therefore, we prove that any braid word generated by G is equal to the given
braid β.

Lastly, we show that the valence grammar G generates every braid word equal to the braid β.
First, we define the following two sets

• Ceven = {ω | ω = ∆k, k ≡ 0 mod 2} and

• Codd = {ω | ω = ∆k, k ≡ 1 mod 2}

such that Ceven (respectively, Codd) is the set of all braid words equal to the composition of an
even (respectively, odd) number of the Garside element ∆. Then, every braid word equal to β is
captured by the following set of words:

C0 · {r
p′(1)(σi1)} · C1 · {r

p′(2)(σi2)} · C2 · · ·Cn−1 · {r
p′(n)(σin)} · Cn,

where

p′(x) =

{

0, if |{k | 0 ≤ k < x, Ck = Codd}| ≡ 0 mod 2,

1, otherwise.

Following the derivation described in (2), we can see that every braid word equal to β can be
derived by the valence grammar G.

Now we are ready to present our NP algorithm for the membership problem in the braid
group B3.

Lemma 11. The membership problem can be decided in NP for braids from B3.

Proof. Let us suppose that we are given a set B = {β1, β2, . . . , βn} of braid words and a braid word
β for which we need to decide whether β can be generated by the set B. We first convert the given
braids βi for 1 ≤ i ≤ n into the unique Garside normal form ∆kiβ+i where ki ∈ N is an integer and
β+i is a positive braid word by Lemma 6.

Let us define the regular language LB = {∆kiβ+i | 1 ≤ i ≤ n}+ over the alpha-
bet {σ1, σ2,∆,∆

−1}. Clearly, LB should contain a braid word β′ which is equal to β by the
relations of the braid group B3 if and only if the given set B of braid words generates the target
braid β.

By Lemma 10, there exists a valence grammar G generating every braid word in B3 equal to
the target braid β and definable over the alphabet {σ1, σ2,∆,∆

−1}. Therefore, the problem of
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checking whether β can be generated by the set B reduces to the problem of checking whether the
intersection of LB and L(G) is empty.

It is known that we can convert a given valence grammar over Zk into a pushdown automaton
(PDA) equipped with k additional blind counters in polynomial time [16]. Since we are using an
integer weight of dimension one, the valence grammar G can be converted into a PDA with a
blind counter in polynomial time and construct a new PDA with a blind counter recognizing the
intersection LB ∩ L(G) by constructing the Cartesian product of two automata. It is easy to see
that the resulting automaton is still a PDA with a blind counter of size polynomial in the input
size. By Lemma 4, we conclude that the membership problem in the braid group B3 can be decided
in NP.

Following Lemma 9 and Lemma 11, we establish the following complexity result for the mem-
bership problem in the braid group B3.

Theorem 1. The membership problem for braids from the braid group B3 is NP-complete.

3.3 Freeness Problem in the Braid Group B3

In the proof of Lemma 11, we construct a finite state automaton recognizing the regular language LB

with n multi-states loops representing braid words in Garside normal form from the set B. Then, a
path from the initial state to itself in this automaton represents a braid that can be constructed by
a semigroup generator {β1, β2, . . . , βn}. Note that the rest of the proof is not based on the structure
of this automata and the same algorithm can be applied to check the membership for any other
finite graph, where labels are braids from B3. Hence, we can immediately establish the following
result.

Corollary 2. Given a directed graph G with labels from the braid group B3, u and v are two nodes
from G and β is a braid from B3. Then, the problem of deciding whether exists a path P from
u and v such that a direct sum of braids on labels along a path P is isotopic to a braid β can be
decided in NP.

Note that the NP algorithm for the membership problem can exploited for decidability of the
freeness problem in braid semigroups with generators from B3.

Theorem 2. The freeness problem for braids from the braid group B3 can be decided in NP.

Proof. Let us consider a set B = {β1, β2, . . . βn} of braids from B3 and a braid semigroup 〈B〉 which
is finitely generated by the set B. If the semigroup 〈B〉 is not free, then there are two products of
the form A1 ·X · A2 and C1 · Y · C2 such that

A1 ·X ·A2 = C1 · Y · C2, (3)

where A1 6= C1, A2 6= C2, A1, A2, C1, C2 ∈ B, and X,Y ∈ 〈B〉.
Now it is not difficult to see that we can check whether the semigroup 〈B〉 is free if we can

decide whether there exist two products as in Equation (3) since we can iteratively run the same
procedure for each pairs of braids from the set B. Indeed, we can decide whether there exist two
products as in Equation (3) for the chosen braids A1, A2, C1, C2 from the set B by checking whether
the following equation can be satisfied for some X,Y ∈ 〈B〉:

A1XA2C2
−1Y −1C1

−1 = I.

11



Then, we can construct a finite-state automaton recognizing all the sequences of braids of the
form on the left-hand side of the equation and further construct an automaton that recognizes the
following regular language over braids from B3:

LB = {A1w1A2C
−1
2 w−1

2 C−1
1 | A1 6= C1, A2 6= C2, A1, A2, C1, C2 ∈ B,

w1, w2 ∈ B∗}.

It should be noted that the construction of the automaton recognizing LB takes polynomial time.
We can see that the braid semigroup 〈B〉 is not free if and only if the regular language LB contains
any braid word corresponding to the trivial braid, which can be checked in NP by Corollary 2.
Hence, we conclude that the freeness problem for braid semigroups in B3 can be decided in NP.

4 Undecidability of Decision Problems in the Braid Group B5

The composition problems become harder with a larger number of strands. Since the braids
group B5 contain the direct product of two free groups, it is possible to show that most of the
composition problems are undecidable in B5. We first provide the following property of B5 which
will be used later in the undecidability results in B5.

Lemma 12 ([7]). Subgroups 〈σ1
4, σ2

4〉, 〈σ4
2, d〉 of the group B5 are free and B5 contains the direct

product 〈σ1
4, σ2

4〉× 〈σ4
2, d〉 of two free groups of rang 2 as a subgroup, where d = σ4σ3σ2σ

2
1σ2σ3σ4.

We can prove the undecidability of the identity problem and the group problem by relying on
the embedding from B5 into the direct product of two free groups.

Theorem 3. The identity problem and the group problem are undecidable for braids in B5.

Proof. Bell and Potapov [5] has proven the undecidability of the identity correspondence problem
(ICP) which asks whether a finite set of pairs of words (over a group alphabet) can generate an
identity pair by a sequence of concatenations. Let Σ = {a, b} be a binary alphabet and Π =
{(s1, t1), (s2, t2), . . . , (sm, tm)} ⊆ FG(Σ) × FG(Σ). Formally speaking, the ICP is to determine
if there exists a nonempty finite sequence of indices l1, l2, . . . , lk where 1 ≤ li ≤ m such that
sl1sl2 · · · slk = tl1tl2 · · · tlk = ε, where ε is the empty word (identity).

We can directly use the Lemma 12 to encode the ICP in terms of braid words. We shall use a
straightforward encoding to embed an instance of the ICP into a set of braids. Let Π ⊆ Σ∗ × Σ∗

be an instance of the ICP where Σ = {a, b, a−1, b−1} generates a free group. Define two morphisms
φ and ψ that map Σ into B5 as follows:

φ(a) = σ1
4, φ(a−1) = σ1

−4,

φ(b) = σ2
4, φ(b−1) = σ2

−4.

ψ(a) = σ4
2, ψ(a−1) = σ4

−2,

ψ(b) = σ4σ3σ2σ
2
1σ2σ3σ4, ψ(b−1) = σ−1

4 σ−1
3 σ−1

2 σ−2
1 σ−1

2 σ−1
3 σ−1

4 .

The domain of φ and ψ can be naturally extended to words as follows:

φ(w1 . . . wi) = φ(w1) · . . . · φ(wi); ψ(v1 . . . vj) = ψ(v1) · . . . · ψ(vj),

where w1 · · ·wi, v1 · · · vj ∈ Σ∗. For each pair of words (s, t) ∈W , define the braid word φ(s) · ψ(t).
Let S be a braid semigroup generated by these braid words. In other words, S is finitely generated by
the set {φ(s)·ψ(t) | (s, t) ∈ Π}. If there exists a solution to the ICP, then we see that φ(ε)·ψ(ε) = 1 ∈
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S, where 1 is the trivial braid. Otherwise, the trivial braid does not exist in the braid semigroup S
since ψ and φ are injective homomorphisms. Therefore, we have that the problem whether a trivial
braid can be expressed by any finite length composition of braids from B5 is undecidable.

The identity problem is also computationally equivalent to the following problem which is called
the group problem. Given a semigroup generated by a finite set of pairs of words (over a group
alphabet), can we decide whether the semigroup is a group? Using the same morphisms φ and ψ,
we can encode the group problem for words by braids, having that the group problem for braids in
B5 is also undecidable.

Similarly, we also prove that the freeness problem is undecidable in B5.

Theorem 4. The freeness problem for braids from the braid group B5 is undecidable.

Proof. We first introduce the mixed modification PCP (MMPCP) [11] which is already proven to
be undecidable and prove the undecidability of the freeness problem in B5 by encoding an instance
of the MMPCP.

Given a finite alphabet Σ, a binary alphabet ∆, and a pair of homomorphisms h, g : Σ∗ → ∆∗,
the MMPCP asks to decide whether or not there exists a word w = a1 . . . ak ∈ Σ+, ai ∈ Σ such
that

h1(a1)h2(a2) . . . hk(ak) = g1(a1)g2(a2) . . . gk(ak),

where hi, gi ∈ {h, g} and for some j ∈ [1, k] such that hj 6= gj.
Let Σ = {a1, a2, . . . , an−2} and ∆ = {an−1, an} be disjoint alphabets and h, g : Σ∗ → ∆∗ be an

instance of the MMPCP. Now define a morphism γ : (Σ ∪∆)∗ × (Σ ∪∆)∗ → B5 by

γ(u, v) = φ(u) · ψ(v).

It is easy to see that γ is a homomorphism since γ(u1, v1)γ(u2, v2) = γ(u1u2, v1v2). Now let S be
a braid semigroup which is finitely generated by the set {γ(ai, h(ai)), γ(ai, g(ai)) | ai ∈ Σ, 1 ≤ i ≤
n− 2}. The braid semigroup S is not free if and only if the MMPCP instance has a solution. Since
the MMPCP is undecidable, we conclude that the freeness problem in the braid group B5 is also
undecidable.

5 Conclusion

The paper introduces a few challenging algorithmic problems about topological braids opening
new connections between braid groups, combinatorics on words, complexity theory and provides
solutions for some of these problems by application of several techniques from automata theory,
matrix semigroups and algorithms.

We have shown that the membership problem for B3 is decidable and actually NP-complete.
The NP-hardness result is in line with the best current knowledge about similar problem in the
special linear group SL(2,Z). W Finally in this paper we have proven that fundamental problems
about the braid compositions are undecidable for braids with at least 5 strands, but decidability of
these problems for B4 remains open.
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