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Distributed Fault-Tolerant Control of Large-Scale Systems:

an Active Fault Diagnosis Approach

Francesca Boem, Alexander J. Gallo, Davide M. Raimondo, Thomas Parisini

Abstract—The paper proposes a methodology to effectively
address the increasingly important problem of distributed fault-

tolerant control for large-scale interconnected systems. The
approach dealt with combines, in a holistic way, a distributed
fault detection and isolation algorithm with a specific tube-based
model predictive control scheme. A distributed fault-tolerant
control strategy is illustrated to guarantee overall stability and
constraint satisfaction even after the occurrence of a fault. In
particular, each subsystem is controlled and monitored by a
local unit. The fault diagnosis component consists of a passive
set-based fault detection algorithm and an active fault isolation
one, yielding fault-isolability subject to local input and state
constraints. The distributed active fault isolation module – thanks
to a modification of the local inputs – allows to isolate the fault
that has occurred avoiding the usual drawback of controllers
that possibly hide the effect of the faults. The Active Fault
Isolation method is used as a decision support tool for the fault
tolerant control strategy after fault detection. The distributed
design of the tube-based model predictive control allows the
possible disconnection of faulty subsystems or the reconfiguration
of local controllers after fault isolation. Simulation results on a
well-known power network benchmark show the effectiveness of
the proposed methodology.

I. INTRODUCTION

The problem of monitoring and controlling large-scale net-

works of interconnected dynamic systems (LSSs for short)

currently attracts a significant interest in academia and industry

[1]. In this respect, the ever increasing demand for reliability,

dependability and safety requires the design of control systems

able to compensate the effects of critical and unpredictable

changes in the LSS’s dynamics (such as faults and malfunc-

tions), while maintaining the performance of the controlled

system at some acceptable level (see, for instance [2]). This

is the well-known paradigm of Fault Tolerant Control (FTC).

In this paper, we illustrate a design approach of a distributed

FTC scheme that guarantees the overall stability of a LSS even

after the fault-occurrence. The proposed framework is based
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on the integration of a distributed active fault isolation scheme

and a suitable distributed controller reconfiguration strategy.

A. State of the Art and Motivations

In the literature, FTC methodologies are often subdivided

into two main categories (see, for example, the survey [3]):

passive FTC and active FTC. In qualitative terms, passive

FTC refers to the design of controllers that are robust to the

occurrence of potential faults without any reconfiguration or

modification of the control system. Passive FTC techniques

are well suited in low-dimensional applications in which the

possibility of modifying the control system is not allowed, but

their effectiveness in applications is rather limited.

In active FTC techniques (see, for instance, [4], [5], [6],

[7]), a monitoring component is included in the control scheme

providing a run-time Fault Detection and Isolation (FDI) deci-

sion about the possible occurrence of a fault or malfunction on

the basis of input-output measurements. After fault detection,

the controller may be suitably reconfigured according to the

diagnosis decision to recover an acceptable performance of

the closed-loop system. With a few exceptions [6], [7], [8],

classical active FTC techniques show good performance only

in scenarios where faults are detected and isolated correctly

and instantaneously (see, for instance [4], [5]). These sce-

narios typically require assuming the absence of process and

measurement disturbances [9], [10], [11]. This assumption is

rather unrealistic in real use-cases, thus causing delays and

errors in FDI, in turn possibly leading to instability, violation

of state constraints, and the inability to implement the suitable

controller after fault isolation [12].

Indeed, a major issue affecting most active FTC schemes

relates to the possibly conflicting dynamic behaviors of the

FDI scheme and the reconfigurable controller. More specifi-

cally, the feedback controller may hide the presence of faults

by compensating their effects (see as example the simulation

analysis in [13]), thus making the FDI task much more difficult

or even impossible [14], [15] – as is well known, a similar

issue affects several closed-loop identification techniques in

poor excitation scenarios.

A radically different context arises in application use-cases

allowing to affect the closed-loop dynamics by acting at

run-time on the control inputs. This paves the way to the

so-called active FDI methodologies. Active FDI approaches

consist in suitably modifying the control input to improve

fault detectability and isolability capabilities [16], [17], [18],

[19], [20], [21], [22], [23]. This allows to possibly reduce

detection and isolation time. The typical main limitation of

active FDI techniques concerns high computational cost and

complexity [24], [25]. This drawback restricts the applicability
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of this approach to low-dimensional systems [25], [26], [27],

[28], [29], even though some approaches have been suggested

in the literature to alleviate the computational complexity (see

as example [23]).

Coping with the above-mentioned computational complex-

ity in the context of LSSs, dealt with in this paper, requires

a distributed approach. Differently from currently available

distributed/decentralized architectures for FDI (see as example

[30], [31], [32], [33], [34], [35], [36]), in this paper the active

FDI scenario is considered.

B. Objectives and Contributions

The main objective of the paper is the design of a distributed

active FTC architecture for linear LSSs with bounded distur-

bances, where the LSS is monitored by a network of local

fault diagnosers. Each diagnoser is based on a local passive

fault detection scheme and a local active fault isolation tool.

The network of diagnosers is integrated with a distributed

tube-based Model Predictive Control (MPC) scheme (based

on [37], [38]). After fault detection, the active fault isolation

component aims at i) generating a control sequence able to

guarantee the local isolation of the fault, while satisfying state

constraints and stability properties, and at ii) subsequently

allowing the reconfiguration of the local controllers according

to a suitable decision-making process. The use of active fault

isolation allows to possibly improve performance with respect

to traditional passive approaches, in terms of isolation time

and fault isolability. We take advantage of the scalable design

of the local controllers to allow the possible disconnection

of faulty subsystems when the local control reconfiguration is

not feasible. In this way, the proposed distributed FTC strategy

guarantees stability and constraint satisfaction for the overall

LSS at any time, even after the occurrence of the fault. This

approach differs from recent distributed/decentralized FTC

techniques such as [34], [39], [40], [13] by exploiting the

active FDI scenario.

Summing up, the main contributions of the paper are1:

• the design of a distributed and scalable Active Fault Iso-

lation framework for large-scale interconnected systems;

this represents a more challenging scenario, requiring

to take into account the possibly unknown or uncertain

influences between subsystems;

• the development of a distributed active FTC strategy

for the reconfiguration of the network of systems and

controllers, guaranteeing the overall stability of the LSS

and constraint satisfaction even after the occurrence of a

fault;

• a FTC strategy, where the opportunity to off-line ex-

plicitly solve the optimization problem for local active

fault isolation permits to support decisions during the

online monitoring and fault-tolerant control of the LSS

(see Section V);

• the isolation of classes of faults where the parameters

characterizing each faulty model are uncertain and may

vary within a defined range of values. Furthermore, the

1Preliminary results have been presented in [41] in a decentralized scenario.

possible presence of measurement noise is taken into

account (Section VI) and extensive simulation analysis

on a Power Network System benchmark are provided.

C. Organization of the Paper

In Section II, the considered problem is introduced. In

Section III the adopted distributed control architecture is

presented, while in Section IV we first propose a passive set-

based fault detection method and then the active fault isolation

approach. After that, the FTC strategy is explained in Section

V. In Section VI we offer some possible directions in which

the results can be extended. Finally, simulation results on a

Power Network System are presented in Section VII and some

conclusions are given in Section VIII.

II. PROBLEM FORMULATION

A. System, model and features

Consider a discrete-time affine large scale system composed

of N subsystems. Each subsystem i ∈ N = {1, . . . ,N} obeys

one of ni possible dynamics (all known). When model mi ∈
Mi = {1, · · · ,ni} is active, the subsystem i is governed by the

following set of equations

xi(k+ 1) = A
[mi ]
ii xi(k)+B

[mi]
i u

[mi]
i (k)+ z

[mi]
i (k)+ r

[mi]
i (1)

z
[mi]
i (k) = ∑

j∈N
[mi ]

i

A
[mi]
i j x j(k)+di(k), (2)

where xi(k) ∈ R
nxi , u

[mi]
i (k) ∈ R

nui denote respectively the

states and the input vectors of subsystem i, with xi(0) ∈ R
nxi

the state initial condition. The term z
[mi ]
i (k)∈R

nxi accounts for

the coupling with neighboring subsystems and the presence of

disturbances di(k), where the set of neighbors to subsystem i

is defined as

N
[mi ]

i = { j ∈ N : A
[mi ]
i j 6= 0, i 6= j}.

Matrices A
[mi]
i j ,∀i, j ∈N are blocks of matrix A[m], where this

latter represents the dynamic matrix of the overall system,

with m = [m1, . . . ,mN ]. For each i ∈ N , we assume mi = 1

represents the nominal dynamics, while the other models

describe possible faulty dynamics. We assume that the switch

between nominal and faulty dynamics happens in an abrupt

way. For the sake of notation simplicity, in the following the

results will be presented assuming that each mi 6= 1 represents

a specific fault with known parameters, but everything can

simply be extended to the case that each model is a class of

faults described by interval matrices. The constant vector r
[mi]
i

is used to model constant bias. The following assumptions are

required:

Assumption 1: The disturbance di(k) is bounded by a

known set Di, i.e. di(k) ∈ Di, ∀k, ∀i.

Assumption 2: The considered LSS allows the physical

unplugging of subsystems.

Remark 1: The term Plug-and-Play denotes the property

of distributed control and monitoring architectures to allow

the plug-in/unplugging of some subsystems only requiring

local operations and tests for the reconfiguration. Examples
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Fig. 1. The proposed distributed architecture. The subsystems are physically
interconnected. Each subsystem is controlled by a local controller Ci and
monitored by a local diagnoser Di, both taking measurements from the
local subsystems. Local controllers and diagnosers may communicate with
neighboring subsystems in a distributed way. After fault detection, the active
fault isolation tool may compute an input control sequence to allow the
isolation of the fault.

of systems satisfying Assumption 2 include water distribu-

tion networks, power networks, microgrids, etc. We refer the

Reader to [37] for details about Plug-and-Play approaches.

B. A Glimpse on the Active FTC Approach

In order to obtain scalable control and monitoring proce-

dures, each subsystem is governed by a local controller and

monitored by a local fault diagnoser, as illustrated in Figure 1.

Each local controller (see Section III) is subject to local input

and state constraints

xi(k) ∈ Xi, u
[mi ]
i (k) ∈Ui,

the influence of bounded neighboring subsystems states

x j(k) ∈ X j, j ∈ N
[mi]

i ,

and is robust to bounded disturbances (see Section III).

For each i ∈ N , sets Xi,Ui,Di are all zero-centered zono-

topes [42] known a priori.

It is worth noting that the design of the local controllers

relies on the knowledge of the sets X j from the neighboring

subsystems j ∈ N
[mi]

i .

MPC is a well suited technique to control systems subject

to input and state constraints. In the following, we rely on the

distributed approach presented in [38]. This scheme guarantees

in a distributed way robust stability and constraint satisfaction

for the overall system. Moreover, this approach is suitable to

be integrated with an active fault diagnosis approach for FTC.

Each subsystem is monitored in healthy conditions by a

local passive set-based fault detection method, following a

similar approach to the one proposed in [43] in the centralized

Model 1
Model 2

Projection of intersection 

onto the input space

Input Set

Bad Set

Fig. 2. Projection of the local state reachable sets onto the joint local state-
input space (left). Projection of the intersection of the polytopes on the left
into the input space (right, top). Choice of the local inputs to obtain state
reachable sets separability (right bottom).

case. When a fault is detected in a local subsystem at time

kd , the related controller is put on stand-by to avoid that the

feedback controller hides the effect of the fault, and a local

active FDI procedure is triggered (Section IV-B). To enhance

fault isolation, Active FDI aims to determine which dynamics

subsystem i is subject to, by injecting a minimally harmful (in

length and/or norm2) sequence (u
[mi]
i (kd), · · · ,u

[mi ]
i (kd + Ti −

1)) able to guarantee that any possible state (or state sequence)

of subsystem i at time kd + Ti is consistent with only one

mi ∈ Mi (see Figure 2). In order to not spoil the stability

properties of the overall system, such procedure is performed

while guaranteeing that the local subsystem evolves within

its state bounds Xi, regardless of the active fault mode mi.

Moreover, if feasible, the state is constrained to suitable sets,

so that the local controllers can be reconfigured after fault

isolation according to the identified model (see Section V).

Note that, by pursuing a fast fault isolation, the advantage of

active FDI, when compared to a passive FDI approach, is that

it increases the chances of safely reconfiguring the controllers

after isolation without losing stability. In fact, the fault could

drive the state outside the feasibility area of the controller.

Assumption 3: In each subsystem, it is assumed that the

diagnosis is fast enough to avoid the switching between models

during [kd , · · · ,kd +Ti].

Once the fault is isolated, the local controller is reconfigured

in order to still guarantee the stability and constraint satisfac-

tion of the overall system. Summing up, the main contribution

of the paper is the distributed FTC strategy illustrated in

Section V, which, based on local properties, guarantees that

the presence of a fault does not compromise the stability of

the network of interconnected systems.

Remark 2: The adoption of a distributed and scalable archi-

tecture allows to reduce the computational complexity of the

proposed method, which depends linearly only on the number

of neighboring subsystems.

2In this way, the action of the controller for Active Fault Isolation reasons
is reduced in terms of time and magnitude of the input signal. High values
of input signals could be not feasible nor safe for the system. Moreover, in
general, it is better to minimize the isolation time in order to achieve a fast
diagnosis decision and a prompt reconfiguration of the controllers to guarantee
stability and constraint satisfaction.
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C. Definitions

1) Basic notation: In the following, a tilde is used to

indicate sequences of vectors associated with the model (1)-

(2). More specifically, when referring to ũ
[mi ]
i (l : k), z̃

[mi]
i (l : k),

the notation stands for ũ
[mi]
i (l : k)=(u

[mi ]
i (l),. . . ,u

[mi ]
i (k− 1)),

z̃
[mi]
i (l : k)=(z

[mi]
i (l), . . . ,z

[mi]
i (k− 1)), while x̃i(l : k) =

(xi(l),. . . ,xi(k)), for x̃i(l : k). For a generic variable σ , the

notation σ̃(l : k|l) indicates that the sequence is computed at

time l. For a set W , the notation W̃{k}=W×. . .×W is used to

indicate its k-th cartesian product.

2) Reachable sets: For each subsystem i, the state

of model mi, k-steps ahead, is given by the function

φ
[mi]
i{k}

(

ũ
[mi ]
i (0 : k),xi(0), z̃

[mi]
i (0 : k)

)

with φ
[mi ]
i{k} : Rnui

k×R
nxi ×

R
nxi

k→R
nxi the state solution map. Given an initial condition

xi(k0), a sequence ũ
[mi ]
i (k0 : k|k0) and a set Z̃

[mi]
i{k−k0}

(which can

be computed on the basis of sets X j and Di) the state reachable

set at time k is defined as

X
[mi ]
i

(

ũ
[mi]
i (k0 : k|k0),xi(k0), Z̃

[mi ]
i{k−k0}

)

=
{

φ
[mi]
i{k−k0}

(

ũ
[mi]
i (k0 : k|k0),xi(k0), z̃

[mi]
i (k0 : k)

)

:

x̃ j(k0 : k) ∈ X̃ j{k−k0},∀ j ∈ N
[mi]

i , d̃i(k0 : k) ∈ D̃i{k−k0}

}

.

When clear from the context, the arguments of maps will be

omitted, and with some abuse of notation the reachable sets

will be denoted as X
[mi ]
i (k|k0).

III. SCALABLE CONTROL STRATEGIES SUITABLE FOR

DISTRIBUTED FTC

The proposed FTC method assumes that in nominal con-

ditions each subsystem is equipped with a local tube-based

robust MPC controller which is designed, for each i∈N ,mi ∈
Mi, based on [38]. More specifically, in order to allow the

design of the distributed Active Fault Isolation method in

Section IV-B and of the FTC strategy for LSSs in Section

V, the following notable features are required for the control

architecture:

• Thanks to the distributed framework, leading to local

low-dimension and the choice of a tube-based MPC

control scheme, robust to the coupling with neighboring

subsystems and to the disturbances, it is possible to

explicitly compute the feasibility domains for the local

controllers, i.e. the domain sets where stability and con-

straints satisfaction are guaranteed. This is a fundamental

ingredient which will be used for the reconfiguration of

local controllers after fault isolation if the local Active

Fault Isolation problem is feasible (see (15a)-(15g) in

Section IV-B and Assumption 4 below). As it will be

later clarified, this will allow to guarantee the stability of

the LSS even after the occurrence of a fault.

• The Plug-and-play feature (see [37] for details) is used to

allow the possible disconnection of faulty subsystems, in

the case that the presence of the fault may compromise

local and/or global stability. In fact, if fault isolation is

not feasible, or a safe control reconfiguration not possible,

the disconnection of the faulty subsystem may avoid or

reduce the propagation of the faults effect in the LSS.

In this case (see Section V for details about the FTC

strategy), at most neighboring controllers and diagnosers

may be reconfigured.

The above features motivate our choice for the control

architecture briefly summarized in Section III-A.

Assumption 4: The pair (A
[mi]
ii ,B

[mi ]
i ) is stabilizable for all

i ∈ N , mi ∈ Mi.

This assumption is only required for the sake of presen-

tation simplicity, in order to allow the reconfiguration of the

controllers after fault isolation. In this case, the local control

laws are synthesized off-line for every model mi ∈ Mi. In the

case the assumption does not hold for some faulty models

mi ∈ M̄i ⊆ M
+
i ≡ Mi\{1}, then the fault-tolerant control

architecture can be designed anyway, requiring the unplugging

of the faulty subsystem if the local controller cannot be

reconfigured (see Section V for details).

The design of the control architecture in nominal conditions

is not the main focus of this paper. The selected approach

based on [38] is briefly described in the following section

in order to introduce some notation and base the stability

properties of the proposed FTC. Note that the approach can

be used in a decentralized or in a distributed way, depending

on the availability of communication resources.

A. Tube-Based MPC

According to a scalable tube-based robust MPC approach,

the control action for each i ∈ N is given by the sum of

two terms: i) a nominal input u
[mi]
i (k), obtained by solving,

at each time step, a Finite Horizon Optimal Control Problem

(FHOCP) [44] subject to the nominal model

x
[mi ]
i (k+ 1) = A

[mi]
ii x

[mi]
i (k)+B

[mi]
i u

[mi]
i (k)+ r

[mi]
i (3)

and ii) a linear feedback term

K
[mi]
ii

(

xi(k)− x
[mi]
i (k)

)

+∑
j∈Ni

δi jK
[mi]
i j x j(k),

designed so that xi tracks the prediction of nominal model (3),

where K
[mi]
ii ∈R

nui
×nxi , K

[mi]
i j ∈R

nui
×nx j and δi j ∈ {0,1} , i, j ∈

N . The parameters δi j can be chosen by the designer to select

the subsystems from which the local controller is receiving

information. More specifically, when δi j = 1 ∀i ∈ N , ∀ j ∈

N
[mi]

i , then the communication network coincides with the

coupling graph, resulting in a distributed scenario. On the other

hand, if δi j = 0 ∀i ∈N , ∀ j ∈N
[mi]

i , then the control scheme

is completely decentralized.

Assumption 5: Matrices K
[mi]
ii and K

[mi]
i j can be locally

designed as in [38] (Algorithm 1) to guarantee the overall

stability of the LSS.

The resulting tube-based MPC feedback law for each sub-

system is

κ
[mi ]
i (x̄

[mi]
i (k)) = ū

[mi]
i (k)+K

[mi]
ii (xi(k)− x

[mi ]
i (k))

+ ∑
j∈N

[mi ]
i

δi jK
[mi]
i j x j(k). (4)



5

As previously stated, the nominal input u
[mi]
i (k) is obtained,

at each time step, by applying only the first element of the

FHOCP solution (receding horizon scheme). In order to obtain

a robust MPC controller, besides the standard elements [44]

(nominal dynamics (3), a quadratic cost, terminal state and

terminal penalty satisfying standard assumptions in order to

obtain recursive feasibility and stability) the FHOCP requires

extra constraints which are now recalled (see [38] for further

details).

Denote with e
[mi]
i (k) ≡ xi(k)− x

[mi]
i (k) the tracking error

between the real state xi(k), obtained by (1) applying (4), and

the nominal state x
[mi ]
i (k) (solution of the nominal model (3)

with nominal input u
[mi]
i (k)). The tracking error dynamics can

be modelled as

e
[mi]
i (k+ 1) =A

[mi]
Kii

e
[mi ]
i (k)+w

[mi]
i (k), (5)

where, according to Ass. 5, A
[mi]
Kii

≡ A
[mi]
ii +B

[mi ]
i K

[mi]
ii is de-

signed to be Schur, and

w
[mi]
i (k) = ∑

j∈Ni

(A
[mi ]
i j + δi jB

[mi]
i K

[mi]
i j )x j(k)+di(k).

Note that

w
[mi]
i (k) ∈W

[mi]
i ≡

⊕

j∈N
[mi]

i

(A
[mi ]
i j + δi jB

[mi]
i K

[mi]
i j )X j ⊕Di. (6)

Thanks to the stability of A
[mi]
Kii

and the boundedness of

W
[mi ]
i (resulting from the bounds X j, j ∈ N

[mi ]
i , and Di),

it is possible to prove that there exists a robust positively

invariant set E
[mi]
i ⊂R

nxi such that A
[mi ]
Kii

E
[mi]
i +W

[mi]
i ⊂ E

[mi]
i . If

e
[mi]
i (0) ∈ E

[mi]
i and w

[mi ]
i (k) ∈W

[mi ]
i , ∀k ∈N, then the solution

of (5) satisfies e
[mi]
i (k) ∈ E

[mi]
i , ∀k ∈ N, being E

[mi]
i a robust

positively invariant set that can be computed as described in

[45].

Finally, the extra constraints required by the FHOCP in order

to obtain a tube-based robust MPC controller are the following:

• Initial constraint

xi(k)− x̄
[mi]
i (k) ∈ E

[mi]
i , ∀k ∈ N.

• Tightened state and input constraints

U
[mi]
i ≡Ui ⊖ (K

[mi]
ii E

[mi]
i

⊕

j∈N
[mi]

i

δi jK
[mi]
i j X j), (7)

X
[mi]
i ≡ Xi ⊖E

[mi]
i . (8)

Remark 3: Note that, in order to the FHOCP Problem to be

feasible, it is necessary that both U
[mi ]
i and X

[mi]
i are non-empty,

i.e. the effect of the disturbance and the coupling between

subsystems is required to be sufficiently small (see [44] for

reference).

Let F̄
[mi]
i denote the set of initial conditions x̄

[mi]
i for which

the FHOCP problem is feasible. We define F̄
[mi]
i as the local

feasibility domain for the unperturbed dynamics. Such set is a

polyhedron. Note that ū
[mi]
i (k) is continuous and polyhedral

piecewise affine (PPWA) over F̄
[mi]
i . This means that it is

defined over a non-overlapping polyhedral partitioning of F̄
[mi ]
i

and, over each partition P
[mi]
i,r , r ∈ {1, · · · ,n

[mi]
ri }, the solution

is affine

ū
[mi]
i (k) = K

[mi]
i (x̄

[mi]
i (k)) = Γrx̄

[mi]
i (k)+gr, if x̄

[mi]
i (k) ∈ P

[mi]
i,r .

Denote F
[mi ]
i = F̄

[mi]
i ⊕E

[mi]
i . F

[mi]
i is again a polyhedron which

can be expressed by a set of linear inequalities.

Let us define F [m] = F
[m1]
1 ×·· ·×F

[mN ]
N , E [m] = E

[m1]
1 ×·· ·×

E
[mN ]
N , D[m] =D

[m1]
1 ×·· ·×D

[mN ]
N , and denote with x the column

vector collecting the state vectors xi, i = 1, . . . ,N. The scalable

tube based MPC summarized above guarantees the robust sta-

bility to the set E [m] and constraint satisfaction for the overall

LSS: if x(0)∈ F [m],∀i ∈ 1, . . . ,N, then x(k)∈ F [m],∀k ∈N, and

limk→∞ d(x(k),E [m])→ 0 [38].

Remark 4: The optimal value function V (x̄
[mi]
i (k)) is con-

vex, continuous and piecewise quadratic over F̄
[mi]
i whose level

sets are piecewise ellipsoidal invariant sets for the system (see

[46] for further details). The feasibility set, value function and

optimizer can be computed explicitly using, for example, the

MPT toolbox [47].

Remark 5: The presence of communication between neigh-

boring subsystems enables the design of distributed controllers

which can exploit the knowledge (or partial knowledge) of

some state variables of the neighbors. When compared to a

fully decentralized approach, this knowledge can facilitate the

stabilization of the overall system. Besides, in a distributed

framework, the resulting disturbance w
[mi ]
i (Eq. (6)) is in

general going to be smaller than the original z
[mi]
i , thus

enhancing the performance of the proposed set-based fault

diagnosis approach (see Section IV). More specifically, as it

will be clear in the following, a smaller disturbance set implies

a less conservative passive fault detection and increases the

feasibility of the fault isolation problem.

Summing up, the considered scalable tube-based MPC guar-

antees global stability of the LSS in nominal conditions. Fur-

thermore, thanks to the local low-dimension of the subsystems

it is possible to explicitly compute the local feasible domains

F
[mi ]
i , which will be used by the proposed FTC scheme (see

Sections IV-B and V) to guarantee stability and constraint

satisfaction for the LSS even after the occurrence of a fault.

More specifically, after fault detection, the goal of the Active

Fault Isolation is to design a local input sequence able to

isolate the occurred fault, remaining in the local feasibility

domains. In this way, it will be possible to reconfigure the

local controller according to the isolated model and to continue

guaranteeing local and global stability.

IV. ROBUST FAULT DETECTION AND ISOLATION

This section presents the distributed fault detection and

isolation procedures used in the proposed FTC approach. In

the time interval [0,kd ], the nominal model mi = 1 is believed

to be active and u
[1]
i (k) is determined using the control law

κ
[1]
i . At the same time, passive fault detection is done using a

set-based approach as described in Section IV-A. After fault

detection, in the interval [kd ,kis], active fault isolation is carried

out, as described in Section IV-B.
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A. Local Passive Fault Detection

According to the tube based MPC approach described in

Section III-A, if e
[mi]
i (0) ∈ E

[mi]
i and w

[mi ]
i (k) ∈W

[mi ]
i , ∀k ∈ N,

then e
[mi]
i (k) ∈ E

[mi]
i , ∀k ∈ N. This property is very useful for

detecting, in a decentralized or distributed way (depending

on the available resources), the presence of a possible fault

in subsystem i. At each time step k+ 1, given the nominal

state x
[1]
i (k+1) obtained by solving the FHOCP at time k, we

compute the error e
[1]
i (k+ 1) between x

[1]
i (k+ 1) and the real

state xi(k+ 1).
Fault detection sufficient condition. If, at any k+ 1 > 0,

e
[1]
i (k+ 1) /∈ E

[1]
i , (9)

then, the nominal model mi = 1 is not consistent with the be-

havior of the subsystem, i.e. a fault has occurred in subsystem

i.

Structural detectability has been widely studied in the

centralized case [43]. A complete detectability analysis of

the proposed method is out of the scope of this paper, but

it is worth noting that if a fault is not detectable, then it

will not compromise the stability of the system thanks to

the proposed FTC framework. On the other side, there is

an important issue which needs to be addressed. If a fault

in subsystem i leads to the violation of local constraints Xi,

then, the stability of the overall system is compromised. The

following theorem provides conditions to avoid, within the

Plug-and-Play framework, this situation.

Theorem 1: Define M
+
i ≡ Mi\{1}. Assume there exists a

polyhedral set S̄
[1]
i ⊆ F̄

[1]
i which is invariant for the nominal

dynamics (3) and such that, for all mi ∈ M
+
i

A
[mi]
ii

(

S̄
[1]
i ⊕E

[1]
i

)

⊕B
[mi]
i

(

K
[1]

i (S̄
[1]
i )⊕K

[1]
ii E

[1]
i

)

(10)

⊕

j∈N
[mi ]

i

(

A
[mi ]
i j + δi jB

[mi]
i K

[1]
i j

)

X j ⊕Di + r
[mi]
i ⊆ Xi.

Then, the restriction of the operation of each subsystem (2)

to S̄
[1]
i ⊕E

[1]
i rather than F

[1]
i guarantees that the occurrence

of any fault mi ∈ M
+
i cannot compromise the stability of the

overall system.

Proof: The nominal invariance of S̄
[1]
i guarantees, if xi ∈

S̄
[1]
i ⊕E

[1]
i , recursive feasibility and convergence to E

[1]
i for any

fault which can be interpreted as disturbance (i.e. whose effect

is not distinguishable from e
[1]
i ∈ E

[1]
i ) [44]. In the opposite

case, two scenarios are possible:

• xi(k+ 1) ∈ S̄
[1]
i ⊕E

[1]
i but e

[1]
i (k+ 1) /∈ E

[1]
i . Then a fault

is detected and can be either isolated (using the proce-

dure described in the following section) or the system

unplugged. In any case, the stability of the overall system

does not get compromised since the local subsystem does

not leave Xi.

• xi(k+ 1) /∈ S̄
[1]
i ⊕E

[1]
i . In this case, in order to not com-

promise the stability of the overall system, it is necessary

to guarantee that xi(k+ 1)⊆ Xi for any fault mi ∈ M
+
i .

Recall that the nominal input ū
[1]
i (k) can be expressed by

the mapping K
[1]

i (x̄
[1]
i ) and the input for the perturbed

system is given by (4) with mi = 1. Note that, the FHOCP

has among its constraints xi(k)− x̄
[1]
i (k)∈E

[1]
i . Now, if the

FHOCP was feasible at time k, x̄
[1]
i (k)∈ S̄

[1]
i . Then, taking

any possible dynamics of the i-th subsystem (2) in closed-

loop with (4), and replacing any occurrence of x̄
[1]
i (k)

with S̄
[1]
i , xi(k)− x̄

[1]
i (k) with E

[1]
i , x j(k) with X j and di

with Di, leads exactly to condition (10) which guaran-

tees that the faulty dynamics will not leave the space

Xi. Under the assumption of a Plug-and-Play scenario,

when xi(k + 1) ∈ Xi \ (S̄
[1]
i ⊕ E

[1]
i ) it is always possible

to unplug the i-th subsystem so to avoid violation of

the state constraints for the neighboring subsystems and,

consequently, preserve the overall stability.

Remark 6: Finding polyhedral invariant sets within F̄
[1]
i

for the nominal dynamics can be obtained by following the

procedure provided in, e.g. [48]. An iterative procedure can

be applied, using for example bisection, in order to find the

biggest invariant set satisfying (10). Note that, using e.g. the

MPT toolbox, it is possible to compute explicitly mapping

K
[1]

i (x̄
[1]
i ) and therefore verify (10) through set inclusions.

Remark 7: Note that (10) is quite different from requiring

robust stability in presence of faults. Indeed it is a much

weaker condition which guarantees only that in one step there

will not be any violation of the local state constraints. Note

also that invariance of set S̄
[i]
i is necessary to guarantee the

recursive feasibility of condition (10).

While this approach allows to detect the presence of a

fault, due to the presence of w
[mi]
i the passive isolation of the

malfunction could be challenging, dealing with conservative

results. For this reason, in the following, we suggest to use a

distributed version of the active FDI scheme proposed in [19].

B. Local Active Fault Isolation

Suppose condition (9) is verified at time kd , indicating that

a fault occurred at some time k f with 0 ≤ k f < kd . Assume

no further faults occur in the LSS between k f and the time kis

at which isolation is complete. At time kd , the active model

mi 6= 1 is unknown.

After fault detection, the control law defined in (4) is

deactivated and the following input strategy

u
[mi ]
i (k) = ūi(k)+ ∑

j∈Ni

δi jK
[mi]
i j x j(k) (11)

is used for isolation, where ūi(k) will be designed according

to (15a)-(15g) to separate the different possible faulty models.

Note that, the local feedback component has been removed

since feedback compensation could make isolation more dif-

ficult. On the other side, as the influence of the neighbors is

treated as a disturbance to the local dynamics, it continues to

be minimized through K
[mi]
i j , in order to tighten the uncertainty

sets W
[mi]
i .

By using (11), system (1)-(2) can be rewritten as

xi(k+ 1) = A
[mi]
ii xi(k)+B

[mi]
i ūi(k)+w

[mi]
i (k)+ r

[mi]
i (12)

w
[mi ]
i (k) = ∑

j∈N
[mi]

i

(A
[mi ]
i j + δi jB

[mi]
i K

[mi]
i j )x j(k)+di(k).
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With a slight abuse of notation we redefine

φ
[mi]
i{k}(

˜̄ui(0 : k),xi(0), w̃
[mi ]
i (0 : k))

as the solution map related to (12). Similarly, we redefine the

state reachable sets according to system (12)

X
[mi ]
i

(

˜̄ui(k0 : k|k0),xi(k0),W̃
[mi]
i{k−k0}

)

=
{

φ
[mi]
i{k−k0}

( ˜̄ui(k0 : k|k0),xi(k0), w̃
[mi]
i (k0 : k)) :

w̃
[mi ]
i (k0 : k) ∈ W̃i{k−k0}

}

. (13)

The objective of the distributed active fault isolation is

to isolate the local malfunction by driving the system to

a state condition consistent with only one faulty model. In

other words, for any couple of models αi, βi ∈ M
+
i ,αi 6= βi,

we look for existence of a local sequence ˜̄ui(kd : kd +Ti|kd)

leading to x
[αi]
i (kd + Ti) 6= x

[βi]
i (kd + Ti), for all (w̃

[αi]
i (kd :

kd +Ti), w̃
[βi]
i (kd : kd +Ti)) ∈ W̃

[αi]
i ×W̃

[βi]
i , where x

[αi]
i (kd +Ti)

and x
[βi]
i (kd + Ti) denote the value of the state variables Ti

steps after fault detection, evolving from x
[αi]
i (kd) = x

[βi]
i (kd) =

xi(kd) according to (1), with models αi and βi, respectively.

This corresponds to verify the separation of the state reach-

able sets at time kd +Ti, i.e.

X
[αi]
i ( ˜̄ui(kd : kd +Ti|kd),xi(kd))∩

X
[βi]
i ( ˜̄ui(kd : kd +Ti|kd),xi(kd)) = /0 (14)

for all the possible faulty dynamics in M
+
i (assuming that

Mi is exhaustive). For ease of reading, in the following,

the dependence of the reachable sets on W̃
[αi]
i , W̃

[βi]
i will be

omitted.

In order to compute the minimally harmful (in terms of

length/norm) input sequence guaranteeing diagnosis we solve

the following optimization problem:

min
˜̄ui(kd :kd+Ti |kd)

∥

∥ ˜̄ui(kd : kd +Ti|kd)
∥

∥

2

2
(15a)

subject to dynamics (1)− (2) (15b)

x
[mi]
i (kd) = xi(kd), ∀mi ∈ M

+
i (15c)

u
[mi ]
i (k) ∈Ui, k ∈ [kd ,kd +Ti − 1] (15d)

X
[mi ]
i (k|kd)⊆ Xi, k ∈ [kd ,kd +Ti − 1] (15e)

X
[mi ]
i (kd +Ti|kd)⊆ S̄

[mi]
i ⊕E

[mi]
i , ∀mi ∈ M

+
i (15f)

X
[αi]
i (kd +Ti|kd)∩X

[βi]
i (kd +Ti|kd) = /0, αi 6= βi (15g)

with increasing Ti = 1, · · · until the problem becomes feasible

or a Tmax is attained. Note that Tmax is a design parameter,

giving a limit to the maximum number of steps to have fault

isolation.

As explained in [19], in the case of zonotope sets, the

size of the state reachable sets does not depend on the input

sequence (the input affects only the center of these sets).

This property allows to replace (15e), (15f) in problem (15a)-

(15g) with simpler constraints (see [41]). According to [19],

the problem above can be reformulated as a mixed-integer

quadratic program (MIQP) which can be solved using, e.g.

CPLEX [49].

According to Section II-C, for a given input sequence and

an initial state condition xi(kd), the reachable set X
[mi ]
i (k|kd)

contains all the possible values of xi(k). Therefore, for each

mi ∈ M
+
i , constraint (15e) ensures that xi(k) ∈ Xi for all

k ∈ [kd ,kd + Ti − 1]. Similarly, for each mi ∈ Mi, constraint

(15f) ensures that x
[mi]
i (kd +Ti)∈ S̄

[mi]
i ⊕E

[mi]
i , that is, at the end

of the isolation horizon it will be possible to reconfigure the

MPC and to control the local state, guaranteeing stability and

constraint satisfaction. As shown in Section III, the satisfaction

of this constraint ensures that the controller κ
[mi]
i can be

feasibly implemented at time kd + Ti for any possible fault

mi ∈ Mi.

This is summarized in the following result.

Proposition 1: If Problem (15a)-(15g) is feasible, robust

stability and constraint satisfaction are guaranteed for the

overall LSS by applying the input sequence (11), with ˜̄ui(kd :

kd + Ti|kd) computed solving (15a)-(15g), and reconfiguring

the i-th local controller using the control law κ
[mi]
i designed

in Section III-A for the isolated model mi 6= 1.

Proof: The proof follows from the result in [44] for the

stability in healthy conditions using tube-based controllers.

In Problem (15a)-(15g), the satisfaction of constraint (15e)

ensures that local state constraints continue to be guaranteed,

thus not endangering stability and constraints satisfaction in

neighboring subsystems and in the rest of the LSS. The

satisfaction of constraint (15f) ensures that at the end of the

isolation horizon the local MPC problem will be feasible

for any model mi ∈ M
+
i , thus allowing the computation of

the control law κ
[mi]
i , which guarantees robust stability and

constraint satisfaction for the overall LSS.

Remark 8: Note that the satisfaction of constraint (15f) may

be difficult in general. However, if problem (15a)-(15g) is not

feasible, we can still unplug the subsystem where the fault was

detected and still preserve the overall stability (see Section V).

It is worth noting that as far as the i-th subsystem continues

to guarantee local state constraints Xi, reconfiguration of

neighboring subsystems is not needed, no matter whether the

fault in i involves only local dynamics (matrix Aii) or the

interconnection dynamics Ai j: only subsystem i needs to be

reconfigured. Moreover, the unplugging of a subsystem is

always possible, by implying only a contraction of the set

W
[m j ]
j in the child subsystems j for which i ∈ N

[m j ]
j .

Finally, by injecting ˜̄ui(kd : kd +Ti|kd), solution of problem

(15a)-(15g), into subsystem i, fault isolation is obtained in at

most Ti steps by verifying which reachable set X
[mi]
i (k|kd) the

real xi(kd +Ti) belongs to. Since the problem above guarantees

the isolability for all the possible realizations of w̃
[mi]
i (kd : kd +

Ti), it is possible to obtain an earlier isolation if at time k <
kd + Ti, xi(k) is already consistent with one model mi only.

Rather than applying the entire sequence ˜̄ui(kd : kd + Ti|kd),
it is possible to apply the Active FDI approach above in a

closed-loop fashion by re-solving problem (15a)-(15g) at each

time step with the newly available state (see e.g. [50]). While

this approach will increase active FDI performance, it comes

at the price of increased complexity.
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V. FTC STRATEGY

In this section, the tools introduced in the previous sections

are integrated for the proposed FTC strategy. At time k = 0,

the nominal model mi = 1 is active. During healthy nominal

behaviour, before fault detection, each subsystem is controlled

by the decentralized/distributed tube-based MPC introduced

in Section III-A and monitored by the passive fault detection

method in Section IV-A. At time k f , a single fault occurs in

subsystem i and is detected at time kd > k f (if the effect of the

fault cannot be explained by the local uncertainties represented

by w
[mi]
i ). At time kd , the Active Fault Isolation tool (see

Section IV-B) is activated. Three possible scenarios can be

in place, illustrated in Fig. 3 and described in the following.

Scenario 1 - Isolation and Control reconfiguration

There exists a control input sequence so that Problem (15a)-

(15g) is feasible, i.e.

i) it is possible to separate the reachable sets of the different

faulty dynamics (achieving therefore fault isolation), i.e.

X
[αi]
i (kd +Ti|kd)∩X

[βi]
i (kd +Ti|kd) = /0, ∀αi 6= βi, αi,βi∈ M

+
i .

ii) the state after fault isolation is guaranteed to remain in the

domain of attraction:

X
[mi ]
i (kd +Ti|kd)⊆ S̄

[mi]
i ⊕E

[mi]
i , ∀mi ∈ M̄i.

The reconfiguration of the i-th local controller is therefore

feasible using the control law κ
[mi]
i designed in Section III-A

for the identified model mi 6= 1. In this first scenario, applying

the input sequence (11), with ˜̄ui(kd : kd +Ti|kd) computed by

the Active Fault Isolation tool (15a)-(15g), the fault is isolated

at most at time kd + Ti, identifying which model mi ∈ M
+
i

is acting in the local subsystem i. Furthermore, the computed

input guarantees that xi(kd +Ti)∈ S̄
[mi]
i ⊕E

[mi]
i . At time kd +Ti,

once the novel “nominal” dynamics is isolated, its controller is

implemented continuing to guarantee the stability of the LSS;

it will not be necessary to disconnect the faulty subsystem or

to reconfigure neighboring subsystems because, since the local

controller continues to satisfy local state constraints Xi, the

influence of the reconfigured subsystem i on the neighboring

subsystems j ∈ N
[

i mi] remains bounded by W
[m j ]
j , as before

the local control reconfiguration of i.

Scenario 2 - Isolation and Unplugging

There exists a control input sequence so that it is possible to

achieve correct fault isolation, i.e. there exists a solution for

Problem (15a) satisfying

X
[αi]
i (kd +Ti|kd)∩X

[βi]
i (kd +Ti|kd) = /0, αi 6= βi,

but we cannot satisfy constraint (15f), that is, we cannot guar-

antee the reconfiguration properties xi(kd +Ti)∈ S̄
[mi]
i ⊕E

[mi]
i at

the end of the Active Fault Isolation process for some mi ∈ M̄i.

The stability of the system is anyway guaranteed thanks to

constraint (15e). Depending on the level of criticality of the

considered application, the operator/decision system can de-

cide whether to immediately disconnect the faulty subsystem

or to continue with the local fault isolation without constraint

(15f) in order to understand the source of the problem. Again,

after fault isolation we may decide to disconnect the faulty

subsystem or we can use the additional knowledge to take a

decision.

Scenario 3 - Unplugging

It is not possible to find a local control input sequence so to

achieve fault isolation, i.e. Problem (15a)-(15g) is not feasible

even without constraint (15f). We can therefore decide to

immediately disconnect the faulty subsystem in order to avoid

or reduce the propagation of the fault effects in the network

of the LSS.

Plug-and-Play approaches [37] can be used to design the

local controllers so to allow Plug-and-Play operations, pro-

viding conditions for the plug-in of novel subsystems. In

this case, after the problem is solved in the disconnected

faulty subsystem, it can be re-plugged into the network of

the LSS, by checking before whether the conditions for the

plug-in are satisfied. Note that, when using a Plug-and-Play

approach, the design of the controller for subsystem i requires

at most information about the subsystem under control and its

neighbors.

The entire procedure is repeated if and when a new fault

occurs. As presented in this section, Active Fault Diagnosis

can be seen as an important tool to support the decision-

making process for the control and monitoring of the LSS.

Note that an active input is used for local fault isolation, but

not for fault detection. This avoids conflicts between fault de-

tectability and control objectives that would degrade nominal

performance. Conversely, the input is not restricted by stability

or performance considerations during fault isolation. However,

state constraints are enforced, as well as the condition that

a stabilizing controller can be implemented after isolation.

Overall stability follows provided that the active input design

problem is feasible.

VI. EXTENSIONS

In this section, some extensions to the previous results are

briefly illustrated.

A. Explicit solution of the Active Fault Isolation problem

It is worth noting that Problem (15a)-(15g) can be solved

explicitly as a function of the state xi(kd) for each i ∈N (see

[24] for the details in the centralized case). This represents an

additional tool that can be used by the proposed distributed

Fault Tolerant Control Architecture as a support decision

scheme. By solving Problem (15a)-(15g) for every state of the

state constraint space, it is possible to build a map of the state

space. At fault detection time, by measuring the state xi(kd),
it is already possible to know which FTC scenario (Scenario

1, 2 or 3) will occur depending on the feasibility of Problem

(15a)-(15g), and it is possible to take an immediate decision

about the action to take to guarantee LSS safe operation. In the

simulation Section we show the use of this tool in an example

(see Figure 7).

B. Measurement noise

To allow focusing on the main results and to simplify the

presentation, in the previous sections the measurement noise
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Fig. 3. The proposed FTC strategy. Three possible scenarios are considered by the Active Fault Isolation procedure.

has not been considered. However, it is possible to extend the

proposed approach to the case that the local output equation

can be described by

y
[mi]
i (k) = Cixi(k)+ vi(k),

where y
[mi]
i (k) ∈ R

nxi denotes the output vector of subsystem

i, vector vi(k) represents the measurement noise and Ci is

the output matrix. In this paper, we do not consider sensor

faults. We assume that the pair (A
[mi]
ii ,Ci) is observable for

each i ∈ N . The following assumption is required:

Assumption 6: The measurement noise vi(k) is bounded by

a known set vi(k) ∈ Vi, ∀k, ∀i ∈ N , being Vi zero-centered

zonotopes which are known a priori.

The output reachable set has to be defined accordingly

Y
[mi ]
i (k|k0) = CiX

[mi ]
i (ũ

[mi ]
i (k0 : k|k0),xi(k0),W̃

[mi]
i{k−k0}

)⊕Vi.

The local control law can be computed in a distributed way

by means of an output-feedback model predictive control, for

example as in [51], which uses a distributed state observer.

Then, a similar procedure for distributed fault diagnosis as

the one proposed in Sections IV-A and IV-B can be used. Dif-

ferently from Section IV-A, in this scenario with measurement

noise, the set-based observer output estimation error is used

for passive fault detection, instead of (9). For the active fault

isolation, Problem (15a)-(15g) should be updated, requiring

the separability of the output reachable sets:

Y
[αi]
i (kd +Ti|kd)∩Y

[βi]
i (kd +Ti|kd) = /0, αi 6= βi;

instead of (15g), and tightening the controller domain con-

straint in (15f) as proposed in [50] in a set-valued observer-

based centralized scenario.

Note that set E
[mi]
i and tightened state and input constraints

X̄i
[mi] and Ūi

[mi ] will also be affected by Vi.

C. Parameter uncertainty in faulty model

It is possible to extend the proposed method to include

uncertainty in the parameters of the models of the faulty

dynamics.

We consider the case of classes of faults, each described by

parameters that can vary in a bounded interval. To take this

into account in Problem (15a)-(15g), we redefine the faulty

models’ dynamics in (1)-(2) using the unknown parameters’

averages, while including the uncertainties in redefined sets

W
[mi]
i . Specifically, we redefine:

Aii = A
[mi]
iinom

±∆A
[mi]
ii (16)

where A
[mi]
iinom

is obtained by averaging the uncertain parameters,

and ∆A
[mi]
ii is the maximum positive deviation to the matrix

caused by the uncertainty of the fault parameters. Similar

notation can be used for all other matrices in (1)-(2).

To account for the parameter uncertainty in Problem (15a)-

(15g), sets W
[mi ]
i (6) are redefined as:

W
[mi]
i =

⊕

j∈N
[mi ]

i

(

(A
[mi]
i jnom

+B
[mi]
inom

K
[mi]
i j )+ (∆A

[mi]
i j +∆B

[mi]
i K

[mi]
i j )

)

X j

⊕∆A
[mi]
ii X

[mi]
i ⊕∆B

[mi]
i U

[mi]
i ⊕Di.

(17)

VII. SIMULATION RESULTS

Fig. 4. Power Network System with 5 generation areas, interconnected as
in Scenario 2 of [37].

In this section we show the effectiveness of the proposed

distributed FTC methodology, applying it on a Power Network

System (PNS) [37] composed of 5 generation areas which are
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interconnected through tie-lines. Specifically, we consider the

case described in Scenario 2 of [37], illustrated in Figure 4.

We assume that the communication network between local

controllers mirrors the physical coupling graph.

In the simulations, we firstly design the distributed tube-

based MPC controller to regulate each area during nominal

operation, and for each faulty model in M
+
i ,∀i ∈ N . Per-

formance of the proposed set-based passive fault detection

and active fault isolation strategies is shown in the case of

a fault occurring on one of the interconnected subsystems. If

feasible, isolation may be followed by the reconfiguration of

the subsystem controller to accommodate the isolated fault.

The dynamics of each subsystem, equipped with primary

control and linearised around the equilibrium, are:

ẋi = A
[mi]
ii xi +B

[mi]
i u

[mi]
i +L

[mi]
i ∆PLi

+w
[mi]
i , (18)

w
[mi]
i = ∑

j∈N
[mi]

i

A
[mi]
i j x j +di,

where xi = (∆θi,∆ωi,∆Pmi
,∆Pvi

)′ is the local state,

u
[mi ]
i = ∆Pre fi is the control input of each area, ∆PLi

is

the local power load and N
[mi]

i is the set of neighboring

areas directly connected to subsystem i through tie-lines.

More specifically, the matrices of system (18) are

A
[mi]
ii =













0 1 0 0

−
∑ j∈Ni

Pi j

2H
[mi]
i

− Di

2H
[mi]
i

1

2H
[mi ]
i

0

0 0 − 1
Tti

1
Tti

0 − 1
RiTgi

0 − 1
Tgi













, B
[mi]
i =









0
0
0
1

Tgi









,

A
[mi]
i j =









0 0 0 0
Pi j

2H
[mi ]
i

0 0 0

0 0 0 0
0 0 0 0









, L
[mi]
i =









0

− 1

2H
[mi]
i

0
0









.

The values of the parameters are defined as in [37] for

the nominal model mi = 1. Each subsystem is subject to the

following constraints on xi and u
[mi ]
i : |∆θi| ≤ 0.1, |∆ωi| ≤

0.2, |∆Pmi
| ≤ 5, |∆Pvi

| ≤ 5, |∆Pre fi | ≤ 5 for all subsystems. For

each generation area, discrete-time models as in (1) are

obtained by discretizing (18) with a sampling time Ts = 1 sec.

Disturbance di is assumed to be bounded by Di, a zonotope

defined in generator notation as Di = {10−4Inxi
,0}, where

Inxi
is the nxi

-dimensional identity matrix. The noise level

is comparable to other examples in the literature [51], [52].

Local control matrices K
[mi]
ii and K

[mi]
i j are designed for each

subsystem i, for every model mi ∈ Mi, using the PnPMPC

toolbox for MATLAB [53]. The goal of the control is the

Automatic Generation Control (AGC) layer to maintain the

frequency in each area. As regards the FDI architecture, each

area is equipped with a local fault diagnoser.

A. Example 1

In the first example, each area of the PNS can be affected

by three different faults, characterized by a change of the

value of the inertia parameter H
[mi]
i . From an electrical point of

view, this represents a loss of the generation capability in the

considered generation area. The value of the inertia parameter

Fig. 5. Fault detection of Area 5 at time kd = 5. A 3D plot of the measurement

x5(5) (indicated with a blue star) and the corresponding detection tube E
[1]
5

centered in x̄
[1]
5 (5), both projected on (∆θ5,∆ω5,∆Pm5

). Detection occurs, as
the measurement lies outside of the zonotope tube.

for the nominal model mi = 1 is H
[m1]
1 = 12 and for the the

faulty models mi = 2,3,4 the values of the inertia parameters

are H
[m2]
2 = 2.35, H

[m3]
3 = 2.6, and H

[m4]
4 = 2.85.

At time k f = 3, the inertia constant in Area 5 decreases

from H5 = 12 to H5 = 2.35 , corresponding to a reduction

of approximately 80% of the inertia value. Following the

occurrence of the fault at k f , the set-based passive fault

detection method detects the fault at time kd = 5. At this time

the measured state x5(kd) lies outside the zonotopic tube E
[1]
5

centred in the system’s nominal state x̄
[1]
5 (kd), as can be seen

in Figure 53.

After local fault detection, the local Active Fault Isolation

tool is initialized. The optimization Problem (15a)-(15g) is

solved using CPLEX. The tool returns the isolating input

ū5(5) = −0.2979 which, after Ti = 1 time step, separates the

reachable sets of the dynamics given by the faulty models

mi ∈ M
+
5 , and is able to exclude all faults except the correct

one, i.e. x5(kd + Ti) ∈ X
[m5]
5 (kd + Ti|kd) only for m5 = 2.

In Figure 6 we show the 3D projection onto the space

defined by the states (∆θ5,∆ω5,∆Pm5
) of the reachable sets

X
[m5]
5 (kd + Ti|kd),∀m5 ∈ M

+
5 , as well as the projection of

x5(kd +Ti). Once the isolating input is computed and applied,

and the correct faulty model is identified, the subsystem is

reconfigured in order to accommodate the fault to which it is

subject. Hence, since Problem (15a)-(15g) is feasible, Scenario

1 of the FTC strategy is implemented, and the controller for

area 5 is changed from the one designed for m5 = 1 to that

for m5 = 2, resuming normal operation for the LSS.

Furthermore, we show in this scenario that the tool in-

troduced in Section VI-A, based on the off-line solution of

Problem (15a)-(15g), can be considered for decision support

in the FTC strategy . This allows the local fault diagnosers to

immediately check after fault detection which reconfiguration

strategy will be feasible (Scenario 1, 2 or 3 of Figure 3) as

a function of the state xi(kd). We show in Figure 7 a map

representing a portion of the state space for the considered

3We use a 3D projection of the states (∆θ5,∆ω5,∆Pm5
) to visualize that

the state is not contained within the set



11

Fig. 6. Measured state x5(6) (blue asterisk) at time k = kd +Ti = 6, together

with reachable sets X
[m5]
5 (6|5),m5 ∈M

+
5 , separated by isolating input ū5(5) =

−0.2979. Projection on components (∆θ5,∆ω5,∆Pm5
). Note that there is no

intersection among the reachable sets.

-0.1 -0.05 0 0.05 0.1

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Scenario 3

Scenario 2

Scenario 1

Fig. 7. Map of the first two state components of X5 (with the other
components equal to ∆Pm5

= 0, ∆Pv5
= 0): for each cell of the grid the FTC

scenario to be implemented. The green and yellow areas are the ones from
where it is actually possible to separate the considered fault models and have
fault isolation.

PNS example: each cell of the map has a different color

depending on the FTC strategy that can be applied if the fault

detection occurs when the state is in that area. The portion of

state space that was considered is |∆θ5| ≤ 0.1, |∆ω5| ≤ 0.2,

∆Pm5
= 0, ∆Pv5

= 0. The map was obtained by explicitly

solving Problem (15a)-(15g) for 441 points in the state space

separated from each other by constant step sizes of 0.01 and

0.02 in the ∆θ5 and ∆ω5 directions, respectively.

B. Example 2

In this second example, we assume, similarly to Sec-

tion VI-C, that the possible faulty models for Area 5, i.e.

m5 ∈ M
+
5 , are no longer defined by a single value of the

fault parameter, as they were in Example 1. We consider

that fault parameter H
[m5]
5 is uncertain, and, for m5 = 1,2,3,4

can take values inside an interval as follows: H
[1]
5 = 12±0.1,

H
[2]
5 = 2.35± 0.1, H

[3]
5 = 2.60± 0.1, and H

[4]
5 = 2.85± 0.1.

Fig. 8. Reachable sets X
[m5 ]
5 (6|5),m5 ∈ M

+
5 , separated by isolating input

ū5(5) =−1.0266, and measured state x[5](6) ∈ X
[2]
5 (6|5) (asterisk with black

bold circle). Projection on components (∆θ5,∆ω5,∆Pv5
).

To deal with the parametric uncertainty, we redefine the

matrices in model (18) as defined in (16)4. ∆Aii and other

deviation matrices are calculated using MATLAB’s INTLAB

toolbox [54], which allows operations on intervals. Hence, we

redefine sets W
[mi]
i as in (17).

As in the first example, each area is locally equipped with

a regulator and a fault diagnoser. Again, at k f = 3 the model

describing Area 5 dynamics changes from m5 = 1 to m5 = 2.

The passive fault diagnosis tool again detects the fault at kd =
5. Hence the Active Fault Isolation tool solves Problem (15a)-

(15g), calculating the separating input sequence to be applied

to the faulty subsystem, ū5 =−1.0266, with Ti = 1. In Figure 8

we show the three dimensional projection of the reachable sets

onto the states (∆θ5,∆ω5,∆Pv5
)5. Finally, the diagnoser applies

the separating input to the faulty subsystem, and is therefore

able to isolate the correct class of faults affecting the local

dynamics. Unfortunately, in order for Problem (15a)-(15g) to

be feasible, constraint (15f) X
[m5]
5 (kd + Ti|kd) ⊆ F

[m5]
5 has to

be relaxed to X
[m5]
5 (kd +Ti|kd) ⊆ X5. We therefore implement

Scenario 2 of the FTC strategy: after local fault isolation, the

unplugging of the faulty area is required to maintain overall

stability properties of the PNS.

Acknowledgment. We would like to acknowledge Prof.
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and-Play distributed control and for help and suggestions on

using the PnPMPC Matlab Toolbox [53].

VIII. CONCLUDING REMARKS

In this paper, a scalable distributed FTC scheme has been

presented for the monitoring of interconnected subsystems,

using Active Fault Isolation. After fault detection, the proposed

method allows to guarantee whether it is possible to correctly

4Note here that the uncertainty on H
[m5 ]
5 influences all matrices, due to

dynamics discretization.
5The apparent intersection of the reachable sets is caused by their projec-

tions from four-dimensional to three-dimensional space.



12

isolate the fault in a finite number of steps and to safely re-

configure local controllers or if the disconnection of the faulty

subsystem is preferable in order to reduce the propagation of

the effects of the fault. The presence of measurement noise has

been investigated. Extensive simulation results are provided

on a Power Network System to show the effectiveness of the

proposed approach, considering also classes of faults where

the parameters characterizing each faulty model are uncertain

and may vary within a defined range of values.

As a future work, we will investigate the use of other

active fault diagnosis techniques in distributed and scalable

scenarios, such as hybrid stochastic-deterministic approaches

and the design of references instead of input sequences.
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