24 research outputs found

    Polynomial-Sized Topological Approximations Using The Permutahedron

    Get PDF
    Classical methods to model topological properties of point clouds, such as the Vietoris-Rips complex, suffer from the combinatorial explosion of complex sizes. We propose a novel technique to approximate a multi-scale filtration of the Rips complex with improved bounds for size: precisely, for nn points in Rd\mathbb{R}^d, we obtain a O(d)O(d)-approximation with at most n2O(dlogk)n2^{O(d \log k)} simplices of dimension kk or lower. In conjunction with dimension reduction techniques, our approach yields a O(polylog(n))O(\mathrm{polylog} (n))-approximation of size nO(1)n^{O(1)} for Rips filtrations on arbitrary metric spaces. This result stems from high-dimensional lattice geometry and exploits properties of the permutahedral lattice, a well-studied structure in discrete geometry. Building on the same geometric concept, we also present a lower bound result on the size of an approximate filtration: we construct a point set for which every (1+ϵ)(1+\epsilon)-approximation of the \v{C}ech filtration has to contain nΩ(loglogn)n^{\Omega(\log\log n)} features, provided that ϵ<1log1+cn\epsilon <\frac{1}{\log^{1+c} n} for c(0,1)c\in(0,1).Comment: 24 pages, 1 figur

    Polynomial-Sized Topological Approximations Using the Permutahedron

    Get PDF

    Approximation algorithms for Vietoris-Rips and Čech filtrations

    Get PDF
    Persistent Homology is a tool to analyze and visualize the shape of data from a topological viewpoint. It computes persistence, which summarizes the evolution of topological and geometric information about metric spaces over multiple scales of distances. While computing persistence is quite efficient for low-dimensional topological features, it becomes overwhelmingly expensive for medium to high-dimensional features. In this thesis, we attack this computational problem from several different angles. We present efficient techniques to approximate the persistence of metric spaces. Three of our methods are tailored towards general point clouds in Euclidean spaces. We make use of high dimensional lattice geometry to reduce the cost of the approximations. In particular, we discover several properties of the Permutahedral lattice, whose Voronoi cell is well-known for its combinatorial properties. The last method is suitable for point clouds with low intrinsic dimension, where we exploit the structural properties of the point set to tame the complexity. In some cases, we achieve a reduction in size complexity by trading off the quality of the approximation. Two of our methods work particularly well in conjunction with dimension-reduction techniques: we arrive at the first approximation schemes whose complexities are only polynomial in the size of the point cloud, and independent of the ambient dimension. On the other hand, we provide a lower bound result: we construct a point cloud that requires super-polynomial complexity for a high-quality approximation of the persistence. Together with our approximation schemes, we show that polynomial complexity is achievable for rough approximations, but impossible for sufficiently fine approximations. For some metric spaces, the intrinsic dimension is low in small neighborhoods of the input points, but much higher for large scales of distances. We develop a concept of local intrinsic dimension to capture this property. We also present several applications of this concept, including an approximation method for persistence. This thesis is written in English.Persistent Homology ist eine Methode zur Analyse und Veranschaulichung von Daten aus topologischer Sicht. Sie berechnet eine topologische Zusammenfassung eines metrischen Raumes, die Persistence genannt wird, indem die topologischen Eigenschaften des Raumes über verschiedene Skalen von Abständen analysiert werden. Die Berechnung von Persistence ist für niederdimensionale topologische Eigenschaften effizient. Leider ist die Berechung für mittlere bis hohe Dimensionen sehr teuer. In dieser Dissertation greifen wir dieses Problem aus vielen verschiedenen Winkeln an. Wir stellen effiziente Techniken vor, um die Persistence für metrische Räume zu approximieren. Drei unserer Methoden eignen sich für Punktwolken im euklidischen Raum. Wir verwenden hochdimensionale Gittergeometrie, um die Kosten unserer Approximationen zu reduzieren. Insbesondere entdecken wir mehrere Eigenschaften des Permutahedral Gitters, dessen Voronoi-Zelle für ihre kombinatorischen Eigenschaften bekannt ist. Die vierte Methode eignet sich für Punktwolken mit geringer intrinsischer Dimension: wir verwenden die strukturellen Eigenschaften, um die Komplexität zu reduzieren. Für einige Methoden zeigen wir einen Trade-off zwischen Komplexität und Approximationsqualität auf. Zwei unserer Methoden funktionieren gut mit Dimensionsreduktionstechniken: wir präsentieren die erste Methode mit polynomieller Komplexität unabhängig von der Dimension. Wir zeigen auch eine untere Schranke. Wir konstruieren eine Punktwolke, für die die Berechnung der Persistence nicht in Polynomzeit möglich ist. Die bedeutet, dass in Polynomzeit nur eine grobe Approximation berechnet werden kann. Für gewisse metrische Räume ist die intrinsiche Dimension gering bei kleinen Skalen aber hoch bei großen Skalen. Wir führen das Konzept lokale intrinsische Dimension ein, um diesen Umstand zu fassen, und zeigen, dass es für eine gute Approximation von Persistenz benutzt werden kann. Diese Dissertation ist in englischer Sprache verfasst

    On the existence of 0/1 polytopes with high semidefinite extension complexity

    Full text link
    In Rothvo\ss{} it was shown that there exists a 0/1 polytope (a polytope whose vertices are in \{0,1\}^{n}) such that any higher-dimensional polytope projecting to it must have 2^{\Omega(n)} facets, i.e., its linear extension complexity is exponential. The question whether there exists a 0/1 polytope with high PSD extension complexity was left open. We answer this question in the affirmative by showing that there is a 0/1 polytope such that any spectrahedron projecting to it must be the intersection of a semidefinite cone of dimension~2^{\Omega(n)} and an affine space. Our proof relies on a new technique to rescale semidefinite factorizations

    A compact data structure for high dimensional Coxeter-Freudenthal-Kuhn triangulations

    Get PDF
    We consider a family of highly regular triangulations of Rd that can be stored and queried efficiently in high dimensions. This family consists of Freudenthal-Kuhn triangulations and their images through affine mappings, among which are the celebrated Coxeter triangulations of type Ãd. Those triangulations have major advantages over grids in applications in high dimensions like interpolation of functions and manifold sampling and meshing. We introduce an elegant and very compact data structure to implicitly store the full facial structure of such triangulations. This data structure allows to locate a point and to retrieve the faces or the cofaces of a simplex of any dimension in an output sensitive way. The data structure has been implemented and experimental 9 results are presented

    Homological percolation and the Euler characteristic

    Get PDF
    In this paper we study the connection between the phenomenon of homological percolation (the formation of "giant" cycles in persistent homology), and the zeros of the expected Euler characteristic curve. We perform an experimental study that covers four different models: site-percolation on the cubical and permutahedral lattices, the Poisson-Boolean model, and Gaussian random fields. All the models are generated on the flat torus TdT^d, for d=2,3,4d=2,3,4. The simulation results strongly indicate that the zeros of the expected Euler characteristic curve approximate the critical values for homological-percolation. Our results also provide some insight about the approximation error. Further study of this connection could have powerful implications both in the study of percolation theory, and in the field of Topological Data Analysis

    Sparse Higher Order ?ech Filtrations

    Get PDF
    For a finite set of balls of radius r, the k-fold cover is the space covered by at least k balls. Fixing the ball centers and varying the radius, we obtain a nested sequence of spaces that is called the k-fold filtration of the centers. For k = 1, the construction is the union-of-balls filtration that is popular in topological data analysis. For larger k, it yields a cleaner shape reconstruction in the presence of outliers. We contribute a sparsification algorithm to approximate the topology of the k-fold filtration. Our method is a combination and adaptation of several techniques from the well-studied case k = 1, resulting in a sparsification of linear size that can be computed in expected near-linear time with respect to the number of input points

    On the existence of 0/1 polytopes with high semidefinite extension complexity

    Get PDF
    In Rothvoß (Math Program 142(1–2):255–268, 2013) it was shown that there exists a 0/1 polytope (a polytope whose vertices are in {0, 1}n) such that any higher-dimensional polytope projecting to it must have 2Ω(n) facets, i.e., its linear extension complexity is exponential. The question whether there exists a 0/1 polytope with high positive semidefinite extension complexity was left open. We answer this question in the affirmative by showing that there is a 0/1 polytope such that any spectrahedron projecting to it must be the intersection of a semidefinite cone of dimension 2Ω(n) and an affine space. Our proof relies on a new technique to rescale semidefinite factorizations
    corecore