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A decision support system for demand and capacity modelling of an 

accident and emergency department 

Accident and emergency (A&E) departments in England have been struggling 

against severe capacity constraints (e.g. beds, staff and budget). In addition, A&E 

demand for admissions have been increasing year on year. In this study, our aim 

was to develop a decision support system combining discrete event simulation 

and comparative forecasting techniques for the better management of the Princess 

Alexandra Hospital (PAH) in England. We used the national hospital episodes 

statistics (HES) dataset including period April, 2009 to January, 2013. Two 

demand conditions are considered: (1) The expected demand condition is based 

on A&E demands estimated by comparing four forecasting methods and 

validated within a confidence interval range of 99%, and (2) The unexpected 

demand is based on the closure of a nearby A&E department due to budgeting 

constraints, hence the model should be able to estimate the impact this may have 

on the A&E department. We developed a discrete event simulation model where 

statistical distributions (i.e. waiting time for treatment and overall waiting time) 

are based on age groups. Key performance metrics such as capacity, demand 

coverage ratio (DCR), utilization rates of staff and financial outputs are generated 

based on six “what-if” scenarios under the expected and unexpected demand 

conditions. The experimental results clearly illustrate that the A&E department 

will not be able to cope with the demand in most of the unexpected demand 

conditions although it has the ability of balancing demand and capacity under the 

expected demand condition. Additional resources tested in the scenarios will not 

be sufficient to cope with all demands in Case 5 (20% increase in demand) and 

Case 6 (25% increase in demand) although they do provide efficient delivery of 

healthcare in the A&E department under the expected demand conditions. This 

study contributes to the knowledge of simulation modelling in healthcare systems 

by modelling demand and capacity by combining discrete event simulation and 

comparative forecasting. This paper presents a crucial study which will enable 

service managers and directors of hospitals to foresee their activities in future and 

form a strategic plan well in advance. 

Keywords: demand and capacity modelling; discrete event simulation; 

forecasting; accident and emergency department; healthcare; decision support 

system 



1. Introduction 

Accident and emergency (A&E) units are the busiest departments within hospitals 

working under immense financial pressures resulting in shortage of clinicians, nurses, 

beds and equipment. For the last decades, A&E departments in the United Kingdom 

(UK) have been struggling with issues related to increasing waiting times and length of 

stay, as well as lack of resources, which all have a negative impact on day to day 

functioning of A&E services. Increasing waiting times and length of stay have been 

observed and the 4-hour target (the percentage of patients spending 4 hours or more in 

hospital should be less than 5%) determined by the government has not been achieved 

since the financial year 2014-15 (National Health Services England, 2014 and 2017a).  

The population has been increasing and ageing around the world, which causes 

increasing demands on hospitals (Hong and Ghani, 2006). The considerable increase 

(i.e. approximately 23.5% from 2006/07 to 2016/17 financial year) in the number of 

admissions has been observed in the UK A&E departments (National Health Services 

England, 2014 and 2017a). In addition, the bed occupancy rates of hospitals in the UK 

from 2010/11 to 2016/17 financial year have presented an upward trend on occupied 

beds used overnight and day only, 4.87% and 13.51%, respectively. (National Health 

Services England, 2017b). 

Proportion of the younger population is decreasing compared to an increasing 

proportion of the elderly population. According to Cracknell (2010), the 65 years and 

over age group in the UK was around 10 million (a 1/6th of the population) in 2010 and 

expected to reach 19 million by 2050, which is approximately a quarter of the 

population. Blunt (2014) mentioned in his report that the number of elderly people who 

visit A&Es in the UK is much higher than other age groups. In addition, he emphasized 

that most elderly patients spend 4 hours or more, and thus hospitals are not able to 



achieve that 95% of patients are seen, treated and then admitted or discharged within 

four hours in A&E, as the target set by the NHS Constitution.  

The NHS employs 1.3 million staff in England and Wales, caring for 

approximately 1 million patients every 36 hours, which is equivalent to around 243 

million patients per year. This means NHS staff will continue to face challenges in 

terms of health and wellbeing due to severe patient demand and financial constraints 

(Royal College of Physicians, n.d.). Therefore, resources (e.g. staff, beds) may not be 

sufficient to meet demand for A&E, where doctors and nurses are sometimes forced to 

work flat out. Reducing the quality of hospital services may lead to loss of motivation in 

human resources, not to mention the negative effect it might have on service satisfaction 

for patients. In addition, the NHS has come up against financial constraints and it needs 

to generate £20 billion (equal to approximately 4% productivity annually) of net savings 

in the next few years (Hamm, 2010). Taking into account limited capacity (i.e. bed, 

staff) and financial constraints, as well as increasing patient arrivals, it is clear that A&E 

departments will continue to struggle (i.e. longer waiting times) to use their resources 

efficiently. Due to increasing demand, hospital administrations will need to provide 

higher productivity rates by enhancing the match of demand and capacity of A&Es. 

Therefore, key decision makers would need to model the level of resources needed by 

patients in A&E as a function of demand factors with a range of supply issues, thus it is 

crucial to understand patient pathway in order to demonstrate the full impact of change.  

In this study, the objective is to develop a demand and capacity model for an 

A&E department by combining the methods of quantitative forecasting and discrete 

event simulation techniques. Using the English Hospital Episodes Statistics dataset, we 

forecasted daily A&E demand by comparing four forecasting methods and selected the 

best model according to the forecast accuracy measure. The forecasted demands are 



then inputted into the simulation model under the expected demand condition. In 

addition, we have also considered unexpected demand conditions as requested by the 

Directors of the hospital, and examined the impact of the closure of a nearby A&E 

department at another hospital. We obtained the unexpected demand by increasing the 

expected demand by various rates. Capacity of the A&E has been investigated through 

the simulation model for future years. We have taken many inputs into account 

including demographic features (age groups, gender), staff shifts, number of resources 

(doctors, nurses, beds, triage rooms and clinic rooms), salary of human resources, cost 

of treatment, distributions (investigation for treatment (severity of injuries), waiting 

time for treatment and overall waiting time) and laboratory tests. We established 

distributions based on age groups, so that the related times vary, hence a more robust 

model could be built. In addition, we tested several ‘what-if’ scenarios in order to 

observe how performance metrics are changed. Thus, many outputs have been 

computed under expected and unexpected demand conditions: capacity (number of 

patients discharged), utilisation rates of doctors, nurses and beds, demand coverage ratio 

(DCR), financial implications, and many more.  

The first contribution to knowledge is the development of a decision support 

system combining discrete event simulation and comparative forecasting in modelling 

demand and capacity. To our knowledge, the literature does not contain such an 

extensive study which has successfully combined these two approaches. Therefore, we 

generate A&E demand using forecasting techniques, including the seasonal and trend 

decomposition using loess (STLF) method, which has not been applied within the 

healthcare context. The objective is to enable service managers to better understand 

future demand and act accordingly to prevent issues related to system performances and 

capacity. We then take into account the request from the hospital management to 



evaluate possible demand increases in the case of the closure of an A&E department at a 

nearby hospital. Thus, we model unexpected demand conditions by increasing the 

expected demand by various rates determined in case studies. As a result, service 

managers will be prepared against possible increasing demand. If they project that 

demand would increase in future years according to the results of this study, they might 

need to increase staffing level (i.e. additional staff).  Therefore, they will prevent 

increasing staff utilization rates and staff will continue to work without severe 

workloads.  

Almost all of the discrete event simulation oriented research papers do not 

provide further details in relation to the practical aspects of simulation modelling, for 

example the validation process, how to determine the warm-up period, calculating the 

optimal number of replications (i.e. trials), etc. We therefore provide a step by step 

guide to modelling A&E and thus an opportunity for researchers, practitioners and 

analysts to replicate our study within their setting.  

Section 2 reviews the literature on forecasting and discrete even simulation; 

Section 3 presents a flow diagram for the step by step guide. Section 4 shows how A&E 

demand is forecasted. Section 5 illustrates the conceptualised patient pathway, develops 

the model, showcases the validation stage in greater detail; Sections 6 and 7 discusses 

results and presents the conclusion, respectively. 

2. Literature Review 

2.1. Forecasting A&E demand 

Many studies have been conducted using time series analysis to forecast patient demand 

(see Table 1). Batal et al. (2001), who estimated demand for an urgent care clinic, used 

stepwise linear regression model in order to optimize staffing levels for patient demand. 

Champion et al. (2007) compared two forecasting techniques to estimate future 



admissions. Jones et al. (2008) used regression models including climate variables to 

compare a number of forecasting methods to estimate A&E demand. Sun et al. (2009) 

forecasted daily admissions to A&E by autoregressive integrated moving average 

(ARIMA) and generalized linear model (GLM), including weather variables for 

planning resources and staff. Kam et al. (2010) used a variety of ARIMA techniques 

(SARIMA and multivariate SARIMA) and compared them with moving averages to 

calculate daily demand. Boutsioli (2010) carried out a study on forecasting A&E 

demand of 10 hospitals in Greece using a time series method and determined the 

amount of unforeseen admissions using the residuals generated by the regression model. 

In another study, Boutsioli (2013) investigated the unpredictable hospital demand 

variations by using two types of forecast errors (firstly, only positive errors and 

secondly, both positive and negative forecast errors). Marcilio et al. (2013) found 

generalized estimating equation and generalized linear model as successful methods 

against seasonal ARIMA. On the other hand, Aboagye-Sarfo et al. (2015) used a new 

technique (Vector-ARMA) to compare with others on estimating A&E demand. 

Table 1 gives detailed information of the literature related to the forecasting 

hospital demand. We have drawn on the literature to select forecasting methods to be 

used in the study. We have used three forecasting methods (ARIMA, exponential 

smoothing and multiple linear regression) since they have been widely used and 

recommended as the best methods in the literature. One of the contributions of this 

study is the use of ‘the seasonal and trend decomposition using loess function (STLF) 

method; we tried this method because the hospital data contains both trend and seasonal 

components. In the study, we include a section comparing the performance of 

forecasting methods. Most importantly, as shown in Table 3, the STLF method has 

better forecast accuracy than ARIMA and exponential smoothing methods which have 



been widely used in the literature. The STLF is a different forecasting approach which 

has not previously been applied to forecast demand for A&E. According to Hyndman 

and Athanasopoulos (2014, p. 163), the STL method is a reliable technique to separate 

time series datasets into seasons and trends. This method is explained in Section 4. 

2.2. Discrete Event Simulation Modelling 

Simulation is an approach which allows characteristic features of any system to be built 

into a computer environment and for experiments to be conducted (Pidd, 2004, p. 3 – 4). 

Simulation gives useful results to users. Some of its advantages, according to Banks et 

al. (2005, p. 6) are as follows: firstly, operations of the system can be better understood. 

Secondly, what-if analyses can be tested without interrupting the system. Finally, 

blockages can be determined by analysing the system. In addition, Pidd (2004, p. 9-10) 

states that simulation is cheaper than real experiments and simulation methods can 

simulate systems for long periods such as months, or years in a short time and 

simulation is replicable, therefore an average value can be obtained by rerunning 

simulation models many times. 

As can be seen from the literature review, health care services are systems where 

simulation techniques have been carried out extensively. This situation is confirmed by 

Pidd (2004, p. 5) who stresses that simulation in an appropriate implementation allows 

the restricted resources of hospitals to be effectively used in healthcare services. 

One of the most widely used application areas of simulation methods is the 

accident and emergency department (A&E) as seen in the literature review study 

conducted by Gul and Guneri (2015). System analysis and development is crucial for 

this kind of department where limited resources are used and emergency medical 

interventions are necessary. In addition, most studies have examined current 

performances of A&Es by means of triage systems which classify patients according to 



their urgency. Existing vs. re-designed triage systems have been compared by a number 

of researchers (Connelly and Bair, 2004; Medeiros et al., 2008; Ruohonen & Teittinen, 

2006; Gunal & Pidd, 2006). On the other hand, some studies focus on classifying and 

prioritizing patients, for instance (Ozdagoglu et al., 2009; Virtue et al., 2011). A number 

of studies in the literature have developed systems of A&Es by means of scenarios. 

Alternative scenarios are generated and compared by measuring the performances of 

A&Es, for example, (Komashie & Mousavi, 2005; Duguay & Chetouane, 2007; Meng 

& Spedding, 2008; Gul et al., 2012; Wang et al., 2012; Ahmad et al., 2012; Gul and 

Guneri, 2012; Al-Refaie et al., 2014; Oh et al., 2016).  

A&Es have been exhaustively investigated by many researchers around the 

world, with the aim of assisting key decision makers to find the most effective and 

efficient way of running their service. For instance, redesigned triage systems, tackled 

by means of what-if scenarios and prioritized patients according to their health status. 

These studies have a number of limitations, firstly the number of staff in each shift are 

generally assumed to be fixed, and secondly, the lack of availability of real data to 

capture reality within A&E. In some cases, data is obtained through observations, while 

others are able to access limited datasets, and thus without real data no simulation 

model can be deemed to be accurate, robust or reliable. Table 2 compares the current 

study with previous studies related to A&E departments. 

Simulation modelling has been developed as an alternative solution method in 

different departments of hospitals. Within this framework, inpatient and outpatient 

departments have been considered as study areas. VanBerkel and Blake (2007) 

examined a general surgery’s practice in order to reduce waiting times and operation 

room times, and according to their findings long waiting times were associated with the 

number of beds. In this study, it is suggested that alternative scenarios must be 



combined to decrease patient waiting times. Rohleder et al. (2011) measured 

performance of an outpatient pathway at an orthopaedic department. A combination of 

optimum number of staff, patient schedules and staff punctuality was tested. As a result, 

significant reductions in waiting times and total patient times were found. Zhu et al. 

(2012) analysed how two growth rates in demand changed the optimum bed numbers in 

an intensive care unit. Demir et al. (2017) developed a decision support tool to better 

understand future key performance metrics of 10 specialities of a hospital. Hospital 

demand was estimated for the next 6 years by assuming population growth rates of the 

catchment area which the hospital serves. 

Bed capacity issues of healthcare services are directly proportional to patient 

demands, making it difficult for healthcare planners to manage services. Therefore, 

service managers are forced to take precautions, such as the reallocation of beds, 

building new departments with an increased capacity. Vasilakis and El-Darzi (2001) 

analysed the crises coming in sight during winter seasons and revealed the available bed 

capacity “before crisis” and “during crisis”. Cochran and Bharti (2006) reallocated 

beds at an obstetrics hospital and increased the bed capacity by a small rate to enable 

more patients to be admitted. Levin et al. (2008) found that determining the optimal 

capacity of cardiology enables a reduction in admission times of A&E. 

The contribution of this study to the field of simulation modelling in healthcare 

systems is as follows: (1) we develop a decision support system which combines 

discrete event simulation technique and comparative forecasting method to specify 

demand and capacity of a healthcare department (A&E). To determine scientifically the 

A&E demand for expected demand conditions, we compare four forecasting methods 

and select the best model instead of relying on a single forecasting method. (2) In 

comparison with existing studies, this study provides a step by step guide presented in 



Section 3 to simulating an A&E department, explaining all steps in greater detail, 

including the model validation stage, warm-up period, and the optimum replication 

number. In the majority of instances, researchers, practitioners and analysts find it 

difficult to replicate a study, hence our objective was to provide all the details to ensure 

our model can be replicated in other settings.  

3. The Decision Support System 

In this study, we develop a decision support system (DSS) combining comparative 

forecasting techniques and discrete event simulation for demand and capacity planning 

in an A&E department. For this, the projected demand is obtained from forecasting 

techniques instead of using presumptive demand to embed it as input in the simulation 

model. A step by step guide is presented as a flow diagram illustrating how two 

techniques are combined in Fig 1. We extracted all required A&E data from the ‘big 

data’ corresponding to the hospital of interest, i.e., 248,910 A&E arrivals (with 86 

variables) over the period of the study. The required data was used in both demand 

forecasting and parameter estimation of the statistical distributions for the simulation 

model. These inputs along with model parameters, financial inputs and local data 

provided by the hospital were embedded into our A&E simulation model. The model 

then generated future levels of key output metrics (i.e. capacity, demand coverage ratio, 

bed occupancy rate, utilization rates of doctors and nurses, total revenue and surplus). 

All steps mentioned in the flow diagram are explained in Section 4 and 5 in greater 

detail. 

4. Forecasting A&E demand 

Daily demand of the A&E department is predicted by using quantitative forecasting 

methods since patient admissions are used as an input to the simulation model. This 

study has been carried out in the A&E department of the Princess Alexandra Hospital 



working 24/7 in England. In this study, 46-months of data was used for the period April, 

2009 – January, 2013 and the data was extracted from the national hospital episodes 

statistics. The data was divided into two: the training set (April, 2009 – January, 2012) 

and the validation set (February, 2012 – January, 2013). 

Many forecasting methods have been compared in A&E demand forecasting in 

the literature. As seen in Table 1, the autoregressive integrated moving average 

(ARIMA), exponential smoothing (ES) and multiple linear regression have been widely 

used. On the other hand, Hyndman and Athanasopoulos (2014, p. 163) mention that the 

seasonal and trend decomposition using loess (STL) method is a reliable decomposition 

technique to separate the time series datasets into seasons and trends. Therefore, the 

STL function (STLF) method may be effective at forecasting. Thus, we have compared 

the method with three other methods. 

The Autoregressive integrated moving average (ARIMA) method is a 

forecasting technique which has been widely used and generates forecasts by means of 

autocorrelations in the time series (Hyndman and Athanasopoulos, 2014, p. 213). The 

ARIMA method has three parameters (p, d and q) where p denotes the order of 

autoregression, d is the order of differencing and q is the order of the moving average 

(DeLurgio, 1998, p. 270). Exponential smoothing is one of the most widely used 

forecasting methods. A feature is that “the ES implies exponentially decreasing weights 

as the observations get older” (Makridakis, Wheelwright and Hyndman, 1998, p. 140). 

Multiple linear regression seeks a relationship between independent (explanatory) 

variables and a dependent variable. In other words, one variable is forecasted using two 

or more independent variables in the multiple linear regression (Makridakis, 

Wheelwright and Hyndman, 1998, p. 241). Stepwise linear regression, which is one of 

multiple linear regression methods, selects the explanatory variables relevant to the 



dependent variable from the initial model including all explanatory variables. In this 

study, the stepwise linear regression involves the use of dummy variables. For example, 

the stepwise linear regression model for the daily estimation includes days of week, 

months of year, variables related to UK public holidays (a holiday, a day before a 

holiday and a day after a holiday). The STLF method converts data to seasonal data 

using STL (The Seasonal and Trend Decomposition using Loess) decomposition. A 

non-seasonal forecasting technique is used to get the estimated values. The estimated 

values are then re-seasonalized by using the “the last year of the seasonal component” 

(Hyndman et al., 2016). In this study, the following functions in R are applied in order 

to select the best ARIMA, ES, the STLF methods and stepwise linear regression, 

respectively: the auto.arima(), the ets(), the stlf() functions (Hyndman and Khandakar, 

2008),  and the stepAIC() functions (Ripley et al. 2016). 

4.1. Choosing the best forecasting method 

In this study, an A&E demand for projection is obtained from forecasting techniques 

instead of using presumptive demand to embed it as input in simulation model. 

Therefore, forecasting and simulation is combined for the development of the decision 

support system in demand and capacity modelling. Thus, four forecasting methods are 

used: ARIMA, ES, Stepwise Linear Regression and STLF. Using these methods, the 

daily A&E demand is estimated. At this point, the important issue is to select the best 

forecasting method. A number of metrics are available for this purpose. Gneiting (2011) 

reviewed the surveys on this matter and found that the measure most widely used in 

organizations is MAPE – the mean absolute percentage error. Unfortunately, it is not 

widely known that MAPE is a biased measure: it does not treat positive and negative 

errors symmetrically and consequently selects methods whose forecasts tend to be too 

low. The mechanism by which this occurs is explained in (Tofallis, 2015). We have 



chosen to use the mean absolute scaled error (MASE) method which also has the 

advantage that if zero occurs in the observations, MASE avoids the infinities which 

occur with mean absolute percentage error (MAPE) (Hyndman and Koehler, 2006). 

MASE is based on a simple quantity that managers can comprehend, namely the 

average prediction error (irrespective of sign). MASE is a ratio which compares this 

with the corresponding value from using the naïve forecasting method as a benchmark. 

In the MASE, the numerator is the mean absolute error of the forecasting method and 

the denominator is the mean absolute error of the naïve method, i.e. when the forecast is 

the previous observation. The denominator is therefore the same for all methods 

studied. Hence, the MASE compares the errors with those from the naïve method. 

𝑞𝑞𝑡𝑡 = 𝑒𝑒𝑡𝑡
1

𝑛𝑛−1
∑ |𝑌𝑌𝑖𝑖−𝑌𝑌𝑖𝑖−1|𝑛𝑛
𝑖𝑖=2

 (1) 

MASE = mean(|𝑞𝑞𝑡𝑡|) (2) 

where  represents a scaled error,  is error term and  denotes the 

observation at time  (Hyndman and Koehler, 2006). 

According to Table 3, the stepwise linear regression is the best method judging 

by the lowest MASE value with 0.8651. As a result, this means that the daily A&E 

demand will be forecasted using the stepwise linear regression method. 

One of the important issues in forecasting is to validate the forecasts. We use a 

paired t test (see Eq. (4) for the formula) for validation of forecasts and compare the 

actual data and forecasted demand from the regression model for the validation set 

period (February, 2012 – January, 2013) in forecasting process. Table 4 shows that the 

forecasted demand is validated at 99% confidence interval. 

In order to estimate the distribution of interarrival times to be used as input in 

the simulation model, daily A&E demand is forecasted by using the developed stepwise 



linear regression model for the period February, 2013 – January, 2014. The distributions 

related to patient arrivals are explained in Section 5.3. 

5. Discrete Event Simulation Modelling 

In our study, patient arrivals, investigation for treatment (severity of injuries) waiting 

time for treatment, treatment time and overall waiting time are probabilistic and thus, 

statistical distributions are considered. In addition, patient arrivals and processes of the 

hospital are discrete and have discrete time intervals. Moreover, Gunal (2012) states 

that DES is a successful technique in modelling systems which have queuing processes. 

Furthermore, ABS is a newer simulation approach, whereas DES has appeared 

extensively in the literature and is widely accepted and utilised for decision making 

purposes by healthcare organisations in the UK, including the NHS and ‘The National 

Institute for Health and Care Excellence’ (NICE), which has recognised DES as a valid 

way of simulating complex patient pathways (Davis et al. 2014). In the light of these 

reasons, DES method is applied and Simul8 software is used in our study. 

5.1. Data 

The data used in the simulation model is obtained in two ways: firstly, the following are 

derived using the national hospital episodes statistics (HES) dataset covering period 

April 2009 to January 2013: patient arrival date and time, demographic features, 

treatment time, conclusion time, laboratory tests and discharge destination. The local 

data was provided by the hospital, that is, the number doctors, nurses, beds, triage room, 

etc. In addition, all input parameters and their references are given in Appendix 1. 

5.2. Conceptualization of the A&E department 

To develop a discrete event simulation model, it is required that elements of the system 

are specified and their relationships among each other are mapped out (Pidd, 2004, p. 35 

– 36). This means that firstly, a hospital should be conceptualized and after that, a 



simulation model should be developed. 

The conceptualization stage is required to understand the system better and build 

a simulation model correctly. In this study, the A&E is conceptualised in high level and 

presented in Fig. 2. The conceptualised A&E model is validated in collaboration with 

directors of the hospital (i.e. clinical directors, director of finance, turnaround director) 

and consultants in the hospital. In this pathway, four different patient arrivals are 

shown: patients can be referred from GPs, self-admission, by ambulance, or referral 

from educational establishments and general dental practitioner. Patients are registered 

and pre-assessment process (triage process) is carried out by a nurse. Patients then wait 

to be seen by a doctor. Doctors may request further investigations, such as X-ray, 

urinalysis, biochemistry, etc. Depending on patient’s condition, they can either be 

admitted to inpatient care, discharged back to primary care; discharged to an outpatient 

department, discharged by death, or discharged home with no further action. 

5.3. Inputs – Outputs 

In this study, inputs and outputs are shown in Fig. 3. We used five types of inputs: 

patient input (patient demand by forecasting), physical inputs (beds, triage and clinic 

rooms), staff inputs (doctors, nurses), financial inputs (Healthcare Research Groups 

(HRG) tariff, payments to doctors and nurses indicated in NHS Staff Earnings 

Publications) and other inputs (distributions, all laboratory tests, shifts, demographic 

features, such as age groups and gender). Healthcare Research Groups (HRGs) is an 

indicator which classifies similar clinic “conditions” or “treatments” in terms of level of 

resources used in healthcare systems (NHS England, 2017). In this study, reference 

costs based on HRG (NHS Digital, n.d.) are used to estimate average revenue of the 

A&E. Appendix 1 shows all input parameters, estimates, distributions and references.  



All laboratory tests (X-ray, electrocardiogram, haematology, biochemistry, 

urinalysis and others) in the A&E department are taken into account. Number of 

resources provided by the hospital are used as inputs in the simulation model (see 

Appendix 1). 

Two age groups (i.e. 20-40, 80+) correlate with waiting times for treatment in 

A&E departments compared against age group of 40-60. 10%-demand increase by 

younger group means a 0.49% increase on the performances related to waiting times in 

A&Es. In addition to this, same increase on demand by elderly group causes a 1% 

decrease on the performances (Monitor, 2015). We therefore established the 

distributions based on age groups because the relevant times vary according to age 

group. Distributions for “waiting time for treatment” and “waiting time for discharge” 

are computed. Appendix 2 illustrates values of goodness of fit (i.e. Kolmogorov 

Smirnov and Anderson Darling) for 18 different distributions of “waiting time for 

treatment” for each age group. The best fitting distributions for each age group are 

selected judging by the lowest goodness of fit value, which are highlighted in bold and 

their parameter values are stated in Appendix 2. Probability density function graphs for 

the best fitting distributions of “waiting time for treatment” for each age group are given 

in Appendix 3. 

Appendix 4 illustrates values of goodness of fit (i.e. Kolmogorov Smirnov and 

Anderson Darling) for 18 different distributions of “waiting time for discharge” (by 

each age group). The best fitting distributions for each age group are selected judging 

by the lowest goodness of fit value, which are highlighted in bold and their parameter 

values are stated in Appendix 4. Probability density function graphs for the best fitting 

distributions of “waiting time for discharge” (by each age group) are given in Appendix 

5. 



We established the observed frequency distributions for various group patient 

depending on the severity of their injuries (investigation for treatment) such as waiting 

time to be seen by a doctor, waiting time for discharge, treatment time and cost of 

treatment. According to the HES dataset, there are eight HRG codes for the PAH (i.e. 

from “VB01Z” to “VB08Z”). These are used for classifying the investigation for 

treatment. These observed frequency distributions are established to assign individual 

patients according to the severity of their injuries (investigation for treatment). This risk 

adjustments enable us to better capture detailed treatment processes within A&E, 

financial implications, impact on resources, etc. 

We calculate daily average interarrival times of the A&E by dividing total time 

of a day by daily demand estimated by the stepwise linear regression model. This 

procedure is applied for each day of a month. After that, monthly distribution was 

calculated using that daily average interarrival times we calculated for that month. 

Therefore, we generate all monthly distributions of the interarrival times based on days-

of-weeks pattern by using EasyFit software for each case study. The EasyFit software 

selects the best distribution according to goodness of fit (i.e. Kolmogorov Smirnov and 

Anderson Darling) (Mathwave Technologies, n.d.). Table 5 gives the monthly 

distributions of patient interarrival times used in this study. For example, as seen from 

Table 5, patients arrive to the A&E in accordance with the Poisson Distribution 

(λ=6.2667) for the period (April, 2013) whereas they arrive to the A&E according to the 

Geometric Distribution (p=0.13478) for the period (March, 2013) in Case 1. 

As seen from Fig. 3, we obtain four kinds of outputs from this study: patient 

outputs (capacity), physical outputs (bed utilization rates, demand coverage ratio), staff 

outputs (staff utilization rates) and financial outputs (average revenue, cost and surplus). 

Outputs are obtained quarterly and annually. We developed an output metric: Demand 



coverage ratio (DCR). Therefore, we can measure the percentage of patients admitted to 

an A&E and discharged with available resources. Its formula is shown in Eq. (3). This 

output shows the A&E’s ability to meet demand. For example, 100% DCR means that 

all patient demands are met with the available resources, whereas DCR would be less 

than 100% depending on the number of patients who are not discharged from A&E. 

𝐷𝐷𝐷𝐷𝐷𝐷 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑤𝑤ℎ𝑜𝑜 𝑎𝑎𝑎𝑎𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑤𝑤ℎ𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝐴𝐴&𝐸𝐸

 (3) 

Our financial outputs are associated with NHS Staff Earnings Publications by 

applying payments to doctors and nurses determined in NHS Staff Earnings 

Publications (NHS Digital, 2013 and 2014) when calculating average cost of treatment. 

On the other hand, NHS reference costs (Department of Health, 2013 and 2014) are 

considered as revenue to estimate average revenue of the A&E department. 

5.4. Simulation Model 

The conceptualization stage enables us to better understand the system prior to 

developing the simulation model. As presented in Fig. 4, the A&E simulation model is 

modelled using Simul8 simulation software. The “AandE Arrival” entry point is made 

up of four arrival modes (i.e. GP referral, self referral, emergency and other) as shown 

in Fig. 2. Patients arrive at A&E according to the distribution of the interarrival times 

specified in Table 5. Patients are labelled in terms of age group and gender according to 

their statistical distributions. Patients wait for pre-assessment which is normally carried 

out by a nurse and a label related to severity of injuries is assigned to patients for triage 

process. Patients are then asked to further wait to be seen by an A&E doctor according 

to a waiting time distribution as indicated in Appendix 2. In the ‘AandE Treatment’ 

work centre, if a doctor wants a further investigation, patients are referred to the 

laboratory area such as X-Ray, electrocardiogram and so on. An investigation bundle is 



assigned to each patient according to the distribution obtained from data. For example, 

if a patient has investigation1 (X-Ray) and investigation2 (Electrocardiogram), the 

patient visits firstly X-Ray area and then takes an electrocardiogram test. Patients are 

then further assessed by the A&E doctor and relevant treatment is decided. After that, 

patients are prepared to be discharged by “AandE Discharge Preparation”. Then, 

patients are discharged based on healthcare provider’s decision by “AandE Discharged” 

using five discharge modes as shown in Fig. 2 (i.e. they can either be admitted to 

inpatient care, discharged back to primary care; discharged to an outpatient department, 

discharged by death, or discharged home with no further action). In this model, there are 

four distinct types in relation to waiting times: 1) Waiting for pre-assessment (triage), 2) 

Waiting time for treatment (by clinician), 3) Waiting time for discharge (post 

treatment), 4) Overall waiting time, i.e. from arrival to discharge. Relevant distributions 

have been established for (1), (2) and (3) whereas (4) is an output. In the data collection 

period of the model, overall waiting time (4) is obtained by adding (1), (2) and (3). 

5.5. Verification and validation 

The simulation model is verified by a number of directors in the hospital. The model is 

run for the period February, 2012 – January, 2013 and the simulation results (number of 

admission, waiting time for treatment and overall waiting time) are obtained for 

validating the model. We have compared these simulation results and actual values by 

using a paired t test which is determined as a formula in Eq. (4).  

𝑡𝑡0 = 𝑑𝑑�−𝜇𝜇𝑑𝑑
𝑆𝑆𝑑𝑑

√𝐾𝐾�
 (4) 

Where 𝑑̅𝑑 denotes average observed differences between actual values and 

simulation result, 𝜇𝜇𝑑𝑑 is mean difference, 𝑆𝑆𝑑𝑑 denotes the standard deviation and K is the 



number of input data set (Banks et al., 2005, p. 377). As a result, the model is validated 

since t test values (|𝑡𝑡0|) are less than or equal to t critical values (𝑡𝑡𝛼𝛼
2� ,𝐾𝐾−1) at 95% 

significance level. Table 6 presents the results of the validation test. 

5.6. Determination of replication number and warm-up period 

Using Fixed-Sample-Size Procedure, we calculate the optimum replication number for 

the simulation model. Eq. (5) presents formula for fixed-sample-size procedure. 

𝑛𝑛𝛾𝛾∗(𝛾𝛾) = 𝑚𝑚𝑚𝑚𝑚𝑚 �𝑖𝑖 ≥ 𝑛𝑛;
𝑡𝑡𝑖𝑖−1,1−𝛼𝛼 2�

�𝑆𝑆2(𝑛𝑛)/𝑖𝑖

|𝑋𝑋�(𝑛𝑛)| � ≤ 𝛾𝛾′ (5) 

where n is initial replication number, i is required replication number, S is 

standard deviation, 𝛾𝛾′ is “adjusted” relative error and 𝑋𝑋� is average estimates of key 

parameter (Law and Kelton, 2000, p. 513). It is recommended that 𝛾𝛾 ≤0.15 and at 𝑛𝑛0 ≤

10 (Law and Kelton, 2000, p. 515). Minimum value of replication number is chosen as 

optimum replication number if 𝑛𝑛𝛾𝛾∗ (𝛾𝛾) is less than or equal to 𝛾𝛾′(Law and Kelton, 2000, 

p. 513). In this study, initial replication number is determined as 10 and we calculate 

nƔ
*(Ɣ) is less than or equal to Ɣ' for the key performance metrics (i.e. average waiting 

time and average length of stay). As a result, we use the optimum replication number as 

10 replications in our simulation model. 

Welch’s Method is a widely-used technique for determining the length of the 

warm-up period. This method determines warm-up period through 4 steps: (1) 

Simulation is run n replication times. (2) For each observation, all replication values (𝑌𝑌�𝑖𝑖) 

of a key performance metric (i.e. waiting time) is averaged. (3) Moving averages of   

𝑌𝑌�𝑖𝑖(w) by using formula in Eq. (6). 



𝑌𝑌�𝑖𝑖(w) = �

∑ 𝑌𝑌�𝑖𝑖+𝑠𝑠 𝑤𝑤
𝑠𝑠=−𝑤𝑤
2𝑤𝑤+1

 𝑖𝑖𝑖𝑖 𝑖𝑖 = 𝑤𝑤 + 1, … ,𝑚𝑚 − 𝑤𝑤
∑ 𝑌𝑌�𝑖𝑖+𝑠𝑠 𝑖𝑖−1
𝑠𝑠=−(𝑖𝑖−1)

2𝑖𝑖−1
              𝑖𝑖𝑖𝑖 𝑖𝑖 = 1, … ,𝑤𝑤

  (6) 

(4) Graphs of moving averages of 𝑌𝑌�𝑖𝑖(w) are obtained for each key performance 

metric. Then, the point where moving averages are smoothed is selected (Law and 

Kelton, 2000, p. 520-521). 

 In this study, the warm-up period is investigated for key performance metrics 

(i.e. waiting time for treatment and overall waiting time). In the simulation model, the 

warm up period consists of two months: December 2011 (31 days) and January 2012 

(31 days) and totally the warm up period is 62. 

5.7. Case Study 

We have compared four forecasting methods and selected the one giving the best 

forecast accuracy measure. By using the forecasting method selected, we estimate daily 

A&E demand and compute monthly patient interarrival times to embed in the 

simulation model as input. In this study, six case studies are developed as given Table 7. 

Case 1 (Base model) consists of only A&E demand obtained from the stepwise linear 

regression model. Capacity for Case 1 is modelled and the simulation model including 

warm-up period is run 10 times (replication is 10 according to the Fixed-Sample-Size 

Procedure). Therefore, Case 1 is investigated under expected demand conditions since 

forecasting provides the foreseen demand of the A&E department. Following the 

request of the management of hospital, we also examine how the balance of demand and 

capacity is affected in case the nearby hospital is closed. In this situation, more patients 

than expected will visit the A&E department. Thus, we examine these possible 

increases under unexpected demand conditions. Case studies covering Case 2 to Case 6 

are developed based on the Base Model (Case 1). For example, the A&E demand in 



Case 2 is 5% higher than in Case 1. Five different increases in demand levels are taken 

into account to observe possible effects on the A&E’s performance. 

In addition, we generate ‘what-if’ scenarios by considering the bottlenecks in the 

A&E department. In this regard, we develop six scenarios (see Table 8) related to how 

demand is met with additional resources. Each scenario contains previous scenarios 

cumulatively. For example, Scenario 3 includes Scenario 1 and 2. Scenario 1 is the base 

model (demand is provided by forecasting method). Scenario 2 includes increase in 

overall waiting time by 20% since possible increases in demand could provide longer 

length of stay. In Scenario 3, an additional X-Ray is added to the A&E system in 

addition to Scenario 2. In Scenario 4, a total of 3 nurses are employed, i.e. one nurse for 

each shift. Thus, we investigate how capacity is affected by this additional resource and 

whether performance metrics (i.e. utilization rates of nurses and beds) are increased or 

not. Scenario 5 has one additional bed in comparison with Scenario 4. Finally, Scenario 

6 involves an additional doctor per shift compared with Scenario 5. Each scenario is 

analysed under expected and unexpected demand conditions and therefore, simulation 

outputs determined in Fig. 2 are calculated. 

6. Results and Discussion 

Simulation is a technique which has been widely used in different research areas and 

provides better management performance and decision support systems to the related 

companies or organisations by means of operational research. However, simulation on 

its own uses sampling from historical data distributions but does not deal with upward 

trends in some inputs such as demand. Such disadvantages must be avoided, particularly 

when simulation is used in strategic planning. The simulation technique therefore needs 

to be combined with forecasting methods in order to estimate the values of parameters 

for projection. It should be looked at what constitutes a good criterion for comparing 



forecasting methods, if one undertook a similar study. This is in fact an outstanding 

issue in the field of forecasting – there is no universally accepted measure of forecast 

accuracy. In fact, it seems to depend on the research area and the characteristics of the 

data used. The existence of particular features in the data, such as trend and seasonality, 

may lead to the use of certain types of forecasting techniques. Therefore, in this study, 

ARIMA, exponential smoothing and multiple linear regression methods are selected 

since these methods have been widely used and recommended as the best methods in 

the literature as mentioned in Section 2.1. In addition, the STLF method was also 

compared with the others because the hospital data contains both trend and seasonal 

components. 

This study presents a decision support system to modelling demand and capacity 

compared to other studies in the literature. It combines discrete event simulation 

technique and quantitative forecasting in order to investigate demand and capacity of 

the A&E department by using 46-months of ‘big’ data. In this study, we use demand 

obtained by quantitative forecasting instead of using presumptive rates in the simulation 

model. We took all the laboratory processes with more than 18 tests into account in the 

simulation model. To develop the model that captures variation (uncertainty), statistical 

distributions are based on age groups so that the related times vary according to age 

groups. In addition, the warm-up period is determined by using Welch’s method and it 

is added to the run length of the model. Therefore, we ensure that the system’s queues 

are embedded in the model to behave as under normal conditions and it is run before 

collecting statistical results from the model. To prevent any correlations among the 

results of key performance metrics and reduce variance, we specify optimum replication 

number as 10 replications. 



Demand coverage ratio (DCR) is a metric that showcases whether the hospital is 

able to cope with the expected and unexpected demand for A&E. The A&E has an 

ability in meeting demand if the DCR is around 100%. It means that available resources 

are sufficient to provide efficient delivery of health care in the A&E department. 

Otherwise, the management of the department (i.e. service managers and directors of 

the hospital) will need to take necessary actions against the projected demand.  

In Table 9, capacity amounts are given quarterly and annually under expected 

and unexpected demand conditions. Firstly, the Demand Coverage Ratio (DCR) is more 

than 99% which means future demand is met with available resources in each scenario 

under the expected demand condition.  In Case 2, a 5%-increase in demand causes a 

little reduction in meeting demand. However, this problem is removed by additional 

resources in Scenario 3 to 6.  As the unexpected demand rises, the capability of the 

A&E department in meeting the demand decreases. For example, the capability in 

coping with demand result in the reduction by around 8%, 16%, 19% and 23% in Case 

3, 4, 5 and 6 respectively in Base Scenario. An additional X-Ray is enough to achieve 

around 100% DCR in Case 3 although it is not adequate for Case 4, increasing DCR 

83.70% to 88.28%. In addition to an additional X-Ray, an additional nurse per shift is 

required to meet demand in Case 4. Scenarios increase the DCR 81.08% to 98.92% in 

Case 5. However, all scenarios are insufficient to meet all unexpected demand in Case 

5. Likewise, more planning for additional reinforcements is required in order to achieve 

100% DCR in Case 6. Around 5% of the demand is not met in Case 6 despite all the 

listed additional resources being applied. 

Fig. 5 to 9 present comparative graphs which shows the outputs of this study and 

how performance metrics are changed through scenarios. These graphs use two vertical 

axes: The axis on the left of the graph represents the Demand Coverage Ratio (DCR) as 



plotted using “bars” whereas the vertical axis on the right is the annual capacity in the 

A&E represented using “lines”. Note that in Fig. 5, out of the six scenarios only 3 lines 

are shown. Scenario 1 - 2 and Scenario 4 - 6 overlap as they produce identical outputs. 

Fig. 5 compares capacity (number of patients discharged) and demand coverage ratios 

(DCR) under expected (Case 1) and unexpected (other Cases) demand conditions. The 

A&E department’s capacity reaches the peak in each case when Scenario 6 is applied. 

The increase in demand results in decrease in DCR in Scenario 1 and 2. On the other 

hand, Scenario 3 is not able to prevent a decrease in DCR in the last three cases even 

with rises in DCR in the first three cases.  

Fig. 6 illustrates comparison of capacity (number of patients discharged) and 

utilization of beds in A&E. Scenario 2 increases use of beds as additional resources (X-

Ray and nurse) are integrated in to the system; the utilization of beds increase since 

more patients occupy more beds.  In Scenario 5, as expected the addition of a bed has 

slightly decreased the utilization of beds. On the other hand, utilization rates of beds 

exceed 90% in Case 4 to 6. The A&E department’s management should take some 

precautions to avoid capacity issues before facing severe demands as in Cases 4 to 6.  

Fig. 6 and 7 illustrate the results related to utilization rates of human resources 

(doctors and nurses). Utilization rates of doctors are around 84% and rise to over 90% 

in Case 4, 5 and 6. Likewise, utilization rate of nurses is roughly 100%. In every case, 

Scenario 6 includes an additional doctor per shift in the system and reduces the 

utilization substantially. We should be aware that scenarios such as Scenario 4 increases 

staffing costs. Although Scenario 4 employs an additional nurse per shift, the utilization 

rates of nurses remain higher in Case 4, 5 and 6. 

In this study, HRG Tariff is used to calculate revenue for the A&E department 

for the period (February, 2012 – January, 2013). The hospitals revenue is proportional 



to the number of patients treated in A&E depending on patient severity, whereas for 

costing we have only considered staff costs. Staff cost is calculated by multiplying the 

number of hours treated by staff with unit cost of staff per hour. Surplus is derived by 

deducting costs from revenues and calculated on a quarterly and annually basis. Fig. 8 

presents comparative results of average revenue and surplus. Scenarios which increase 

the number of patients admitted provides A&E with the highest revenue. Due to 

increased capacity, Cases 4, 5 and 6 dramatically increases revenue under the 

unexpected demand conditions. However, Scenarios 4 and 5 gives higher surplus than 

Scenario 6 due to doctor’s salary.  

7. Conclusion 

We developed a decision support system which discrete event simulation was combined 

with comparative forecasting technique to model demand and capacity of the A&E 

department of the Princess Alexandra Hospital in England in this study. For this, we 

prepared a step by step guide as presented in the decision support system illustrating 

how the two techniques are combined. We have compared four forecasting methods 

(ARIMA, exponential smoothing, stepwise linear regression and the STLF method 

which has not previously applied to forecast A&E demand) and selected the best 

according to a forecast accuracy measure. We estimated daily A&E demand using 

stepwise linear regression and developed two demand conditions, namely the expected 

demand condition based on predicted activity, and the unexpected demand condition as 

requested by the hospital management in the case of closure of an A&E department at a 

nearby hospital. We then modelled capacity of A&E using discrete event simulation 

under expected and unexpected demand conditions. 

The experimental results clearly illustrate that the A&E department will not be 

able to cope with the demand in most of the unexpected demand conditions although it 



has the ability of balancing demand and capacity under the expected demand condition. 

Additional resources tested in the scenarios will not be sufficient to cope with all 

demands in Case 5 (20% increase in demand) and Case 6 (25% increase in demand) 

although they do provide efficient delivery of healthcare in the A&E department under 

the expected demand conditions.  

The existing A&E models were developed based on historical data, where no 

projections about the future had been made. Given that there is a year on year increase 

in A&E admissions, this is a crucial piece of information which is missing for 

modelling purposes. However, our A&E model (combined with forecasting) included 

demand inputs estimated by forecasting techniques using big data. In addition, it 

explored the demand-capacity balance and determined key performance metrics for the 

next period. The A&E model analysed how the unexpected demands are met by testing 

cumulative scenarios. It therefore provides a crucial decision support for A&E service 

managers and hospital management. This study suggests that hospitals should take an 

integrated approach to capturing demand and capacity using forecasting and simulation. 

Moreover, hospitals should stress test their systems using such techniques, as it is a 

useful approach to test complex systems, as illustrated above.  

This article will inevitably provide many benefits to management of NHS 

Trusts. In relation to practical implications, the management is able to foresee patient 

demands for their hospital in future years and test whether they are able to cope with 

demand with resources at their disposable. Therefore, this will enable key decision 

makers to be alerted well in advance if performance targets and patient needs cannot be 

achieved.  

In addition, decision makers can observe the impact of possible changes in 

resources (i.e. staff, beds, rooms) and how it effects the performance of A&E in the 



safety of a simulation environment. The results will bring a different perspective to the 

management in terms of strategic planning (both short and long term) and encourage 

them to develop a realistic plan. In conclusion, this study provides a crucial and 

practical decision support tool for hospital managers, which will benefit patients, 

taxpayers, the NHS and beyond. 

A limitation of the study is that we did not take account of triage system’s 

interactions with other departments (e.g. the medical assessment unit) which may 

impact activity and utilisation of resources. We will consider this aspect of the A&E 

system in our future simulation models. Further research will involve the development 

of similar models for outpatient and inpatient specialities which are in interaction with 

the A&E department. 
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Table 1. A literature review on forecasting hospital demands using time series analysis, 

ARMA: Autoregressive moving average, ARIMA: Autoregressive integrated moving 

average 
Author/s (Year) Study type Method/s used, Best method (*) Independent variables 

Current Study Daily 
ARIMA 
Exponential Smoothing 
Stepwise Linear Regression (*) 
STLF 

Days of week, month of year, a 
day before a holiday, holiday, a 
day after a holiday 

Aboagye-Sarfo et al. (2015) Monthly 
ARMA 
Vector-ARMA (*) 
Exponential smoothing 

Time 
Dependent Variables: Age group, 
place of treatment, triage category, 
disposition 

Bergs et al. (2013) Monthly Exponential smoothing - 
Boutsioli (2013) Daily ARMA 

Multiple linear regression 
Weekends, summer holidays, 
official holidays, duty 

Marcilio et al. (2013) Daily 
Generalized estimating equation (*) 
Generalized linear model (*) 
Seasonal ARIMA 

Days, months, public holidays, 
after and before days of a holiday, 
temperature 

Kam et al. (2010) Daily 
Moving average 
Seasonal ARIMA 
Multivariate seasonal ARIMA (*) 

Days, months, quarters of years, 
seasons, weather factors, daily 
temperature, holidays, near-
holidays 

Boutsioli (2010) Daily Multivariate regression model Weekends, summer holidays, 
official holidays, duty 

Sun et al. (2009) Daily ARIMA (*) 
General linear model 

Days, months, public holidays, 
weather factors 

Jones et al. (2008) Daily 

Artificial neural network 
Exponential smoothing 
Seasonal ARIMA 
Time series regression (TSR) (*) 
Time series regression with climate 
variables (TSRCV) 

Days, months, holiday, near-
holiday, interaction terms (for 
TSR), in addition to these daily 
min – max temperature, daily 
precipitation (for TSRCV) 

Champion et al. (2007) Monthly ARIMA 
Single exponential smoothing (*) - 

Batal et al. (2001) Daily Stepwise linear regression Days, months, seasons, holidays, 
after and before days of a holiday 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2. Comparison of studies related to accident and emergency (A&E) department, 

NG: Not Given 

Author/s and 
Years 

Arrival 
process Data 

Examination of 
different 
demand 

conditions 

Waiting 
time for 

treatment 
based on 
age group 

Treatment 
time based 

on age 
group 

Overall 
waiting 

time based 
on age 
group 

Warm-
up 

period 

Replication 
number Shift Software 

Current study Stochastic 46 
months  - by forecasting 

   

2 months 10 
 

Simul8 

Oh et al. (2016) Deterministic 5 months X X X X 2 days 5 
 

Arena 
Al-Refaie et al. 
(2014) Stochastic NG X X X X NG 10 X NG 

Wang et al. (2012) Deterministic 1 month  - by 
presumptive 

X X X NG NG 
 

Simul8 

Gul et al. (2012) Stochastic NG X X X X NG NG 
 

ServiceModel 
Virtue et al. 
(2011) Deterministic 12 

months X X X X 24 hours 50 X Simul8 

Ozdagoglu et al. 
(2009) Stochastic 33 days X X 

  

3 days 10 X Arena 

Medeiros et al. 
(2008) NG 1 month X X X X NG 30 X Arena 

Meng and 
Spedding (2008) Stochastic 1 month X X X X NG NG X MedModel 

Duguay and 
Chetouane (2007) Stochastic 90 days X X X X NG 10 

 

Arena 

Gunal and Pidd 
(2006) Stochastic 2 months X X X X X 50 X Micro Saint 

Sharp 
Ruohonen and 
Teittinen (2006) Stochastic 2 weeks X X X X NG NG 

 

MedModel 

Komashie and 
Mousavi (2005) Stochastic NG X X X X NG NG X Arena 

 

Table 3. Forecast accuracy (MASE) values of this study. ARIMA: Autoregressive 

integrated moving average, ES: Exponential smoothing, STLF: The function of the 

seasonal and trend decomposition using loess 

Forecasting methods Forecasting models Forecast accuracy (MASE) 
Training set Validation set 

ARIMA (2, 0, 4) 0.7357 0.9984 
ES ETS (M, N, N) 0.7671 0.9977 
Multiple linear regression Stepwise linear regression 0.7998 0.8651 
STLF STL + ETS (A, N, N) 0.6945 0.9781 

 

Table 4. Validation of the forecasted demand 

Parameter t Test 
value 

t Critical 
value 

Average number of 
patients (monthly) 

99% Confidence 
interval 

Forecasted demand 2.25 3.11 6781 (6358, 7204) 
 

 

 



Table 5. Monthly distributions of interarrival times based on days-of-weeks pattern 

Simulation’s period 
Distributions and parameters 

Case 1 
(Base model) 

Case 2 
(5% Increase) 

Case 3 
(10% Increase) 

Case 4 
(15% Increase) 

Case 5 
(20% Increase) 

Case 6 
(25% Increase) 

Warm Up 
Period 

December 2012 –  
January 2013 

Poisson (λ=5.9355) 

Data 
Collection 
Period 

February 2013 Geometric  
(p=0.13208) 

Poisson  
(λ=6.2857) 

Binomial 
(n=6, p=0.96753) 

Poisson  
(λ=5.8571) 

Geometric  
(p=0.15556) 

Poisson  
(λ=5.2857) 

March 2013 
Geometric  

(p=0.13478) 
Poisson  

(λ=6.3871) 
Poisson  

(λ=5.9677) 
Geometric  

(p=0.15271) 
Poisson  

(λ=5.3871) 
Poisson  

(λ=5.3871) 

April 2013 
Poisson  

(λ=6.2667) 
Poisson  

(λ=5.9667) 
Poisson  

(λ=5.7000) 
Geometric  

(p=0.15957) 
Poisson  

(λ=5.2667) 
Binomial 

(n=5, p=0.97749) 

May 2013 
Poisson  

(λ=6.3548) 
Poisson  

(λ=6.0645) 
Poisson  

(λ=5.8065) 
Geometric  

(p=0.15736) 
Poisson  

(λ=5.3548) 
Poisson  

(λ=5.1935) 

June 2013 
Poisson  

(λ=6.3000) 
Binomial 

(n=6, p=0.96667) 
Poisson  

(λ=5.7000) 
Geometric  

(p=0.15873) 
Poisson  

(λ=5.3000) 
Binomial 

(n=5, p=0.96038) 

July 2013 Geometric  
(p=0.13778) 

Poisson  
(λ=6.2581) 

Poisson  
(λ=5.8387) 

Geometric  
(p=0.15578) 

Geometric  
(p=0.15979) 

Poisson  
(λ=5.2581) 

August 2013 
Poisson  

(λ=6.8065) 
Geometric  

(p=0.13596) 
Poisson  

(λ=6.3548) 
Poisson  

(λ=5.9677) 
Geometric  

(p=0.15423) 
Poisson  

(λ=5.3548) 

September 2013 Poisson  
(λ=6.2667) 

Binomial 
(n=6, p=0.96879) 

Poisson  
(λ=5.6667) 

Geometric  
(p=0.15957) 

Poisson  
(λ=5.2667) 

Binomial 
(n=5, p=0.96287) 

October 2013 
Geometric  

(p=0.13778) 
Poisson  

(λ=6.2581) 
Poisson  

(λ=5.8710) 
Geometric  

(p=0.15578) 
Geometric  

(p=0.15979) 
Poisson  

(λ=5.2581) 

November 2013 Geometric  
(p=0.13636) 

Poisson  
(λ=6.3333) 

Poisson  
(λ=5.9000) 

Geometric  
(p=0.15464) 

Poisson  
(λ=5.3333) 

Poisson  
(λ=5.3333) 

December 2013 
Geometric  

(p=0.13537) 
Poisson  

(λ=6.3548) 
Poisson  

(λ=5.9032) 
Geometric  

(p=0.15271) 
Poisson  

(λ=5.3548) 
Poisson  

(λ=5.3548) 

January 2014 Poisson  
(λ=7.0323) 

Geometric  
(p=0.13420) 

Poisson  
(λ=6.2903) 

Poisson  
(λ=6.1613) 

Poisson  
(λ=5.8710) 

Geometric  
(p=0.15897) 

 

Table 6. The results of validation tests 
Parameters t Test value t Critical value Average value (monthly) 95% Confidence intervals 
Number of admissions 1.49 

2.20 
7052 (6959, 7144) 

Waiting time for treatment 2.02 64.21 (63.76, 64.67) 
Overall waiting time 1.15 153.61 (152.93, 154.29) 

 

      Table 7. Case studies 
Demand conditions Case studies Explanations 
Expected demand Case 1 Base model 

Unexpected demand 

Case 2 5% Increase 
Case 3 10% Increase 
Case 4 15% Increase 
Case 5 20% Increase 
Case 6 25% Increase 

 

 



       Table 8. Scenarios in this study 
Scenarios Explanations 
Scenario 1 Base model 
Scenario 2 Scenario 1 + increase on overall waiting time by 20% 
Scenario 3 Scenario 2 + one more X-Ray 
Scenario 4 Scenario 3 + one more nurse per shift 
Scenario 5 Scenario 4 + one more bed 
Scenario 6 Scenario 5 + one more doctor per shift 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 9. Quarterly and annual capacity (number of patients discharged) and demand 

coverage ratio (DCR) of the A&E department based on case studies and scenarios at 

95% confidence interval, DCR is the percentage of patients admitted to an A&E and 

discharged with available resources 
Demand conditions Case studies  Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6 

Expected demand 
condition 

Case 1 
(Base model) 

Q1 20708 
(20667, 20749) 

20709 
(20661, 20756) 

20475 
(20368, 20583) 

20459 
(20352, 20567) 

20460 
(20352, 20567) 

20459 
(20352, 20567) 

Q2 20872 
(20825, 20919) 

20884 
(20828, 20940) 

20815 
(20769, 20862) 

20814 
(20767, 20861) 

20814 
(20767, 20861) 

20814 
(20767, 20861) 

Q3 20616 
(20520, 20712) 

20582 
(20480, 20684) 

20476 
(20443, 20510) 

20482 
(20447, 20515) 

20481 
(20447, 20517) 

20482 
(20447, 20517) 

Q4 20144 
(20065, 20224) 

20161 
(20088, 20234) 

19971 
(19907, 20035) 

19967 
(19903, 20031) 

19967 
(19903, 20031) 

19967 
(19903, 20031) 

Total 82340 
(82076, 82604) 

82336 
(82057, 82614) 

81737 
(81487, 81989) 

81722 
(81469, 81975) 

81722 
(81469, 81975) 

81722 
(81469, 81975) 

DCR (%) 99.95 
(99.63, 100.00) 

99.94 
(99.60, 100.00) 

99.21 
(98.91, 99.52) 

99.20 
(98.89, 99.50) 

99.20 
(98.89, 99.50) 

99.20 
(98.89, 99.50) 

Unexpected demand 
condition 

Case 2 
(5% Increase) 

Q1 21058 
(21014, 21101) 

21056 
(21003, 21109) 

21196 
(21156, 21237) 

21184 
(21144, 21225) 

21184 
(21143, 21226) 

21184 
(21143, 21226) 

Q2 21202 
(21157, 21247) 

21187 
(21136, 21238) 

21754 
(21717, 21791) 

21754 
(21717, 21791) 

21754 
(21717, 21791) 

21754 
(21717, 21791) 

Q3 21021 
(20976, 21065) 

21002 
(20959, 21044) 

21442 
(21390, 21494) 

21438 
(21388, 21489) 

21438 
(21387, 21488) 

21438 
(21387, 21488) 

Q4 19959 
(19858, 20059) 

19969 
(19852, 20086) 

20528 
(20466, 20590) 

20536 
(20469, 20602) 

20536 
(20469, 20602) 

20536 
(20469, 20602) 

Total 83240 
(83006, 83472) 

83214 
(82949, 83477) 

84920 
(84728, 85112) 

84912 
(84718, 85106) 

84912 
(84716, 85107) 

84912 
(84716, 85107) 

DCR (%) 97.15 
(96.88, 97.42) 

97.12 
(96.81, 97.43) 

99.11 
(98.89, 99.33) 

99.10 
(98.88, 99.33) 

99.10 
(98.87, 99.33) 

99.10 
(98.87, 99.33) 

Case 3 
(10% Increase) 

Q1 21376 
(21329, 21423) 

21379 
(21330, 21428) 

22320 
(22289, 22351) 

22560 
(22521, 22599) 

22560 
(22521, 22600) 

22560 
(22521, 22600) 

Q2 21372 
(21331, 21412) 

21395 
(21348, 21441) 

22505 
(22475, 22535) 

22715 
(22682, 22749) 

22715 
(22683, 22748) 

22715 
(22683, 22748) 

Q3 21213 
(21154, 21272) 

21214 
(21170, 21258) 

22282 
(22219, 22345) 

22062 
(22021, 22104) 

22063 
(22021, 22105) 

22063 
(22021, 22105) 

Q4 18613 
(18512, 18714) 

18643 
(18526, 18759) 

22029 
(21960, 22098) 

21784 
(21753, 21814) 

21783 
(21753, 21813) 

21783 
(21753, 21813) 

Total 82574 
(82327, 82820) 

82631 
(82373, 82886) 

89136 
(88943, 89329) 

89121 
(88976, 89265) 

89121 
(88977, 89265) 

89121 
(88977, 89265) 

DCR (%) 91.91 
(91.64, 92.18) 

91.97 
(91.69, 92.26) 

99.21 
(99.00, 99.43) 

99.20 
(99.04, 99.36) 

99.20 
(99.04, 99.36) 

99.20 
(99.04, 99.36) 

Case 4 
(15% Increase) 

Q1 21433 
(21366, 21499) 

21430 
(21358, 21501) 

22045 
(21980, 22110) 

23440 
(23373, 23506) 

23448 
(23386, 23511) 

23448 
(23386, 23511) 

Q2 21562 
(21514, 21610) 

21552 
(21516, 21589) 

21766 
(21700, 21833) 

24401 
(24316, 24486) 

24392 
(24301, 24483) 

24392 
(24301, 24483) 

Q3 21422 
(21390, 21455) 

21397 
(21346, 21448)  

22092 
(22049, 22136)  

23961 
(23818, 24104)  

23961 
(23810, 24112)  

23961 
(23810, 24112)  

Q4 15848 
(15738, 15958) 

15798 
(15665, 15931) 

18666 
(18475, 18858) 

23187 
(23003, 23370) 

23187 
(23003, 23370) 

23187 
(23003, 23370) 

Total 80265 
(80008, 80523) 

80177 
(79885, 80468) 

84569 
(84204, 84937) 

94989 
(94510, 95466) 

94988 
(94500, 95476) 

94988 
(94500, 95476) 

DCR (%) 83.79 
(83.52, 84.06) 

83.70 
(83.39, 84.00) 

88.28 
(87.90, 88.67) 

99.16 
(98.66, 99.66) 

99.16 
(98.65, 99.67) 

99.16 
(98.65, 99.67) 

Case 5 
(20% Increase) 

Q1 21616 
(21579, 21653) 

21626 
(21589, 21662) 

21845 
(21764, 21926) 

24175 
(24114, 24235) 

24178 
(24115, 24242) 

24178 
(24115, 24242) 

Q2 21653 
(21614, 21691) 

21668 
(21618, 21718) 

21749 
(21686, 21811) 

24349 
(24243, 24455) 

24367 
(24255, 24479) 

24367 
(24255, 24479) 

Q3 21551 
(21508, 21593)  

21539 
(21492, 21585)  

21724 
(21662, 21785)  

24379 
(24265, 24493) 

24381 
(24274, 24488) 

24381 
(24274, 24488) 

Q4 15034 
(14902, 15165) 

15025 
(14893, 15157) 

16932 
(16786, 17078) 

24496 
(24433, 24559) 

24495 
(24425, 24564) 

24495 
(24425, 24564) 

Total 79854 
(79603, 80103) 

79858 
(79591, 80123) 

82250 
(81898, 82600) 

97399 
(97054, 97742) 

97421 
(97068, 97773) 

97421 
(97068, 97773) 

DCR (%) 81.08 
(80.83, 81.34) 

81.09 
(80.82, 81.36) 

83.52 
(83.16, 83.87) 

98.90 
(98.55, 99.25) 

98.92 
(98.56, 99.28) 

98.92 
(98.56, 99.28) 

Case 6 
(25% Increase) 

Q1 21574 
(21515, 21634) 

21578 
(21523, 21634) 

21712 
(21655, 21769) 

24194 
(24131, 24257) 

24189 
(24117, 24261) 

24189 
(24117, 24261) 

Q2 21586 
(21533, 21639) 

21579 
(21522, 21636) 

21614 
(21550, 21679) 

24135 
(24020, 24250) 

24134 
(24024, 24244) 

24134 
(24024, 24244) 

Q3 21663 
(21607, 21720) 

21678 
(21618, 21739) 

21579 
(21515, 21643) 

24137 
(24039, 24236) 

24147 
(24050, 24244) 

24147 
(24050, 24244) 

Q4 13768 
(13613, 13922) 

13748 
(13618, 13877) 

15470 
(15200, 15741) 

23999 
(23858, 24139) 

24027 
(23888, 24165) 

24027 
(23888, 24165) 

Total 78591 
(78267, 78914) 

78583 
(78282, 78885) 

80375 
(79920, 80832) 

96465 
(96048, 96882) 

96497 
(96078, 96915) 

96497 
(96078, 96915) 

DCR (%) 77.16 
(76.84, 77.48) 

77.15 
(76.86, 77.45) 

78.91 
(78.47, 79.36) 

94.71 
(94.30, 95.12) 

94.74 
(94.33, 95.15) 

94.74 
(94.33, 95.15) 



Figure 1. The structure of the decision support system 

 

 

 

 

 

 

 

 

 

 



Figure 2. High level conceptualization of the accident and emergency department at the 

Princess Alexandra Hospital in England 

 
 

Figure 3. Inputs and outputs, HRG is Healthcare Resource Group 

 
 

 

 



Figure 4. The structure of the A&E simulation model 

 

Figure 5. Comparative graphs of demand coverage ratio (DCR) and capacity 

 

Figure 6. Comparative graphs of utilization rates of bed (URB) and capacity 

 



Figure 7. Comparative graphs of utilization rates of doctors (URD) and capacity 

 

 

Figure 8. Comparative graphs of utilization rates of nurses (URN) and capacity 

 
 

 

 

 

 

 

 

 

 

 



Figure 9. Comparative graphs of average revenue and surplus 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix 1: Inputs parameters of the simulation model, DoH: Department of Health, 
HES: Hospital episodes statistics, N/A: Not available, NHS: National Health Service 

Input parameters Estimates Distributions References 
Patient inputs 
     - Available demand (2012/13) 
     - Forecasted year (2013/14) 

 
see Table 5 
see Table 5 

 
see Table 5 
see Table 5 

 
HES dataset 

N/A 
Physical inputs 
     - Number of beds 
     - Number of triage rooms 
     - Number of clinic rooms 

 
22 
5 
4 

 
Fixed 
Fixed 
Fixed 

 
Local data 
Local data 
Local data 

Staff inputs 
     - Number of doctors 
     - Number of nurses 

 
12 
21 

 
Fixed 
Fixed 

 
Local data 
Local data 

Financial inputs 
   Revenues in the A&E (HRG Codes for severity of 
injuries): 
     - VB01Z 
     - VB02Z 
     - VB03Z 
     - VB04Z 
     - VB05Z 
     - VB06Z 
     - VB07Z 
     - VB08Z 
Costs in the A&E: 
     - Average monthly payment to a doctor 
     - Average monthly payment to a nurse 

 
 

2012/13 – 2013/14 
£235 - £237 
£235 - £210 
£151 - £164 
£151 - £139 
£151 - £130 
  £81 - £102 
£112 - £119 
£112 - £110 

 
£6178 - £6274 
£2552 - £2563 

 
 

 
Fixed 
Fixed 
Fixed 
Fixed 
Fixed 
Fixed 
Fixed 
Fixed 

 
Average 
Average 

  
 
 

DoH (2013 and 2014) 
DoH (2013 and 2014) 
DoH (2013 and 2014) 
DoH (2013 and 2014) 
DoH (2013 and 2014) 
DoH (2013 and 2014) 
DoH (2013 and 2014) 
DoH (2013 and 2014) 

 
NHS Digital (2013 and 2014) 
NHS Digital (2013 and 2014) 

Other inputs 
   Demographic features: 
     - Gender 

1.Male 
2.Female 

     - Age groups 
1. Age group 1 (0 - 15) 
2. Age group 2 (16 - 35) 
3. Age group 3 (36 - 50) 
4. Age group 4 (51 - 65) 
5. Age group 5 (65+) 

   Laboratory process: 
     - Laboratory service 

1. What percentage of patients are referred 
to the laboratory? 

2. What percentage of patients are not 
referred to the laboratory? 

     - Percentage of tests 
           First tests - Second tests - Third tests 
                  X-Ray 
                  Electrocardiogram 
                  Haematology 
                  Biochemistry 
                  Urinalysis 
                  Others 
   Shifts 
   Distributions 
     - Severity of injuries 
     - Waiting time for pre-assessment 
     - Pre-assessment process 
     - Waiting time for treatment 
 
     - Treatment time 
     - Waiting time for discharge 

 
 
 

47% 
53% 

 
23% 
28% 
16% 
12% 
21% 

 
 

 
76% 

 
24% 

 
 

42% -   8% - 12% 
13% - 22% - 10% 
31% - 26% - 26% 
  1% - 32% - 27% 
  8% -   7% - 16% 
  5% -   5% -   9% 

3 
 

Frequency distribution 
15 minutes 
10 minutes 

See Appendix 2 and 
Appendix 3 

Frequency distribution 
See Appendix 4 and 

Appendix 5 

 
 

 
Multinomial 
Multinomial 

 
Multinomial 
Multinomial 
Multinomial 
Multinomial 
Multinomial 

 
 
 

Multinomial 
 

Multinomial 
 

 
Multinomial 
Multinomial 
Multinomial 
Multinomial 
Multinomial 
Multinomial 

Fixed 
 

Frequency distribution 
Multinomial 
Multinomial 

See Appendix 2 and 
Appendix 3 

Frequency distribution 
See Appendix 4 and 

Appendix 5 

 
 

 
HES dataset 
HES dataset 

 
HES dataset 
HES dataset 
HES dataset 
HES dataset 
HES dataset 

 
 
 

HES dataset 
   

HES dataset 
 

 
HES dataset 
HES dataset 
HES dataset 
HES dataset 
HES dataset 
HES dataset 
Local data 

 
HES dataset 

Expert opinion 
Expert opinion 

HES dataset 
 

HES dataset 
HES dataset 

 
 
 
 



Appendix 2: Comparative test results and parameter values of fitting distributions for 
waiting time for treatment (by each age group) 

Distributions 

Age Group 1 (0 – 15) Age Group 2 (16 – 35) Age Group 3 (36 – 50) Age Group 4 (51 – 65) Age Group 5 (65+) 

Kolmogorov 

Smirnov 

Anderson 

Darling 

Kolmogorov 

Smirnov 

Anderson 

Darling 

Kolmogorov 

Smirnov 

Anderson 

Darling 

Kolmogorov 

Smirnov 

Anderson 

Darling 

Kolmogorov 

Smirnov 

Anderson 

Darling 

Statistic Statistic Statistic Statistic Statistic Statistic Statistic Statistic Statistic Statistic 

Normal 0.12923 2099.70 0.13879 2422.90 0.14521 1454.30 0.16594 1337.60 0.17456 2315.30 

Triangular 0.72610 86722.00 0.69821 94712.00 0.69742 55558.00 0.69360 40774.00 0.70196 83634.00 

Rounded Uniform 0.17436 16625.00 0.18930 16112.00 0.19679 8996.30 0.22222 5816.10 0.23048 10818.00 

Uniform 0.17379 16495.00 0.18657 15988.00 0.19482 8905.70 0.21989 5773.10 0.22971 10754.00 

Exponential 0.06663 557.04 0.06177 795.44 0.05583 389.93 0.04596 207.67 0.07516 718.60 

Erlang 0.13537 3929.10 0.12344 3171.30 0.10218 1179.80 No fit No fit No fit No fit 

Log Normal 0.06010 513.37 0.08475 1577.20 0.09208 1081.20 0.10092 971.83 0.13096 2769.40 

Weibull 0.04054 173.41 0.13330 3866.90 0.03498 148.87 0.04517 188.78 0.06858 885.00 

Gamma 0.02868 99.90 0.03245 222.74 0.03653 170.08 0.05291 247.91 0.06844 664.64 

Beta 0.14541 4822.80 0.08022 8362.60 0.05944 1529.80 0.05865 5705.50 0.08795 12296.00 

Pearson V 0.13806 3096.40 0.21034 7659.80 0.22249 4900.40 0.24150 3894.60 0.26344 7804.10 

Pearson VI 0.03141 109.18 0.03129 192.54 0.06170 486.27 0.05301 240.84 0.06645 678.68 

Gauss 0.10574 3296.20 0.09362 6199.20 0.09447 4531.00 0.09259 4234.40 0.13080 21378.00 

Poisson 0.47940 2.9599E+5 0.46884 3.4596E+5 0.46908 2.0249E+5 0.48098 1.4773E+5 0.48196 2.6785E+5 

Binomial No fit No fit No fit No fit No fit No fit No fit No fit No fit No fit 

Negative Binomial 0.02374 94.47 0.02732 155.15 0.03375 148.45 No fit No fit No fit No fit 

Bernoulli No fit No fit No fit No fit No fit No fit No fit No fit No fit No fit 

Geometric 0.07811 774.29 0.06938 998.22 0.11182 1486.40 0.03524 161.62 0.06233 477.29 

Parameters (n=1, p=0.02035) (n=1, p=0.01572) (n=1, p=0.01491) (p=0.01289) (p=0.01337) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Appendix 3: Probability density function graphs for distributions of “waiting time for 
treatment” for each age group 

 

Appendix 4: Comparative test results and parameter values of fitting distributions of 
waiting time for discharge (by each age group) 

Distributions 

Age Group 1 (0 – 15) Age Group 2 (16 – 35) Age Group 3 (36 – 50) Age Group 4 (51 – 65) Age Group 5 (65+) 

Kolmogorov 

Smirnov 

Anderson 

Darling 

Kolmogorov 

Smirnov 

Anderson 

Darling 

Kolmogorov 

Smirnov 

Anderson 

Darling 

Kolmogorov 

Smirnov 

Anderson 

Darling 

Kolmogorov 

Smirnov 

Anderson 

Darling 

Statistic Statistic Statistic Statistic Statistic Statistic Statistic Statistic Statistic Statistic 

Normal 0.20660 3499.20 0.21681 4758.40 0.18845 2070.30 0.17422 1357.00 0.10933 1495.20 

Triangular 0.70813 98696.00 0.68889 1.1465E+5 0.66845 55713.00 0.65161 34414.00 0.62277 44780.00 

Rounded Uniform 0.26538 14884.00 0.27653 14027.00 0.24699 7684.80 0.23098 5817.80 0.14521 11660.00 

Uniform 0.26379 14815.00 0.27396 13862.00 0.24492 7679.80 0.22933 5828.70 0.14491 11648.00 

Exponential 0.09458 916.43 0.10103 1934.50 0.08063 644.23 0.07091 419.73 0.13337 1978.80 

Erlang No fit No fit No fit No fit No fit No fit No fit No fit 0.28874 10603.00 

Log Normal 0.09328 1614.20 0.08845 1943.00 0.10860 1476.40 0.12836 1393.20 0.17493 4045.80 

Weibull 0.06740 305.37 0.06490 454.72 0.06117 375.58 0.08673 452.96 0.14490 2044.90 

Gamma 0.05078 278.89 0.05633 410.83 0.05852 311.09 0.06349 366.75 0.08135 1333.40 

Beta 0.06579 4573.90 0.06745 19416.00 0.06324 2699.20 0.06462 5746.80 0.15577 9192.60 

Pearson V 0.21863 5429.50 0.21196 6395.60 0.22414 4577.20 0.24988 3950.60 0.30445 10262.00 

Pearson VI 0.06859 348.64 0.06459 491.18 0.05849 311.08 0.06760 373.05 0.11909 1678.50 

Gauss 0.14898 14917.00 0.16125 21451.00 0.15557 14078.00 0.14419 10511.00 0.12057 20250.00 

Poisson 0.52731 3.3229E+5 0.53841 4.4603E+5 0.50976 2.2846E+5 0.48435 1.4293E+5 0.41942 2.0181E+5 

Binomial No fit No fit No fit No fit No fit No fit No fit No fit No fit No fit 

Negative Binomial No fit No fit No fit No fit No fit No fit No fit No fit 0.29493 11176.00 

Bernoulli No fit No fit No fit No fit No fit No fit No fit No fit No fit No fit 

Geometric 0.07952 518.96 0.08804 1279.00 0.06968 424.11 0.06151 319.86 0.13584 1994.10 



Parameters ( =0.6916, =90.064) ( =0.63069, =112.98) 
( =0.79911, 

=2.4519E+6, =2.6279E+8) 
(p=0.00983) ( =1.5365, =85.049) 

 
 
Appendix 5: Probability density function graphs for distributions of waiting time for 
discharge (by each age group) 
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