19 research outputs found

    Summaries of the Third Annual JPL Airborne Geoscience Workshop. Volume 1: AVIRIS Workshop

    Get PDF
    This publication contains the preliminary agenda and summaries for the Third Annual JPL Airborne Geoscience Workshop, held at the Jet Propulsion Laboratory, Pasadena, California, on 1-5 June 1992. This main workshop is divided into three smaller workshops as follows: (1) the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on June 1 and 2; (2) the Thermal Infrared Multispectral Scanner (TIMS) workshop, on June 3; and (3) the Airborne Synthetic Aperture Radar (AIRSAR) workshop, on June 4 and 5. The summaries are contained in Volumes 1, 2, and 3, respectively

    NASA geology program bibliography

    Get PDF
    A bibliography of scientific papers, articles, and books based on research supported by the NASA Geology Program is given. The citations cover the period 1980 to 1990. An author index is included

    Summaries of the Fifth Annual JPL Airborne Earth Science Workshop. Volume 3: AIRSAR Workshop

    Get PDF
    This publication is the third containing summaries for the Fifth Annual JPL Airborne Earth Science Workshop, held in Pasadena, California, on January 23-26, 1995. The main workshop is divided into three smaller workshops as follows: (1) The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on January 23-24. The summaries for this workshop appear in Volume 1; (2) The Airborne synthetic Aperture Radar (AIRSAR) workshop, on January 25-26. The summaries for this workshop appear in this volume; and (3) The Thermal Infrared Multispectral Scanner (TIMS) workshop, on January 26. The summaries for this workshop appear in Volume 2

    The planning of a South African airborne synthetic aperture radar measuring campaign

    Get PDF
    Bibliography: leaves 153-163.This thesis sets out the results of work done in preparation for a South African Airborne Synthetic Aperture Radar (SAR) measuring campaign envisaged for 1994/5. At present both airborne and spaceborne SARs have found a niche in remote sensing with applications in subsurface mapping, surface moisture mapping, vegetation mapping, rock type discrimination and Digital Elevation Modelling. Since these applications have considerable scientific and economic benefits, the Radar Remote Sensing Group at the University of Cape Town committed themselves to an airborne SAR campaign. The prime objective of the campaign is to provide the South African users with airborne SAR data and enable the Radar Remote Sensing Group to evaluate the usefulness of SAR as a remote sensing tool in South Africa

    Korekce lokálního dopadového úhlu SAR dat pro analýzu časových řad: metoda specifická pro krajinný pokryv

    Get PDF
    To ensure the highest possible temporal resolution of SAR data, it is necessary to use all the available acquisition orbits and paths of a selected area. This can be a challenge in a mountainous terrain, where the side-looking geometry of space-borne SAR satellites in combination with different slope and aspect angles of terrain can strongly affect the backscatter intensity. These errors/noises caused by terrain need to be eliminated. Although there have been methods described in the literature that address this problem, none of these methods is prepared for operable and easily accessible time series analysis in the mountainous areas. This study deals with a land cover-specific local incidence angle (LIA) correction method for time-series analysis of forests in mountainous areas. The methodology is based on the use of a linear relationship between backscatter and LIA, which is calculated for each image separately. Using the combination of CORINE and Hansen Global Forest databases, a wide range of different LIAs for a specific forest type can be generated for each individual image. The algorithm is prepared and tested in cloud-based platform Google Earth Engine (GEE) using Sentinel-1 open access data, SRTM digital elevation model, and CORINE and Hansen Global Forest databases. The method was tested...K zajištění co nejvyššího možného časového rozlišení dat SAR je nutné použít všechny dostupné dráhy družic nad daným územím. To může představovat výzvu v hornatém terénu, kde boční snímání družic SAR v kombinaci s různými sklony a aspekty terénu může silně ovlivnit intenzitu zpětného radarového rozptylu. Tyto chyby způsobené terénem je třeba odstranit pro možné porovnání dat v čase. Ačkoli v literatuře jsou popsány metody, které se zabývají tímto problémem, žádná z těchto metod není připravena na operativní a snadno přístupnou analýzu časových řad v horských oblastech. Tato studie se zabývá metodou korekce lokálního dopadového úhlu (LIA) pro analýzu časových řad lesů v horských oblastech. Metodika je založena na použití lineární závislosti mezi radarovým zpětným rozptylem a LIA, který se počítá pro každý satelitní snímek zvlášť. Použitím kombinace databází CORINE a Hansen Global Forest můžeme pro každý jednotlivý snímek získat širokou škálu různých LIA pro konkrétní typ lesa. Algoritmus korekce byl připraven v cloudové platformě Google Earth Engine (GEE) s využitím volně dostupných dat Sentinel-1, digitálního modelu terénu SRTM a databází CORINE a Hansen Global...Katedra aplikované geoinformatiky a kartografieDepartment of Applied Geoinformatics and CartographyFaculty of SciencePřírodovědecká fakult

    Earth resources: A continuing bibliography with indexes (issue 59)

    Get PDF
    This bibliography lists 518 reports, articles, and other documents introduced into the NASA scientific and technical information system between July 1 and September 30, 1988. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, oceanography and marine resources, hydrology and water management, data processing and distribution systems, and instrumentation and sensors

    Biomass Representation in Synthetic Aperture Radar Interferometry Data Sets

    Get PDF
    This work makes an attempt to explain the origin, features and potential applications of the elevation bias of the synthetic aperture radar interferometry (InSAR) datasets over areas covered by vegetation. The rapid development of radar-based remote sensing methods, such as synthetic aperture radar (SAR) and InSAR, has provided an alternative to the photogrammetry and LiDAR for determining the third dimension of topographic surfaces. The InSAR method has proved to be so effective and productive that it allowed, within eleven days of the space shuttle mission, for acquisition of data to develop a three-dimensional model of almost the entire land surface of our planet. This mission is known as the Shuttle Radar Topography Mission (SRTM). Scientists across the geosciences were able to access the great benefits of uniformity, high resolution and the most precise digital elevation model (DEM) of the Earth like never before for their a wide variety of scientific and practical inquiries. Unfortunately, InSAR elevations misrepresent the surface of the Earth in places where there is substantial vegetation cover. This is a systematic error of unknown, yet limited (by the vertical extension of vegetation) magnitude. Up to now, only a limited number of attempts to model this error source have been made. However, none offer a robust remedy, but rather partial or case-based solutions. More work in this area of research is needed as the number of airborne and space-based InSAR elevation models has been steadily increasing over the last few years, despite strong competition from LiDAR and optical methods. From another perspective, however, this elevation bias, termed here as the “biomass impenetrability”, creates a great opportunity to learn about the biomass. This may be achieved due to the fact that the impenetrability can be considered a collective response to a few factors originating in 3D space that encompass the outermost boundaries of vegetation. The biomass, presence in InSAR datasets or simply the biomass impenetrability, is the focus of this research. The report, presented in a sequence of sections, gradually introduces terminology, physical and mathematical fundamentals commonly used in describing the propagation of electromagnetic waves, including the Maxwell equations. The synthetic aperture radar (SAR) and InSAR as active remote sensing methods are summarised. In subsequent steps, the major InSAR data sources and data acquisition systems, past and present, are outlined. Various examples of the InSAR datasets, including the SRTM C- and X-band elevation products and INTERMAP Inc. IFSAR digital terrain/surface models (DTM/DSM), representing diverse test sites in the world are used to demonstrate the presence and/or magnitude of the biomass impenetrability in the context of different types of vegetation – usually forest. Also, results of investigations carried out by selected researchers on the elevation bias in InSAR datasets and their attempts at mathematical modelling are reviewed. In recent years, a few researchers have suggested that the magnitude of the biomass impenetrability is linked to gaps in the vegetation cover. Based on these hints, a mathematical model of the tree and the forest has been developed. Three types of gaps were identified; gaps in the landscape-scale forest areas (Type 1), e.g. forest fire scares and logging areas; a gap between three trees forming a triangle (Type 2), e.g. depending on the shape of tree crowns; and gaps within a tree itself (Type 3). Experiments have demonstrated that Type 1 gaps follow the power-law density distribution function. One of the most useful features of the power-law distributed phenomena is their scale-independent property. This property was also used to model Type 3 gaps (within the tree crown) by assuming that these gaps follow the same distribution as the Type 1 gaps. A hypothesis was formulated regarding the penetration depth of the radar waves within the canopy. It claims that the depth of penetration is simply related to the quantisation level of the radar backscattered signal. A higher level of bits per pixels allows for capturing weaker signals arriving from the lower levels of the tree crown. Assuming certain generic and simplified shapes of tree crowns including cone, paraboloid, sphere and spherical cap, it was possible to model analytically Type 2 gaps. The Monte Carlo simulation method was used to investigate relationships between the impenetrability and various configurations of a modelled forest. One of the most important findings is that impenetrability is largely explainable by the gaps between trees. A much less important role is played by the penetrability into the crown cover. Another important finding is that the impenetrability strongly correlates with the vegetation density. Using this feature, a method for vegetation density mapping called the mean maximum impenetrability (MMI) method is proposed. Unlike the traditional methods of forest inventories, the MMI method allows for a much more realistic inventory of vegetation cover, because it is able to capture an in situ or current situation on the ground, but not for areas that are nominally classified as a “forest-to-be”. The MMI method also allows for the mapping of landscape variation in the forest or vegetation density, which is a novel and exciting feature of the new 3D remote sensing (3DRS) technique. Besides the inventory-type applications, the MMI method can be used as a forest change detection method. For maximum effectiveness of the MMI method, an object-based change detection approach is preferred. A minimum requirement for the MMI method is a time-lapsed reference dataset in the form, for example, of an existing forest map of the area of interest, or a vegetation density map prepared using InSAR datasets. Preliminary tests aimed at finding a degree of correlation between the impenetrability and other types of passive and active remote sensing data sources, including TerraSAR-X, NDVI and PALSAR, proved that the method most sensitive to vegetation density was the Japanese PALSAR - L-band SAR system. Unfortunately, PALSAR backscattered signals become very noisy for impenetrability below 15 m. This means that PALSAR has severe limitations for low loadings of the biomass per unit area. The proposed applications of the InSAR data will remain indispensable wherever cloud cover obscures the sky in a persistent manner, which makes suitable optical data acquisition extremely time-consuming or nearly impossible. A limitation of the MMI method is due to the fact that the impenetrability is calculated using a reference DTM, which must be available beforehand. In many countries around the world, appropriate quality DTMs are still unavailable. A possible solution to this obstacle is to use a DEM that was derived using P-band InSAR elevations or LiDAR. It must be noted, however, that in many cases, two InSAR datasets separated by time of the same area are sufficient for forest change detection or similar applications

    Publications of the Jet Propulsion Laboratory: 1990 and 1991

    Get PDF
    JPL Bibliography 39-32 describes and indexes by primary author the externally distributed technical reporting, released during calendar years 1990 and 1991, that resulted from scientific and engineering work performed or managed by the Jet Propulsion Laboratory (JPL). Three classes of publications are included: (1) JPL publications (90- and 91-series) in which the information is complete for a specific accomplishment; (2) articles from the quarterly Telecommunications and Data Acquisition (TDA) Progress Report (42-series); and (3) articles published in the open literature

    L-Band Multi-Polarization Radar Scatterometry over Global Forests: Modelling, Analysis, and Applications

    Get PDF
    Spaceborne L-band radars have the ability to penetrate vegetation canopies over forested areas, suggesting a potential for regular and frequent global monitoring of both the vegetation state and the subcanopy soil moisture. However, L-band radar’s sensitivity to both vegetation and ground also complicates the relationship between the radar observations and the ecological and geophysical parameters. Accurate yet parsimonious forward models of the radar backscatter are valuable to building an understanding of these relationships. In the first part of this thesis, a model of L-band multi-polarization radar backscatter from forests, intended for use at regional to global spatial scales, is presented. Novel developments in the model include the consideration of multiple scattering within the dense vegetation canopy, and the application of a general model of plant allometry to mitigate the need for much intensive field data for training or over-tuning towards specific sites and tree species. Aided by our model, in the remainder and majority of the thesis, a detailed analysis and interpretation of L-band backscatter over global forests is performed, using data from the Aquarius and SMAP missions. Quantitative differences in backscatter predicted by our model due to freeze/thaw states, branch orientation, and flooding are partially verified against the data, and fitted values of aboveground-biomass and microwave vegetation optical depths are comparable to independent estimates in the literature. Polarization information is used to help distinguish vegetation and ground effects on spatial and temporal variations. We show that neither vegetation nor ground effects alone can explain spatial variations within the same land cover class. For temporal variations during unfrozen periods, soil moisture is found to often be an important factor at timescales of a week to several months, although vegetation changes remain a non-negligible factor. We report the observation of significant differences in backscatter depending on beam azimuthal angle, possibly due to plant phototropism. We also investigated diurnal variations, which have the potential to reveal signals related to plant transpiration. SMAP data from May-July 2015 showed that globally, co-polarized backscatter was generally higher at 6PM compared to 6AM over boreal forests, which is not what one might expect based on previous studies. Based on our modelling, increased canopy extinction at 6AM is a possible cause, but this is unproven and its true underlying physical cause undetermined. Finally, by making simplifying approximations on our forward model, we propose and explore algorithms for soil moisture retrieval under forest canopies using L-band scatterometry, with preliminary evaluations suggesting improved performance over existing algorithms.</p

    Earth Resources: A continuing bibliography with indexes, issue 33

    Get PDF
    This bibliography list 436 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution sytems, instrumentation and sensors, and economic analysis
    corecore