3,897 research outputs found

    Conditional PASTA

    Get PDF
    Let Y be a stochastic process representing the state of a system and N a doubly stochastic Poisson process whose intensity varies with the state of a random environment represented by a stochastic process X. In this context a generalization of “PASTA” (Poisson Arrivals See Time Averages) is shown to be valid. Various applications of the result are given

    How to Couple from the Past Using a Read-Once Source of Randomness

    Full text link
    We give a new method for generating perfectly random samples from the stationary distribution of a Markov chain. The method is related to coupling from the past (CFTP), but only runs the Markov chain forwards in time, and never restarts it at previous times in the past. The method is also related to an idea known as PASTA (Poisson arrivals see time averages) in the operations research literature. Because the new algorithm can be run using a read-once stream of randomness, we call it read-once CFTP. The memory and time requirements of read-once CFTP are on par with the requirements of the usual form of CFTP, and for a variety of applications the requirements may be noticeably less. Some perfect sampling algorithms for point processes are based on an extension of CFTP known as coupling into and from the past; for completeness, we give a read-once version of coupling into and from the past, but it remains unpractical. For these point process applications, we give an alternative coupling method with which read-once CFTP may be efficiently used.Comment: 28 pages, 2 figure

    How user throughput depends on the traffic demand in large cellular networks

    Get PDF
    Little's law allows to express the mean user throughput in any region of the network as the ratio of the mean traffic demand to the steady-state mean number of users in this region. Corresponding statistics are usually collected in operational networks for each cell. Using ergodic arguments and Palm theoretic formalism, we show that the global mean user throughput in the network is equal to the ratio of these two means in the steady state of the "typical cell". Here, both means account for double averaging: over time and network geometry, and can be related to the per-surface traffic demand, base-station density and the spatial distribution of the SINR. This latter accounts for network irregularities, shadowing and idling cells via cell-load equations. We validate our approach comparing analytical and simulation results for Poisson network model to real-network cell-measurements

    Packet loss characteristics for M/G/1/N queueing systems

    Get PDF
    In this contribution we investigate higher-order loss characteristics for M/G/1/N queueing systems. We focus on the lengths of the loss and non-loss periods as well as on the number of arrivals during these periods. For the analysis, we extend the Markovian state of the queueing system with the time and number of admitted arrivals since the instant where the last loss occurred. By combining transform and matrix techniques, expressions for the various moments of these loss characteristics are found. The approach also yields expressions for the loss probability and the conditional loss probability. Some numerical examples then illustrate our results

    Some aspects of queueing and storage processes : a thesis in partial fulfilment of the requirements for the degree of Master of Science in Statistics at Massey University

    Get PDF
    In this study the nature of systems consisting of a single queue are first considered. Attention is then drawn to an analogy between such systems and storage systems. A development of the single queue viz queues with feedback is considered after first considering feedback processes in general. The behaviour of queues, some with feedback loops, combined into networks is then considered. Finally, the application of such networks to the analysis of interconnected reservoir systems is considered and the conclusion drawn that such analytic methods complement the more recently developed mathematical programming methods by providing analytic solutions for sub systems behaviour and thus guiding the development of a system model

    Queue-length balance equations in multiclass multiserver queues and their generalizations

    Get PDF
    A classical result for the steady-state queue-length distribution of single-class queueing systems is the following: the distribution of the queue length just before an arrival epoch equals the distribution of the queue length just after a departure epoch. The constraint for this result to be valid is that arrivals, and also service completions, with probability one occur individually, i.e., not in batches. We show that it is easy to write down somewhat similar balance equations for {\em multidimensional} queue-length processes for a quite general network of multiclass multiserver queues. We formally derive those balance equations under a general framework. They are called distributional relationships, and are obtained for any external arrival process and state dependent routing as long as certain stationarity conditions are satisfied and external arrivals and service completions do not simultaneously occur. We demonstrate the use of these balance equations, in combination with PASTA, by (i) providing very simple derivations of some known results for polling systems, and (ii) obtaining new results for some queueing systems with priorities. We also extend the distributional relationships for a non-stationary framework

    Coherent Predictions of Low Count Time Series

    Get PDF
    The application of traditional forecasting methods to discrete count data yields forecasts that are non-coherent. That is, such methods produce non-integer point and interval predictions which violate the restrictions on the sample space of the integer variable. This paper presents a methodology for producing coherent forecasts of low count time series. The forecasts are based on estimates of the p-step ahead predictive mass functions for a family of distributions nested in the integer-valued first-order autoregressive (INAR(1)) class. The predictive mass functions are constructed from convolutions of the unobserved components of the model, with uncertainty associated with both parameter values and model specifcation fully incorporated. The methodology is used to analyse two sets of Canadian wage loss claims data.Forecasting; Discrete Time Series; INAR(1); Bayesian Prediction; Bayesian Model Averaging.

    A decision support system for demand and capacity modelling of an accident and emergency department

    Get PDF
    © 2019 Operational Research Society.Accident and emergency (A&E) departments in England have been struggling against severe capacity constraints. In addition, A&E demands have been increasing year on year. In this study, our aim was to develop a decision support system combining discrete event simulation and comparative forecasting techniques for the better management of the Princess Alexandra Hospital in England. We used the national hospital episodes statistics data-set including period April, 2009 – January, 2013. Two demand conditions are considered: the expected demand condition is based on A&E demands estimated by comparing forecasting methods, and the unexpected demand is based on the closure of a nearby A&E department due to budgeting constraints. We developed a discrete event simulation model to measure a number of key performance metrics. This paper presents a crucial study which will enable service managers and directors of hospitals to foresee their activities in future and form a strategic plan well in advance.Peer reviewe
    • …
    corecore