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Context-aware brain-computer
interfaces
Ricardo Chavarriaga and José del R. Millán

Systems using brain-generated signals can control complex, smart de-
vices by taking into account information about the situation at hand,
as well as the operator’s cognitive state.

Developments in neuroscience, signal processing and machine
learning are enabling device control using our brain activity.
Specifically, current technology allows us to record brain-
generated signals in real time, infer the human intention and
translate it into control commands for external devices. These
brain-computer interfaces (BCIs) can currently control virtual
keyboards, games, smart wheelchairs and mobile robots.1 Most
commonly, BCI systems are based on electrical brain activ-
ity recorded on the scalp (using electroencephalograms: EEGs).
Machine-learning techniques help to classify these signals into
pre-defined patterns of activity associated with particular inten-
tions (e.g., imagining moving one’s left hand will lead to device
motion toward the left). BCI applications have traditionally
focussed on subjects suffering from motor handicaps (caused by,
for instance, spinal-cord injury, degenerative diseases or locked-
in syndrome). Their predominant aim has been restoration or
substitution of communication and/or motor capabilities, al-
though recent developments have also explored their use in
healthy subjects in applications ranging from games2 to image
browsing3 and space-system applications.4

However, despite their impressive achievements, BCI applica-
tions are strongly limited by their low throughput and the small
number of commands they can deliver. Designing context-aware
interfaces has been proposed as a way to cope with these limi-
tations. Using this approach, the interface collects information
about the state of the device, as well as its environment, and
combines this with the commands it has decoded from brain ac-
tivity (see Figure 1). This enables the performance of complex
tasks with a reduced number of mental commands (typically
two or three) and using the latter to signal high-level instruc-
tions while smart devices take care of low-level controlsignals.
For instance, we have shown that noninvasive BCIs can be
used for real-time control of an intelligent wheelchair in real-
istic conditions.5 In this application, BCI commands are limited
to general directions of movement (i.e., move forward, turn left

Figure 1. Context-aware brain-computer interface (BCI). The tra-
ditional BCI control loop is enriched by the addition of contextual
information describing the environment and the user’s cognitive state.
EEG: Electroencephalogram.

or right), which are interpreted by the wheelchair in conjunc-
tion with information from the on-board sensors to compute
the actual control commands needed for execution (i.e., speed
and angle of movement) to travel smooth trajectories and avoid
obstacles. Alternative approaches in context-aware BCI robotics
applications dynamically change the behaviour corresponding
to a particular mental task depending on context. For instance,
when controlling a mobile robot, a ‘left’ command signalled by
the BCI would have different meaning depending on whether
or not there is a wall on that side of the robot. The robot will ei-
ther move along the wall or turn to the left on the spot.6 Either
way, this shared-control approach increases the robustness of the
overall system, allowing it to perform complex tasks.

The interface can also extract information about the subject’s
cognitive and perceptual state from the recorded brain activity,
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Figure 2. EEG error-based navigation.9 (top) The robot moves
autonomously using sensory information about its surroundings.
(bottom) Wherever it cannot take a reliable decision, it proposes an
action using visual feedback. Error-related signals are decoded from the
elicited EEG activity to confirm or reject this proposal.

such as awareness of erroneous decisions, either taken by the
subject itself or by an external agent. We have shown that it is
possible to detect error-related EEG activity in real time in sin-
gle trials and use this as corrective or learning signals for BCI
systems.7, 8 In addition, in the framework of semi-autonomous
navigation (similar to our wheelchair experiment), we tested a
tele-operated robot platform that navigates autonomously in in-
door environments using its on-board sensors until it reaches a
decision point (because it does not know the target destination).
At this location, it uses visual feedback to propose a possible
action (see Figure 2). That action is either selected or discarded
based on online detection of error-related EEG potentials. A user
remotely commands the robot while observing a video stream
provided by an on-board camera. The visual feedback is su-
perimposed onto the video image.9 Online experiments on one
subject using both real and simulated robots show that it is
possible to successfully guide the robot while providing a nat-
ural approach to brain-machine interaction that reduces the
user’s cognitive load (the system behaves autonomously 82% of
the time).

Error-related EEG signals can also be used to adapt the
interface’s behaviour. We recently explored whether similar
potentials can be used to assess and improve the system’s per-
formance. We designed a hybrid approach for human-computer
interaction that uses human gestures to send commands to a

Figure 3. Self-adaptation in human-computer interaction.10 The com-
puter game is controlled by motion-based gesture recognition while
EEG-decoded error-related activity is used for self-adaptation. EMG:
Electromyographic. EOG: Electrooculographic.

computer and exploits brain activity to provide implicit feed-
back about the degree of recognition of such commands (see
Figure 3). Using a simple computer game controlled by wearable
motion sensors, we showed that EEG activity evoked by erro-
neous gesture recognition can be classified in single trials at well
above random levels. Thus, the gesture-recognition system be-
comes self-aware of its performance.10 Moreover, we designed
a simple adaptation mechanism which uses the EEG signal to
label newly acquired samples that can be used to recalibrate the
gesture-recognition system in a self-supervised fashion. Offline
analysis shows that this technique can significantly improve the
accuracy of independent gesture recognition for most subjects
tested.

In summary, the field of BCI has experienced astonishing
recent developments, highlighting the feasibility of using brain
activity to efficiently control complex devices despite existing
limitations in terms of reliability and number of commands.
We have shown that enriching the interface with contextual
information yields more robust results. Robotic applications can
collect information about their environments by employing on-
board sensors and use this information to better interpret the
user’s intentions based on the BCI, thus allowing the user and
device to share the responsibility of control. EEG signals can
also provide information about the subject’s assessment of the
device’s performance. In particular, error-related activity can be
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used to identify erroneous system decisions. This information
can then be used to trigger corrective actions or adapt the
system in a self-supervised manner.

Our future research efforts include studies of mechanisms to
change the level of the system’s autonomy, depending on the
context or expected reliability (e.g., giving more or less respon-
sibility to the system depending on whether the environment is
well known). Other mental states decoded from brain activity
(such as fatigue, attention or alarm) can also be included to
better meet the user’s needs.
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