3,014 research outputs found

    Some Error Analysis on Virtual Element Methods

    Full text link
    Some error analysis on virtual element methods including inverse inequalities, norm equivalence, and interpolation error estimates are presented for polygonal meshes which admits a virtual quasi-uniform triangulation

    Solving elliptic eigenvalue problems on polygonal meshes using discontinuous Galerkin composite finite element methods

    Get PDF
    In this paper we introduce a discontinuous Galerkin method on polygonal meshes. This method arises from the discontinuous Galerkin composite finite element method (DGFEM) for source problems on domains with micro-structures. In the context of the present paper, the flexibility of DGFEM is applied to handle polygonal meshes. We prove the a priori convergence of the method for both eigenvalues and eigenfunctions for elliptic eigenvalue problems. Numerical experiments highlighting the performance of the proposed method for problems with discontinuous coefficients and on convex and non-convex polygonal meshes are presented

    Woodification of polygonal meshes

    Get PDF
    An evolving polygonal mesh based on stem\u27s tree growth coupled with a physical simulation of bark\u27s cracking is presented. This process is denominated woodification. Whereas previous approaches use a fixed resolution voxel grid, woodification is built on the deformable simplicial complex representation, which robustly simulates growth with adaptive subdivision. The approach allows any meshed object to be grown and textured. Features, such as interaction with obstacles, attributes interpolation, and sketching tools, are added to provide control during the woodifible process

    Embedded Implicit Stand-ins for Animated Meshes: a Case of Hybrid Modelling

    Get PDF
    In this paper we address shape modelling problems, encountered in computer animation and computer games development that are difficult to solve just using polygonal meshes. Our approach is based on a hybrid modelling concept that combines polygonal meshes with implicit surfaces. A hybrid model consists of an animated polygonal mesh and an approximation of this mesh by a convolution surface stand-in that is embedded within it or is attached to it. The motions of both objects are synchronised using a rigging skeleton. This approach is used to model the interaction between an animated mesh object and a viscoelastic substance, normally modelled in implicit form. The adhesive behaviour of the viscous object is modelled using geometric blending operations on the corresponding implicit surfaces. Another application of this approach is the creation of metamorphosing implicit surface parts that are attached to an animated mesh. A prototype implementation of the proposed approach and several examples of modelling and animation with near real-time preview times are presented

    On the Virtual Element Method for Topology Optimization on polygonal meshes: a numerical study

    Get PDF
    It is well known that the solution of topology optimization problems may be affected both by the geometric properties of the computational mesh, which can steer the minimization process towards local (and non-physical) minima, and by the accuracy of the method employed to discretize the underlying differential problem, which may not be able to correctly capture the physics of the problem. In light of the above remarks, in this paper we consider polygonal meshes and employ the virtual element method (VEM) to solve two classes of paradigmatic topology optimization problems, one governed by nearly-incompressible and compressible linear elasticity and the other by Stokes equations. Several numerical results show the virtues of our polygonal VEM based approach with respect to more standard methods

    Virtual Elements for the Navier-Stokes problem on polygonal meshes

    Get PDF
    A family of Virtual Element Methods for the 2D Navier-Stokes equations is proposed and analysed. The schemes provide a discrete velocity field which is point-wise divergence-free. A rigorous error analysis is developed, showing that the methods are stable and optimally convergent. Several numerical tests are presented, confirming the theoretical predictions. A comparison with some mixed finite elements is also performed
    corecore