2 research outputs found

    Subject Combination and Electrode Selection in Cooperative Brain-Computer Interface Based on Event Related Potentials

    Get PDF
    New paradigms are required in Brain-Computer Interface (BCI) systems for the needs and expectations of healthy people. To solve this issue, we explore the emerging field of cooperative BCIs, which involves several users in a single BCI system. Contrary to classical BCIs that are dependent on the unique subject’s will, cooperative BCIs are used for problem solving tasks where several people shall be engaged by sharing a common goal. Similarly as combining trials over time improves performance, combining trials across subjects can significantly improve performance compared with when only a single user is involved. Yet, cooperative BCIs may only be used in particular settings, and new paradigms must be proposed to efficiently use this approach. The possible benefits of using several subjects are addressed, and compared with current single-subject BCI paradigms. To show the advantages of a cooperative BCI, we evaluate the performance of combining decisions across subjects with data from an event-related potentials (ERP) based experiment where each subject observed the same sequence of visual stimuli. Furthermore, we show that it is possible to achieve a mean AUC superior to 0.95 with 10 subjects and 3 electrodes on each subject, or with 4 subjects and 6 electrodes on each subject. Several emerging challenges and possible applications are proposed to highlight how cooperative BCIs could be efficiently used with current technologies and leverage BCI applications
    corecore