In Rothvo\ss{} it was shown that there exists a 0/1 polytope (a polytope
whose vertices are in \{0,1\}^{n}) such that any higher-dimensional polytope
projecting to it must have 2^{\Omega(n)} facets, i.e., its linear extension
complexity is exponential. The question whether there exists a 0/1 polytope
with high PSD extension complexity was left open. We answer this question in
the affirmative by showing that there is a 0/1 polytope such that any
spectrahedron projecting to it must be the intersection of a semidefinite cone
of dimension~2^{\Omega(n)} and an affine space. Our proof relies on a new
technique to rescale semidefinite factorizations