47 research outputs found

    Statistical Classification for Heterogeneous Polarimetric SAR Images

    No full text
    International audienceThis paper presents a general approach for high-resolution polarimetric SAR data classification in heterogeneous clutter, based on a statistical test of equality of covariance matrices. The Spherically Invariant Random Vector (SIRV) model is used to describe the clutter. Several distance measures, including classical ones used in standard classification methods, can be derived from the general test. The new approach provide a threshold over which pixels are rejected from the image, meaning they are not sufficiently "close" from any existing class. A distance measure using this general approach is derived and tested on a high-resolution polarimetric data set acquired by the ONERA RAMSES system. It is compared to the results of the classical decomposition and Wishart classifier under Gaussian and SIRV assumption. Results show that the new approach rejects all pixels from heterogeneous parts of the scene and classifies its Gaussian parts

    Quantitative Estimation of Surface Soil Moisture in Agricultural Landscapes using Spaceborne Synthetic Aperture Radar Imaging at Different Frequencies and Polarizations

    Get PDF
    Soil moisture and its distribution in space and time plays an important role in the surface energy balance at the soil-atmosphere interface. It is a key variable influencing the partitioning of solar energy into latent and sensible heat flux as well as the partitioning of precipitation into runoff and percolation. Due to their large spatial variability, estimation of spatial patterns of soil moisture from field measurements is difficult and not feasible for large scale analyses. In the past decades, Synthetic Aperture Radar (SAR) remote sensing has proven its potential to quantitatively estimate near surface soil moisture at high spatial resolutions. Since the knowledge of the basic SAR concepts is important to understand the impact of different natural terrain features on the quantitative estimation of soil moisture and other surface parameters, the fundamental principles of synthetic aperture radar imaging are discussed. Also the two spaceborne SAR missions whose data was used in this study, the ENVISAT of the European Space Agency (ESA) and the ALOS of the Japanese Aerospace Exploration Agency (JAXA), are introduced. Subsequently, the two essential surface properties in the field of radar remote sensing, surface soil moisture and surface roughness are defined, and the established methods of their measurement are described. The in situ data used in this study, as well as the research area, the River Rur catchment, with the individual test sites where the data was collected between 2007 and 2010, are specified. On this basis, the important scattering theories in radar polarimetry are discussed and their application is demonstrated using novel polarimetric ALOS/PALSAR data. A critical review of different classical approaches to invert soil moisture from SAR imaging is provided. Five prevalent models have been chosen with the aim to provide an overview of the evolution of ideas and techniques in the field of soil moisture estimation from active microwave data. As the core of this work, a new semi-empirical model for the inversion of surface soil moisture from dual polarimetric L-band SAR data is introduced. This novel approach utilizes advanced polarimetric decomposition techniques to correct for the disturbing effects from surface roughness and vegetation on the soil moisture retrieval without the use of a priori knowledge. The land use specific algorithms for bare soil, grassland, sugar beet, and winter wheat allow quantitative estimations with accuracies in the order of 4 Vol.-%. Application of remotely sensed soil moisture patterns is demonstrated on the basis of mesoscale SAR data by investigating the variability of soil moisture patterns at different spatial scales ranging from field scale to catchment scale. The results show that the variability of surface soil moisture decreases with increasing wetness states at all scales. Finally, the conclusions from this dissertational research are summarized and future perspectives on how to extend the proposed model by means of improved ground based measurements and upcoming advances in sensor technology are discussed. The results obtained in this thesis lead to the conclusion that state-of-the-art spaceborne dual polarimetric L-band SAR systems are not only suitable to accurately retrieve surface soil moisture contents of bare as well as of vegetated agricultural fields and grassland, but for the first time also allow investigating within-field spatial heterogeneities from space

    Analysis of Polarimetric Synthetic Aperture Radar and Passive Visible Light Polarimetric Imaging Data Fusion for Remote Sensing Applications

    Get PDF
    The recent launch of spaceborne (TerraSAR-X, RADARSAT-2, ALOS-PALSAR, RISAT) and airborne (SIRC, AIRSAR, UAVSAR, PISAR) polarimetric radar sensors, with capability of imaging through day and night in almost all weather conditions, has made polarimetric synthetic aperture radar (PolSAR) image interpretation and analysis an active area of research. PolSAR image classification is sensitive to object orientation and scattering properties. In recent years, significant work has been done in many areas including agriculture, forestry, oceanography, geology, terrain analysis. Visible light passive polarimetric imaging has also emerged as a powerful tool in remote sensing for enhanced information extraction. The intensity image provides information on materials in the scene while polarization measurements capture surface features, roughness, and shading, often uncorrelated with the intensity image. Advantages of visible light polarimetric imaging include high dynamic range of polarimetric signatures and being comparatively straightforward to build and calibrate. This research is about characterization and analysis of the basic scattering mechanisms for information fusion between PolSAR and passive visible light polarimetric imaging. Relationships between these two modes of imaging are established using laboratory measurements and image simulations using the Digital Image and Remote Sensing Image Generation (DIRSIG) tool. A novel low cost laboratory based S-band (2.4GHz) PolSAR instrument is developed that is capable of capturing 4 channel fully polarimetric SAR image data. Simple radar targets are formed and system calibration is performed in terms of radar cross-section. Experimental measurements are done using combination of the PolSAR instrument with visible light polarimetric imager for scenes capturing basic scattering mechanisms for phenomenology studies. The three major scattering mechanisms studied in this research include single, double and multiple bounce. Single bounce occurs from flat surfaces like lakes, rivers, bare soil, and oceans. Double bounce can be observed from two adjacent surfaces where one horizontal flat surface is near a vertical surface such as buildings and other vertical structures. Randomly oriented scatters in homogeneous media produce a multiple bounce scattering effect which occurs in forest canopies and vegetated areas. Relationships between Pauli color components from PolSAR and Degree of Linear Polarization (DOLP) from passive visible light polarimetric imaging are established using real measurements. Results show higher values of the red channel in Pauli color image (|HH-VV|) correspond to high DOLP from double bounce effect. A novel information fusion technique is applied to combine information from the two modes. In this research, it is demonstrated that the Degree of Linear Polarization (DOLP) from passive visible light polarimetric imaging can be used for separation of the classes in terms of scattering mechanisms from the PolSAR data. The separation of these three classes in terms of the scattering mechanisms has its application in the area of land cover classification and anomaly detection. The fusion of information from these particular two modes of imaging, i.e. PolSAR and passive visible light polarimetric imaging, is a largely unexplored area in remote sensing and the main challenge in this research is to identify areas and scenarios where information fusion between the two modes is advantageous for separation of the classes in terms of scattering mechanisms relative to separation achieved with only PolSAR

    Offshore platform sourced pollution monitoring using space-borne fully polarimetric C and X band synthetic aperture radar

    Get PDF
    Use of polarimetric SAR data for offshore pollution monitoring is relatively newand shows great potential for operational offshore platformmonitoring. This paper describes the development of an automated oil spill detection chain for operational purposes based on C-band (RADARSAT-2) and X-band (TerraSAR-X) fully polarimetric images, wherein we use polarimetric features to characterize oil spills and look-alikes. Numbers of near coincident TerraSAR-X and RADARSAT-2 images have been acquired over offshore platforms. Ten polarimetric feature parameterswere extracted fromdifferent types of oil and ‘look-alike’ spots and divided into training and validation dataset. Extracted features were then used to develop a pixel based Artificial Neural Network classifier. Mutual information contents among extracted features were assessed and feature parameters were ranked according to their ability to discriminate between oil spill and look-alike spots. Polarimetric features such as Scattering Diversity, Surface Scattering Fraction and Span proved to be most suitable for operational services

    Development of techniques and technology for full polarimetric radar applied to concealed weapons detection

    Get PDF
    One of the biggest threats to modern society is the increasing use by criminals and terrorists of concealed weapons and person born improvised explosive devices (PBIED). Current highly mature security screening technologies using x-ray and metal detectors have limited deployment scenarios based on health and safety issues and operational range, respectively. Given that most clothing is greater than 90% transmissive in the microwave region, this spectral band is ideal for screening people for concealed threats. However, due to diffraction, imagery to screen subjects is limited due to the small number of pixels. In this regime, the exploitation of microwave polarimetry from the field of remote sensing has particular benefits, as it extracts maximum information content from a single pixel. The work presented in this thesis has assembled a full polarimetric frequency stepped radar from a vector network analyser (VNA), a linear orthogonal mode transducer (OMT) of the turnstile type and a conical corrugated horn antenna. The system’s characterisation by antenna pattern measurements, the measuring of canonical targets of the plane, dihedral, dipole and helical reflectors showed the system to be capable of making localised Sinclair matrix measurements of targets at ranges of two to three metres. The work presents a calibration procedure comprising the VNA’s internal calibration and an external calibration to compensate for dispersion and cross-polar leakage of system components. Static target measurements (canonical and various surrogate items) were analysed, using range gating for clutter rejection. Calibrated Sinclair parameter measurements compared with those from simple simulations, all software being programmed in Matlab. Measurements of moving targets revealed the phenomenon of speckle, this introducing rapid changes in the Sinclair Parameters. Data analysis performed using the coherency matrix and the Cloude/Pottier decomposition minimised the effects of speckle in the processed data. Measurements show movement from particularly rough surfaces increased the parameter of the Cloude/Pottier entropy, the level of this being directly linked to the degree of speckle. Application of the Huynen polarisation fork technique (a type of decomposition) has proved to aid the identification of static and moving targets. A detailed analysis of iii the Huynen fork responses is made of the human torso on its own, weapons on their own and then weapons positioned against the human torso. Responses of nondangerous objects such as keys and a smartphone are additionally presented

    Quad-Polarimetric Multi-Scale Analysis of Icebergs in ALOS-2 SAR Data: A Comparison between Icebergs in West and East Greenland

    Get PDF
    Icebergs are ocean hazards which require extensive monitoring. Synthetic Aperture Radar (SAR) satellites can help with this, however, SAR backscattering is strongly influenced by the properties of icebergs, together with meteorological and environmental conditions. In this work, we used five images of quad-pol ALOS-2/PALSAR-2 SAR data to analyse 1332 icebergs in five locations in west and east Greenland. We investigate the backscatter and polarimetric behaviour, by using several observables and decompositions such as the Cloude–Pottier eigenvalue/eigenvector and Yamaguchi model-based decompositions. Our results show that those icebergs can contain a variety of scattering mechanisms at L-band. However, the most common scattering mechanism for icebergs is surface scattering, with the second most dominant volume scattering (or more generally, clouds of dipoles). In some cases, we observed a double bounce dominance, but this is not as common. Interestingly, we identified that different locations (e.g., glaciers) produce icebergs with different polarimetric characteristics. We also performed a multi-scale analysis using boxcar 5 × 5 and 11 × 11 window sizes and this revealed that depending on locations (and therefore, characteristics) icebergs can be a collection of strong scatterers that are packed in a denser or less dense way. This gives hope for using quad-pol polarimetry to provide some iceberg classifications in the future

    A comprehensive literature review of SAR polarimetric calibration for Waseda SAR Sensor

    Get PDF
    Includes bibliography.This dissertation deals with a comprehensive literature review on SAR polarimetric calibration, as well as developing a polarimetric calibration procedure to be used for calibrating the sensor for the Waseda SAR project. The complete work is presented in six chapters. The dissertation starts by introducing Synthetic Aperture Radar Polarimetry (SAR polarimetry) by identifying the research objectives, and explains Waseda SAR project between King Abdulaziz City for Science and Technology and the University of Cape Town. A comprehensive literature review on SAR polarimetric calibration is introduced in the dissertation. The literature review explains the developments in calibration methods from the early 1960’s to recent years, including passive and active reflector advantages as well as the limitations for both reflectors. Also, displaying the received power as a function of polarization in a graphic way is presented in the dissertation known as the ‘polarization signature’. Two examples are used which are: the trihedral corner reflector and the dihedral corner reflector. The two examples are the theoretical reference for the calibration procedure for Waseda SAR sensor. The calibrated data set collected from NASA’s Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) over California is analyzed. The data is contaminated with an unrealistically high amount of coupling (-5 dB) to show the coupling effect on the data and then remove the amount of coupling to return the data to its original form. The dissertation concludes with a calibration procedure to be used for calibrating Waseda SAR sensor using the presented methods of SAR polarimetric calibration. The procedure involves using external devices such as: trihedral corner reflectors and dihedral corner reflectors as well as calculating the sizes of the reflectors and how the calibration flights are to be coordinated and instrumented with the reflectors

    DVB-S based passive polarimetric ISAR – methods and experimental validation

    Get PDF
    In this work, we focus on passive polarimetric ISAR for ship target imaging using DVB-S signals of opportunity. A first goal of the research is to investigate if, within the challenging passive environment, different scattering mechanisms, belonging to distinct parts of the imaged target, can be separated in the polarimetric domain. Furthermore, a second goal is at verifying if polarimetric diversity could enable the formation of ISAR products with enhanced quality with respect to the single channel case, particularly in terms of better reconstruction of the target shape. To this purpose, a dedicated trial has been conducted along the river Rhine in Germany by means of an experimental DVB-S based system developed at Fraunhofer FHR and considering a ferry as cooperative target. To avoid inaccuracies due to data-driven motion compensation procedures and to fairly interpret the polarimetric results, we processed the data by means of a known-motion back-projection algorithm obtaining ISAR images at each polarimetric channel. Then, different approaches in the polarimetric domain have been introduced. The first one is based on the well-known Pauli Decomposition. The others can be divided in two main groups: (i) techniques aimed at separating the different backscattering mechanisms, and (ii) image domain techniques to fuse the polarimetric information in a single ISAR image with enhanced quality. The different considered techniques have been applied to several data sets with distinct bistatic geometries. The obtained results clearly demonstrate the potentialities of polarimetric diversity that could be fruitfully exploited for classification purposes

    A change detector based on an optimization with polarimetric SAR imagery

    Get PDF
    The possibility to detect changes in land cover with remote sensing is particularly valuable considering the current availability of long time series of data. SAR can play an important role in this context, since it can acquire complete time series without limitations of cloud cover. Additionally, polarimetry has the potential to improve significantly the detection capability allowing the discrimination between different polarimetric targets. This paper is focused on developing two new methodologies for testing the stability of observed targets (i.e. Equi-Scattering Mechanisms hypothesis) and change detection. Both the algorithms adopt a Lagrange optimization, which can be performed with two eigen-problems. Interestingly, the two optimizations share the same eigenvectors. Three statistical tests are proposed to set the threshold for the change detector. Two of them are mostly aimed at point targets and one is more suited for distributed targets. All the algorithms and procedures developed in this paper are tested on two different quad-polarimetric dataset acquired by the E-SAR DLR system in L-band (SARTOM 2006 and AGRISAR 2006 campaigns). The dataset are accompanied by ground surveys. The detectors are able to identify targets and areas with validated changes or showing clear differences in the images. The theoretical pdf exploited to model the optimum ratio fits adequately the data and therefore has been used for the statistical tests. Regarding the output of the tests, two of them provided good results, while one needs more care and adjustments
    corecore