36 research outputs found

    Classifying motor imagery in presence of speech

    Get PDF
    In the near future, brain-computer interface (BCI) applications for non-disabled users will require multimodal interaction and tolerance to dynamic environment. However, this conflicts with the highly sensitive recording techniques used for BCIs, such as electroencephalography (EEG). Advanced machine learning and signal processing techniques are required to decorrelate desired brain signals from the rest. This paper proposes a signal processing pipeline and two classification methods suitable for multiclass EEG analysis. The methods were tested in an experiment on separating left/right hand imagery in presence/absence of speech. The analyses showed that the presence of speech during motor imagery did not affect the classification accuracy significantly and regardless of the presence of speech, the proposed methods were able to separate left and right hand imagery with an accuracy of 60%. The best overall accuracy achieved for the 5-class separation of all the tasks was 47% and both proposed methods performed equally well. In addition, the analysis of event-related spectral power changes revealed characteristics related to motor imagery and speech

    Context-Aware Brain-Computer Interfaces

    Get PDF
    Systems using brain-generated signals can control complex, smart devices by taking into account information about the situation at hand, as well as the operator’s cognitive state

    A Cooperative Game Using the P300 EEG-Based Brain-Computer Interface

    Get PDF
    In this paper, we present a cooperative game, Brainio Bros 300, using a brain-computer interface (BCI). The game is cooperatively controlled by two people using P300-generating color discrimination. The two users advance through the game together, one as the “player” and the other as the “supporter” providing assistance. We assumed that players would be able-bodied, while supporters would include people with severe disabilities. Through experiments using human subjects, we evaluated the subjects’ impressions of the game and its usefulness. The results of the impression evaluation showed that the subjects generally had good impressions, and there were many opinions that such cooperative games are interesting. We also discuss the possibilities of using the P300 BCI

    Brain-Computer Interface Games: Towards a Framework

    Get PDF
    The brain-computer interface (BCI) community started to consider games as potential applications while the games community started to consider BCI as a game controller. However, there is a discrepancy between the BCI games developed by the two communities. In this paper, we propose a preliminary BCI games framework that we constructed with respect to the research conducted in both the BCI and the games communities. Developers can situate their BCI games within this framework and benefit from the guidelines we provide and also extend the framework further

    Subject Combination and Electrode Selection in Cooperative Brain-Computer Interface Based on Event Related Potentials

    Get PDF
    New paradigms are required in Brain-Computer Interface (BCI) systems for the needs and expectations of healthy people. To solve this issue, we explore the emerging field of cooperative BCIs, which involves several users in a single BCI system. Contrary to classical BCIs that are dependent on the unique subject’s will, cooperative BCIs are used for problem solving tasks where several people shall be engaged by sharing a common goal. Similarly as combining trials over time improves performance, combining trials across subjects can significantly improve performance compared with when only a single user is involved. Yet, cooperative BCIs may only be used in particular settings, and new paradigms must be proposed to efficiently use this approach. The possible benefits of using several subjects are addressed, and compared with current single-subject BCI paradigms. To show the advantages of a cooperative BCI, we evaluate the performance of combining decisions across subjects with data from an event-related potentials (ERP) based experiment where each subject observed the same sequence of visual stimuli. Furthermore, we show that it is possible to achieve a mean AUC superior to 0.95 with 10 subjects and 3 electrodes on each subject, or with 4 subjects and 6 electrodes on each subject. Several emerging challenges and possible applications are proposed to highlight how cooperative BCIs could be efficiently used with current technologies and leverage BCI applications

    Brain–computer interfacing under distraction: an evaluation study

    Get PDF
    Objective. While motor-imagery based brain–computer interfaces (BCIs) have been studied over many years by now, most of these studies have taken place in controlled lab settings. Bringing BCI technology into everyday life is still one of the main challenges in this field of research. Approach. This paper systematically investigates BCI performance under 6 types of distractions that mimic out-of-lab environments. Main results. We report results of 16 participants and show that the performance of the standard common spatial patterns (CSP) + regularized linear discriminant analysis classification pipeline drops significantly in this 'simulated' out-of-lab setting. We then investigate three methods for improving the performance: (1) artifact removal, (2) ensemble classification, and (3) a 2-step classification approach. While artifact removal does not enhance the BCI performance significantly, both ensemble classification and the 2-step classification combined with CSP significantly improve the performance compared to the standard procedure. Significance. Systematically analyzing out-of-lab scenarios is crucial when bringing BCI into everyday life. Algorithms must be adapted to overcome nonstationary environments in order to tackle real-world challenges.BMBF, 01GQ1115, Adaptive Gehirn-Computer-Schnittstellen (BCI) in nichtstationĂ€ren Umgebunge

    A Novel 9-Class Auditory ERP Paradigm Driving a Predictive Text Entry System

    Get PDF
    Brain–computer interfaces (BCIs) based on event related potentials (ERPs) strive for offering communication pathways which are independent of muscle activity. While most visual ERP-based BCI paradigms require good control of the user's gaze direction, auditory BCI paradigms overcome this restriction. The present work proposes a novel approach using auditory evoked potentials for the example of a multiclass text spelling application. To control the ERP speller, BCI users focus their attention to two-dimensional auditory stimuli that vary in both, pitch (high/medium/low) and direction (left/middle/right) and that are presented via headphones. The resulting nine different control signals are exploited to drive a predictive text entry system. It enables the user to spell a letter by a single nine-class decision plus two additional decisions to confirm a spelled word. This paradigm – called PASS2D – was investigated in an online study with 12 healthy participants. Users spelled with more than 0.8 characters per minute on average (3.4 bits/min) which makes PASS2D a competitive method. It could enrich the toolbox of existing ERP paradigms for BCI end users like people with amyotrophic lateral sclerosis disease in a late stage

    Affective Valence Detection from EEG Signals Using Wrapper Methods

    Get PDF
    In this work, a novel valence recognition system applied to EEG signals is presented. It consists of a feature extraction block followed by a wrapper classification algorithm. The proposed feature extraction method is based on measures of relative energies computed in short‐time intervals and certain frequency bands of EEG signal segments time‐locked to the stimuli presentation. These measures represent event‐related desynchronization/synchronization of underlying brain neural networks. The subsequent feature selection and classification steps comprise a wrapper technique based on two different classification approaches: an ensemble classifier, i.e., a random forest of classification trees and a support vector machine algorithm. Applying a proper importance measure from the classifiers, the feature elimination has been used to identify the most relevant features of the decision making both for intrasubject and intersubject settings, using single trial signals and ensemble averaged signals, respectively. The proposed methodologies allowed us to identify a frontal region and a beta band as the most relevant characteristics, extracted from the electrical brain activity, in order to determine the affective valence elicited by visual stimuli
    corecore