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při zpracování dlouhých časových řad. K zajištění co nejvyššího možného časového 

rozlišení dat SAR je nutné použít všechny dostupné dráhy družíc nad daným územím. 

To může představovat výzvu v hornatém terénu, kde boční snímání družic SAR v 

kombinaci s různými sklony a aspekty terénu může silně ovlivnit intenzitu radarového 
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Abstract 

To ensure the highest possible temporal resolution of SAR data, it is necessary to use all 

the available acquisition orbits and paths of a selected area. This can be a challenge in a 

mountainous terrain, where the side-looking geometry of space-borne SAR satellites in 

combination with different slope and aspect angles of terrain can strongly affect the 

backscatter intensity. These errors/noises caused by terrain need to be eliminated. 

Although there have been methods described in the literature that address this problem, 

none of these methods is prepared for operable and easily accessible time series analysis 

in the mountainous areas.  

This study deals with a land cover-specific local incidence angle (LIA) correction 

method for time-series analysis of forests in mountainous areas. The methodology is 

based on the use of a linear relationship between backscatter and LIA, which is 

calculated for each image separately. Using the combination of CORINE and Hansen 

Global Forest databases, a wide range of different LIAs for a specific forest type can be 

generated for each individual image. The algorithm is prepared and tested in cloud-

based platform Google Earth Engine (GEE) using Sentinel-1 open access data, SRTM 

digital elevation model, and CORINE and Hansen Global Forest databases.  

The method was tested in 15 study areas in the Central Europe. The results achieved by 

our method showed a reduction of statistical parameters (variance, standard deviation, 

and range of backscatter values) of forest points in these areas. The most significant 

reduction (by more than 50 %) was achieved in areas with a wide range of LIAs, while 

in areas with a low LIA ranges the effect of correction was very low. In comparison 

with the behaviour of time series before and after correction, four case studies with 

different LIA ranges were further tested. Time series after the correction showed a 

reduced fluctuation of backscatter values (caused by different LIAs in each acquisition 

path), while this reduction was more significant in areas with a large difference in LIAs. 

The proposed method was also compared to a widely used desktop-based method of 

Terrain Flattening. The proposed method showed a greater reduction of fluctuations in 

time series caused by different acquisition pathways, while the computational time of 

these methods is incomparable. Our method was implemented in GEE as a freely 

available function, making the method available to a wide remote sensing community. 

 

Key words: local incidence angle, correction, time series, google earth engine, forest 

monitoring 



 

 

Abstrakt 

K zajištění co nejvyššího možného časového rozlišení dat SAR je nutné použít všechny 

dostupné dráhy družic nad daným územím. To může představovat výzvu v hornatém 

terénu, kde boční snímání družic SAR v kombinaci s různými sklony a aspekty terénu 

může silně ovlivnit intenzitu zpětného radarového rozptylu. Tyto chyby způsobené 

terénem je třeba odstranit pro možné porovnání dat v čase. Ačkoli v literatuře jsou 

popsány metody, které se zabývají tímto problémem, žádná z těchto metod není 

připravena na operativní a snadno přístupnou analýzu časových řad v horských 

oblastech. Tato studie se zabývá metodou korekce lokálního dopadového úhlu (LIA) 

pro analýzu časových řad lesů v horských oblastech. Metodika je založena na použití 

lineární závislosti mezi radarovým zpětným rozptylem a LIA, který se počítá pro každý 

satelitní snímek zvlášť. Použitím kombinace databází CORINE a Hansen Global Forest 

můžeme pro každý jednotlivý snímek získat širokou škálu různých LIA pro konkrétní 

typ lesa. Algoritmus korekce byl připraven v cloudové platformě Google Earth Engine 

(GEE) s využitím volně dostupných dat Sentinel-1, digitálního modelu terénu SRTM a 

databází CORINE a Hansen Global Forest.  

Metoda byla testována na 15 případových studiích ve střední Evropě. Výsledky 

dosažené naší metodou ukázaly snížení nežádoucích hodnot statistických ukazatelů 

(rozptylu, směrodatné odchylky a rozpětí hodnot radarového zpětného rozptylu) pro 

vybrané oblasti zájmu v lesních ekosystémech Česka. Nejvýraznější snížení (o více než 

50 %) bylo dosaženo v oblastech s širokým rozsahem různých LIA, zatímco v oblastech 

s nízkým rozsahem LIA byl účinek korekce velmi nízký (nižší než 10%). Při srovnání s 

chováním časových řad před a po korekci byly dále testovány čtyři případové studie s 

různými rozsahy LIA. Časové řady po korekci ukázaly snížené kolísání hodnot 

zpětného rozptylu (způsobené různými LIA v každé akviziční dráze). Navržená metoda 

byla také porovnána s nejčastěji používanou metodou, tzv. Terrain Flattening, v 

desktopovém prostředí. Navržená metoda pak ukázala větší snížení fluktuace časové 

řady způsobených různými akvizičními dráhami, zatímco výpočetní čas těchto metod 

byl neporovnatelný. Naše metoda byla implementována v GEE jako volně dostupná 

funkce, co umožní přístup k této funkci široké komunitě zabývající se zpracováním 

SAR oblasti dálkového průzkumu Země. 

 

Klíčová slova: lokální dopadový úhel, korekce, časové řady, Google Earth Engine, 

monitorování lesů 
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Introduction 

In remote sensing (RS), the 21st century is called to as the era of big data, when we 

have a huge amount (not only) of freely available data. When processing a larger 

amount of data, it is necessary to use tools that can process them effectively and quickly 

enough. In some cases, we may already encounter time and performance issues and 

limitations on a traditional desktop software. It is necessary to download, pre-process 

data and then we can perform analyses on them. In recent years, in RS and in the use of 

big data, so-called cloud platforms have become widely used. They store not only 

images and data archives, but they also bring the computing technology needed for data 

processing.  

In forest monitoring, multispectral optical satellite data, have been proven to be a 

very effective data source. In many cases, however, optical data have certain 

shortcomings, especially regarding clouds. In the microwave electromagnetic spectrum 

of radar sensors, the signal can penetrate clouds and fog and is not dependent on the 

light of the Sun, so sensors can scan during the day and at night. Additionally, they can 

be potentially used in monitoring landscape changes as complementary to optical data 

(i.e. in Ranson et al. 2003). Since the launch of Sentinel-1 in 2014 with freely available 

data, interest in synthetic aperture radar (SAR) data has begun to grow and new 

methods has begun to be developed. Systematic sensing of the earth's surface with 

constant geometric characteristics of the sensors brought many advantages over 

previous radar missions. 

However, the SAR signal is interacting with the surface in a totally different way as 

in optical data. One of the main differences are caused by the side-looking geometry of 

SAR data - areas from the same land cover class can have different backscatter, 

indicating that they belong to a different class or show a change in the case of time 

series analysis, although no change has occurred. The most relevant problem can be 

experienced in data acquired over mountainous areas where orientation and slope of the 

terrain can influence the resulted backscatter. This factor is the most visible on the 

intensity of the received signal when combining images from different orbits and paths 

of the satellite (ascending vs. descending, or adjacent paths covering a given area). This 

is especially important over forests, because most of the forests of Central Europe are 

located in mountainous areas. In time series analysis, this effect can be seen as a 

constant fluctuation of the reflectance values acquired from different successive paths. 



12 

 

To obtain an accurate information that represents a real status or change in the area, it is 

necessary to eliminate the aspect of terrain.  

There are several techniques to correct the topographic effects. Currently the most 

used algorithm for correction of topographic effect is the so-called Radiometric Terrain 

Flattening developed by Small (2011). This method is available in desktop software 

such as SNAP Sentinel-1 Toolbox. However, in the case of the cloud platforms (e.g. 

Google Earth Engine – GEE), neither this method nor other methods to eliminate the 

effects of the terrain are available. 

The presented study deals with an innovative method of land cover-specific 

correction of the local incidence angle (LIA) using a linear regression analysis in the 

mountainous areas for time-series analysis in GEE. The main difference between 

currently used regression-based normalisation approaches and the presented method is 

on the use of single image to calculate the dependence of backscatter values of selected 

forest type on LIA. This is allowed by using available land cover databases including 

data representing only the specified land cover class, so for each Sentinel-1 image we 

can calculate the backscatter-LIA dependence separately. Next method aspect is the use 

of site- and path-specific reference incidence angle. Using this algorithm, the terrain 

effects in the time series curve are eliminated.  

The main aim of the study is to prove, that the developed method is suitable for 

eliminating the effect of the terrain. The accuracy and suitability of the proposed 

method is tested by statistical evaluation of forest areas backscatter after the correction 

on forests with different characteristics - at different elevation, terrain slope and 

orientation, with different LIAs. Also, the effectivity of the method is tested on short-

term time series analyses of coniferous and deciduous forests. The proposed method is 

compared to the most used method for eliminating terrain effects - to the Radiometric 

Terrain Flattening. 

The first chapter of this work examines the various effects that influence radar 

backscatter, focused mainly on forest areas. The second chapter describes the study 

areas, data, platform, and software used in this study, as well as the methodology of this 

work. The third chapter describes the results and the fourth chapter is aimed on a 

discussion of the achieved results. The fifth chapter contains conclusions and future 

plans in working with the developed method.  
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1 Literature review and introduction to the topic 

1.1 Radar data – specification 

Radar satellite systems operate in the microwave region of the electromagnetic 

spectrum with a wavelength from 1 mm to 1 m and a frequency of 0.3 to 300 GHz. This 

broad spectrum is divided into several bands, while the most common bands used in 

spaceborne radar remote sensing are L-, C- and X-bands. In tab. 1 different radar bands 

are listed with their characteristics and typical applications. Compared to optical data 

which are sensitive to the surface of objects, radar data provide information on the 

geometric and dielectric properties of the object.  

 

Tab. 1 Characteristics of individual bands of microwave radiation 

 

Source: adopted from Flores-Anderson et al. (2019), p. 29 

 

As radar sensors can measure at much higher wavelengths than sensors of optical 

satellites, they can detect completely different surface properties (Richards 2009). 

Backscattering coefficient (σ0) gives us information about the scanned surface/object. It 

is expressed in decibels (dB)  and is given as the ratio of the energy received by the 

sensor to what it would receive if the surface scatters the incident energy in an isotropic 

manner (Patnaik 2017). Similarly as in case of optical data, different land cover classes 

have different backscatter responses in radar data. Mougin et al. (1995), in their global 

backscattering analysis, observed the lowest values of backscatter over deserts (up to -

24 dB), where huge spatial variations (up to 18 dB) were observed due to local 

topography. The highest values were present over snow- and ice-covered regions (> -5 

Band Frequency (GzH) Wavelength (cm) Typical application

P-band 0.3 - 1.0 100 - 30

Biomass. First P-band spaceborne SAR will be launched ~2020; 

vegetation mapping and assessment. Experimental SAR.

L-band 1 - 2 30 - 15

Medium resolution SAR (Geophysical monitoring; biomass and 

vegetation mapping; high penetration; InSAR)

S-band 2 - 4 15 - 7.5

Little but increasing use for SAR-based Earth observation; 

agriculture monitoring (NISAR will carry an S-band channel; 

expands C-band applications to higher vegetation density)

C-band 4 - 8 7.5 - 3.8

SAR workhorse (global mapping; change detection; monitoring of 

areas with low to moderate vegetation; improved penetration; 

higher coherence); Ice, ocean, maritime navigation

X-band 8 - 12 3.8 - 2.4

High-resolution SAR (urban monitoring; ice and snow, little 

penetration into vegetation cover; fast coherence decay in 

vegetated areas)

Ku-band 12 - 18 2.4 - 1.7 Rarely used for SAR (satellite altimetry)

K-band 18 - 27 1.7 - 1.1 Rarely used (H2O absorption)

Ka-band 27 - 40 1.1 - 0.8 Rarely used for SAR (airport surveillance)
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dB). The highest backscatter among vegetated areas was measured over tropical forests 

(around -7 dB). They suggested that seasonal variations should help to distinguish 

different land cover classes and found seasonal variations in backscatter values over 

areas which pronounce a known seasonal vegetation activity. On the other hand, 

comparison of backscatter over tropical evergreen forest and deserts from different 

seasons showed only a little, insignificant variation. These results are however, 

influenced by several other factors.  

 

1.2 Effects influencing radar backscatter over forests 

The interaction between the SAR backscatter (σ0) and the surface depends 

primarily on the characteristics of the studied object - on the surface roughness and 

dielectric properties of the object (Freeman 1992), and on the sensor characteristics, i.e. 

on wavelength (frequency), angle of incidence and polarization (Paloscia, Santi, 

Pettinato 2015; Rüetschi, Small, Waser 2019; Yunjin Kim, van Zyl 2002; Patnaik 

2017). For forest areas, where usually a volume scattering is occurring, the dominant 

factor is “the composition of the medium, in terms of particle size and orientation” 

(Freeman, 1992, p. 1109). Characteristics of the studied object are different for each 

land cover class and can be biased by some environmental factors, like change in 

vegetation activity, moisture, temperature, etc. The sensor characteristics are fixed for 

each sensor and they will be the same over all kind of land cover classes. While the 

wavelength and polarization are constant throughout the image, the angle of incidence 

(we will refer to that as radar incidence angle in the next parts of the thesis) is 

increasing from the near to the far range of the image. This causes variations of the 

backscatter values for a given land cover class – different backscatter for the same class 

at different radar incidence angles. This difference must be corrected. However, the 

correction of radar incidence angle can be valid only for ideal situations, where the 

effect of terrain should be neglected, e.g. over relatively flat terrain or over sea. On the 

other hand, in case of areas with tilted terrain, the incidence angle of the 

electromagnetic wave is affected by the slope and aspect of the studied terrain. Thus, 

effect of the terrain needs to be considered and eliminated for appropriate evaluation 

and interpretation of obtained backscatter. This is especially important over forests, 

because most of the forests of Central Europe are located in mountainous areas.  
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The next part of this work focuses on the description of individual characteristics of 

the sensor and the object that may affect the backscatter of forests. The last part focuses 

on the main interest of this work, on possible ways to eliminate the terrain effects. 

1.3 Sensor characteristics influencing radar backscatter over 
forests 

1.3.1 Dependence on the wavelength 

In general, at longer wavelengths, the penetration of the signal through the 

vegetation canopy or below the surface is greater. Comparison of P-, L- and C-bands by 

Paloscia (1998) showed different influence of vegetation biomass and crop morphology 

on the backscatter at each band, e.g. herbaceous vegetation, seemed transparent at the P-

band, and different agricultural crops such as sunflower and corn could be identified at 

the L-band (due to larger stems and leaves). A clear positive linear dependence of 

biomass and backscatter at P-, L- and C-band was found also in Dobson et al. (1992), 

while this dependence is found to be decreasing with frequency as the contribution of 

the upper layer of the canopy to the backscatter becomes more significant. Thus, in case 

of high frequency (short wavelength), such as C-band, microwave energy is reflected 

mainly from the top layer of the tree crown and less from the bottom of the crown, 

while at lower frequencies (e.g. in L-band) the signal has higher penetration and is 

reflected also from under the crown (Rüetschi, Small, Waser 2019) (see fig. 1). 

Similarly, several earlier studies also proved that the backscatter over forests at C-band 

is mainly originating in volume scattering that takes place in the canopy layer of trees 

(Chauhan, Lang, Ranson 1991; Durden, Klein, Zebker 1991; Wu 1985; Luckman 1998; 

Dobson et al. 1992). Paloscia et al. (2015) stated that the C-band signal is sensitive to 

the presence or absence of leaves. As reported by Chauhan et al. (1991) needles and 

branches of coniferous forests cause large attenuation (about half of the total attenuation 

caused by forest canopy) and prevent the deeper penetration of a C-band wave into the 

canopy, therefore having the biggest contribution to the total backscatter. According to 

their results, the backscatter from the trunk is very little at the C-band and it will not 

reach the ground layer through trees higher than 15 meters. They also stated that needles 

and branches act as Rayleigh scatterers and their attenuation increases with frequency, 

while at X-band the contribution from needles become the most dominant. Finding, that 

the signal at C-band penetrates vegetation only partially and interacts only with leaves 

or needles and small branches was proved also in a more recent study by Reiche et al. 
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(2018), who added that backscatter from leaves and branches is largely sensitive to 

roughness and humidity of the canopy.  

In the available literature, L-band is the most used band for forest research (e.g. 

Mitchell et al., 2017) and the longer wavelength L-band is suitable for the study of 

deforestation, while the shorter wavelength C-band is less useful for that, because of 

low penetration and greater signal saturation over forests (Woodhouse (2005) cited in 

Reiche et al. (2018)). Despite of these findings, according to the literature review above 

about the sensitivity of backscatter at shorter wavelength to forest canopy, C-band data 

seems to be sufficient for monitoring forests and their changes over time. The next 

section will focus on findings on forest backscatter response mainly at C-band and on 

its comparison with other bands. 

 

Fig. 1 Reflectivity of black pine at different wavelengths. 

 

 

Source: Le Toan (2007), p. 66. Explanatory Notes: VHF - Very High Frequency 

 

1.3.2 Effect of polarization 

Polarization represents the orientation of the electric and magnetic component of an 

electromagnetic wave that are perpendicular to each other and to the direction of 

movement of the electromagnetic wave (Richards 2009). Radar antennas transmit a 

signal either vertically (V) or horizontally polarized (H) and the same happens when a 

signal is received – it is received either horizontally or vertically, creating 4 different 

situations: when transmitted in H and received in H polarization, so it is the so called 
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HH polarization. Other ones are VV, HV or VH. The use of different polarizations 

increases the information value of the data and can be used, for example, to recognize 

different types of surfaces. This section presents findings on the effect of polarization in 

distinguishing different types and characteristics of forests.  

Different polarizations were investigated in Bousbih et al. (2017) in obtaining Leaf 

Area Index (LAI) and height of agricultural crops from Sentinel-1 images. They found 

that as LAI increases, vegetation more attenuates the backscatter from the soil towards 

the sensor. That behaviour was stronger in VV polarization, compared to VH, where 

vegetation parameters had almost no effect on the resulted backscatter. Authors 

attributed low sensitivity of vegetation parameters in VH polarization to volume 

scattering effects, in which there are huge amount of scattering due to randomly 

oriented elements such as canopy components (Richards 2009). 

Combining different polarizations helps to improve the separability of forest types. 

It has been proven in the work of Wu (1985), where the backscatter response over 

deciduous, coniferous, and mixed forests at C-band of an airborne scatterometer was 

analysed. He figured out that the backscatter over deciduous forests is the highest 

among others and found some differences in polarizations: a) generally for each forest 

type, the VH polarization backscatter value is the lowest compared to VV and HH, b) 

the highest backscatter for mixed forest was in VV polarization, while for coniferous 

forest it was in HH, c) deciduous forests with no significant understory had the same 

polarization characteristics as coniferous forests and d) coniferous forest with some 

understory had the same polarization characteristics as mixed forests. Furthermore, he 

observed a deeper penetration of HH polarization to the base of the forest canopy for 

high incidence angles, while signal in VV polarization was able to penetrate only a few 

meters to the canopy. Another finding was that, generally the backscatter from trees is 

increasing with the increase of signal’s attenuation in the canopy. Chauhan et al. (1991) 

also showed that horizontal waves penetrate more deeply to the canopy than vertical 

waves. 

Discrimination between deciduous and coniferous forests was also proven for VV 

polarization of C-band data in Proisy et al. (2000), where the difference between them 

was about 1 dB. Authors attributed this difference to the influence of non-forest 

parameters, like understory vegetation. However, the separability between different 

deciduous forest types and species has not been proved.  
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For distinguishing between coniferous stands with different forest biomass (sparse 

and dense forest) the C-band HH and VV polarizations have been found to be suitable 

in Durden et al. (1991).  

In the case of sensitivity to changes in forest, Reiche et al. (2018) pointed out that 

the single polarized (VV) signal of the C-band Sentinel-1 image was less sensitive 

compared to cross-polarized (VH). Tanase et al., (2018) showed that wind and insect 

disturbances cause changes in the backscatter values and the highest sensitivity was 

observed in the cross-polarized channel (HV) of the L-band ALOS PALSAR images.  

 

Polarimetric parameters 

To investigate types of vegetation and their changes, the so-called polarimetric 

parameters have been developed. Polarimetric parameters are divided into absolute and 

relative (based on Kim & van Zyl (2002)). The category of absolute parameters includes 

the cross-sections (i.e., HV and VH) and eigenvalues. Relative parameters include the 

HH and VV correlation coefficients, entropy, anisotropy and the Radar Vegetation 

Index (RVI) developed by Kim & van Zyl (2000). Kim & van Zyl (2002) found that 

relative polarimetric parameters are more rapidly saturated than absolute parameters, 

while backscatter from cross-sections (HV and VH) is saturated with increasing 

biomass. They added, that polarimetric parameters are the most suitable for monitoring 

the degree of regeneration of vegetation, especially when time series are available. 

Earlier studies have also used, for example, the so-called cross-polarization ratio 

(HV / HH and HV / VV) (e.g. Dobson et al. (1992)), which seemed to be the best for 

estimating vegetation parameters. 

Kim & van Zyl (2000) recommended that the most important step in developing 

parameters (indexes/indicators) is to find out what the polarimetric parameter is the 

most sensitive to in relation to the required geophysical information. The authors 

evaluated the sensitivity of the polarimetric parameter to the variation of physical 

properties and pointed out to the relationship between physical and polarimetric 

parameters. 

 

1.3.3 Angle of incidence (radar incidence angle) 

The radar incidence angle θ is the angle between the direction of incident radiation 

and the normal to the surface at the point of impact on the Earth's surface (Flores-
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Anderson et al. 2019). The incidence angle is not stable across the image – it increases 

from near to far range of the image causing changes to the backscatter response. Images 

acquired from different orbits or paths will have different incidence angles over a given 

area resulting in various backscatter values, even if no changes have occurred in that 

area. Thus, in case of using the entire image for analysing the given land cover class or 

using a combination of several images from different paths and orbits to analyse the 

backscatter over a given area, variations resulted from the off-nadir viewing geometry 

of the radar sensor must be considered (Foody 1986). This is the case when using SAR 

images with wide range of incidence angles, usually spaceborne radar sensors, like the 

Advanced Synthetic Aperture Radar (ASAR) on the Envisat satellite which have 

incidence angles ranging from 15° to 45° (Torres et al., 2000), but also the Sentinel-1, 

ranging from 31° to 46° (Torres et al., 2012).  

Gauthier et al. (1998) found a difference up to 2.7 dB in the ERS-1 C-band 

backscatter coefficients derived from the opposite orbits for the same agricultural fields. 

As a possible explanation for that they compared the influence of three following 

factors: 1) environmental factors, 2) SAR processor instability and 3) aspect and 

incidence angle sensitivity. They found that only the latter can be significantly 

attributed to the observed difference, even though the difference in incidence angle 

between opposite orbits was only up to 4° for the investigated areas.  

Nguyen et al. (2015), in their study of mapping rice seasonality, noticed that the 

influence of radar incidence angle on backscatter is higher for bare soil than for densely 

vegetated areas. Because of the radar incidence angle influence on backscatter, they 

normalized (corrected) the data for different radar incidence angles (different look 

angles caused by different paths and orbits). In other studies, analysing of sea ice 

(Makynen, Karvonen 2017) and sea surface backscatter (Topouzelis, Singha 2016), 

there was also a need for eliminating the effects of different radar incidence angles. 

On the other hand, Kaasalainen et al. (2010) decided to use images from the same 

imaging geometry, therefore to avoid the effects of topography on backscatter values.  

Similarly, in Rauste et al. (2016), Sentinel-1 images acquired in the same orbit 

configuration was used for mapping clear-cut sites. 
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(1)  

(2)  

1.4 Dependence on object characteristics influencing radar 
backscatter over forests 

1.4.1 Dependence on geometrical characteristics of the studied object 

According to Rayleigh's rule, a surface can be considered rough if: 

ℎ >  
λ

8 ∗  cosθ
 

where θ is the angle of incidence and λ and h are the signal wavelength and the average 

difference in elevation of this surface, respectively. Conversely, a surface is considered 

smooth if: 

ℎ <  
λ

8 ∗  cosθ
 

This implies that the surface roughness depends on the signal wavelength and the 

incidence angle (Richards 2009). These formulas show that at a constant angle of 

incidence, a surface with a given height difference (h) can be considered rough at short 

wavelengths, while smooth at long wavelengths. 

In the case of forest ecosystems, we should consider the roughness of the crown 

surface and the entire canopy of a tree, where the roughness is contributed, for instance, 

by the size, shape and orientation of the tree crown components (leaves, fruits, etc.). 

That is why crops and trees with different structures and characteristics can be 

distinguished using their backscattering coefficient (Forkuor et al. 2014). 

It was proven that the increase of vegetation density causes increase in backscatter 

(Sharma et al. 2005), while clear-cuts with greater density of recovery vegetation can 

cause difficulties in their separability from forests. Confusion in separability of clear-

cuts and forests was noticed also in Ahern et al. (1993), where C-band CCRS SAR data 

in HH polarization with wavelength of 10 cm was used (which belongs more to the S-

band). They found that the three investigated coniferous species were well separable in 

each season, while in summertime (August) it gave the best results. On the other hand, 

separability of deciduous species was low. This can be explained by the use of only one 

image per season (four seasons). They observed higher backscatter from deciduous trees 

without leaves than with leaves, which interpreted as the effect of higher absorption or 

forward-scattering of backscatter by leaves. However, this is in contrast with earlier 

mentioned studies (Wu 1985), where the increase of backscatter with the increase of 

biomass was proven. This can be explained by the use of only one image per season in 
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the study by Ahern et al. (1993), where short-term variations in data could influence the 

results.  

Rüetschi et al. (2019) found that C-band backscatter is suitable for rapid monitoring 

of major changes in forest structure, for example, changes after wind calamities. Based 

on their study, the increase of the reflected energy after a wind calamity may have 2 

reasons: (1) increase in surface roughness due to fallen trees, (2) reduced attenuation of 

microwave energy in the tree canopy, resulting in increased reflectance from the 

surface. According to the findings of this study, the reflectivity of the area after wind 

calamity increases at lower wavelengths and decreases at higher wavelengths. Ranson & 

Sun (2000) proved that for land cover types with low vegetation, including clear cuts or 

small bushes, the ground surface contributes dominantly to the total backscatter. 

Tanase et al., (2019) found that C-band had the highest sensitivity to LAI and 

foliage volume, and that the contribution of leaves to the backscatter was higher 

compared to the contribution of branches. According to these findings, as C-band data 

was mainly influenced by the foliage volume, they marked the ratio between co- and 

cross-polarized channels at C-band as appropriate for monitoring changes due to 

defoliation. In case of drought events, C-band can bring unsatisfactory results, however 

according to the assumption that in many cases drought events are accompanied with 

foliage loss, C-band can be used for monitoring these areas, too (Tanase et al. 2019). C-

band signal sensitivity to defoliation was also observed in an earlier study using ERS-2 

data in Kaasalainen et al. (2010), where a slight change was observed in the backscatter 

over the study areas with occurred defoliation, while for areas with no defoliation little 

or no change in backscatter was observed.  

 

1.4.2 Dependence on dielectric properties of an object 

“Dielectric properties of substances are expressed by their dielectric constant εr 

which value determines the reflectance of electromagnetic radiation at different 

wavelengths” (Kolář 2008). It measures the electrical properties of substances, each 

substance having a dielectric constant εr ≥1, while the increasing of water content 

increases the reflectance and the value of the dielectric constant (e.g. dry soil has a 

dielectric constant 4, while water having approximately 81) (Richards 2009). Dielectric 

properties of the object can be biased by some environmental factors, like temperature 

or precipitation. The increased moisture content reduces the penetration of the radar 
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signal through vegetation or into the soil, thereby increasing their reflectivity (Walker 

2016).  

Wagner et al. (1999) claimed that the backscattering coefficient for vegetated areas 

is sensitive to the soil moisture content only in case of moderate or low vegetation, like 

grasslands or sparsely forested areas. Over agricultural areas, the sensitivity of C-band 

Sentinel-1 measurements to soil moisture changes was confirmed in the study by 

Bousbih et al. (2017). Furthermore, Szigarski et al. (2018) found that at longer 

wavelengths (such as in L-band), microwave indices are affected by soil moisture and 

surface roughness even in dense vegetation.  

However, Frison et al. (2018) did not find out any relation between precipitation 

and backscatter values over forested areas using the C-band of Sentinel-1 mission. They 

explained this behaviour by the difference between the measured precipitation and the 

precipitation that can be retained by the leaves or needles of a tree. Tanase et al., (2019) 

also found that C-band was less sensitive to vegetation water content (variations about 1 

dB) compared to P- and L-band.  

On the other hand, Olesk et al. (2015) found a strong correlation between 

backscatter values and temperature using images acquired by C-band Sentinel-1 sensor. 

In addition, they found that a thick snow cover does not affect backscatter values – the 

backscatter value dropped 1 dB for images with a thin snow cover compared to snow-

free image. Ranson & Sun (2000) found that freezing conditions generate low dielectric 

constants in boreal forests at L- and C-band data, which is reflected by the decrease of 

the backscatter value from tree canopy.  

 

1.5 Effects of terrain and attempts to their correction 

As mentioned before, effects of terrain can largely influence the backscatter over 

studied area, especially in case when combining images from different paths and orbits 

or analysing the backscatter response of a given land cover class across the entire 

image. For instance, Rauste (1990, p. 1267) found that “65 per cent of the total variation 

in land pixels can be attributed to terrain topography”. “The principal environmental 

factors that affect the radiometric quality of SAR images” include “combined effects of 

topography, slope, radar look angle and aspect” (Hinse, Gwyn, Bonn 1988, p. 122). 

With the calculation of local incidence angle (LIA), we can obtain a value which 
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involves all these factors. The accurate calculation of the local incidence angle is 

essential in avoiding errors in the further correction process (van Zyl et al. 1993). 

Bayer et al. (1991) analysed the influence of different geometrical and imaging 

parameters as height, maximum slope, slope in the look direction, aspect of the 

maximum slope relative to the look direction at Seasat L-band and found that the local 

incidence angle had the strongest influence on the backscatter value. High dependence 

of backscatter on terrain topography was found in Rauste (1990) and he proved that 

with the increase of the incidence angle at L-band, different forest types become more 

separable and that the forest canopy is contributing significantly to the backscatter only 

at higher incidence angles. In an earlier study, Sun & Simonett (1988) found that at L-

band HH polarized data, the dominant contribution to the backscatter is from the tree 

trunk for local incidence angles between 10° and 65°, whereas for large local incidence 

angles (65°-70°) the volume scattering from the canopy becomes dominant. In contrast 

to the studies at L-band, at C-band the volume scattering over coniferous forests was 

found to be the dominant scattering mechanism at the entire range of local incidence 

angles and that contribution of double-bounce scattering over coniferous forest was 

negligible at C-, L- and even at the P-band (Luckman 1998). Luckman (1998) also 

analysed the backscatter response over upland pastures using airborne SZAR data at P-, 

L- and C-band. He observed that at C-band data for low local incidence angles the 

volume scattering is a dominant scattering mechanism for pastures, while from about 

30° of local incidence angle the surface scattering becomes dominant.  

In addition, van Zyl (1993) noticed that the effect of topography on the forest floor, 

where scattering from ground and trunk layer may occur, is more prominent for longer 

wavelengths and HH polarization, like P-band, but this effect disappears at L-band (Van 

Zyl 1993). Durden et al. (1991) also confirmed, that in a relatively flat terrain the 

ground-trunk interaction is important only at P-band, compared to C- and L-band. 

However, they stated that for steep slopes the ground-trunk interaction might be smaller 

even at P-band caused by the change of their mutual geometries (angles between the 

trunk and the ground).  

Castel et al. (2001) dealt with the effect of changing scattering caused by change in 

incidence angle for biomass retrieval from forested areas using JERS-1 and SIR-C L-

band data. They suggested that in studies analysing forest stand parameters in hilly 

terrain it is important to also consider parameters as canopy height from which is 

possible to calculate the wave path length through the forest canopy in a sloping terrain. 
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(3)  

(4)  

However, in this method the knowledge or at least a close approximation of the real tree 

canopy height is expected. In contrast to them, Dostálová et al. (2016) proved, that at C-

band, the forest height parameter has only very limited influence on backscatter 

response from forests, so it can be neglected.  

There are several techniques to correct the topographic effects. Based on the 

reviewed literature, there are three main types of corrections which were used to correct 

the topographic effects. Among the very first approaches used to correct the topographic 

effect belong methods based on cosine correction (Topouzelis, Singha 2016; Hinse, 

Gwyn, Bonn 1988; Teillet et al. 1985; Bayer, Winter, Schreier 1991; Zhou, Zheng 

2017). The second is based on statistical methods. Mladenova et al. (2013) identified 

two approaches within the group of statistical methods type which are based on: 1) 

linear or second order regression equations and 2) histogram/frequency matching. The 

third one is currently the most used type of correction, the so called Radiometric Terrain 

Flattening developed by Small (2011). Another classification of correction methods can 

be found in Bayer et al. (1991), where they grouped normalization models into three 

categories: a) cosine-based models, b) polynomial models, c) mean grey value models. 

They used 13 different empirical backscatter models for correction the relief effects in 

SAR images over vegetated areas.  

 

1.5.1 Cosine square normalization 

In the simplest way of normalization (correction) where the flat terrain and 

homogenous vegetation cover is assumed, the Lambert´s law for diffuse surfaces can be 

used (Teillet et al. 1985), which for the case of SAR backscatter is given by: 

 

𝜎𝜃
0 = 𝜎0

0 𝑐𝑜𝑠2(𝜃) 

 

where 𝜎𝜃
0 is the normalized (corrected) radar backscatter value of measured backscatter 

𝜎0
0 and 𝜃 is the radar incidence angle. Clapp (1946) (cit. in Teillet et al. (1985)) found a 

better correlation to field data using the so-called Lommel-Seeliger model given by: 

 

𝜎𝜃
0 = 𝜎0

0 𝑐𝑜𝑠(𝜃) 
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(5)  

(6)  

(7)  

In Topouzelis & Singha (2016), the cosine square normalization given by (3) was 

used for oceanographic application using ENVISAT ASAR WSM C-band data, where 

the effect of topography was not present. The equation given by (3) was adapted to 

create an equation, where the reference incidence angle (𝜃𝑟𝑒𝑓) is assumed for the entire 

image (5): 

 

𝜎𝑟𝑒𝑓
0 = 𝜎𝜃

0
𝑐𝑜𝑠2(𝜃𝑟𝑒𝑓)

𝑐𝑜𝑠2(𝜃)
 

 

where 𝜎𝑟𝑒𝑓
0  represents the calculated backscatter value for the given reference incidence 

angle. In their study, the cosine square normalization produced worse results than the 

original image and the authors suggested that this type of normalization is not sufficient 

to use for wide swath SAR images.  

In mountainous terrain it is much more important to remove the topographic 

effects. Zhou & Zheng (2017) used the same type of cosine square normalization given 

by (5) for radar glacier mapping and dry snow line mapping using Sentinel-1 images. 

They had to consider the elevation range in the study area, which was greater than 2500 

meters, so instead of using the radar incidence angle 𝜃 they used local incidence angle 

𝜃0:  

 

𝜎𝑟𝑒𝑓
0 = 𝜎𝜃

0
𝑐𝑜𝑠2(𝜃𝑟𝑒𝑓)

𝑐𝑜𝑠2(𝜃0)
 

 

In an earlier study by Hinse, Gwyn, Bonn (1988) also used equation (6), however 

the normalized backscatter value 𝜎𝜃
0 was calculated differently, using the equation: 

 

𝜎𝜃
0 = 𝑏 𝑐𝑜𝑠𝑞(𝜃0) + 𝑎 

 

where b and a are coefficients representing slope and offset of the linear regression, 

respectively. The exponent q refers to the slope of the linear regression between 𝜎𝜃
0 and 

cos(𝜃0). In addition, the square exponents of the cosine of reference and local incidence 

angles from (6) were calculated using semi-empirical functions to evaluate the 

relationship between the local incidence angle and the backscatter. The resulting 

equation was: 



26 

 

(8)  

(9) 

(10) 

 

𝜎𝑟𝑒𝑓
0 = 𝜎𝜃

0
𝑐𝑜𝑠𝑞(𝜃𝑟𝑒𝑓)

𝑐𝑜𝑠𝑞(𝜃0)
 

 

where, similarly as in (7), parameter q represents the slope of the linear regression. They 

assumed that the cosine of the local incidence angle cos(𝜃) represents the parameter 

including the topographic effects. In their study, similarly to Teillet et al. (1985), they 

developed other two cosine-based normalization methods which used the obtained 

coefficients of linear regression: 

 

𝜎𝑟𝑒𝑓
0 = 𝜎𝜃

0  
𝑐𝑜𝑠𝑞(𝜃𝑟𝑒𝑓) + 𝑐

𝑐𝑜𝑠𝑞(𝜃0) + 𝑐
 

𝜎𝑟𝑒𝑓
0 = (𝜎𝜃

0 − 𝑎)
𝑐𝑜𝑠𝑞(𝜃𝑟𝑒𝑓)

𝑐𝑜𝑠𝑞(𝜃0)
+ 𝑎 

 

where c = a / b. With these normalizations, Hinse, Gwyn, Bonn (1988) was able to 

reduce only a maximum of 10 percent of variance caused by incidence angle, Bayer et 

al. (1991) reduced 5-13 % for forested areas and 5.5-12 % for agricultural lands, 

whereas Teillet et al. (1985) mentioned that simple cosine corrections on a general 

forest class show only a little or no significant improvement compared to uncorrected 

data and these methods marked as inadequate to correct the data, especially in places 

where incidence angles are greater than 50°. However, from the linear regression they 

got different coefficients for each class, what make the classes separable. Anyway, they 

suggest using terrain correction methods on data to get more reliable results in 

classification of forests. 

In some researches (i.e. Bayer et al., 1991) the coefficients of linear regression were 

calculated using algorithm for least-squares estimation of nonlinear parameters. 

 

1.5.2 Regression-based normalization 

In most of the studies, in the process of removing the incidence or local incidence 

angle dependency on backscatter, all image values are normalized to the same incidence 

angle (Dostálová et al., 2016; Dostálová et al., 2018; Gauthier et al., 1998; Nguyen et 

al., 2015). 
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The prerequisite for successful application of the regression-based normalization is 

to find a clear relationship between backscatter and (local) incidence angle. Several 

studies used linear regression analysis to model this relationship (Dostálová et al. 2016; 

Gauthier, Bernier, Fortin 1998; Nguyen et al. 2015; Dostálová et al. 2018; Rüetschi, 

Schaepman, Small 2018; Widhalm, Bartsch, Goler 2018; Makynen, Karvonen 2017; 

Pathe et al. 2009; Mougin et al. 1995). For example, Teillet et al. (1985) experienced a 

statistically significant correlation between SAR backscatter and local incidence angle 

for different forests types and clearings. Pairman et al. (1997) supported this finding in 

their study, where the regression analysis between the backscatter values and local 

incidence angles showed a strong negative relationship. Mougin et al. (1995) using 

ERS-1 Wind Scatterometer C-band data observed a flat angular behaviour over tropical 

forests (regression line with slope b = 0.056) and shrub savannas (b = 0.089), while 

significant angular variations were observed for sparse vegetation (b = 0.13) and for 

bare surfaces (b = 0.21). In addition, in Frison & Mougin (1996) a higher slope for tree 

savanna (b = 0.12) was observed, and the Sahelian area (b = 0.15) and deserts (b = 0.24) 

were also investigated (fig. 2). Steeper regression lines were caused by a stronger 

influence of surface roughness and topography for these types of surfaces.  

 

Fig. 2 Angular signatures of the backscattering coefficient for different vegetation types 

over Africa 

 

Source: Frison & Mougin (1996), p. 556 
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On the other hand, Hinse, Gwyn, Bonn (1988) experienced a weakly correlated 

result with a slight negative slope over forested areas, though the correlation was 

statistically significant. The source of the weak correlation could originate from the fact 

that they calculated the linear regression between backscatter and cosine of the 

incidence angle instead of the original incidence angle value. They found that for pixels 

with slopes less than 6° and at local incidence angle less than 26° did not occurred any 

clear correction after the correction using semi-empirical cosine-based methods. 

However, they found that pixels with higher slope angles have a stronger correlation to 

the backscatter value. 

According to Pairman et al. (1997), noisy appear of scatter plots representing 

backscatter-incidence angle relationship at lower incidence angles is caused by several 

factors: 

- Speckle noise is greater in the brighter areas 

- Lower accuracy of the Digital elevation model (DEM) and possible errors in 

registration in areas with steep and rough terrain can be reason of error 

generation (mainly in areas with small local incidence angle) 

- Possibility of less homogenous vegetation cover in areas with higher terrain 

variations 

 

Elimination of backscatter-incidence angle relationship 

The backscatter-incidence angle relationship can be generated in various ways. 

Nguyen et al. (2015) used a regression-based incidence angle correction allowing 

combination of observations from several tracks and years. They used a pixel-based 

method, where they used all available images from the time range from January 2007 

till December 2011 to compute the regression line for each image pixel separately, so 

for each pixel they received a specific slope and offset parameter of the regression line. 

The number of observation used for a regression line generation was based on the 

spatial extent of overlapping images used for it in the selected time range (the average 

number of measurements for a pixel was 101), while the number of different tracks was 

only 15 in total. In this case, using multiple acquisitions from the same path through the 

year, a range of different backscatter values can be generated for a certain incidence 

angle, which is caused mainly by the different growing season of plants or by the 

changing climatic conditions during the year (as in fig. 3). 
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The same pixel based method was used also in Widhalm et al. (2018), where they 

determined the linear relationship of incidence angle and backscatter for mapping land 

cover types in high latitude environments based on time series of Sentinel-1 data. This 

method was used also for analysing the annual variation of forest backscatter (Dostálová 

et al., 2016) and for annual seasonality monitoring of forests and their type 

classification using Sentinel-1 data (Dostálová et al., 2018). It was successfully used 

also in a surface soil moisture retrieval approach over Oklahoma, USA using between 

120 and 190 measurements for each pixel (Pathe et al. 2009). 

 

Fig. 3 Relationship of incidence angle and backscatter for a selected area plotted for 

several measurements over a long period of time. 

 

Source: Nguyen et al. (2015), p. 15876 

 

On the other hand, in Widhalm et al. (2018) the relationship of incidence angle and 

backscatter was estimated from several flight tracks, too, but based on the specific land 

cover type, so for each land cover type in the study they had specific coefficients of 

regression. They called this method as slope approach. Loew et al. (2006) also derived 

the angular dependency of backscatter from only image pixels from a specific land-use 

class using 67 ENVISAT ASAR WSM images. The incidence angle range was then 

divided to steps of 5° and mean values was calculated for each step. 

After the finding of the relationship between LIA and backscatter calculation of 

regression parameters, the next step is to apply an elimination of this relationship. In 

these studies, each scene was corrected to the same reference incidence angle 𝜃𝑟𝑒𝑓 using 

the equation, thus eliminating the effect of different radar incidence angle: 

 



30 

 

(11) 𝜎𝑟𝑒𝑓
0 = 𝜎𝜃

0 − 𝑏 (𝜃 − 𝜃𝑟𝑒𝑓)  

 

where 𝜎𝜃
0 is the backscatter value at his original incidence angle 𝜃, b is the slope of the 

linear regression line and 𝜃𝑟𝑒𝑓 is the reference incidence angle, to which the resulted 

backscatter is going to be corrected.  

This equation was  using radar incidence angle 𝜃 was used in several studies, tough 

with different reference incidence angles, usually using the middle value of the radar 

incidence angle range and (Dostálová et al. 2016; Gauthier, Bernier, Fortin 1998; 

Nguyen et al. 2015; Dostálová et al. 2018; Rüetschi, Schaepman, Small 2018; Widhalm, 

Bartsch, Goler 2018; Makynen, Karvonen 2017; Pathe et al. 2009). 

In some studies, the linear relationship between the local incidence angle and 

backscatter was calculated in other ways. For example, Gauthier et al. (1998) calculated 

the linear regression for the selected test sites on image pairs acquired from opposite 

orbits. Differences in backscatter values and in local incidence angles for test sites in 

each image pair were chosen as dependent and independent variables, respectively. 

Makynen & Karvonen (2017) calculated the dependence of differences in incidence 

angle and in backscatter of Sentinel-1 EW image pairs acquired in ascending and 

descending orbits over the same area covered by sea ice. 

 

1.5.3 Radiometric terrain correction – Terrain Flattening 

Radiometric Terrain Correction (or Terrain Flattening - TF), developed by Small (2011) 

is currently the most know and most used method for removing the influence of terrain 

on backscatter values. Using this method, not only the geometry, but also the 

radiometry of the scene is corrected for the terrain influences (Rüetschi, Small, Waser 

2019). In this method, the accurate knowledge of the acquisition geometry of image 

geometry and a DEM is used to estimate the local illuminated area of each image pixel 

(Small 2011). Local illuminated area is then used to normalize the backscatter value 

instead of LIA. Beta nought (β0) is converted to  the so called gamma naught 

convention (γ0) (Small 2011).  

This method is implemented in Sentinel-1 Toolbox of the SNAP software and as input 

bands requires non-ortho-rectified corrected data, because local incidence area can be 

derived only from the azimuth and slant range pixel spacings, and a DEM, while the 

output is the terrain flattened γ0. 
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(12) (13) (14) 

1.5.4 Other methods 

In the available literature, some other methods were also used. For example, Bouvet 

& Le Toan (2011) in their rice mapping methodology overcame the effect of different 

incidence angles caused by different sensing tracks with the “rationale” method. In this 

method, all two consecutive image pairs from the same track were used to derive the 

ratio of backscatter between the two images for each pixel. As a result, they obtained 

comparable images from different tracks from which created a classification feature for 

a classification. This classification was based on the maximum value of these images 

among each rice growing season. The selection of the maximum value assumes that the 

backscatter increases during rice growing season and over other land cover classes it is 

relatively stable. 

Topouzelis & Singha (2016) compared three different types of incidence angle 

normalizations for oceanographic applications: 1) the cosine square normalization, 2) 

theoretical backscattering shape function derived from a minimum wind speed and 3) 

empirical range fit.  

The last two assume of linear relationship between the incidence angle and 

backscatter value and use the inverse function (symmetric function to the linear function 

describing that relationship) to reverse the extracted linear profile. Then the 

normalization (14) is calculated as the average of the original (12) and symmetric 

functions (13). 

 

𝜎𝜃
0 = 𝑏𝜃 + 𝑎                      (𝜎𝜃

0)−1 = 𝑏𝜃 + 2𝑏𝜃𝑟𝑒𝑓 + 𝑎                  𝜎𝜃𝑟𝑒𝑓
0 =

𝜎𝜃
0 + (𝜎𝜃

0)−1

2
       

 

The so-called histogram-based equalization belongs to the methods based on 

statistical techniques. Its main advantage is, regarding to Mladenova et al. (2013), in 

that it can explains the nonlinear relationship between backscatter and local incidence 

angle and it is not sensor or site specific. 

In the study of Bayer et al. (1991) the simple backscatter mean value model of the 

local incidence angle produced similarly good results as the polynomial or cosine-based 

models. 

Another way is to use additional auxiliary data in addition to the DEM for 

eliminating the topographic effects. For example, Franklin et al., (1995) used also red 
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and near-infrared bands of Landsat and SPOT optical sensors to estimate the forest 

canopy depth. 

 

1.6 Seasonality vs short-term variations in radar backscatter  

When analysing time series generated from satellite data, it is necessary to 

distinguish between various random short-term (e.g. rainfall) and seasonal variations 

(e.g. phenological phase). In optical data, seasonal effects are manifested by a change in 

the phenological phase due to the strong seasonality in photosynthetic activity, such as 

in the NDVI index. Time series from radar data do respond to the phenological phase 

differently – by the change in the structure of the tree crown and a by the change in the 

moisture (Ulaby, Moore, Fung 1981). Increase of the humidity of the object or change 

in structure may cause the reflectance value to skew.  

 

1.6.1 Seasonality in forest backscatter response 

Dostálová et al. (2016), using Sentinel-1 C-band time-series, showed a yearly 

variation in backscatter over forests to be between 1 and 3 dB, where coniferous forests 

showed significantly higher values with different seasonal behaviour compared to 

deciduous forests. This made the two types clearly separable for the classification. In 

other study, Dostálová et al. (2018) observed a clear difference in seasonal variation of 

herbaceous and woody vegetation using C-band Sentinel-1 time-series. Within woody 

vegetation, the deciduous forests showed an easily distinguished backscatter from 

coniferous forests and vineyards, which had very similar responses between each other. 

Easily distinguished seasonal variation of backscatter over deciduous forests has been 

also shown in Guccione et al. (2016).  

Frison et al. (2018) found that the ratio of VV and VH polarization shows clearer 

seasonality over deciduous forests compared to VV polarization alone, where no 

seasonal variation was found, and VH, where slight variation was observed. They also 

showed a great correlation between backscattering coefficient ratio and deciduous 

forest’s phenology measured by NDVI profiles from Landsat-8 data. This also proved 

the sensitivity of C-band signal to the upper layer of the forest canopy, especially to 

leaves and primary branches. In contrast, coniferous forest did not show an apparent 

seasonality in radar backscatter in their study, however in the NDVI profile did. Authors 
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attributed that seasonality to the understory vegetation composed of deciduous species 

which can contribute to the nadir-pointing optical sensor’s reflectivity. Moreover, 

results of this study indicate that the phenology of vegetation can be estimated with 

higher accuracy using Sentinel-1 C-band data compared to optical data. 

That study confirmed the results of the study by Proisy et al. (2000) where the VV 

polarized C-band ERS data was marked as not suitable for monitoring seasonal 

variations of backscatter over mixed deciduous forests. According to authors, seasonal 

variations showed a chaotic behaviour, which they attributed to a strong backscatter 

response of branches in the beginning and the end of the leafy cycle. However, in their 

study, a time-series of data containing 45 images for a 3 year-long period was used, 

which refers to approximately 15 images per year. The resulted chaotic time-series 

variability can be therefore attributed to short-term variations of environmental effects 

or effects connected with changing growing cycle, which is not possible to capture in 

data with such a low temporal resolution. Another limitation of this study was the 

analysis of only one polarization, the VV polarization, whose low seasonal response 

over deciduous forests was observed also in recent studies using Sentinel-1 data (Frison 

et al., 2018).  

Sharma et al. (2005) examined the backscatter from different forest types compared 

to open areas using 97 Radarsat C-band images from period 1996-2004. They found 

that short-term environmental variations have a great influence on backscatter acquired 

over forests and noticed that using only one image can lead to erroneous interpretation 

of the data. For example, soil moisture has more significant impact on open areas than 

for forest canopy, causing difficulties in separability of these classes if the soil moisture 

is high, where open areas can have similarly high backscatter as forests. On the other 

hand, wet snow can be useful in separability of these classes, because wet snow reduces 

the backscatter from open areas while from forests remain almost unchanged (caused by 

attenuation of signal by forest canopy).  

 

1.6.2 Short-term variations in radar backscatter and their elimination 

Short-term variations can cause variation in time series analysis. Therefore, in some 

studies, there was an attempt to eliminate these variations. One of the methods is using 

temporal averaging of the resulting images to smooth the time series curve to reduce 

random noises (Dostálová et al., 2016; Dostálová et al., 2018; Nguyen et al., 2015). 
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Among the disadvantages we can list the possible generation of noise caused by 

changes in land cover or shifts in the change detection caused by narrower range of 

observations. Despite of disadvantages of this method, Nguyen et al. (2015) stated that a 

weekly sampling of rice fields is enough for capturing any change, so they choose a 7-

day interval to calculate the mean of backscatter over all acquisitions. The 7-day 

interval was chosen also to tackle the temporal heterogeneity of the Envisat 

acquisitions. By that they created a more smoothed, but temporally reduced time series 

based on original data. Based on this work,  Dostálová et al. (2016) and Dostálová et al. 

(2018), in an effort of eliminating of environmental effects and noise, calculated 12-day 

averages from the time series and then applied a Gaussian temporal filter to even more 

limit these noise causing effects.  

Reiche et al. (2018) wanted to find out how the spatial normalization, created using 

optical data in their previous study (Hamunyela et al. 2016), reduces seasonal effects 

and how these effects affect time series generated from Sentinel-1 C-band (in VV 

polarization) compared to Landsat NDVI and PALSAR L-band (VH polarization) time 

series. They found that seasonality was most evident in the optical data (Landsat) and 

for Sentinel-1 and PALSAR data, the seasonal backscatter effects were much smaller, 

and the class separability results can be improved by normalization (significantly for the 

Sentinel-1 data). 

 

 

 

 

 

 

 

 

 

 



35 

 

2 Study areas, data, and methods 

2.1 Study areas 

The selection of study areas was limited to four Central European countries - 

Czechia, Slovakia, Hungary, and Poland (fig. 4). This study deals with 15 study areas - 

10 with majority of the coniferous forests and 5 with majority of the broadleaf forests. 

Each study area was defined as a 20x20 km bounding box around a central point. The 

main criteria for the selection of the study area was that the share of forests (according 

our forest mask) must be higher than 50%. Exception was given to study area 8, which 

share of the forests was only 26%, because we wanted to include also broadleaf forests 

in lowlands with mean elevation lower than 150 m a.s.l. In similar areas the share of 

forests is usually very low in the Central Europe – the majority of the areas are 

represented by agricultural lands. These areas had to represent areas with majority of 

coniferous or deciduous forests in national parks (NP) or protected landscape areas 

(PLA) at various elevations, and with different slope values (tab. 2). Selection of 

protected areas was motivated by our long-term research interest in forest monitoring in 

Czech and Slovak national parks (Štych et al. 2019; Lastovicka et al. 2020; Stych et al. 

2019). 

For further testing of effectivity of the proposed method on short-term time series, 

central points of four study areas (1, 4, 6 and 12) with different LIA ranges were 

selected. Around these point a 20 m buffer was created (hereafter referred to as “case 

studies”). The main criterion in the selection of these case studies was that these areas 

had to be stable – were not significantly disturbed by anthropogenic or environmental 

factors in the time range 2015-2020. For these case studies, various characteristics were 

calculated – elevation, slope and aspect values and LIA range with minimum and 

maximum values (tab. 3). 
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Fig. 4 Map of study areas 

Explanatory notes: study areas marked with * are broadleaf forests 

 

Tab. 2 Characteristics of study areas  

 
Source: Own work. Explanatory notes: study areas marked with * are broadleaf forests. 

PLA - Protected Landscape area, NP - National Park.  

Study 

area

Coordiates of the 

central point (x, y)

Mean elevation 

(m a.s.l.)

Mean slope 

(degrees)
Description

1 20.0088, 48.9569 1098.24 18.44 Coniferous forest in the Low Tatras NP (SK)

2 13.4776, 49.0457 1044.99 9.17 Coniferous forest in the Šumava NP (CZ)

3 19.6625, 48.9596 1133.66 22.54 Coniferous forest in the Low Tatras NP (SK)

4 13.5026, 49.0347 1058.60 8.77 Coniferous forest in the Šumava NP (CZ)

5* 21.4618, 48.4200 334.76 11.61 Broadleaf forest in Zempléni mountains PLA (HU)

6* 22.4873, 49.0644 714.49 15.94 Broadleaf forest in Poloniny NP (SK)

7* 17.2490, 48.3916 357.66 9.12 Broadleaf forest in Malé Karpaty PLA (SK)

8* 21.9982, 47.6490 148.47 2.73 Broadleaf forest in Hajdúsági PLA (HU)

9* 18.9683, 47.7215 276.74 9.34 Broadleaf forest in Duna-Ipoly NP (HU)

10 13.8272, 49.7284 597.96 6.31 Coniferous forest in Brdy PLA (CZ)

11 16.0196, 49.6786 679.14 5.69 Coniferous forest in Žďárské vrchy PLA (CZ)

12 14.9671, 48.9217 508.58 4.35 Coniferous forest in Třeboňsko PLA (CZ)

13 18.5186, 49.4805 722.35 15.27 Coniferous forest in Beskydy PLA (CZ)

14 22.4457, 50.6717 287.31 3.01 Coniferous forest in Lasy Janowskie PLA (PL)

15 23.6494, 53.1920 52.83 2.66 Coniferous forest in Knyszyn Forest NP (PL)
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Tab. 3 Characteristics of case studies for use in the short-term time series analysis 

 

Source: Own work. Explanatory notes: case study marked with * is a broadleaf forests. 

 

2.2 Google Earth Engine 

For accessing and analysing data, and developing methods, Google Earth Engine 

(GEE) (https://earthengine.google.com), “a cloud-based platform for planetary-scale 

geospatial analysis that brings Google’s massive computational capabilities” (Gorelick 

et al. 2017), was used. GEE was designed to help researchers easily spread they results 

to other researchers, policy makers, NGOs, field workers and to the public. GEE is 

accessed and controlled through an Internet-accessible application programming 

interface (API) and a web-based interactive development environment (IDE) that 

enables quick prototyping and visualization of results, so users can access data and 

perform analysis trough any web browser. (Gorelick et al. 2017) 

Using GEE, there is no need to download gigabytes of data, because it contains 

“multi-petabyte” analysis-ready data including massive amount of satellite and aerial 

data from optical and radar wavelengths, environmental variables, weather and climate 

data, land cover datasets, topographic and socio-economic datasets. There is a 

possibility for users to make requirements on new datasets, so by the time the number of 

datasets is enlarging and are supplemented. Users can also use their own data (both 

raster and vector) and upload it directly to the GEE.  

There is no need to download any software and having a computer with robust 

computation power. GEE has more than 800 in-built functions, representing the range 

from simple mathematical functions to powerful geostatistical and image processing 

operations. These functions are available using client libraries in Python or JavaScript 

languages. In addition, users can create their own algorithms. As all the computational 

power of the GEE is located in the “cloud”, for access the data and functions is enough 

to have a web browser. All the work can be done directly in the web browser on the 

Earth Engine Code Editor available at code.earthengine.google.com (fig. 5). 

Study 

area
Coordinates (x, y) Elevation (m a.s.l.)

Slope/Aspect 

(degrees)

LIA range (max-min) 

in degrees

1 20.0088, 48.9569 1106 31 / 250 69 (72-3)

4 13.5026, 49.0347 994 18 / 292 36 (21-56)

6* 22.4873, 49.0644 562 13 / 170 22 (33-55)

12 14.9671, 48.9217 508 5 / 260 13 (33-45)

https://code.earthengine.google.com/
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Another great positive side of using GEE is that there is a large community of users 

who can share their ideas, ask for help, or ask questions about any kind of problem. 

Moreover, a huge archive of solved issues is available for everyone, thus bringing GEE 

closer to the general public. 

 

Fig. 5 Earth Engine Code Editor 

 

Note: For more information about Earth Engine Code Editor see 

developers.google.com/earth-engine/playground. 

 

2.3 Data 

2.3.1 Sentinel-1 

The main data source for this study is represented by the Sentinel-1 SAR data. 

Sentinel-1 satellite family represents the continuation of earlier C-band spaceborne 

radar sensors of the ERS-1, ERS-2 and Envisat ASAR missions of the European Space 

Agency (ESA). The Sentinel-1 is the first series which was designed to meet the 

requirements of the Earth Observation of the European Union (EU). Sentinel-1 mission 

is based on systematic global coverage monitoring, proposed to monitor marine 

environment, including oil spill detection and sea-ice monitoring, mapping of land 

surfaces and mapping in support of crisis situations (natural disasters and humanitarian 

aid) (Torres et al., 2012). 

http://www.developers.google.com/earth-engine/playground
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The Sentinel-1 mission is composed of a constellation of two satellites, Sentinel-1A 

and Sentinel-1B, sharing the same orbital plane. A lifetime of one satellite is estimated 

to be between 7 up to 12 years. Satellites operate at C-band, at the centre frequency of 

5.405 GHz, orbiting in a near Polar Sun-Synchronous orbit at a height of 693 km, 

having 12-day repeat cycle per satellite.  

Sentinel-1 operates in four acquisition modes: Stripmap (SM), Interferometric Wide 

swath (IW), Extra-Wide swath (EW), Wave mode (WV), illustrated in fig. 6. For the 

detailed information see tab. 4 and fig. 6. Compared to ERS satellites or other SAR 

sensors, which primarily acquire data in a StripMap mode (line by line), Sentinel-1 data 

are acquired in TOPS mode (neighbouring pixels are of different acquisition phases). 

Compared to other existing C-band SAR systems (ASAR/Envisat or RADARSAR-2), 

in the case of Sentinel-1 great attention was focused on the radiometric accuracy. An 

absolute radiometric calibration is only 1 dB (3σ) of all acquisition modes with 

radiometric stability of 0.5 dB (3σ). Noise Equal to Sigma Zero (NESZ) for Sentinel-1 

is -22dB. 

The main acquisition mode is the IW mode with 250 km wide swath, with high 

geometric (5m in ground range x 20 m in azimuth resolution) and radiometric resolution 

operates over the majority of the Earth’s surface and acquiring images at VV or VV and 

VH polarization (fig. 7 and fig. 8). The EW mode with a 400 km wide swath is operates 

mainly over polar areas including seas and acquiring images at HH or HH and HV 

polarizations (fig. 7 and fig. 8). The incidence angle in IW mode has a range from 31° 

to 46°, while the EW mode from 20° to 47°. 

Except for WV mode, which is using a single polarization (HH or VV), imaging 

instruments of Sentinel-1 support dual polarization (HH + HV or VV + VH) at each 

acquisition mode, using one transmit chain (H or V) and two parallel receiver chains for 

H and V polarization. (Torres et al. 2012)  

 

Tab. 4 Characteristics of Sentinel-1 acquisition modes. 

 

Source: Torres et al. (2012), p. 13 
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Sentinel-1 products are accessible in different processed levels. SAR raw data are 

represented with data Level-0, from which Level-1 data are generated. Pre-processed 

Level-1 include two categories: Single Look Complex imagery (SLC) mainly for 

interferometric applications and Ground Range Detected Georeferenced imagery (GRD) 

for intensity-based applications. (Torres et al. 2012) 

Level-1 SCL products contain pixels represented by a complex (I and Q) magnitude 

value containing both amplitude and phase information. Coordinates of image plane are 

preserved in the original dimensions: slant range by azimuth. These images contain 

three sub-swaths per polarization, resulting in 6 images in total for IW mode. In the SM 

and WV modes the image pixel spacing are preserved at the natural spacing, while in 

IW mode, the image is resampled to a common pixel spacing grid in range and azimuth.  

Level-1 GRD images are derived products from SCL, having the slant range 

coordinates projected onto the ellipsoid of the Earth and pixel values represent the 

detected magnitude, while phase information is lost. Each image burst was multi-

looked, so the speckle was reduced, and then the bursts were seamlessly merged into 

single image per polarization channel. 

 

Fig. 6 Acquisition modes of Sentinel-1 

 

Source: adopted from Torres et al. (2012), p. 13 
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Fig. 7 Sentinel-1 revisit & coverage frequency 

 

Source: ESA (2020) 

 

Fig. 8 Sentinel-1 mode, polarization, and observation geometry 

 

Source: ESA (2020) 
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Sentinel-1 data in Google Earth Engine 

In our study Sentinel-1 Level-1 GRD scenes were used, which are available in 

GEE. Sentinel-1 images in GEE were pre-processed to backscatter coefficient σ°. The 

σ° represents target backscattering area (radar cross-section) per unit ground area 

processed to backscatter coefficient σ° converted to decibels as 10*log10σ°. Pre-

processing of scenes in GEE was performed using the SNAP Sentinel-1 Toolbox and 

included the following steps: applying the orbit file, GRD border noise removal, 

thermal noise removal, radiometric calibration, terrain correction (orthorectification) 

using the SRTM 30-meter DEM or the ASRER DEM for high latitudes (>60° or <-60°). 

The most used method for correction of different backscatter values caused by terrain, 

the so-called Radiometric Terrain Flattening, was not applied in GEE due to artifacts on 

mountain slopes. (GEE 2020b).  

 

2.3.2 Digital terrain model SRTM 

Another important input data was the Digital terrain model Shuttle Radar 

Topography Mission (DEM SRTM) which was born based on the need of globally 

consistent topographic data using a consistent mapping technique. The so-called 

interferometric SAR (InSAR) technique was used, where phase difference of two radar 

images acquired with a very small base to height ratio (0.00002) was used to measure 

the topography. In this mission, bands X and C were used. As the data acquisition was 

done using radar, the return of the signal could be influenced by the vegetation, 

especially by their height, structure, and density. Dense vegetation did not allow the 

penetration of the signal to the ground base, so the data represents their height, while 

clear-cuts in dense forests are clearly noticeable. On the other hand, very smooth 

surfaces such as calm water, steep slopes facing away the radar (causing shadowing) or 

toward the radar (foreshortening or layover) may not scatter enough energy back to the 

sensor, thus causing areas of extreme errors – voids. (Farr et al. 2007) 

The database in GEE (SRTM V3 product (SRTM Plus) provided by NASA JPL), in 

contrast to earlier versions, undergo a void-filling process using open-source datasets 

such as ASTER GDEM2, GMTED2010, and NED. Data are available in 1 arc-second 

resolution, which corresponds to approximately 30 meters. (GEE no date) 

According to the accuracy assessment, data achieved a height accuracy from 7 to 13 

meters depending on continent (for Eurasia it is 8.8 meters) and an absolute vertical 
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accuracy of data was better than 9 meters (Farr et al. 2007). Santillan & Makinano-

Santillan (2016) compared the height accuracy of models made from SRTM, ALOS and 

ASTER. They explored a territory in the Philippines, where altitudes ranged from 0 to 

over 2600 m. m. They found that SRTM achieved better mean error results in their case 

compared to previous studies - they found a mean error of 6.91 m, a standard deviation 

of 4.57 and a Root Mean Square Error (RMSE) 8.28 (mean error of 10 m and RMSE 16 

m was expected). 

 

2.3.3 Land Cover Databases 

In this study, two land cover databases were used as complimentary data, the 

CORINE Land Cover (CLC) and Hansen et al.’s Global Forest Change databases. 

 

CORINE Land Cover Database 

CORINE CLC is a land cover inventory initiated in 1985 including five subsequent 

databases (CLC1990, CLC2000, CLC2006, CLC2012 and the latest CLC2018). The 

datasets were created by classification of satellite images with in-situ measurements 

used as ancillary data at a national level by national teams coordinated by the European 

Environment Agency (EEA). All the databases have are the same in the definition of 

main technical parameters: the minimum mapping unit (MMU) was set to 25 hectares, 

minimum width of linear element (MMW) to 100 metres, and the database 

nomenclature includes 44 land cover classes grouped in a three-level hierarchy. 

Although these classes were preserved though the time, their definition was changed 

(see Kosztra et al. 2019). Data processing methodology have been also changed. While 

the first CLC database was created using photointerpretation methods (hand-drawing of 

polygons and later digitised) which generated several errors, from the CLC2000 

database the computer-assisted image interpretation (CAPI) was applied. 

In our study we used the CLC2018 product, so we have added more detailed 

information for that product. The dominantly used satellite data presented Sentinel-2 

imagery with Landsat-8 data used for gap filling. The geometric accuracy of CLC data 

was better than 100 m a thematic accuracy achieved results of ≤ 85%. (Büttner et al. 

2017) 

According to the CLC2018 nomenclature, forests belong to the “Class 3: Forest and 

semi-natural areas” and within that to the sub-category “Class 3.1 Forests”. This sub-
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category is divided to three “three-level” category: 311 Broad-leaved forest, 312 

Coniferous forest and 313 Mixed forest. In these categories, only trees higher than 5 

metres were taken into consideration with at least 30% coverage of forest crowns. Based 

on their definition, the coniferous forest class includes areas, where coniferous forests 

represent at least 75 % of the formation. The same was applied to the broad-leaved 

forest, where 75 % of trees must belong to broad-leaved stands. From both of types of 

forest class definitions, the mixed-forest places areas were excluded, while this class is 

defined separately in the database and it was not used in our study. 

 

Hansen Global Forest Change database 

Hansen et al.’s Global Forest Change database represents a database of global tree 

cover extent, loss, and gain at a spatial resolution of 30 m, originally for the period from 

2000 to 2012 (Hansen et al., 2013a), later accompanied by data from subsequent years. 

Trees were defined in this database as all vegetation taller than 5 m in height, which 

matches the minimum tree height definition in CORINE CLC. Forest loss was defined 

as change of forest stand, having at least 50 % of crown cover at Landsat pixel scale, to 

non-forest (~0 % crown cover), while forest gain represents the inverse situation, where 

the non-forest state changes to forest. Selective logging or the so-called thinning within 

forest stands were not included to the forest less definition. Till 2012 Landsat 7 

Enhanced Thematic Mapper Plus (ETM+) scenes were used, pre-processed, and 

processed in GEE. Training data were derived from very high resolution (VHR) optical 

imagery such as Quickbird or existing tree cover layers derived from Landsat and 

MODIS data. Validation of results has been performed using 1500 control areas at a 

global scale. These amount of control areas were divided between four types of climatic 

domains (tropical, subtropical, temperate, and boreal) and the validation was performed 

also for these areas separately. For global scale, the results showed a 99.6% and 99.7% 

of overall accuracy, 88% and 74% for producer’s accuracy and user’s accuracy 

achieved 87% and 76% for forest loss and gain, respectively. For the temperate climate 

domain 258 validation areas were available. Overall accuracies were 99.3% and 99.7%, 

while producer’s accuracy was 94% and 98%, and user’s accuracy was 88% and 77% 

for forest loss and gain, respectively. (Hansen et al., 2013b) 

GEE currently (May 2020) includes the 1.6 version of the database which includes 

global forest coverage till 2018, where several changes were done relative to the 

original 1.0 version: from 2013, Landsat 8 Operational Land Imager (OLI) data were 
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used; reprocessing of forest loss was done from 2011; the training data calibration; and 

input spectral features for the loss model were improved. (Hansen et al. 2018) 

 

2.3.4 Software used in the study 

For pre-processing of Sentinel-1 data in the desktop environment, the Sentinel-1 

Toolbox version 7.0. of the SNAP (Sentinel Application Platform) software version 7.0. 

was used. 

Graphic calculator application in GeoGebra was used to create several figures 

mainly in methodology part. GeoGebra is an online mathematic software with an easy-

to-use interface available at https://www.geogebra.org/. Main applications include: 

Caclulator Suite, Graphic Calculator, Geometry, 3D Calculator, CAS Calculator, 

Scientific Calculator and Notes.  It is an open source software freely available for non-

commercial users.  

Microsoft Excel for Microsoft 365 and Google Sheets was used to create tables and 

figures mainly in Results section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.geogebra.org/
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2.4 Methodology 

Methodologically, the first step was to find the necessary satellite images and 

ancillary data sources available in GEE. After that, it was necessary to calculate the 

local incidence angle (LIA) for each Sentinel-1 image pixel. After calculating the LIA, 

ascending, and descending databases were merged. In order to collect an adequate 

amount of data for calculation of linear relationship between backscatter and LIA, in 

each study area we generated 1000 random points. A 20 m buffer was created around 

these random points. At the same time, a forest mask was generated from the 

combination of CORINE CLC and Hansen Global Forest databases. For further 

analysis, areas completely inside the forest mask were selected, ensuring that only forest 

areas will serve as input data to regression analysis. These forest areas were overlaid 

with Sentinel-1 images and the and mean values of backscatter and LIA were extracted. 

From these areas, a scatterplot was created, and the linear regression equation was 

calculated. The slope of the linear regression line and the LIA value was selected for the 

final LIA correction. For statistical comparison of study areas and evaluation of the 

proposed method, the same LIA value was used for each study area – 38.5°. For a short-

term time series analysis and comparison, a mean value calculated from the minimum 

and maximum LIA for the selected case study was used. After the LIA correction, 

accuracy assessment was done, and time series were created. Fig. 9 shows the basic 

procedure of the methodology. Appendix 2 is describing the digital attachment of this 

work, where the JavaScript codes of the algorithm and codes for the calculation of 

statistical parameters are available. 

In the next section, the individual steps of the methodology will be described in detail. 

 

Fig. 9 Methodology used in this work 

 

Source: own work 
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(15) 

2.4.1 Calculation of local incidence angle 

In the literature a clear definition of the local incidence angle can be found (Castel 

et al. 2001; Hinse, Gwyn, Bonn 1988; Franklin et al. 1995; Ulander 1996). Local 

incidence angle is the angle between the look vector i and the vector n normal to the 

surface, see fig. 10. 

The calculation of the LIA requires knowledge of slope (𝛼) and aspect angles (𝛽) of 

the examined area and the viewing azimuth of the sensor (𝛾) (Radar Look Angle - RLA) 

(fig. 11). Slope and aspect were generated from SRTM DEM and then reprojected and 

resampled (using nearest neighbour method) to the Sentinel-1 band’s projection and 

resolution grid, respectively. The viewing azimuth calculation was performed for each 

image separately, mainly because the ascending and descending pass have different 

viewing azimuths and therefore different LIA calculation method was needed. 

 

Fig. 10 Difference between radar incidence angle (𝜃) and local incidence angle (𝜃0) 

 

Source: own work based on Rizzoli, Brautigam (2014). Explanatory notes: i = look 

vector, n = vector vertical to the surface, represented by a local slope LS.  

 

The derivation of the equation for calculation of LIA is based on a calculation of 

the distance of two vectors, where we assume two points lying on vectors i and n: point 

P1 on vector i and point P2 on the vector n. (fig. 11). These points have the same 

distance k from the point of contact with the surface A. 

|P1A| = |P2A| = k 
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(16) 

(17) 

The distance we are going to calculate is the distance between points P1 and P2 – 

|P1P2|. For that, we need to define the coordinates x, y, z of points P1 and P2 using some 

basic trigonometric functions and then calculate the distance between them.  

 

Fig. 11 Illustration of incidence wave vector i dependence on the vector normal to the 

surface n – angles and points involved in the computation of the LIA 

 

Source: own work based on Castel et al. (2001) 

 

To define the z coordinate of points, we need to calculate it on the plane of 

incoming wave for P1 (fig. 12) and on the plane of the vector normal to the surface for 

P2 (fig. 13) using the following formulas: 

 

For P1:  cos 𝜃 =  
𝑧1

𝑘
  =≫   𝒛𝟏 = 𝒌 𝐜𝐨𝐬 𝜽 

For P2 :  cos 𝛼 =  
𝑧2

𝑘
  =≫   𝒛𝟐 = 𝒌 𝐜𝐨𝐬 𝜶 
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(18) 

(19) 

(20) 

 

(20) 

(21) 

 

(21) 

(21) 

 
(22) 

(21) 

 

(23) 

(21) 

 

Fig. 12 Incidence wave plane        Fig. 13 Normal to the surface plane 

   

Source: own work    Source: own work 

Fig. 13 Normal to the surface plane 

To define the x and y coordinates, we need to calculate the distances AP1’ and AP2’: 

|𝐴𝑃1’| = k sin 𝜃 

|𝐴𝑃2’| = k sin 𝛼 

 

To define the x and y coordinates, we need to calculate them on xy plane. For 

calculating the coordinates of point P1 to project the incidence wave to the xy plane (fig. 

14 a) and for point P2 to project the vector normal to the surface to the xy plane (fig. 14 

b). Then we got the following formulas: 

 

For point P1: 

𝑥1 = |𝐴𝑃1’| cos 𝛾   =≫    𝒙𝟏 = 𝒌 𝐬𝐢𝐧 𝜽 𝐜𝐨𝐬 𝜸 

𝑦1 = |𝐴𝑃1’| sin 𝛾   =≫    𝒚𝟏 = 𝒌 𝐬𝐢𝐧 𝜽 𝐬𝐢𝐧 𝜸 

For point P2: 

𝑥2 = |𝐴𝑃2’| cos 𝛽   =≫    𝒙𝟐 = 𝒌 𝐬𝐢𝐧 𝜶 𝐜𝐨𝐬 𝜷 

𝑦2 = |𝐴𝑃2’| sin 𝛽   =≫    𝒚𝟐 = 𝒌 𝐬𝐢𝐧 𝜶 𝐬𝐢𝐧 𝜷 
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(24) 

(21) 

 

(25) 

(21) 

 
(26) 

(21) 

 

(27) 

(21) 

 

Resulting in P1 and P2 coordinates as follows: 

P1 [𝐤 𝐬𝐢𝐧 𝛉 𝐜𝐨𝐬 𝛄 , 𝐤 𝐬𝐢𝐧 𝛉 𝐬𝐢𝐧 𝛄 , 𝐤 𝐜𝐨𝐬 𝛉] 

P2 [𝐤 𝐬𝐢𝐧 𝛉 𝐜𝐨𝐬 𝛂 , 𝐤 𝐬𝐢𝐧 𝛉 𝐬𝐢𝐧 𝛂 , 𝐤 𝐬𝐢𝐧 𝛂] 

 

Fig. 14 Calculation of x and y coordinates on xy plane for P1 (a) and for P2 (b) 

 

Source: own work. Explanatory notes: AP1’ represents the projected incident wave to 

the xy plane, AP2’ represents the projected vector normal to the surface to the xy plane 

 

To get the distance between points P1 and P2 we can use the distance between two 

points P1 and P2 in a xyz space which is given by the following formula: 

 

|𝑃1𝑃2| =  √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 + (𝑧1 − 𝑧2)2 

 

after substitution of x, y, and z coordinates to the equation we got: 

 

|𝑃1𝑃2| = 𝑘 √(sin 𝜃 cos 𝛾 − sin 𝛼 cos 𝛽 )2 + (sin 𝜃 sin 𝛾 − sin 𝛼 sin 𝛽)2 + (cos 𝜃 − cos 𝛼)2 

 

|𝑃1𝑃2| = 𝑘 √
sin2 𝜃 cos2 𝛾 − 2 sin 𝜃 cos 𝛾 sin 𝛼 cos 𝛽 +  sin2 𝛼 cos2 𝛽 +

+ sin2 𝜃 sin2 𝛾 − 2 sin 𝜃 sin 𝛾 sin 𝛼 sin 𝛽 +  sin2 𝛼 sin2 𝛽 +

+ cos2 𝜃 −  2 cos 𝜃 cos 𝛼 +  cos2 𝛼

 

 

|𝑃1𝑃2| = 𝑘 √
sin2 𝜃 (cos2 𝛾 + sin2 𝛾) +  sin2 𝛼  (cos2 𝛽 + sin2 𝛽) + cos2 𝜃  + cos2 𝛼 −

− 2 sin 𝜃 cos 𝛾 sin 𝛼 cos 𝛽 − 2 sin 𝜃 sin 𝛾 sin 𝛼 sin 𝛽  −  2 cos 𝜃 cos 𝛼
 

 

a) 
b) 
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(28) 

(21) 

 

(28) 

(21) 

 

(29) 

(21) 

 

(30) 

(21) 

 

(31) 

(21) 

 

(32) 

(21) 

 
(33) 

(21) 

 (34) 

(21) 

 

where according to the Pythagorean formula for sines and cosines cos2 𝛾 + sin2 𝛾 =

1 and cos2 𝛽 + sin2 𝛽 = 1 , and then sin2 𝜃 + cos2 𝜃 = 1 and sin2 𝛼 +  cos2 𝛼 = 1 , 

then we get a following equation for the |𝑃1𝑃2| distance: 

 

|𝑃1𝑃2| = 𝑘 √2 −  2 sin 𝜃 cos 𝛾 sin 𝛼 cos 𝛽 − 2 sin 𝜃 sin 𝛾 sin 𝛼 sin 𝛽  −  2 cos 𝜃 cos 𝛼 

 

After that, we can calculate the angle between vectors i and n using the cosine formula 

for the AP1P2 triangle using the following equation: 

 

cos 𝜃0 =  
|𝐴𝑃1|2 +  |𝐴𝑃2|2 − |𝑃1𝑃2|2  

2 |𝐴𝑃1| |𝐴𝑃2|
 

 

Where AP1 and AP2 are defined as k, so after the substitution to the equation we get: 

 

cos 𝜃0 =  
2 𝑘2 − |𝑃1𝑃2|2  

2 𝑘2
 

 

following by some simplifications and substitutions: 

 

|𝑃1𝑃2|2 = 2 𝑘2 −  2 𝑘2 cos 𝜃0 

 

𝑘2(2 − 2 sin 𝜃 cos 𝛾 sin 𝛼 cos 𝛽 − 2 sin 𝛼 cos 𝛽 sin 𝛼 sin 𝛽 − 2 cos 𝜃 cos 𝛼) 

= 2 𝑘2 − 2 𝑘2 cos 𝜃0 

 

2 − 2 cos 𝜃0 = 2 − 2 sin 𝜃 cos 𝛾 sin 𝛼 cos 𝛽 − 2 sin 𝜃 sin 𝛾 sin 𝛼 sin 𝛽 − 2 cos 𝜃 cos 𝛼  

 

cos 𝜃0 = sin 𝜃 cos 𝛾 sin 𝛼 cos 𝛽 + sin 𝜃 sin 𝛾 sin 𝛼 sin 𝛽 + cos 𝜃 cos 𝛼 

 

cos 𝜃0 = cos 𝜃 cos 𝛼 + sin 𝛼 𝑠𝑖𝑛 𝜃 (cos 𝛾 cos 𝛽 +  sin 𝛾 sin 𝛽) 

 

Where 𝑐𝑜𝑠 𝛾 𝑐𝑜𝑠 𝛽 + 𝑠𝑖𝑛 𝛾 𝑠𝑖𝑛 𝛽 according to Ptolemy’s identities can be simplified as 

𝑐𝑜𝑠 (𝛾 − 𝛽) resulting in the final form of the equation: 
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(35) 

(21) 

 

(36) 

(21) 

 

(37) 

(21) 

 

cos 𝜃0 = cos 𝜃 cos 𝛼 + sin 𝛼 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 (𝛾 − 𝛽)  

 

where  𝜃0 is the local incidence angle we are looking for, 𝜃 is the radar incidence angle, 

𝛼 is the local slope, 𝛽 is the aspect angle of the terrain and 𝛾 is the viewing angle.  

For that equation, there is an assumption that vectors i and n has the same direction, 

starting from the point of contact A. For that reason, we need to subtract 180° from the 

viewing angle 𝛾 to get that direction of the vector I, resulting in 𝛾 = 𝛾 − 180°. 

The equation where the original direction of incidence angle is taken into account will 

look like that in Castel et al. (2001): 

 

cos 𝜃0 = cos 𝜃 cos 𝛼 − sin 𝛼 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 (𝛾 − 𝛽)  

 

2.4.2 Calculation of the viewing azimuth 

For the resulted equation (36) we need to know the slope 𝛼 and the aspect angle 𝛽 

of the area, radar incidence angle 𝜃 and the viewing azimuth of the sensor 𝛾. Radar 

incidence angle 𝜃  is known for each pixel, it is available as a separate band in the 

Sentinel-1 GRD product. The slope 𝛼 and the aspect 𝛽 angles can be calculated from 

the SRTM DEM. However, the viewing azimuth can be different in different 

geographical locations. Therefore, it is necessary to calculate it for each individual 

scene separately. We need to calculate it for descending and ascending orbits, too.  

For the calculation of the viewing azimuth for the ascending orbit we need to first 

calculate the flight azimuth of the satellite respective to the true north N. This can be 

done by finding the Southernmost A and the westernmost point B of the scene, which 

are points lying on the vector parallel to the flight direction vector. We can get the x and 

y coordinates of points A and B and calculate the distance between these points in x and 

y planes while we get a right triangle △OAB, where a represents the distance of points 

A and B (|AyBy|) in the y plane, and b is their distance (|AxBx|) in the y plane. From 

△OAB it is possible to calculate the angle β, which is the angle between the near range 

of the image and the true north N (fig. 15). According to the goniometric functions for 

right triangles, β is calculated as  

𝛽 = arctan(𝑏 𝑎⁄ ). 

The angle between the true north N and the flight direction is represented by α as  
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(38) 

(21) 

 
(39) 

(21) 

 

(40) 

(21) 

 
(41) 

(21) 

 

 α =  𝛽 + 270°. 

The view direction is perpendicular to the flight direction, so in case of ascending orbit 

the viewing azimuth γ is calculated as  

γ =  α − 270°. 

As images acquired in the descending orbit of the satellite is rotated differently 

compared to ascending images, in that case it is necessary to find the southernmost A 

and easternmost B points of the scene. Find the distances of these points in the x and y 

planes |AxBx| and |AyBy|, while creating a right triangle △OAB (fig. 16). The angle β 

between the near range of the image and the true north N is calculated in the same way 

as for ascending orbit, but the angle α between the true north N and the flight direction 

is calculated as 

α =  90° − 𝛽 + 180°. 

The viewing azimuth γ is calculated as  

γ =  α + 90°. 

Viewing azimuth was calculated for each image containing the selected point in the 

selected time range and was saved as image property for further computations. 

 

Fig. 15 Calculation of the view azimuth for the ascending orbit 

 

Source: own work 
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Fig. 16 Calculation of the view azimuth for the descending orbit 

 

Source: own work 

 

2.4.3 Linear relationship of backscatter and LIA 

Pairman et al. (1997) suggested that the selection of data points from pure land 

cover class can yield to better relationship between backscatter and local incidence 

angle. Hinse, Gwyn, Bonn (1988) choose areas from the same land cover class for 

successful results in the incidence angle correction. In our analyses we also focused on 

one type of land cover, either deciduous or coniferous forests. 

1000 random points were generated in each study area to ensure the highest 

possible representation of forests in the area. A 20 m buffer was created around these 

random points and mean values of was calculated for each input band (LIA, VV and VH 

backscatter) to ensure the reduction of speckle effect. The calculation of statistics (in 

our case mean value) from a given region (20 m buffer) in GEE was done using a 

weighted reducer method, where „pixels are included if at least (approximately) 0.5% of 
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(43) 

(21) 

 

(42) 

(21) 

 

the pixel is in the region“ and „their weight is the minimum of the image's mask and the 

(approximate) fraction of the pixel covered by the region“ (GEE 2020a). At the same 

time, a forest mask was generated from the combination of CLC2018 and Hansen et 

al.’s Global Forest databases. In our study, the base layer from 2000 of Hansen et al.’s 

Global Forest database was used where only forest pixels with >50% crown cover were 

selected. After that, pixels corresponding to the forest loss from 2000 till 2018 were 

masked out from the base layer. The resulted layer was overlaid with a selected forest 

class of CORINE CLC which resulted in a final forest mask. For further analysis, 

buffered random points (created from 1000 random points) lying completely inside the 

forest mask were selected (hereafter referred to as “forest areas”), ensuring that only 

forest areas will serve as input data to the regression analysis. These forest areas were 

overlaid with Sentinel-1 images and the and mean values of backscatter and LIA values 

were extracted. As these areas are represented by a circle with 20 m radius, this should 

ensure the reduction of speckle effect. Using these areas, a scatterplot was created, and 

the least squares estimate of a linear function of one variable with a constant term was 

calculated by 

 

𝜎𝑝𝑟𝑒𝑑 = 𝑎 + 𝑏 ∗ 𝜃0 

 

where 𝜎𝑝𝑟𝑒𝑑 represents the estimated value of the backscatter 𝜎0, 𝜃0 is LIA, a and b are 

offset and slope of the regression line, respectively. 

The generation of forest areas and the subsequent calculation of offset and slope 

values of the linear regression line was performed for each image in the selected time 

and spatial range separately. These values were saved as image properties for the next 

computations. 

 

2.4.4 Apply the incidence angle correction 

After the calculation of the regression line parameters, the elimination of the effect 

of different LIAs was done by calculating a new (reference) backscatter value 𝜎𝑟𝑒𝑓
0  for 

the studied area as if the local incidence angle 𝜃0 at each image was the same 𝜃𝑟𝑒𝑓, 

given by the equation: 

 

𝜎𝑟𝑒𝑓
0 = 𝜎0

0 − 𝑏 (𝜃0 − 𝜃𝑟𝑒𝑓)  
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(44) 

(21) 

 

 

where 𝜎0
0 is the backscatter value at his original local incidence angle 𝜃0, b is the slope 

of the linear regression line and 𝜃𝑟𝑒𝑓  is the reference incidence angle, to which the 

resulted backscatter is going to be corrected. 

This is the same equation as used in the earlier mentioned studies which used the 

regression-based normalization approach, but with some modifications. The major 

modification is that in this study we used the LIA θ0, instead of radar incidence angle θ. 

The next improvement was applied to the θref in the time series analysis where only one 

case study (circle area with a 20 m radius) was analysed. Here, the mean value was 

calculated from the minimum and maximum LIA. In our selected case studies, there are 

three or four different overlapping satellite paths, so we can obtain three of four 

different values of LIA. Therefore, the minimum and maximum values do not represent 

extreme values, but values that are periodically appearing in a time series. The mean 

value is a specific value for the selected area and is aimed to achieve results without (or 

with less) fluctuations of backscatter value in the time series analysis, which are caused 

by combination of different paths and orbits resulting in different LIAs. For statistical 

comparison of study areas and evaluation of the proposed method, the same LIA value 

was used for each study area – 38.5° as a centre incidence angle of a Sentinel-1 IW 

GRD data swath. Also, another modification is that we used a land-cover specific 

approach for calculation of the backscatter-LIA dependence for each individual image 

separately.  

 

2.4.5 Comparison of study areas and their accuracy assessment 

To compare sets of generated forest areas within our study areas, some statistics 

were calculated including mean elevation of these forest areas, LIA range, LIA 

interquartile range (IQR). For possible comparisons and evaluation, mean values of 

linear regression line slope (parameter b), R2 and p-value for both polarizations were 

calculated from all available images from the time range June-August 2019. The IQR 

was calculated as the difference between 75th (Q3) and 25th (Q1) percentiles of observed 

LIAs (44). 

 

𝐼𝑄𝑅 = 𝑄3 − 𝑄1 
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(46) 

(21) 

 

(47) 

(21) 

 

Then, an accuracy assessment was done, which was based on comparing some 

statistical parameters before and after the LIA correction. These parameters include 

backscatter range (MAX-MIN), variance and standard deviation of backscatter, as it 

was done in previous studies (i.e. in Bayer, Winter, Schreier 1991; Hinse, Gwyn, Bonn 

1988; Topouzelis, Singha 2016; Truckenbrodt et al. 2019). Hinse, Gwyn, Bonn (1988, 

p. 128) stated that “a reduction of the variance indicates a reduction of the topographic 

effects in the corrected SAR data”. Bayer, Winter, Schreier (1991) also confirmed this 

statement. According to them, in our study we also assume that the reduction in 

variance, standard deviation and range of backscatter indicate the improvement of data, 

thus elimination of LIA effects. For calculation of these statistical parameters, outliers 

were excluded in each list of backscatter values using upper and lower fences, so in 

analyses we used only data with backscatter values lower than the upper fence (45) and 

higher than the lower fence (46). 

 

Upper fence =  Q3 +  (1.5 ∗  IQR) 

 

Lower fence =  Q1 −  (1.5 ∗  IQR) 

 

These statistics were extended by percentual changes after the correction: 

 

𝛥𝑆 = [
𝑆𝑐𝑜𝑟𝑟 − 𝑆𝑢𝑛𝑐𝑜𝑟𝑟

𝑆𝑢𝑛𝑐𝑜𝑟𝑟
] ∗ 100 % 

 

where S represents the statistical parameter (range, variance, or standard deviation), 

𝛥𝑆  is the percentual change after the correction, Suncorr and Scorr are the statistical 

parameters before and after the correction, respectively. 

In the next step, we wanted to find, whether LIA range, LIA IQR or mean elevation 

of the forest areas has the primary influence on the found statistical values, so 

correlations were calculated for relationship between these parameters and found 

statistical parameters. 

The correlation coefficient of regression lines for corrected and uncorrected data 

were also compared. Short-time series were then created for four case studies and a few 

statistical evaluations (range, variance, standard deviation) comparing time series 

behaviour before and after the correction was made.  
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2.4.6 Comparison of the proposed method with Terrain Flattening 

In the last step, we compared results using our methodology with data from desktop 

processing using method of Terrain Flattening (TF) developed by Small (2011). For the 

comparison we selected case study 1 - coniferous forest in the Low Tatras NP - with 

high LIA range (69°). We downloaded 58 Sentinel-1 images for a 3-month period 

(June-August 2019) from the Copernicus Open Access Hub. Data were pre-processed in 

SNAP software using the same pre-processing steps as in GEE, just the Terrain 

Flattening was implemented, too. The processing chain was as following: Apply Orbit 

File, Remove GRD Border Noise, Thermal Noise Removal, Radiometric Calibration, 

Radiometric Terrain Flattening, Terrain Correction, Conversion from Linear values to 

dB. The calculations were run on a desktop computer with a 64 GB RAM, 3.1 GHz, 14-

core Intel Core i9-7940X CPU and an 8 GB GPU (with 32 GB shared GPU) using 

NVIDIA GeForce GTX 1070. 
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3 Results 

3.1 Linear relationship between backscatter and LIA  

To test the influence of LIA on backscatter value, forest areas generated in the 

study areas were used. This was done for each image separately in a short-term time 

series for a summertime (June - August 2019). For each study area, in average 410 

forest areas were included in the regression analysis (tab. 5). Appendix 1 shows a 

distribution of generated forest areas classified according to their LIA in study area 1 

(Sentinel-1B image from 3rd July 2019, from descending orbit no. 51 was used). 

Statistics were calculated for forest areas (mean elevation, LIA range, LIA interquartile 

range (IQR)) and for possible comparisons and evaluation, mean values of linear 

regression line slope (parameter b), R2 and p-value for both polarizations were 

calculated from all available images from the selected time range (tab. 5). For these 

study areas we created boxplot graphs representing the distribution of LIA for forest 

areas where differences in IQR are also visible (fig. 17). 

The negative linear relationship between the backscatter of forest areas and LIA 

was proven in each study area, where the backscatter is decreasing with the increasing 

LIA. This negative linear behaviour proves the effect of the terrain and reinforces the 

importance of their elimination.  

 

Fig. 17 Boxplots of LIA for forest areas in each study area 

 

Source: own work 
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Tab. 5 Statistics of selected study areas for all the available Sentinel-1 imagery in the 

summer period (June-August 2019). Areas marked with * are broadleaf forests. 

 

Source: own work 

 

Several significant findings were found from the statistical analysis (see tab. 5): 

1. Dependence of backscatter on LIA was in almost every case statistically highly 

significant at the significance level of 0.1 % (p-value < 0.001), while study areas 12, 

14 and 15 was very significant at significance level of 1 % (p-value < 0.01). In case 

of study area 8 for VV polarization, the correlation is statistically significant for the 

significance level of 5 %. For VH polarization of the study area 8 the mean p-value is 

higher than 0.05, which indicates very weak or no correlation at all. However, when 

analysing single images, the maximum p-value achieved in study area 8 was 0.55 for 

both polarizations and for study area 15 it was around 0.2 for both polarizations. This 

means that in some cases we can not reject the null hypothesis: that there is no 

correlation between the LIA and backscatter (correlation = 0). So, in these cases, the 

correlation is very weak, or no correlation exists at all. 

2. The highest linear regression slope values (higher than 0.2 db/degree for both 

polarizations) were achieved in areas, where forest areas had the mean LIA higher 

than 64°. The lowest regression slope value was achieved in study areas 12 and 8 

(around 0.1 db/degree for both polarizations). 

3. The coefficient of determination R2 is slightly higher for the VV polarization in each 

case. Also, the p-value is lower for VV polarization than for VH (except for study 

Study 

area
Scale VH Scale VV R2 VH R2 VV p-value VH p-value VV

Elevation 

(m)

LIA 

range
IQR

Number of 

forest areas

1 -0.205 -0.214 0.70 0.72 5.1E-76 2.1E-88 1087 64.72 23.11 360

2 -0.182 -0.182 0.46 0.49 3.9E-39 7.0E-44 974 53.80 9.30 347

3 -0.221 -0.229 0.75 0.76 4.9E-87 3.3E-85 1120 69.67 28.80 314

4 -0.168 -0.170 0.40 0.43 5.5E-27 2.5E-33 1007 48.52 10.70 320

5* -0.168 -0.177 0.59 0.64 1.5E-40 1.0E-53 311 48.49 17.65 545

6* -0.176 -0.182 0.65 0.69 1.8E-120 6.8E-134 782 59.81 18.93 600

7* -0.150 -0.153 0.43 0.46 1.1E-48 5.8E-50 448 56.21 12.91 506

8* -0.093 -0.115 0.03 0.06 0.089 0.035 154 15.86 4.49 152

9* -0.165 -0.176 0.56 0.60 4.9E-71 4.2E-77 372 61.68 13.66 430

10 -0.138 -0.147 0.16 0.19 2.0E-11 4.1E-14 659 33.37 7.17 449

11 -0.146 -0.150 0.16 0.18 1.1E-12 1.2E-14 704 31.89 5.19 472

12 -0.103 -0.107 0.06 0.07 0.002 0.002 517 25.28 4.45 421

13 -0.177 -0.186 0.54 0.57 1.3E-85 3.2E-95 733 57.19 17.10 548

14 -0.145 -0.134 0.04 0.04 0.002 0.004 218 14.72 2.33 362

15 -0.129 -0.123 0.06 0.06 0.005 0.005 170 21.67 3.34 321
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areas 14 and 15) - so the statistical significance of the correlation between LIA and 

backscatter is slightly higher for VV polarization. Also, the slope of the regression 

line is steeper (higher) almost for each case in VV polarization, compared to VH 

(except of study areas 2, 14 and 15). 

 

In the next step, we were assuming that the LIA range has the biggest influence on 

the other statistics, so the correlation between LIA range for each study area and other 

statistics from tab. 2 (R2, elevation, p-value and linear regression line slope) were 

evaluated. A strong and statistical significant correlation (R2 = 0.89, p-value = 1.1E-07) 

was found in the linear relationship between LIA range and coefficient of determination 

R2, while weak but also statistical significant (at significance level of 1 %) was found 

between LIA range and linear regression line slope values and elevation, respectively. 

According to these comparisons from tab. 6, the biggest influence on R2 has the LIA 

range. Mean elevation of the selected forest areas had weaker influence on the R2 or 

slope values, but they are still statistically significant at significance level of 5 %. At all, 

the higher the mean elevation, the wider is the LIA range, which was statistically also 

been proven. The p-value is weakly correlating with LIA range and elevation and 

number of forest areas in the selected area had no effect on the R2 nor p-value. 

 

Tab. 6 Statistical evaluation of linear dependency between obtained LIA range, 

elevation, slope values, R2 and p-values for study areas (from tab. 5) for VV 

polarization 

 

Source: own work 
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3.2 Correction of LIA 

Based on the scatterplots (fig. 18), it can be clearly seen, that the correction was 

processed. To measure the effectivity/accuracy of the correction, we conducted some 

statistical tests on the selected forest areas for each study area for the first image in the 

collection from time 1st of July. We excluded the extreme values using lower and upper 

fence (as used in boxplots). Using these data without extreme values we compared the 

range of the backscatter (max - min), variation of data and standard deviation for VV 

and VH polarizations before and after the correction. 

 

Fig. 18 Comparison of relationships between VH and LIA for forest areas in the 

surrounding of the study area 1 before and after the correction 

 

Source: own work 

 

We assume that eliminating the backscatter-LIA dependence (improvement in 

results) will result in a reduction in the range of backscatter, variance, and standard 

deviation after LIA correction using our method. Results (fig. 19) show a clear decrease 

of variance, standard deviation, and range of backscatter values for both polarizations. 

These statistical comparisons showed a decrease of variance and standard deviation for 

each study area in both polarizations. In the range of backscatter values the decrease 

after correction was noticed almost in all cases, except for study area 8 (both 

polarizations) and for study area 11 (VH polarization), where in contrast, an increase of 

backscatter range was observed (fig. 19). For study areas where higher than 17° LIA 

IQR were found (fig. 17) (study areas 1, 3, 5, 6 and 13), the difference between the 

original and corrected values for mentioned statistical parameters was significantly 

higher compared to other localities. Reduction of the range by more than 50 % was 
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made for both polarizations for study areas 3 and 6, while a reduction by more than 35 

% was made for study areas 1, 5 and 13. The lowest reduction of backscatter range (by 

less than 10 %) was made to study areas 8, 11, 12, 14 and 15 which LIA ranges were 

less than 32° and interquartile range was less than 5°. 

The highest variance in non-corrected data was found in study areas, which had 

range of LIAs higher than 64° with LIA IQR > 23° - 13.6 dB for both polarizations for 

study area 1, and higher than 17 dB for both polarizations for study area 3. Study areas 

with higher LIA range showed the highest improvement in variance after correction in 

means up to 16.5 dB in case of study area 3, which represents improvements by more 

than 80 %. Improvement in both polarizations by more than 50 % was achieved also in 

study areas where forest areas had LIA range higher than 50° with LIA IQR > 10° 

(study areas 4, 5, 6, 9 and 13). However, high variance in the data with high LIA range 

and LIA IQR (study areas 1 and 3) remained also after the correction (in average 3.3 dB 

and 3.5 dB for VV and VH polarization, respectively) compared to other data (in 

average 1.9 dB and 2.4 dB). For study areas where forest areas achieved LIA range 

lower than 35° with LIA IQR > 7°, the variance was reduced by less than 25%. 

The standard deviation comparison showed a similar behaviour as the variance. 

 

Fig. 19 Statistics of selected forest areas within each study area from the linear 

regression analysis before and after the LIA correction 

 

Source: own work. Explanatory notes: Study areas with dashed lines represent broadleaf 

forests. 
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3.3 Time series analysis 

The time series graph in fig. 20 shows a comparison of the original backscatter 

values in VV and VH polarization and LIA values for case study 1 with LIA range 69°. 

It can be clearly seen that the backscatter values are influenced by LIA – periodic 

fluctuation of LIA causing a periodic fluctuation of backscatter values. It is evident, that 

with increasing LIA, the backscatter is decreasing and vice versa.  

 

Fig. 20 Comparison of backscatter and LIA values for case study 1 

 

Source: own work 

 

Fig. 21 represents short-term time series for four case studies with different LIA 

ranges. In the short-term time series analysis (June-August 2019), all available data 

from each path, orbit and satellite were evaluated. In the original non-corrected time-

series the fluctuation of backscatter values influenced by LIA can be seen, mainly in 

case study 1 (fig. 21 a) and 2 (fig 21 b), while after the correction, the time series 

become smoother. According to fig. 20 we assume that different LIAs on different 

acquisition paths for the studied area cause variation (fluctuation) of data through the 

time. After the correction of LIA effects using our method, the resulted time series are 

obviously smoother compared to uncorrected, thus when the variance and standard 

deviation is lower, the accuracy of the model will be higher. For purpose of an 

assessment of our method, we compared variance, backscatter range and standard 

deviation of the short-term time series before and after the correction. Results in tab. 5 

show decrease of these statistical parameters after the correction. For case study 1 with 
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the highest LIA range (69°), correction made a reduction of variance by 95 %, and 

reduction was significant (by more than 70% in both polarizations) also for backscatter 

range and standard deviation. For case study 4 it was a >75% reduction of variance and 

>40% of standard deviation. For case study 6, the variance was reduced by less than 

55%, standard deviation by less than 35%. For case study 12 with lowest LIA range 

(with a 13° LIA range using 3 different paths), the variance was reduced by only 13 % 

for VH and 6 % for VV polarization. 

 

Fig. 21 Short-term time series analysis of corrected and uncorrected data for selected 

case studies with different LIA ranges 

 

Source: own work 

 

From the fig. 21 and statistics in tab. 7 it is apparent that after the elimination of 

terrain effects using the proposed land-cover specific regression-based correction of 

LIA, time series become smoother mainly in case studies with wide range of LIAs (fig. 

21 a). In case of low LIA range, the effect of correction is only marginal (fig. 21 d). For 

LIA ranges higher than 20°, the effect of correction is more apparent, and this 

demonstration also proves, that the correction is more suitable for case studies with 

wider range of LIA. Another finding in time series graphs was, that in each cases the 

backscatter in VV polarization was higher by about 6-7 dB than in VH. 
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Tab. 7 Statistics of corrected and uncorrected data in the short-term time series  

 

Source: own work 

 

3.4 Comparison of our method with desktop-based method of TF 

In the last part of this work, we compared the accuracy of our proposed method 

with the desktop-based method of TF over case study 1. In the fig. 22 it can be clearly 

seen that in the time series for data corrected using TF (TF VH or TF VV), the 

fluctuation of data remained higher compared to data obtained from our proposed 

method (corrected VV or corrected VH). After data pre-processing in SNAP we 

obtained NoData values for some dates for the selected case study. It happened too, that 

for VV polarization we got data, while for VH not. For now, we do not have an 

explanation for that. After the comparison of variance in backscatter we found that the 

variance in data corrected using the TF is much higher (7 dB and 8 dB for VV and VH 

variance, respectively) than in data using our proposed method (1.8 dB for both 

polarizations) (tab. 8). It means a reduction of variance by about 75 % for both 

polarizations using our proposed method compared to TF. 

When taking into consideration the pre-processing time of the images in the 

desktop environment with a computational power mentioned in section 2.4.6, for TF 

method it took about 19 minutes for one image. As in GEE the Sentinel-1 images are 

already pre-processed and to correct data using the proposed terrain correction method 

takes only a few seconds for a three-months period. 

 

Tab. 8 Comparison of variance in both polarizations using TF and our proposed method 

 
Source: own work 

 

Var. range Stdev Var. range Stdev Var. range Stdev Var. range Stdev

Original VH 43,63 18,42 6,61 9,39 10,89 3,07 4,59 9,29 2,14 1,59 4,85 1,26

Corrected VH 1,88 5,27 1,37 2,29 6,77 1,51 2,71 8,23 1,65 1,39 4,57 1,18

Original VV 46,47 18,87 6,82 9,76 9,65 3,12 4,20 8,35 2,05 1,95 7,74 1,40

Corrected VV 2,28 5,24 1,51 2,09 6,55 1,45 1,98 6,78 1,41 1,84 6,91 1,36

Case study 1 Case study 4 Case study 6 Case study 12

TF Corrected Percentual change

variance VV 7.09 1.80 75%

variance VH 8.41 1.85 78%
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Fig. 22 Comparison of TF and our method for short-term time series for case study 1  

 
Source: own work 
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4 Discussion 

Remote sensing in the microwave electromagnetic spectrum has many advantages 

compared to optical data, like daylight and weather-independent sensing. Since the 

launch of Sentinel-1 in 2014 with freely available SAR data, new opportunities in forest 

monitoring have been opened to a wider research community. However, the interaction 

between the SAR signal and the surface is different from the optical signal’s interaction. 

Tilted terrain can have a strong influence on the resulted backscatter. This influence is 

most pronounced at higher altitudes when combining images from different orbits and 

paths to create a time series analysis (fig. 20). It needs to be corrected before any further 

analysis over areas with mountainous terrain.  

In this study, we developed and tested a method that aims to eliminate the effects of 

terrain on backscatter values over forested areas. This method is mainly intended for use 

in time series analysis, where images with different imaging geometry are combined. 

The traditional method for achieving comparable images is based on using images with 

the same imaging geometry – from the exactly same path, orbit and satellite (i.e. in 

Kaasalainen et al. 2010 and Rauste et al. 2016). However, a drawback in case of using 

only data from the same orbital plane leads to a worse temporal resolution. Taking into 

consideration all the images over a given area can dramatically increase the temporal 

resolution. Especially in the case of Sentinel-1 mission which is composed of a 

constellation of two satellites sharing the same orbital plane. In our case for most of the 

areas, four different paths were available for a given study site. It resulted in 60 images 

available in a three months period instead of 15. 

If using images from several paths, it is necessary to take into consideration that 

(local) incidence angles will be different for a study area. Especially, in mountainous 

regions, effects of terrain can largely influence the backscatter over the studied area. 

With the calculation of local incidence angle (LIA), we can obtain a value which 

involves effects of topography (slope and aspect), radar look angle and radar incidence 

angle.  

In this study, the relevance of the proposed LIA correction method using C-band 

SAR data was proven in several case studies from different parts of Central Europe. In 

this method, regression line coefficients were calculated separately for each image from 

selected forest areas located in a study area. As the land-cover specific backscatter-LIA 

dependence is calculated for each image separately, the effect of different seasons 



69 

 

(seasonality in data) through the year has low influence on the results. This method is 

different from the traditional pixel-based method used in previous studies (Nguyen et al. 

2015; Dostálová et al. 2016; Pathe et al. 2009 and others), where the regression 

coefficients were derived for each pixel separately using all the available images from a 

selected time period.  

An essential decision before processing a huge amount of data (tens or hundreds of 

SAR images for a 3-months or 5-year period, respectively per case study) is to choose a 

suitable software and hardware for that purpose. In this work we used and tested a 

cloud-based solution GEE, where all the data and processing power is stored. GEE is 

probably the most used and the most well-known cloud-based platform in the remote 

sensing community. 

Results showed an obvious negative linear relationship between backscatter and 

LIA, similarly as in other studies (e.g. in Truckenbrodt et al., 2019). That relationship is 

caused mainly by slope and aspect of the terrain with respect to the incoming radar 

signal. Our method is eliminating this effect. However, this linear relationship can be 

biased by some outliers (backscatter values) that may represent non-forest areas 

included in the regression due to errors in the land cover databases used. Our approach 

based on the combination of two land cover databases should reduce the possibility of 

these errors. Outliers in the regression analysis can represent forests with different 

density of trees, but by selecting only pixels with at least 50 % of tree canopy coverage 

(from the Hansen database) we tried to reduce these errors. 

Statistical analysis of forest areas in 15 selected study areas showed that the 

dependence of LIA on backscatter is increasing with the increasing LIA range and LIA 

IQR. For the study areas, where only a low range of LIA and LIA IQR was found (like 

in study areas 8 and 15), for some dates the correlation between backscatter and LIA 

was very weak or no correlation existed at all. An interesting finding is that the R2 is 

slightly higher, the slope of the regression line is steeper (bigger change in backscatter 

is caused by LIA), and the p-value is lower in most of the cases for the VV polarization 

compared to VH. For that finding we haven't found an explanation yet.  

Compared to earlier studies based on C-band data (i.e. Mougin et al. 1995 or 

Frison, Mougin 1996), where a flat angular behaviour was detected over forests 

(regression line slope a = 0.06), or where only a weak correlation with a slight negative 

slope was experienced (Hinse, Gwyn, Bonn 1988), in this study a relatively strong 

correlation with steep slope values were found. Linear regression line slope was higher 
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than 0.2 db/degree for study areas with LIA range higher (of forest points) than 64° and 

LIA IQR > 23°. The lowest regression slope value was achieved in study areas 8 and 12 

(around 0.1 db/degree), which had LIA range 25°. Strong and statistically significant 

correlation was found between LIA range and R2. 

Statistical comparisons of uncorrected and corrected forest areas involved in the 

regression analysis showed reduction in terms of backscatter variance and standard 

deviation after correction in all study area. The biggest improvement in variance - 

higher than 50% reduction - was found in study areas, where the LIA range of forest 

areas was higher than 50° and IQR > 10°. When compared to earlier studies, Hinse, 

Gwyn, Bonn (1988) applied a cosine square correction and reduced a maximum of 10 

percent of variance caused by incidence angle. Bayer, Winter, Schreier (1991) reduced 

the variance for forested areas by 5-13 %. In our case, these range of reductions 

appeared in study areas with LIA range lower than 25° and IQR > 4°. However, the 

variance in data sets remained higher (around 3.5 dB) for LIA ranges higher than 64°, 

while for other data sets it was around 2 dB. High variance of backscatter in the forest 

areas after the correction can be caused by generally high heterogeneity of forest 

vegetation (different types of trees, different growth stage or density of trees involved in 

the regression analysis), which is especially higher with higher altitudes, as was also 

mentioned in Pairman, Belliss, Mcneill (1997). 

The validation of effectivity of the proposed correction method applied in a short-

term time series analysis using all available Sentinel-1 paths showed that the LIA 

correction is the most effective in case studies where a big range of LIAs can be found 

for the case study. For case studies where range of LIA was lower than 20° the 

correction was almost not apparent at all. These results are similar the results in Hinse, 

Gwyn, Bonn (1988), where for pixels at local incidence angle less than 26° did not 

occurred any significant correction using semi-empirical cosine-based methods. They 

also found that pixels with higher slope angles have stronger correlation to the 

backscatter value. However, after the correction, some fluctuation of values in the time 

series remained, which can be attributed to random short-term variations caused by 

environmental factors, like increased moisture or different reflectivity of the forest 

caused by different sensing time (5 A.M. vs 4 P.M). This different reflectivity can be 

caused by for instance by change of temperature between these two times, change in 

moisture, different nature of the leaves, etc. According to influence of precipitation, 

Frison et al. (2018) did not find any relationship between precipitation and backscatter 
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values over forested areas using Sentinel-1 data. They explained this behaviour by the 

difference between the measured precipitation and the precipitation that can be retained 

by the leaves or needles of a tree. Tanase et al. (2019) also found that C-band was less 

sensitive to vegetation water content (variations about 1 dB) compared to P- and L-

band. Remained fluctuation can also be caused by speckle noise which was not 

sufficiently removed by a 20 m buffer area. 

Higher obtained backscatter in VV polarization compared to VH over forested 

areas can be explained by higher attenuation of VV polarization by vegetation cover 

compared to VH, as it was found also in Yunjin Kim, van Zyl (2002). This results is 

similar to previous studies over forested areas (i.e. Dostálová et al. 2018; 2016; Frison 

et al. 2018). 

According to the comparison with desktop-based method using TF, our method 

showed improvement of the results in terms of lower fluctuation of backscatter values in 

the time series analysis and of reduced variance by about 75 % for an case study 1 with 

LIA range 69°. According to our results, the computational time of these two methods 

are incomparable. The pre-processing of Sentinel-1 data to correct the terrain effects for 

a three-month long period in SNAP took several hours compared to GEE, where it was 

a few seconds.  

Our LIA correction method was implemented to the GEE and is available as a 

freely available function using the requirement call: 

require('users/danielp/LIA_Correction:LIA_Correction_Function'). 

The full code with the explanation of input parameters and an example code of usage 

was added as an electronic attachment to this work, described in the Attachment 2.  

 

 

 

 

 

 

 

 

 

 

 



72 

 

5 Conclusion 

In our study we developed a land cover specific LIA correction method for SAR 

data. It was tested in the selected protected areas in Central Europe, followed by an 

evaluation of its relevance and accuracy. For this study, we used open-access data 

Sentinel-1, SRTM DEM, CORINE CLC, Hansen Global Forest Database and, for 

research purposes, freely available cloud-based platform GEE. Based on our achieved 

results and their statistical evaluation, data after LIA correction showed reduction of 

statistical parameters (range, variance, and standard deviation), which means reduction 

or terrain-induced effects on backscatter values. This reduction was greater in areas with 

big difference in LIAs obtained from different paths. In the short-term time series, data 

after correction showed smoother behaviour (without significant fluctuation caused by 

different LIA) compared to uncorrected data, where the reduction of variance was by up 

to 95 %. In comparison with the most used terrain correction method of TF (developed 

by Small, 2011) in the desktop environment, our proposed method showed lower 

fluctuation of backscatter values in the subsequent acquisitions and lower variance in a 

three-month long time series. Moreover, processing time of these two methods are 

incomparable. GEE is based on cloud platform and stores already pre-processed 

Sentinel-1 SAR data. The pre-processing using our LIA correction method took a few 

seconds, while the pre-processing of a single image in a desktop-based environment 

took about 19 minutes (using the higher-mentioned computation power of the PC). This 

comparison also highlights the efficiency of the cloud-based methods in analysing big 

amounts of satellite data (big data). As an important output of this work, we have 

prepared a freely available GEE algorithm which applies our developed method to the 

selected collection of Sentinel-1 images (see Appendix 2, available also at 

https://code.earthengine.google.com/d1e71db16a0a8861269469b0b914a2d8).  

The main limitation of this study is that the methodology is focused only on forests. 

In the following studies it would be appropriate to test and statistically evaluate the 

results in areas with different types of vegetation, as well as in areas without vegetation. 

Another limitation of this study is that the methodology was tested in the countries of 

the European Union, for which is the CORINE CLC dataset available. In the case of 

application of this method in other countries out of EU, it is possible to use other global, 

regional, or national land cover databases.  

https://code.earthengine.google.com/d1e71db16a0a8861269469b0b914a2d8
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Although, there is an increasing number of studies using SAR data in the time 

series analyses, there are still several unanswered questions. In the next work it will be 

important to explain the reason of the short-term fluctuations of backscatter values in 

the subsequent dates. Also to try implement this methodology for long-term time series 

to detect seasonality or changes in forests, as well as to understand the character of the 

seasonal activity or in detail to access a relationship between the time series curve and 

characteristics of the studied area (terrain slope, aspect, elevation, LIA range or 

characteristics of the vegetation). In the case of long-term time series analysis, it would 

be appropriate to try to implement different types of change detection algorithm into 

GEE. 

From point of view of long-term time series analysis, it should be helpful to 

implement radar indicators (e.g. radar polarimetric indices) to monitor the condition of 

forests and compare them with proven vegetation indices (NDVI, NDMI) from optical 

data or test the impact of precipitation on the evaluation of long-term time series and 

propose methods for their correction in C-band SAR data. On the other hand, the 

planned radar missions Biomass with P-band (2021), NISAR with L- and S-band 

(2022), TanDEM-L with the L-band (2022) can bring new opportunities for forest 

exploration and thus new challenges in data processing and analysis. ESA and NASA 

are jointly developing the Multi-Mission Algorithm and Analysis Platform (MAAP) 

cloud platform (start in 2021), which will contain and process data, mainly from 

Biomass, GEDI and NISAR missions. 
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Appendices   

Appendix 1 Distribution of generated forest areas according to LIA for study area 

1 

Source: own work. Base map source: Web Map Service ZBGIS (Digital map app) by 

Geodesy, Cartography and Cadastre Authority of the Slovak Republic (UGKK SR) 

(2018).  

Explanatory notes: Size of forest areas do not correspond to the real area used for 

analysis. They are enlarged for better visualisation purposes.  

 

 

 

 



81 

 

Appendix 2 Description of GEE JavaScript codes 

The digital appendix of the thesis includes five different JavaScript codes for GEE:  

• The code "LIA_Correction_Function_for_GEE.js" includes a freely available 

algorithm to correct the backscatter-LIA dependence in a SAR image collection, 

available also in GEE at 

https://code.earthengine.google.com/d1e71db16a0a8861269469b0b914a2d8. The 

usage and documentation for the algorithm are described in the Appendix 3 and 

Appendix 4, respectively. 

• Code "LIA_Correction_Example.js" represents an example usage of this 

algorithm on all available Sentinel-1 data for a three month-long period over a 

selected area in Low Tatras National Park – the user will get a Time Series for 

corrected and uncorrected backscatter values for both polarization.  

• Code named “CaseStudiesStats.js” contains JavaScript code for calculation of 

characteristics of four case studies, while “StudyAreasStats.js” contains code for 

calculation of characteristics of selected 15 study areas.  

• Code “Other_statistics_and_Graphs.js” contains code for generation of 

statistical parameters and graphs for a given study area.  

• Text file “Usage and documentation for the algorithm.txt” contains description 

how to use this algorithm in GEE and documentation for the algorithm 

parameters. 

 

Appendix 3 Description of usage of the proposed LIACorrection algorithm in GEE 

This algorithm can be used after the requirement call 

"require('users/danielp/LIA_Correction:LIA_Correction_Function')" (see code 

"LIA_Correction_Example.js") or by copying the code in the 

"LIA_Correction_Function_for_GEE.js" file to the GEE Code Editor and call it with 

defined parameters. 

 

 

 

 

 

 

https://code.earthengine.google.com/d1e71db16a0a8861269469b0b914a2d8
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Appendix 4 Documentation for the LIACorrection algorithm parameters 

 

Parameter Type Description

ROI Geometry Define the ROI for what you want to create a Time Series Analysis

startDate Date Start date of the Time Series

endDate Date End date of the Time Series

landCoverType Integer
Define the land cover type. Currently supported for coniferous forest (312) and 

broadleaf forest (311).

boudningBoxSize
Integer (optional, 

default: 10000)

The bounding box size around the selected area to calculate the backscatter-LIA 

dependence.

referenceAngle
Integer (optional, 

deafault: 9999)

Reference angle to which the backscatter values will be corrected. The default value 

9999 represents the mean value from the minimum and maximum value of observed 

LIA (from the available paths).

SARCollection

ImageCollection 

(optional, default: 

Sentinel-1 

ImageCollection with 

VV and VH bands)

Select the SAR image collection for which you want to apply the LIA correction. Tested 

for Sentinel-1 data.

acquistionMode
String (optional, 

default: 'IW')

Acqusition mode for Sentinel-1 data in GEE can be 'IW' (Interferometric Wide Swath), 

'EW' (Extra Wide Swath) or 'SM' (Strip Map).


