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Abstract

In this paper we introduce a discontinuous Galerkin method on
polygonal meshes. This method arises from the Discontinuous Galerkin
Composite Finite Element Method (DGFEM) for source problems on
domains with micro-structures. In the context of the present paper,
the flexibility of DGFEM is applied to handle polygonal meshes. We
prove the a priori convergence of the method for both eigenvalues
and eigenfunctions for elliptic eigenvalue problems. Numerical experi-
ments highlighting the performance of the proposed methods for prob-
lems with discontinuous coefficients and on convex and non-convex
polygonal meshes are presented.

1 Introduction

In recent years people have realised the gain in flexibility coming from polygo-
nal and polyhedral meshes, for this reason many finite element methods have
been developed to accommodate such meshes. In the continuous Galerkin
setting we have the composite finite element methods (CFEs) [1, 2, 3, 4, 5],
the polygonal finite element methods (PFEMs) [6, 7], the extended finite
element method (XFEM) [8] and the virtual finite element method (VFEM)
[9]. On the other hand in the discontinuous Galerkin (DG) setting we have
the interior penalty methods on polygonal and polyhedral meshes [10], the
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agglomeration-based method [11, 12, 13] and the discontinuous Galerkin com-
posite finite element methods (DGCFEMs) [14].

One clear advantage in using general polygonal/polyhedral elements is the
possibility to mesh complicated shapes and even small geometrical details in
the domain. In this direction both the both continuous Galerkin CFE method
[1, 2, 3, 4, 5] and discontinuous Galerkin CFE method [15, 14, 16] are capable
to solve problems on domains with micro-structures. It is interesting to notice
that on domains without small features or micro-structures, DGCFEM [14]
and the interior penalty methods on polygonal and polyhedral meshes [10]
are closely related. Form an a priori convergence point of view, the main
difference between these two methods is the way in which degeneration of
edges or faces in the mesh is treated in the theory.

In this work we would like to study the use of polygonal/polyhedral
meshes for eigenvalue problems. In our opinion, this seems the natural
next step since so many methods for linear/non-linear source problems are
already available for such meshes. Comparing the extensions of continu-
ous and discontinuous Galerkin methods to general polygonal/polyhedral
meshes, clearly in the DG setting the extension is simpler. For this reason
we adopted DG as our starting point. Among all the available DG meth-
ods, we choose to apply DGCFEM to eigenvalue problems since hp−adaptive
scheme are already available for this method [16, 15] and it should be pos-
sible in a further work to apply such technologies to eigenvalue problems on
general polygonal/polyhedral meshes as well. Moreover, since DGCFEM has
been developed to address problems on domains with micro-structures, also
the present analysis can be applied to eigenvalue problems on domain with
micro-structures using polygonal/polyhedral meshes.

In order to keep the analysis simple, we consider the following model
problem: find the eigenpairs (λ, u) such that

−∆u = λu in Ω,

u = 0 on ∂Ω.
(1)

Here, Ω is a bounded, connected polygonal domain in R2, with boundary
∂Ω. In the rest of the paper we are going to assume that the meshes are
constituted by polygonal elements

The outline of the paper is as follows. In Section 2 we describe how the
finite element space on polygonal meshes is constructed. In Section 3 we
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introduce the discrete version of problem (1) and the discontinuous Galerkin
method. In the following Section 4 the a priori analysis is presented and
in Section 5 the numerical results are presented. Finally in Section 6 some
concluding remarks are collected.

2 Construction of the composite finite ele-

ment spaces on polygonal meshes

In this section, we describe the construction of the CFE space on a polygo-
nal mesh. The method is inspired by [14], where a similar construction for
complicated domain with small features is presented.

The construction of the CFE space takes advantage of two meshes: the
polygonal mesh TCFE and the mesh Th constructed splitting the polygons in
TCFE into triangles. By construction the mesh Th is finer than the mesh TCFE,
in the sense that each element of Th has a unique father element in TCFE such
that the father element contains the children element.

2.1 Finite element spaces

We start defining the discontinuous Galerkin finite element space on the mesh
Th, assuming that the polynomial degree is uniformly distributed over the
mesh:

V (Th, p) = {u ∈ L2(Ω) : u|κ ∈ Pp(κ), ∀κ ∈ Th},
where Pp(κ) denotes the set of polynomials of degree at most p ≥ 1 defined
over the general polygon κ. The extension to variable polynomial degrees
follows in a natural fashion.

In order to be able to construct the finite element space on the polygonal
mesh, we have to assume that the polynomial degree p of the polygonal
elements in TCFE is the same as the polynomial degree of the elements of Th.
In the case of variable polynomial degrees, it is necessary to assume that the
polynomial degree of each polygonal element is the same as the polynomial
degree of all the children elements.

For each polygonal element κ ∈ TCFE we define κ̂ as the smallest rectangle
containing κ with edges parallel to the axes. Then the polynomial space
Pp(κ) is defined to contain the restriction of the polynomial functions in
Pp(κ̂) to the support of the element κ. So, the DG finite element space on
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the mesh TCFE is constructed gluing together the polynomial spaces Pp(κ) for
all elements κ ∈ TCFE, i.e.;

V (TCFE, p) = {u ∈ L2(Ω) : u|κ ∈ Pp(κ), ∀κ ∈ TCFE}.
In view of the definition of V (TCFE, p), it is clear that the DG space V (Th, p)

on the finer mesh simplify the construction of the finite element functions on
polygons. Any polynomial function in Pp(κ) for any elements κ ∈ TCFE can be
defined as a linear combination of the basis functions living on the children
of κ, see [14, Section 8]. So, any integral on polygonal elements or on edges
of polygonal elements can be computed as an integral on either elements or
edges of the mesh Th. This is how the method assembles the discrete problem
on polygonal meshes.

3 Composite discontinuous Galerkin finite el-

ement method

In this section, we introduce the hp-version of the (symmetric) interior penalty
DGCFEM for the numerical approximation of (1). To this end, we first in-
troduce the following notation.

We denote by FICFE the set of all interior edges of the partition TCFE of Ω,
and by FBCFE the set of all boundary edges of TCFE. Furthermore, we define
F = FICFE ∪ FBCFE. The boundary ∂κ of an element κ and the sets ∂κ\∂Ω and
∂κ∩∂Ω will be identified in a natural way with the corresponding subsets of
F . Let κ+ and κ− be two adjacent elements of TCFE, and x an arbitrary point
on the interior edge F ∈ FICFE given by F = ∂κ+ ∩ ∂κ−. Furthermore, let v
and q be scalar- and vector-valued functions, respectively, that are smooth
inside each element κ±. By (v±,q±), we denote the traces of (v,q) on F
taken from within the interior of κ±, respectively. Then, the averages of v
and q at x ∈ F are given by

{{v}} =
1

2
(v+ + v−), {{q}} =

1

2
(q+ + q−),

respectively. Similarly, the jumps of v and q at x ∈ F are given by

[[v]] = v+ nκ+ + v− nκ− , [[q]] = q+ · nκ+ + q− · nκ− ,
respectively, where we denote by nκ± the unit outward normal vector of ∂κ±,
respectively. On a boundary edge F ∈ FBCFE, we set {{v}} = v, {{q}} = q, and
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[[v]] = vn, with n denoting the unit outward normal vector on the boundary
∂Ω.

With this notation, we make the following key assumptions, which are
the same used in [14]:

(A1) For all elements κ ∈ TCFE, we define

Cκ = card
{
F ∈ FICFE ∪ FBCFE : F ⊂ ∂κ

}
.

In the following we assume that there exists a positive constant CF
such that

max
κ∈TCFE

Cκ ≤ CF ,

uniformly with respect to the mesh size.

(A2) Inverse inequality. Given an edge F ∈ FICFE ∪ FBCFE of an element κ ∈
TCFE, there exists a positive constant Cinv, independent of the local mesh
size and local polynomial order, such that

‖∇v‖2
L2(F ) ≤ Cinv

p2

hF
‖∇v‖2

L2(κ)

for all v ∈ V (TCFE, p), where hF is a representative length scale associ-
ated to the edge F ⊂ ∂κ.

In case that the polynomial degree is not the same on all polygonal el-
ements, also the assumption (A3) as in [14] is needed: We assume that the
polynomial degree vector p is of bounded local variation, that is, there is a
constant ρ ≥ 1 such that

ρ−1 ≤ pκ/pκ′ ≤ ρ,

whenever κ and κ′ share a common edge and pκ and pκ′ are their respectively
polynomial degrees.

With this notation, we consider the (symmetric) interior penalty hp–
DGCFEM for the numerical approximation of (1): find (λj,h, uj,h) ∈ R ×
V (TCFE, p) such that

BDG(uj,h, v) = λj,h(uj,h, v) (2)
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for all v ∈ V (TCFE, p), where

BDG(u, v) =
∑
κ∈TCFE

∫
κ

∇u · ∇v dx−
∑

F∈FICFE∪FBCFE

∫
F

(
{{∇hv}} · [[u]] + {{∇hu}} · [[v]]

)
ds

+
∑

F∈FICFE∪FBCFE

∫
F

σ [[u]] · [[v]] ds,

(u, v) =

∫
Ω

u v dx.

Here, ∇h denotes the elementwise gradient operator. Furthermore, the func-
tion σ ∈ L∞(FICFE ∪ FBCFE) is the discontinuity stabilization function that is
chosen as follows:

σ|F = γp2h−1
F , (3)

where hF is the size of the face and with a parameter γ > 0 that is indepen-
dent of hF and p.

We conclude this section by equipping the composite finite element space
V (TCFE, p) with the DG energy norm ||| · |||DG defined by

||| v |||2DG =
∑
κ∈TCFE

‖∇v‖2
L2(κ) +

∑
F∈FICFE∪FBCFE

‖σ1/2[[v]]‖2
L2(F ).

4 A priori analysis

In this section we present a priori results for DGCFEM applied to eigen-
value problems. Throughout the section we assume that Ω is convex so all
eigenfunctions of (1) are in Hs(Ω), with s ≥ 2.

Lemma 4.1. Denoting by T and Th respectively the continuous and the dis-
crete solution operators, for all f ∈ L2(Ω) we have:

||| (T − Th)f |||2DG ≤ C
∑
κ∈TCFE

h
2 min(p+1,s)
κ

h2
F

1

p2s−3
‖ETf‖2

Hs(κ̂) , (4)

where hκ is the diameter of the rectangle κ̂ containing κ, and hF is the size
of the shortest edge of κ.

Proof. By definition, Tf = u and Thf = uh, then the result is a straightfor-
ward application of [14, Theorem 7.2].
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Remark 4.2. On meshes of convex well-shape polygons with bounded number
of edges, it is admissible to assume that the size of the faces hF is related to
hκ. In such case (4) becomes:

||| (T − Th)f |||2DG ≤ C
∑
κ∈TCFE

h
2 min(p+1,s)−2
κ

p2s−3
‖ETf‖2

Hs(κ̂) .

The next definition introduces the distance of an approximate eigenfunc-
tion from the true eigenspace, which is a crucial quantity in the convergence
analysis for eigenvalue problems, especially in the case of non-simple eigen-
values.

Definition 4.3. Given a function v ∈ L2(Ω) and a finite dimensional sub-
space P ⊂ L2(Ω), we define:

dist(v,P)L2(Ω) := min
w∈P
‖v − w‖L2(Ω) . (5)

Similarly, given a function v ∈ Sp(T ) and a finite dimensional subspace

P ⊂ H1
0 (Ω), we define:

dist(v,P)DG := min
w∈P
||| v − w |||DG . (6)

Now let λj be any eigenvalue of problem (1) and letM(λj) denote the span
of all corresponding eigenfunctions, moreover let M1(λj) = {u ∈ M(λj) :
|||u |||DG = 1}. Also let us denote for an eigenvalue λj of multiplicity R the
space Mh(λj) spanned by all computed eigenfunctions uj+i,h, i = 0, . . . , R−1
such that λj+i,h is an approximation of λj for all i.

Theorem 4.4. Suppose that Ω is a convex domain and suppose 1 ≤ j ≤
dimV (TCFE, p). Let λj be an eigenvalue of (1) with corresponding eigenspace
M(λj) of dimension R ≥ 1 and let (λj,h, uj,h) be an eigenpair of (2). Then,
for a sufficiently rich DG finite element space

(i)

|λj − λj,hp| ≤ C2
1

∑
κ∈TCFE

h
2 min(p+1,s)
κ

h2
F

1

p2s−3
, (7)

(ii)

dist(uj,hp,M1(λj))E,T ≤ C1

∑
κ∈TCFE

h
min(p+1,s)
κ

hF

1

ps−3/2
, (8)
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where h := maxκ∈TCFE hκ and the constant C1 is independent of h and p.

Proof. In order to prove (i) we recall equation (3.18) from [17], i.e.,

|λj − λj,hp| ≤ sup
0≤i≤R

|λj − λj+i,hp| ≤ C sup
u∈M(λj)

|||u |||DG=1

inf
vh∈V (TCFE,p)

|||u− vh |||2DG .

Then the result comes from [14, Theorem 7.2].
In order to prove (ii) we use the arguments in [18]. In particular we

have that if λj is an eigenvalue of (1), then it is straightforward to see that
µj = λ−1

j is an eigenvalue of T . Let Γ be a circle in the complex plane
centered at µj which does not enclose any other point of σ(T ). As in [18,
Sections 5-6], using the spectral projections

E =
1

2πi

∫
Γ

(z − T )−1 dz , Eh =
1

2πi

∫
Γ

(z − Th)−1 dz ,

we have

dist(uj,hp,M1(λj))DG ≤ sup
uh∈Mh(λj)
|||uh |||DG=1

inf
v∈M1(λj)

||| v − uh |||DG

= sup
uh∈V (TCFE,p)
|||uh |||DG=1

inf
v∈L2(Ω)

|||Ev − Ehuh |||DG .

Then taking v = uh we have

dist(uj,hp,M1(λj))DG ≤ sup
uh∈V (TCFE,p)
|||uh |||DG=1

|||Euh − Ehuh |||DG

= ‖E − Eh‖L(V (TCFE,p),V (TCFE,p)) ≤ ‖E − Eh‖L(L2(Ω),V (TCFE,p)) .

Using an argument similar to [17, Theorem 3.11], we have that

‖E − Eh‖L(L2(Ω),V (TCFE,p)) ≤ C‖T − Th‖L(L2(Ω),V (TCFE,p)) .

To conclude the proof we use (4).
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5 Numerical experiments

In this section we present a series of computational examples to numerically
investigate the asymptotic convergence behaviour of the proposed DGCFEM
for eigenvalue problems on polygonal meshes. Throughout this section the
DGCFEM eigenpairs (λh, uh) defined by (2) are computed with the constant
γ, appearing in the interior penalty parameter σ defined by (3), equal to 10.
All the numerical examples presented in this section have been computed
using the AptoFEM package (www.aptofem.com) and solving the resulting
generalised eigenvalue problem with ARPACK [19] and the Multifrontal Mas-
sively Parallel Solver (MUMPS), see [20, 21, 22].

5.1 Example 1: Meshes of polygons

In this first example, we consider a sequence of seven polygonal meshes for
the unit square. The meshes are generated using PolyMesher [23] with a high
number of smoothing iterations in order to obtain meshes formed by quite
regular polygons. The meshes contain respectively 25, 50, 100, 200, 400, 800
and 1600 polygons, see Figure 1 for two examples of polygonal meshes.

In order to show that the approximation properties of such meshes are
comparable to standard meshes of triangles or rectangles, we present the
approximation error for the first three distinct eigenvalues on the sequence
of meshes and using different order of polynomials.

From Figures 2, 3 and 4, we observe that the rates of convergence of
the error |λ − λh| on the sequence of polygonal meshes for p = 1, 2, 3 is
optimal for the first three distinct eigenvalues. The multiplicity 2 of the
second eigenvalue does not seem to affect the convergence rates.

In Figure 5 we present the convergence for the first three distinct eigen-
values increasing the order of p uniformly and using the mesh number 4 in
the sequence. The convergence rates seem close to exponential in both the
value of p and the number of degrees of freedom. This is in agreement with
the theory.

5.2 Example 2: Meshes of non-regular polygons

In this second example, we investigate the effect of the regularity of the
polygons forming the meshes on the approximation error for eigenvalues for
the same problem has in the first example. This time the sequence of seven
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meshes is generated using PolyMesher [23] with a very low number of smooth-
ing iterations in order to obtain meshes formed by non-regular polygons. The
meshes contain respectively 25, 50, 100, 200, 400, 800 and 1600 polygons, see
Figure 6 for two examples of polygonal meshes.

From Figures 7, 8 and 9, we observe that the rate of convergence of the
error |λ− λh| on the sequence of polygonal meshes for p = 1, 2, 3 is optimal
for the first three distinct eigenvalues. The convergence rates seem only very
moderately affected by the non-regularity of the polygons.

In Figure 10 we present the convergence for the first three distinct eigen-
values increasing the order of p uniformly and using the mesh number 4 in the
sequence. Also in this case, the convergence rates seem only very moderately
affected by the non-regularity of the polygons.
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(a) (b)

Figure 1: Example 1: (a) Polygonal mesh number 1 containing 25 polygons.
(b) Polygonal mesh number 5 containing 400 polygons.
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Figure 2: Example 1: Convergence of the approximated first eigenvalue on
the sequence of polygonal meshes using polynomials of order 1, 2 and 3.
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Figure 3: Example 1: Convergence of the approximated second eigenvalue
on the sequence of polygonal meshes using polynomials of order 1, 2 and 3.
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Figure 4: Example 1: Convergence of the approximated third eigenvalue on
the sequence of polygonal meshes using polynomials of order 1, 2 and 3.
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Figure 5: Example 1: (a) Convergence of the first three distinct eigenvalues
in the order of p and (b) in the numbers of DOFs for uniform refinement in
p.

(a) (b)

Figure 6: Example 2: (a) Polygonal mesh number 1 containing 25 polygons.
(b) Polygonal mesh number 5 containing 400 polygons.
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Figure 7: Example 2: Convergence of the approximated first eigenvalue on
the sequence of polygonal meshes using polynomials of order 1, 2 and 3.
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Figure 8: Example 2: Convergence of the approximated second eigenvalue
on the sequence of polygonal meshes using polynomials of order 1, 2 and 3.
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Figure 9: Example 2: Convergence of the approximated third eigenvalue on
the sequence of polygonal meshes using polynomials of order 1, 2 and 3.
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Figure 10: Example 2: (a) Convergence of the first three distinct eigenvalues
in the order of p and (b) in the numbers of DOFs for uniform refinement in
p.

15



5.3 Example 3: Non-convex polygons

In this third example, we investigate the approximation properties of non-
convex polygons. In order to do that we use a pathological configuration
where there are elements completely surrounded by single elements, see Fig-
ure 11. This kind of configuration is common for certain applications like in
photonic crystals [24, 25, 26].

In Figures 12 and 13 we present the convergence for the first three dis-
tinct eigenvalues increasing the order of p uniformly and using the meshes
in Figure 11. It is very interesting to notice that good convergence rates are
obtained also for these pathological meshes.
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(a) (b)

Figure 11: Example 3: (a) A mesh formed by two elements one completely
surrounding the other. (b) A mesh constructed by repeating the configura-
tion in (a).
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Figure 12: Example 1: (a) Convergence of the first three distinct eigenvalues
in the order of p and (b) in the numbers of DOFs for uniform refinement in
p for the mesh in Figure 11(a).
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Figure 13: Example 1: (a) Convergence of the first three distinct eigenvalues
in the order of p and (b) in the numbers of DOFs for uniform refinement in
p for the mesh in Figure 11(b).

18



5.4 Example 4: Discontinuous potential

In this fourth example, we explore a more complicated problem:
−∆u+ Bu = λu in Ω,

u = 0 on ∂Ω.

where B is piecewise constant. We consider a sequence of polygonal meshes
of the unit square where B can assume two different values. The meshes are
generated using PolyMesher with an high number of smoothing iterations in
order to obtain meshes formed by quite regular polygons. The meshes contain
respectively 24, 50, 100, 200, 400, 800 and 1600 polygons, see Figure 14 for
two examples of polygonal meshes. In the blue region B = 100 and in the
yellow region B = 1. The eigenfunctions of such problem are contained in
H2(Ω) and so the theory presented so far can be applied to this case as well.

In order to study that the approximation properties for such problem, we
present the approximation error for the first four eigenvalues on the sequence
of meshes and using different order of polynomials. From Figures 15, 16, 17
and 18, we observe that the rates of convergence of the error |λ− λh| on the
sequence of polygonal meshes for p = 1, 2, 3 are asymptotically optimal for
the first four eigenvalues.

In Figure 19 we present the convergence for the first four distinct eigen-
values increasing the order of p uniformly and using the mesh number 4 in the
sequence. The convergence rates seem close to exponential in both the value
of p and the number of degrees of freedom. This is in agreement with the
theory since the jump in the potential term do not affect the global regularity
of the eigenfunctions.

In order to check that the same could be achievable for problems where
the interface between the two regions is more complicated, we took the mesh
number 5 from the first example Figure 1(b) and we set B = 1 in all polyg-
onal elements with the center within the circle of radius 0.25 and centred
in (0.5,0.5) and B = 100 otherwise. The convergence rates for the first four
eigenvalues for uniform refinement in p are presented in Figure 20. Also in
this case the convergence curves approximate exponential functions even if
the convergence rates are not settled yet.
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(a) (b)

Figure 14: Example 4: (a) Polygonal mesh number 1 containing 24 polygons.
(b) Polygonal mesh number 5 containing 400 polygons. The two colours
denote the two regions where B assumes different values.
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Figure 15: Example 4: Convergence of the approximated first eigenvalue on
the sequence of polygonal meshes using polynomials of order 1, 2 and 3.
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Figure 16: Example 4: Convergence of the approximated second eigenvalue
on the sequence of polygonal meshes using polynomials of order 1, 2 and 3.
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Figure 17: Example 4: Convergence of the approximated third eigenvalue on
the sequence of polygonal meshes using polynomials of order 1, 2 and 3.
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Figure 18: Example 4: Convergence of the approximated fourth eigenvalue
on the sequence of polygonal meshes using polynomials of order 1, 2 and 3.

1 1.5 2 2.5 3 3.5 4
10

−8

10
−6

10
−4

10
−2

10
0

10
2

p

|λ
−

λ
h
|

 

 

eig 1
eig 2
eig 3
eig 4

500 1000 1500 2000 2500 3000
10

−8

10
−6

10
−4

10
−2

10
0

10
2

DOFs1/2

|λ
−

λ
h
|

 

 

eig 1
eig 2
eig 3
eig 4

(a) (b)

Figure 19: Example 4: (a) Convergence of the first three distinct eigenvalues
in the order of p and (b) in the numbers of DOFs for uniform refinement in
p.
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Figure 20: Example 4: (a) Convergence of the first three distinct eigenvalues
in the order of p and (b) in the numbers of DOFs for uniform refinement in
p.
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5.5 Example 5: Discontinuous second order term

In this last example, we study the behaviour of polygonal meshes for prob-
lems with discontinuous coefficients in the second order term: In this fourth
example, we explore a more complicated problem:

−∇ · (A∇u) = λu in Ω,

u = 0 on ∂Ω.

where A is piecewise constant. The sequence of meshes used in this example
are the same as in the previous example, see Figure 14. This problem has
been chosen because standard finite element elements achieve exponential
convergence rate for such configuration when p is increased. This is due to the
fact that, even if a discontinuous coefficient in the second order term can in
general lead to lack of regularity in the eigenfunctions, for this particular case
where the interface between regions with different values of A is smooth, the
eigenfunctions are still in H2(Ω). Our aim is to check that also for polygonal
meshes the same behaviour is achieved. In particular we set A = 1 in the
yellow region and A = 10 in the blue region.

From Figures 21, 22, 23 and 24, we observe that the rates of convergence
of the error |λ − λh| on the sequence of polygonal meshes for p = 1, 2, 3 are
asymptotically optimal for the first four eigenvalues.

In Figure 25 we present the convergence for the first three distinct eigen-
values increasing the order of p uniformly and using the mesh number 4 in
the sequence. The convergence rates seem close to exponential in both the
value of p and the number of degrees of freedom.

6 Concluding remarks

In this article we have considered the extension of the discontinuous Galerkin
composite finite element technique to polygonal meshes for eigenvalue prob-
lems. This extension is very attractive as meshes of polygons arise naturally
in many applications due to the geometries involved in such problems.

In this article we have undertaken the a priori error analysis for DGCFEM
for eigenvalue problems on polygonal meshes and we have illustrate the con-
vergence in practise with a series of numerical examples. For sake of com-
pleteness we have considered examples with discontinuous coefficient as well.
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Overall the convergence rates for polygonal meshes are comparable to the
convergence rates for standard meshes, even when the polygons are not very
regular.
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Figure 21: Example 5: Convergence of the approximated first eigenvalue on
the sequence of polygonal meshes using polynomials of order 1, 2 and 3.
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Figure 22: Example 5: Convergence of the approximated second eigenvalue
on the sequence of polygonal meshes using polynomials of order 1, 2 and 3.
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Figure 23: Example 5: Convergence of the approximated third eigenvalue on
the sequence of polygonal meshes using polynomials of order 1, 2 and 3.
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Figure 24: Example 5: Convergence of the approximated fourth eigenvalue
on the sequence of polygonal meshes using polynomials of order 1, 2 and 3.
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Figure 25: Example 5: (a) Convergence of the first three distinct eigenvalues
in the order of p and (b) in the numbers of DOFs for uniform refinement in
p.
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