888 research outputs found

    Plug-and-Play Fault Detection and control-reconfiguration for a class of nonlinear large-scale constrained systems

    Get PDF
    This paper deals with a novel Plug-and-Play (PnP) architecture for the control and monitoring of Large-Scale Systems (LSSs). The proposed approach integrates a distributed Model Predictive Control (MPC) strategy with a distributed Fault Detection (FD) architecture and methodology in a PnP framework. The basic concept is to use the FD scheme as an autonomous decision support system: once a fault is detected, the faulty subsystem can be unplugged to avoid the propagation of the fault in the interconnected LSS. Analogously, once the issue has been solved, the disconnected subsystem can be re-plugged-in. PnP design of local controllers and detectors allow these operations to be performed safely, i.e. without spoiling stability and constraint satisfaction for the whole LSS. The PnP distributed MPC is derived for a class of nonlinear LSSs and an integrated PnP distributed FD architecture is proposed. Simulation results in two paradigmatic examples show the effectiveness and the potential of the general methodology

    Model-Based Fault Detection and Estimation for Linear Time Invariant and Piecewise Affine Systems by Using Quadratic Boundedness

    Get PDF
    Quadratic boundedness is a notion of stability that is adopted to investigate the design of observers for dynamic systems subject to bounded disturbances. We will show how to exploit such observers for the purpose of fault detection. Toward this end, first of all we present the naive application of quadratic boundedness to construct state observers for linear time-invariant systems with state augmentation, i.e., where additional variables may be introduced to account for the occurrence of a fault. Then a Luenberger observer is designed to estimate the augmented state variable of the system in such a way to detect the fault by using a convenient threshold selection. Finally, such an approach is extended to piecewise affine systems by presenting a hybrid Luenberger observer and its related design based on quadratic boundedness. The design of all the observers for both linear time-invariant and piecewise affine systems can be done by using linear matrix inequalities. Simulation results are provided to show the effectiveness of the proposed approach

    Distributed Fault-Tolerant Control of Large-Scale Systems: an Active Fault Diagnosis Approach

    Get PDF
    The paper proposes a methodology to effectively address the increasingly important problem of distributed faulttolerant control for large-scale interconnected systems. The approach dealt with combines, in a holistic way, a distributed fault detection and isolation algorithm with a specific tube-based model predictive control scheme. A distributed fault-tolerant control strategy is illustrated to guarantee overall stability and constraint satisfaction even after the occurrence of a fault. In particular, each subsystem is controlled and monitored by a local unit. The fault diagnosis component consists of a passive set-based fault detection algorithm and an active fault isolation one, yielding fault-isolability subject to local input and state constraints. The distributed active fault isolation module - thanks to a modification of the local inputs - allows to isolate the fault that has occurred avoiding the usual drawback of controllers that possibly hide the effect of the faults. The Active Fault Isolation method is used as a decision support tool for the fault tolerant control strategy after fault detection. The distributed design of the tube-based model predictive control allows the possible disconnection of faulty subsystems or the reconfiguration of local controllers after fault isolation. Simulation results on a well-known power network benchmark show the effectiveness of the proposed methodology

    A review of convex approaches for control, observation and safety of linear parameter varying and Takagi-Sugeno systems

    Get PDF
    This paper provides a review about the concept of convex systems based on Takagi-Sugeno, linear parameter varying (LPV) and quasi-LPV modeling. These paradigms are capable of hiding the nonlinearities by means of an equivalent description which uses a set of linear models interpolated by appropriately defined weighing functions. Convex systems have become very popular since they allow applying extended linear techniques based on linear matrix inequalities (LMIs) to complex nonlinear systems. This survey aims at providing the reader with a significant overview of the existing LMI-based techniques for convex systems in the fields of control, observation and safety. Firstly, a detailed review of stability, feedback, tracking and model predictive control (MPC) convex controllers is considered. Secondly, the problem of state estimation is addressed through the design of proportional, proportional-integral, unknown input and descriptor observers. Finally, safety of convex systems is discussed by describing popular techniques for fault diagnosis and fault tolerant control (FTC).Peer ReviewedPostprint (published version

    Fault diagnosis for uncertain networked systems

    Get PDF
    Fault diagnosis has been at the forefront of technological developments for several decades. Recent advances in many engineering fields have led to the networked interconnection of various systems. The increased complexity of modern systems leads to a larger number of sources of uncertainty which must be taken into consideration and addressed properly in the design of monitoring and fault diagnosis architectures. This chapter reviews a model-based distributed fault diagnosis approach for uncertain nonlinear large-scale networked systems to specifically address: (a) the presence of measurement noise by devising a filtering scheme for dampening the effect of noise; (b) the modeling of uncertainty by developing an adaptive learning scheme; (c) the uncertainty issues emerging when considering networked systems such as the presence of delays and packet dropouts in the communication networks. The proposed architecture considers in an integrated way the various components of complex distributed systems such as the physical environment, the sensor level, the fault diagnosers, and the communication networks. Finally, some actions taken after the detection of a fault, such as the identification of the fault location and its magnitude or the learning of the fault function, are illustrated

    On-line estimation approaches to fault-tolerant control of uncertain systems

    Get PDF
    This thesis is concerned with fault estimation in Fault-Tolerant Control (FTC) and as such involves the joint problem of on-line estimation within an adaptive control system. The faults that are considered are significant uncertainties affecting the control variables of the process and their estimates are used in an adaptive control compensation mechanism. The approach taken involves the active FTC, as the faults can be considered as uncertainties affecting the control system. The engineering (application domain) challenges that are addressed are: (1) On-line model-based fault estimation and compensation as an FTC problem, for systems with large but bounded fault magnitudes and for which the faults can be considered as a special form of dynamic uncertainty. (2) Fault-tolerance in the distributed control of uncertain inter-connected systems The thesis also describes how challenge (1) can be used in the distributed control problem of challenge (2). The basic principle adopted throughout the work is that the controller has two components, one involving the nominal control action and the second acting as an adaptive compensation for significant uncertainties and fault effects. The fault effects are a form of uncertainty which is considered too large for the application of passive FTC methods. The thesis considers several approaches to robust control and estimation: augmented state observer (ASO); sliding mode control (SMC); sliding mode fault estimation via Sliding Mode Observer (SMO); linear parameter-varying (LPV) control; two-level distributed control with learning coordination

    Fault tolerant LPV control of the GTM UAV with dynamic control allocation

    Get PDF
    The aim of the paper is to present a dynamic control allocation architecture for the design and development of reconfigurable and fault-tolerant control systems in aerial vehicles. The baseline control system is designed for the nominal dynamics of the aircraft, while faults and actuator saturation limits are handled by the dynamic control allocation scheme. Coordination of these components is provided by a supervisor which re-allocates control authority based on health information, flight envelope limits and cross coupling between lateral and longitudinal motion. The monitoring components and FDI filters provide the supervisor with information about different fault operations, based on that it is able to make decisions about necessary interventions into the vehicle motions and guarantee fault-tolerant operation of the aircraft. The design of the proposed reconfigurable control algorithm is based on Linear Parameter-varying (LPV) control methods that uses a parameter dependent dynamic control allocation scheme. The design is demonstrated on the lateral axis motion of the NASA AirSTAR Flight Test Vehicle simulation model
    • 

    corecore