9 research outputs found

    Auto-regressive model based polarimetric adaptive detection scheme part I: Theoretical derivation and performance analysis

    Get PDF
    This paper deals with the problem of target detection in coherent radar systems exploiting polarimetric diversity. We resort to a parametric approach and we model the disturbance affecting the data as a multi-channel autoregressive (AR) process. Following this model, a new polarimetric adaptive detector is derived, which aims at improving the target detection capability while relaxing the requirements on the training data size and the computational burden with respect to existing solutions. A complete theoretical characterization of the asymptotic performance of the derived detector is provided, using two different target fluctuation models. The effectiveness of the proposed approach is shown against simulated data, in comparison with alternative existing solutions

    Model Order Selection Rules For Covariance Structure Classification

    Full text link
    The adaptive classification of the interference covariance matrix structure for radar signal processing applications is addressed in this paper. This represents a key issue because many detection architectures are synthesized assuming a specific covariance structure which may not necessarily coincide with the actual one due to the joint action of the system and environment uncertainties. The considered classification problem is cast in terms of a multiple hypotheses test with some nested alternatives and the theory of Model Order Selection (MOS) is exploited to devise suitable decision rules. Several MOS techniques, such as the Akaike, Takeuchi, and Bayesian information criteria are adopted and the corresponding merits and drawbacks are discussed. At the analysis stage, illustrating examples for the probability of correct model selection are presented showing the effectiveness of the proposed rules

    Adaptive OFDM Radar for Target Detection and Tracking

    Get PDF
    We develop algorithms to detect and track targets by employing a wideband orthogonal frequency division multiplexing: OFDM) radar signal. The frequency diversity of the OFDM signal improves the sensing performance since the scattering centers of a target resonate variably at different frequencies. In addition, being a wideband signal, OFDM improves the range resolution and provides spectral efficiency. We first design the spectrum of the OFDM signal to improve the radar\u27s wideband ambiguity function. Our designed waveform enhances the range resolution and motivates us to use adaptive OFDM waveform in specific problems, such as the detection and tracking of targets. We develop methods for detecting a moving target in the presence of multipath, which exist, for example, in urban environments. We exploit the multipath reflections by utilizing different Doppler shifts. We analytically evaluate the asymptotic performance of the detector and adaptively design the OFDM waveform, by maximizing the noncentrality-parameter expression, to further improve the detection performance. Next, we transform the detection problem into the task of a sparse-signal estimation by making use of the sparsity of multiple paths. We propose an efficient sparse-recovery algorithm by employing a collection of multiple small Dantzig selectors, and analytically compute the reconstruction performance in terms of the ell1ell_1-constrained minimal singular value. We solve a constrained multi-objective optimization algorithm to design the OFDM waveform and infer that the resultant signal-energy distribution is in proportion to the distribution of the target energy across different subcarriers. Then, we develop tracking methods for both a single and multiple targets. We propose an tracking method for a low-grazing angle target by realistically modeling different physical and statistical effects, such as the meteorological conditions in the troposphere, curved surface of the earth, and roughness of the sea-surface. To further enhance the tracking performance, we integrate a maximum mutual information based waveform design technique into the tracker. To track multiple targets, we exploit the inherent sparsity on the delay-Doppler plane to develop an computationally efficient procedure. For computational efficiency, we use more prior information to dynamically partition a small portion of the delay-Doppler plane. We utilize the block-sparsity property to propose a block version of the CoSaMP algorithm in the tracking filter

    Bayesian Signal Subspace Estimation with Compound Gaussian Sources

    Get PDF
    International audienceIn this paper, we consider the problem of low dimensional signal subspace estimation in a Bayesian con- text. We focus on compound Gaussian signals embedded in white Gaussian noise, which is a realistic modeling for various array processing applications. Following the Bayesian framework, we derive two algorithms to compute the maximum a posteriori (MAP) estimator and the so-called minimum mean square distance (MMSD) estimator, which minimizes the average natural distance between the true range space of interest and its estimate. Such approaches have shown their interests for signal subspace esti- mation in the small sample support and/or low signal to noise ratio contexts. As a byproduct, we also introduce a generalized version of the complex Bingham Langevin distribution in order to model the prior on the subspace orthonormal basis. Finally, numerical simulations illustrate the performance of the proposed algorithms

    Algorithmes d’Estimation et de Détection en Contexte Hétérogène Rang Faible

    Get PDF
    One purpose of array processing is the detection and location of a target in a noisy environment. In most cases (as RADAR or active SONAR), statistical properties of the noise, especially its covariance matrix, have to be estimated using i.i.d. samples. Within this context, several hypotheses are usually made: Gaussian distribution, training data containing only noise, perfect hardware. Nevertheless, it is well known that a Gaussian distribution doesn’t provide a good empirical fit to RADAR clutter data. That’s why noise is now modeled by elliptical process, mainly Spherically Invariant Random Vectors (SIRV). In this new context, the use of the SCM (Sample Covariance Matrix), a classical estimate of the covariance matrix, leads to a loss of performances of detectors/estimators. More efficient estimators have been developed, such as the Fixed Point Estimator and M-estimators.If the noise is modeled as a low-rank clutter plus white Gaussian noise, the total covariance matrix is structured as low rank plus identity. This information can be used in the estimation process to reduce the number of samples required to reach acceptable performance. Moreover, it is possible to estimate the basis vectors of the clutter-plus-noise orthogonal subspace rather than the total covariance matrix of the clutter, which requires less data and is more robust to outliers. The orthogonal projection to the clutter plus noise subspace is usually calculated from an estimatd of the covariance matrix. Nevertheless, the state of art does not provide estimators that are both robust to various distributions and low rank structured.In this Thesis, we therefore develop new estimators that are fitting the considered context, to fill this gap. The contributions are following three axes :- We present a precise statistical model : low rank heterogeneous sources embedded in a white Gaussian noise.We express the maximum likelihood estimator for this context.Since this estimator has no closed form, we develop several algorithms to reach it effitiently.- For the considered context, we develop direct clutter subspace estimators that are not requiring an intermediate Covariance Matrix estimate.- We study the performances of the proposed methods on a Space Time Adaptive Processing for airborne radar application. Tests are performed on both synthetic and real data.Une des finalités du traitement d’antenne est la détection et la localisation de cibles en milieu bruité.Dans la plupart des cas pratiques, comme par exemple pour les traitements adaptatifs RADAR, il fautestimer dans un premier temps les propriétés statistiques du bruit, plus précisément sa matrice de covariance.Dans ce contexte, on formule généralement l’hypothèse de bruit gaussien. Il est toutefois connuque le bruit en RADAR est de nature impulsive et que l’hypothèse gaussienne est parfois mal adaptée.C’est pourquoi, depuis quelques années, le bruit, et en particulier le fouillis de sol, est modélisé pardes processus couvrant un panel plus large de distributions, notamment les Spherically Invariant RandomVectors (SIRVs). Dans ce nouveau cadre théorique, la Sample Covariance Matrix (SCM) estimantclassiquement la matrice de covariance du bruit entraîne des pertes de performances importantes desdétecteurs/estimateurs. Dans ce contexte non-gaussien, d’autres estimateurs (e.g. les M-estimateurs),mieux adaptés à ces statistiques de bruits impulsifs, ont été développés.Parallèlement, il est connu que le bruit RADAR se décompose sous la forme d’une somme d’unfouillis de rang faible (la réponse de l’environnement) et d’un bruit blanc (le bruit thermique). La matricede covariance totale du bruit a donc une structure de type rang faible plus identité. Cette informationpeut être utilisée dans le processus d’estimation afin de réduire le nombre de données nécessaires. Deplus, il aussi est possible de construire des traitements adaptatifs basés sur un estimateur du projecteurorthogonal au sous espace fouillis, à la place d’un estimateur de la matrice de covariance. Les traitementsadaptatifs basés sur cette approximation nécessitent aussi moins de données secondaires pour atteindredes performances satisfaisantes. On estime classiquement ce projecteur à partir de la décomposition envaleurs singulières d’un estimateur de la matrice de covariance.Néanmoins l’état de l’art ne présente pas d’estimateurs à la fois robustes aux distributions impulsives,et rendant compte de la structure rang faible des données. C’est pourquoi nos travaux se focalisentsur le développement de nouveaux estimateurs (de covariance et de sous espace fouillis) directementadaptés au contexte considéré. Les contributions de cette thèse s’orientent donc autour de trois axes :- Nous présenterons le modèle de sources impulsives ayant une matrice de covariance de rang faiblenoyées dans un bruit blanc gaussien. Ce modèle, fortement justifié dans de nombreuses applications, acependant peu été étudié pour la problématique d’estimation de matrice de covariance. Le maximum devraisemblance de la matrice de covariance pour ce contexte n’ayant pas une forme analytique directe,nous développerons différents algorithmes pour l’atteindre efficacement- Nous développerons de plus nouveaux estimateurs directs de projecteur sur le sous espace fouillis, nenécessitant pas un estimé de la matrice de covariance intermédiaire, adaptés au contexte considéré.- Nous étudierons les performances des estimateurs proposés sur une application de Space Time AdaptativeProcessing (STAP) pour radar aéroporté, au travers de simulations et de données réelles

    Remote Sensing

    Get PDF
    This dual conception of remote sensing brought us to the idea of preparing two different books; in addition to the first book which displays recent advances in remote sensing applications, this book is devoted to new techniques for data processing, sensors and platforms. We do not intend this book to cover all aspects of remote sensing techniques and platforms, since it would be an impossible task for a single volume. Instead, we have collected a number of high-quality, original and representative contributions in those areas

    Polarimetric Detection in Compound Gaussian Clutter With Kronecker Structured Covariance Matrix

    No full text

    Abstracts on Radio Direction Finding (1899 - 1995)

    Get PDF
    The files on this record represent the various databases that originally composed the CD-ROM issue of "Abstracts on Radio Direction Finding" database, which is now part of the Dudley Knox Library's Abstracts and Selected Full Text Documents on Radio Direction Finding (1899 - 1995) Collection. (See Calhoun record https://calhoun.nps.edu/handle/10945/57364 for further information on this collection and the bibliography). Due to issues of technological obsolescence preventing current and future audiences from accessing the bibliography, DKL exported and converted into the three files on this record the various databases contained in the CD-ROM. The contents of these files are: 1) RDFA_CompleteBibliography_xls.zip [RDFA_CompleteBibliography.xls: Metadata for the complete bibliography, in Excel 97-2003 Workbook format; RDFA_Glossary.xls: Glossary of terms, in Excel 97-2003 Workbookformat; RDFA_Biographies.xls: Biographies of leading figures, in Excel 97-2003 Workbook format]; 2) RDFA_CompleteBibliography_csv.zip [RDFA_CompleteBibliography.TXT: Metadata for the complete bibliography, in CSV format; RDFA_Glossary.TXT: Glossary of terms, in CSV format; RDFA_Biographies.TXT: Biographies of leading figures, in CSV format]; 3) RDFA_CompleteBibliography.pdf: A human readable display of the bibliographic data, as a means of double-checking any possible deviations due to conversion
    corecore