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A Polarimetric Target Detector Using the Huynen 

Fork 
 

A. Marino, S. R. Cloude, I. H. Woodhouse. 

 

 

Abstract—The contribution of SAR polarimetry in target 

detection is described and found to add valuable information. A 

new target detection methodology is described that makes novel 

use of the polarization fork of the target. The detector is based on 

a correlation procedure in the target space, and other target 

representations (e.g. Huynen parameters or   angle) can be 

employed. The mathematical formulation is general and can be 

applied to any kind of single target, however in this paper the 

detection is optimized for the odd and even-bounces (first two 

elements of the Pauli scattering vector) and oriented dipoles. 

Validation against real data shows significant agreement with the 

expected results based on the theoretical description. 

 
Index Terms—Synthetic Aperture Radar (SAR), Polarimetry, 

Target Detection, Polarization Fork, Target Recognition. 

 

I. INTRODUCTION 

THE ability of Synthetic Aperture Radar (SAR) to image 

through cloud cover and without solar illumination, in addition 

to its ability to partially penetrate foliage cover (dependent 

upon the wavelength), has established it as a powerful 

technique for target detection [1, 2].  In the last decade, 

attention has also been given to the examination of how the 

polarization of the signal may further develop this 

performance [3-7]. The aim of this study is target detection 

exploiting a particular aspect of the polarimetric target 

response, namely the polarization fork, of the targets. The 

detector is not based on a statistical technique, but rather a 

physical approach based on sensitivity of the polarimetric 

complex coherence to changes in polarization.  

The approach is based on the potential to extract the target 

of interest in the target complex space. For this reason, full 

polarimetric data are required, because they represent a basis 

for the target space [8, 9]. In some way, it acts not dissimilarly 

to a decomposition theorem [10], however it is aimed more 

towards the detection of a chosen single target type rather than 

the breakdown of the partial target in predefined components. 

The algorithm proposed is mainly focused on the detection 

of single (or simple) targets that can be completely 

characterized by one Sinclair (scattering) matrix [11-13]. In 

the case of a monostatic sensor and reciprocity of the medium 

the Sinclair matrix is symmetric and can be characterized by 6 

parameters [13-15]: 
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In the work of Huynen [13] these parameters are linked to 

phenomenological aspects of the target. 
m  and 

m  are 

orientation angle and ellipticity angle of the target, and m ,  , 

  and   are respectively, target magnitude, target skip angle, 

characteristic angle and absolute phase. Only 5 of them are 

sufficient to characterize a target, since the target absolute 

phase   can be neglected in single pass polarimetry (note that 

  is not negligible in polarimetric interferometry).  

These parameters are related with the characteristic 

polarizations in the projective space of the Poincaré sphere 

and can be represented by the Polarization Fork (PF) [11, 16, 

17]. The PF is mainly composed of X-pol Nulls, Co-pol Nulls 

and X-pol Max. The X-pol Nulls are polarizations that when 

transmitted do not have any return in the cross polarization 

(optimum polarizations). On the other hand, the Co-pol Nulls 

when transmitted do not have any return in the co-

polarization. Finally, the X-pol Max when transmitted have 

maximum cross-polarization return. The X-pol Nulls, Co-pol 

Nulls and X-pol Max can always be visualized on the Poincaré 

sphere on the same plane (they form a fork shape). The reason 

why the PF is utilized is because it can represent physical 

target characteristics based on the location of the nulls. Figure 

1 represents the PF illustrating the link with 4 Huynen 

parameters (absolute magnitude and phase are not represented 

on the Poincaré sphere). Where 
21, XX  are X-pol Nulls, 

21,CC  are Co-pol Nulls and 
21, SS  are X-pol Max. 

The matrix representation (Sinclair matrix) can be modified 

as a vectorial one [18, 19]: 

    TkkkkSTracek 4321 ,,,
2

1
 , (2) 

where Trace(.) is the sum of the diagonal elements of the 

matrix inside and   is a complete set of 2x2 basis matrices 

under a Hermitian inner product. In the case of reciprocal 
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medium and monostatic sensor, k  is three dimensional 

complex (SU(3)) [20]. Finally, it is possible to define the 

scattering mechanism (weight vector) as a normalized vector 

kk . It is always possible to construct   starting from 

its PF.  

Beside the PF and Huynen parameters, other kinds of 

parameterizations are possible, as long as the scattering 

mechanism can be reconstructed. In this context, a largely 

used procedure employs the   angle [21]: 

 Tii ee   sinsin,cossin,cos , (3) 

where   is a characteristic angle (different from  ) and   is 

dependent on the orientation of the target about the radar line 

of sight [21].  

 
Figure 1. PF and relationship with Huynen parameters. 

 

The target observed by a SAR system is not an idealized 

scattering target, but a combination of different targets which 

we refer to as a partial target [22-24]. Decomposition 

theorems are able to represent the partial target as a 

combination of idealized single target components [10]. In 

order to characterize a partial target the single scattering 

matrix is not sufficient since the partial target is a stochastic 

process and the second order statistics are required. In this 

context the target coherency matrix can be estimated: 

  T
kkC

*
 , (4) 

where .  is the finite averaging operator. (Note, we are not 

employing interferometry, but rather a single flight pass). A 

classical formulation is when k  is expressed in Pauli basis 

(i.e.  THVVVHHVVHHP
SSSSSk 2,,21   where H is for 

horizontal and V vertical), or in Lexicographic basis (i.e. 

 TVVHVHHL SSSk ,2, ). In general, if the scattering vector in 

a generic basis is  Tkkkk 321 ,, , where 1k , 2k  and 
3k  are 

complex numbers, the coherency matrix is: 
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The methodology of this paper takes advantage of the 

polarimetric coherence [25]. If two different scattering 

mechanisms 
1  and 

2  are considered, the polarimetric 

coherence is: 
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where i is the image evaluated as  
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T
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In terms of the target coherency matrix, the polarimetric 

coherence is: 
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Please note this coherence is only polarimetric and not 

interferometric. 

II. METHODOLOGY 

Any (normalized) single target can be represented uniquely 

in the target space by a scattering mechanism  . The image 

obtained with eq.7 evaluates the scalar projection of the 

observed target k  on the scattering mechanism to be detected 

j  (e.g. sphere, dipole, etc.). When the two images  
1i  

and  
2i  are similar, the amplitude of the polarimetric 

coherence   (eq.6) is high (by definition). 

We want to demonstrate: Given a scattering mechanism 
1  

proportional to the target to be detected, and given a second 

scattering mechanism 
2  close to 

1  within the target space, 

the polarimetric coherence is high if in the averaging cell the 

component of interest (proportional to 
1 ) is stronger than 

the other two orthogonal components.  

1) In order to demonstrate the hypothesis, the first step is to 

define a basis for the target space where the target of interest 

is limited to just one component of the 3 dimensional complex 

vector k . Geometrically, this operation can be accomplished 

with a change of basis using a unitary matrix, which set one 

axis exactly over the target of interest. In the following, the 

scattering mechanism after the change of basis is referred to as 

 TT 0,0,1 . 
T  is the single target we want to detect 

(following the initial thesis T 1 ). The coherence matrix 

[C] will be calculated starting from this new basis. The 

resulting image when the target 
T  is selected is  

  1ki T  . (9) 

In eq.9, the other two components of the scattering vector (i.e. 



2k  and 
3k ) are deleted completely. The projection of k  over 

T  selects the component of interest in the partial target, 

hence the target to detect is just in the 1k  component. For this 

reason, (in the new basis that sets  TT 0,0,1 ) 2k  and 3k  

are considered as clutter.  

2) Secondly, the scattering mechanism 2  must be 

constructed close to 
T . The latter is named the “pseudo-

target”, P  (i.e. P 2 ). P  is obtained by moving 

slightly the entire polarization fork, since a slightly different 

polarization fork characterizes a slightly different target. In a 

first attempt, the small rotation of the characteristic 

polarizations on the Poincaré sphere can be accomplished 

using the Huynen parameters. In other words, in eq.1, 
m , 

m , 

  and   are substituted with 
mm   , 

mm   ,    

and   , where 
m , 

m ,   and   are positive 

real numbers corresponding to a fraction (e.g. a twelfth or a 

tenth) of the maximum value of the co respective variable. The 

variation can be positive or negative in order to keep the final 

variable within the allowed range of values. For the pseudo-

target, Eq.1 becomes:   
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Consequently,    PT SS  , where  TS  is the scattering matrix 

of the target to detect (i.e. eq.1 with 1m  and 0 ). 

Similarly, P  can be obtained starting from the   angle 

parameterization as: 
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where again  ,  ,   and   are a fraction of the 

maximum value of co respective variables (in case of   and 

  the maximum value is fixed to 2 ). Again, 
PT   .  

In both the parameterisations, the components of the 

scattering mechanism are not linearly linked with the 

parameters. However fortunately they are continuous 

functions; when the parameters are selected in the allowed 

range of values (i.e. products of continuous functions). This 

guarantees that if the parameter variation is small enough, the 

change in the pseudo-target will be small as well. The 

optimization of the variations in order to have valuable pseudo 

target components is studied in the following sections. Once 

obtained the expression of 
P

  in the basis used by the 

parameterization (e.g. Pauli for  ), the same change of basis 

that makes  TT 0,0,1  is performed over 
P

 . 

Consequently,  TP cba ,, , with a, b and c complex 

numbers. Considering 
PT

  , we have 1a , 0b  and 

0c .  

In order to show the relationship with the Huynen 

parameters, the scattering mechanism for the target of interest 

can be calculated as:  

       TmmT STraceU 0,0,1),,,(,,
2

1
   (12) 

where [S] is calculated from eq.1 (the brackets show the 

dependence to the Huynen parameters). The [U] matrix 

performs the change of basis that makes  TT 0,0,1 . [U] 

depends on two rotation angles and a change of phase (i.e. 

 ,, ). The pseudo target can be calculated with a slightly 

change of the Huynen parameters: 
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Hence, if 0  mm
, than PT   , on 

the other hand if the variations are small the two scattering 

mechanisms start to be different, introducing the required 

distance.   

3) Once the two scattering mechanisms are defined the 

polarimetric coherence (in the new basis) can be estimated 

from: 
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After dividing both numerator and denominator by 
2

1ka , the amplitude of the polarimetric coherence 

becomes: 
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We refer to ab  and ac  as Reduction Ratios (RedR). 



The pseudo targets are chosen in order to have small RedR. 

Hence, in the sum the elements containing the RedR are 

lowered. These terms are referred to as clutter terms. In eq.16-

17 they are all of the elements except the ones with the sought 

component 
1k  alone (i.e. 

2

1k  that after the division become 

1). There exist two typologies of clutter terms: cross-

correlations and powers. The cross correlations are generally 

small, since for partial targets the components of k  are likely 

to be uncorrelated. The power terms depend on the power of 

the clutter 
2k  and 

3k . Finally, when 
2

1k  is higher than the 

clutter terms, the RedR combined with the division for 
2

1k  

makes the clutter terms negligible in the sum and the 

polarimetric coherence has unitary amplitude. If the 

component of interest is not dominant, the clutter terms start to 

have more influence in the final sum, lowering the coherence 

amplitude. 

4) In conclusion, the detector is obtained setting a threshold 

on the coherence amplitude.  

  T
PT
 , . (18) 

 
Figure 2. Coherence amplitude detector. Solid lines: mean 

inside the standard deviation boundaries for uncorrelated 

target-clutter. Dotted line: positive target-clutter correlation. 

Dashed line: negative target-clutter correlation. Average over 

250 realizations with window 5x5. 

 

Figure 2 presents the simulation of the coherence amplitude 

estimated as a stochastic process composed of a deterministic 

target 1k  (target to be detected) and two random variables, 

complex Gaussian zero mean (i.e. 2k  and 3k ), independent 

each other. The solid lines show the mean value of the 

coherence (over 250 realizations) confined in the standard 

deviation boundaries. A 5x5 window and RedR of 0.5 are 

considered. Signal to Clutter Ratio (SCR) is defined as: 
22

1 jj kkSCR   with 3,2j . In the plot, both the SCRs 

are increased simultaneously i.e. 
32 SCRSCRSCR  . 

A. Bias Removal 

The solid line in Figure 2 is obtained by considering the 

three components of the scattering vector k  independently of 

each other, hence the cross correlation terms are almost zero 

(it is different from 0 just because the number of samples is 

finite). This condition is a good approximation for partial 

targets however, it could not be fulfilled for single (coherent) 

targets. The dotted and dashed line in Figure 2 present the case 

when the coherent target is correlated with the two clutter 

components, respectively in a constructive or destructive way. 

The amplitude of the correlation coefficient between the target 

and clutter is 0.65. In conclusion, correlation between the 

target and clutter creates bias on the coherence amplitude. The 

aim of this section is to remove this bias. Firstly, we recognize 

that the cross terms do not add useful information for the 

proposed detector. In the case of uncorrelated k  components 

they merely add noise related to the finite averaging [25]. 

However, for high values of coherence, the bias introduced is 

not appreciable. On the other hand, when the k  components 

are correlated, they bring bias that results in false alarms or 

miss detections. Consequently, the detector is improved and 

simplified when they are ignored. 

In order to neglect them, the polarimetric coherence 

operator is substituted with another operator that works on the 

space of the target components power: 
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The modified coherence in eq.21 will be referred to as the 

detector. The latter is dependent simply on the power 

components of the scattering vector k .  

Looking at eq.21, the lowering effect played by the RedR is 

clear. If the clutter power is lower than the target power the 

two terms on the denominator are negligible and 1d . The 

trend of the detector can be seen in Figure 3. Comparing 

Figure 2 and 3 the variance appears strongly reduced for low 

SCR's, moreover the two means look very close for values 

higher than 0.6. The difference for lower value is related with 

the coherence bias due to finite averaging. The bias is brought 

by the cross terms. Consequently, neglecting them the bias 

disappears (please note, for very high values of clutter the 

detector becomes 0). For uncorrelated components the cross 

terms result only in increasing variance. 

The final expression of the detector set a threshold on eq.21:  

  TPTd  , . (22) 



 
Figure 3. Detector: mean over 250 realizations inside the 

standard deviation boundaries. Window 5x5.  

 

B. Detector Interpretation 

In order to give an intuitive view of the detector, Figure 4 

represents the filtering effect as a simple schematic. The 

vertical bars stand for the power of the scattering vector 

components. After the change of basis that makes 

 T
T

0,0,1 , 1k  represents the target to detect and 2k , 3k  

are the clutter.    

The final image (as interpreted by the final detector) is 

obtained as the incoherent sum of the three components. The 

image formation behaves similar to a filter (more precisely it 

is a scalar projection). The first row of any example (i.e. T  

filter) is ideal and deletes completely the orthogonal clutter 

components. 

 

       
 (a) detection achieved (b) no detection achieved 

Figure 4. Visual explanation of the filter with target and 

pseudo target. 

 

The second row (i.e. P  filter) results in a linear 

combination of the sought component (slightly lowered) plus a 

small amount of the orthogonal ones. In (a) the match between 

the target and pseudo target final image is high, since the 

power in the two images is similar. This is not true in (b), 

since the P  image has much more power than the T  one, 

hence in the normalization in eq.21 the P  image 

significantly lowers the coherence. 

III. PARAMETERS SELECTION 

A. Reduction Ratios (RedR) and Threshold  

The detector (as expressed in eq.21) is a stochastic process 

[26]. In order to optimally set the threshold, and assess the 

probability of false alarms and miss detection, the probability 

density function (pdf) of the detector is required. Its evaluation 

is out of the scope of this first paper, hence we are looking for 

an expression of the detector independent of the statistical 

realization. For this purpose, the finite average operator .  is 

substituted with the expected value E[.]. Considering the 

detector works with a high value of coherence, the latter 

assumption is easily fulfilled for a 5x5 window. 
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13 kEkESCR   (24) 

Once the pseudo target 
P , is fixed, eq.23 is an expression 

related exclusively to the signal to clutter ratio (SCR). 

Figure 5 represents the results, where the value of the RedR 

is varied. Please note the mean curves in Figure 3 overlap 

almost perfectly with the one in Figure 5 (for RedR=0.5). The 

detector presents no bias and the threshold can be set on the 

deterministic detector to the base of the SCR to be detected. 

Figure 5 also allowed some consideration of the RedR. The 

detector increases when the ratio is reduced (the clutter terms 

are lower). Regarding the choice of the ratio, a small value 

reduces the variance (since we work with higher values of 

modified coherence), however the range of discrimination 

between targets is reduced (the curve flattens earlier). 

Considering we want to detect targets with a SCR higher than 

1.5-2 a good choice for the ratio is 0.5 (that makes the 

threshold set around 0.95). 

 

 
Figure 5. Deterministic detector (reduction ratio varied).  

 

Once the RedR is fixed it is possible to set the threshold. For 

strong targets, the discrimination is quite easy, so the 

minimization of false alarm is the key point. Hence, a high 

SCR can be chosen (this leads to a higher threshold). On the 

other hand, if embedded (e.g. foliage penetration FOLPEN) or 

weak targets (with low total backscattering) are to be detected, 

a lower SCR must be selected (consequently a lower 

threshold). The effect of the threshold choice is clearly visible 

in the validation section. Please note, the detection ability is 



not related directly with the total power scattered by the target 

(span of the scattering matrix), but exclusively with the 

reciprocal weight of the scattering components. The threshold 

reduction for weak targets is related to the noise effect, which 

confuses the polarimetric characteristics. In order to check this 

property a simulation was performed with no clutter and just 

additive thermal uncorrelated noise. The results is that the 

threshold is required to be lower than 0.98 to detect a target of 

interest with SNR (over the window) of about 1dB and, less 

than 0.88 for -10dB SNR. 

B. Pseudo Target Selection 

In the previous section a tacit hypothesis is employed: 

cb  . The aim of this section is to evaluate the effects of 

cb  . The components of 
P  are not independent, since 

1
222
 cba , because 

P  is a normalized vector. In 

order to show the importance of a good choice of b and c, an 

example is presented. It is given that  0,,' 0bak  , 

 0,0, caP   and  0,0,1T , where 
2

0 '1 ab  ,  

2

0 1 ac  . The detector will be:  
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Basically, the orthogonality (or in general the geometrical 

relationship) between the clutter components of k  and 
P  

can bias the detector. In order to remove this bias we want to 

find a relation between b and c that makes the detector not 

biased. It can be demonstrated that this choice is cb  . In 

order to show the feasibility, we consider a general target as 

 ',',' cbak  . After algebraic manipulations we have  
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''
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b
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
 . (26) 

Eq.26 states that the total (normalized) power of the clutter 

components is all contained in 
22

'' cb  , it does not matter 

which is the strongest component between b’ and c’, the bias 

is removed.  

C. Detector Implementation 

The expression obtained in eq.21 is still dependent on the 

basis used to express the vectors T  and 
P

 . In that basis 

the target to detect is present exclusively in the 1k  component 

(i.e. 2k , 3k  represent the clutter). If three unitary vectors 

 Te 0,0,1
1
 ,  Te 0,1,0

2
  and  Te 1,0,0

3
  are introduced, 

the power of target and clutter (in the basis that makes 

 T
T

0,0,1 ) can be written as: 

2

1ekP
T

T  , 
2

22 ekP
T

C   and 
2

33 ekP
T

C  . (27) 

Consequently, eq.21 can be modified: 
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The change of basis that makes  TT 0,0,1  can be found 

by solving a system of equations.  

An easier way to obtain eq.28, starting from any set of basis, 

considers the Gram-Schmidt ortho-normalization [27], which 

sets T  as one axis of a new basis set for the target space 

SU(3). The new basis will be composed by three unitary 

vectors 
T

u 
1

, 22 Cu   and 
33 C

u  . Where 
2C

  

and 3C  are two orthogonal components to T  necessary to 

build up the three diagonal elements of the coherency matrix. 

Hence, 
TP , 

1CP  and 
2CP  are calculated as:  

2

1ukP
T

T  , 
2

22 ukP
T

C   and 
2

33 ukP
T

C  . (29) 

With this operation we complete the process that makes the 

detector a mathematical operator, where the optimum RedR 

are set on the base of the SCR and bias removal as explained 

in the previous sub-sections. 

D. Specialization to multiple reflection and oriented dipole 

The mathematical formulation shows that the algorithm is 

able to detect any single target as long as its polarization fork 

(in particular the two Co-Pol Nulls) or Huynen parameters are 

known. In order to test the algorithm over real targets the 

detection is specialized for multiple reflections (odd and even 

bounce) and oriented dipoles (horizontally and vertically). 

These four typologies of target are selected because of the 

relatively easy association with real targets on a radar image. 

Figure 6 represents the Poincaré sphere with characteristic 

polarizations for the targets considered. 

IV. VALIDATION 

In order to validate and test the potential of the detector, it is 

applied on a fully polarimetric L-band SAR dataset. In all the 

mathematical formulation the frequency is not involved, and 

the detector is not directly frequency dependent (the 

dependence is related with changes in the target when the 

frequency is varied). The choice of the frequency can be 

related to the target to detect. L-band presents an interesting 

setting, based on its ability to penetrate foliage (FOLPEN) 

capability [28]. The dataset were acquired by the DLR 

(German Aerospace Agency) during the SARTOM campaign 

in 2006 [29], with the E-SAR airborne system. 

One aim of the campaign was target detection beneath 

foliage, hence a set of artificial targets were deployed in open 

fields and inside the forest. For this reason, the dataset 

presents an ideal test scenario. As explained before, the 

threshold used is higher for open fields than for forested areas. 



Figure 7 presents the detection on an open field. The L-band 

reflectivity in (a) HH and (d) HV polarizations are given as 

comparison. Moreover, in (a) there are markers to identify 

particular targets. A jeep is deployed in the middle of the 

image (Mercedes Benz 250 GD, also named ‘Wolf’) and the 

two bright points above and below the jeep are trihedral corner 

reflectors used for calibration (top 149cm; bottom 70cm). 

Finally, on the bottom of the image there is a vertical metallic 

net (these defenses were used to delimitate areas). The range 

direction is along the vertical axes (bottom to top). The 

detector masks show where the targets are located, where the 

intensity is related to the amplitude of the detector (modified 

coherence amplitude), scaled to the base of the threshold. The 

detector parameters are those proposed in the previous section. 

The algorithm detects the trihedral corner reflectors as a 

source of odd bounce (b). The jeep presents mainly even-

bounces (presumably with the ground) (c). Moreover, we can 

see some even bounces on the forest edge, due to the trunk-

ground double bounce effect that is stronger at the edge where 

it is exposed and has less attenuation from the canopy. 

 

        
 (a) (b) (c) (d) 

Figure 6. Poincaré representation of single target detected (a) odd-bounce; (b) even-bounce; (c) vertical dipole; (d) horizontal 

dipole. 

 

     
 (a) L-band HH polarization (b) Odd bounce (c) Even bounce 

     
 (d) L-band HV polarization (e) Horizontal dipoles (f) Vertical dipoles 

Figure 7. Detection over open field area. (a) L-band HH polarization with markers for some targets. (b) Mask for odd bounce 

detection (5x5); (c) Mask for even bounce detection. (d) L-band HV polarization. (e) Mask for horizontal dipole detection; (f) 

Mask for vertical dipole detection. The intensity of the masks is related to the detector amplitude. 



 
Finally, the net has a strange polarimetric behavior. Due to 

the mesh size (that goes from around 10cm on the bottom to 

30cm on the top) the lower part is roughly similar to a wall for 

the 23cm wavelength radiation. It creates weak double bounce 

with the ground, and strong horizontal dipoles (e). In fact, due 

to the radar geometry the return from the net vertical dipole is 

much lower (f). Regarding the oriented dipole detection (e-f), 

the corner reflectors disappear completely (they are surfaces). 

Moreover, the horizontal branches of the isolated tree are 

visible (i.e. big horizontal branches throughout the canopy), as 

well as some vertical structure on the ground (i.e. bushes with 

big wooden vertical stems). A ground campaign was 

performed in order to check the existence of the targets 

detected – in the interests of brevity, we do not show the 

photographs of the targets. 

In Figure 8, the algorithm is tested for detection beneath 

foliage (FOLPEN). The targets are three trihedral corner 

reflectors (top: 149cm, bottom left: 70cm, bottom right: 

90cm). In the reflectivity images (a,d) the CRs are not 

recognizable, conversely they are easily detected in (b) the 

odd bounce mask (i.e. triple bounces).  

Considering the threshold now is low, some points on the 

bare soil are detected as sources of single-bounce (top of (b)). 

These are not false alarm since the bare soil can be 

approximated as a single bounce Bragg surface. Regarding the 

even bounce (c), it detects some trunk-ground double bounce, 

especially in proximity of the forest clearing (that runs 

horizontally separating the top and bottom CRs). Finally, it is 

not possible to detect particular oriented dipoles in the forest 

(e-f). This is in line with the RVoG model for L-band, where 

the forest structures are random and do not present preferential 

orientations. 

A. Polarimetric Characterization of Detected Targets 

The algorithm development is based on the polarization fork 

(or Huynen parameters), this means that the detectors is 

mainly aimed at single targets. In fact an ideal polarization 

fork can not be defined for a partial target [24, 30]. In order to 

check this property, the entropy for the detected points over 

the whole dataset is estimated and the normalized histogram is 

presented in Figure 9.b. The entropy is generally lower than 

0.5 indicating targets with single scatterer (coherent) behavior. 

As a comparison, in Figure 9.a the entropy for all the pixels is 

depicted, showing much higher values. 

B. Comparison with PWF 

The aim of this section is to have a comparison with one of 

the most commonly used polarimetric target detector, i.e. 

Polarimetric Whitening Filter PWF [4]. Briefly, the PWF uses 

the polarization to filter the images reducing (optimally) the 

speckle. Practically, all the pixels interpreted as affected by 

speckle are strongly reduced. PWF is nowadays considered 

one of the most powerful detectors which do not require a 

priori information about the statistics of the target. Since our 

detector does not require statistical a priori hypothesis as well, 

the comparison is worthwhile. 

Figure 10.a and 10.b shows the results of the PWF for the 

two areas already presented. In the open field the 

performances are comparable (a). Both the techniques detect 

jeep, net and corner reflectors. However, PWF performs only 

target detection, and not target classification. On the other 

hand, in a more critical situation as in a forested scenario, the 

PWF fails in detecting one CR (bottom left: 70cm).  This is 

due to the fact that the embedded targets can be affected by 

speckle even if they are coherent itself (because of the 

surrounding clutter and non-uniform attenuation). Regarding 

the weak targets, PWF is based on a threshold over the 

backscattered power, hence weak targets are lost. The new 

detector proposed here is based on the weight of the target 

components, hence it can detect low backscattering targets as 

long as they are polarimetrically characterized. 

CONCLUSION 

A target detector was developed based on the unique 

polarimetric fork (PF) of the single target (similarly the 

Huynen parameters or the   angle can be used). The 

mathematical formulation carried out is general, and so can be 

applied for any single target of interest (as long as the PF is 

known). The validation was achieved over two categories of 

targets: multiple reflection and oriented dipoles. In both cases, 

the results are in line with the expected physical behavior of 

the targets. A supplementary theoretical validation and 

evaluation is carried out in where the algorithm is compared 

with the well-known Polarimetric Whitening Filter (PWF), 

showing better performances for embedded targets. 

 This paper presents the first attempt to use polarimetric 

filters to make a sensitivity analysis aimed at target detection. 

Regarding the application of the detector, the targets that can 

be investigated are not exclusively artificial. For instance, if 

the polarimetric model of a particular single target is available 

(we could eventually obtain it from a dataset), the algorithm 

can be used to recognize similar features that appear elsewhere 

in another dataset. 
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 (a) L-band HH polarization (b) Odd bounce (c) Even bounce 

     
 (d) L-band HV polarization (e) Horizontal dipoles (f) Vertical dipoles 

Figure 8. Detection over forested area. (Same as Figure 7). 

 

     
 (a) Entropy total image (b) Detected points (high threshold)  

Figure 9. Histogram of the entropy for (a) total image and (b) detected mask 

 



  
  (a) PWF open field (b) PWF forested area 

Figure 10. PWF: (a) open field; (b) forested area. 
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