403 research outputs found

    ๊ผฌ๋ฆฌ๋‚ ๊ฐœ ์—†๋Š” ๋‚ ๊ฐฏ์ง“ ์ดˆ์†Œํ˜• ๋น„ํ–‰์ฒด์˜ ์ž์„ธ์กฐ์ ˆ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€, 2020. 8. ๊น€ํ˜„์ง„.์ตœ๊ทผ ์ƒ์ฒด๋ชจ๋ฐฉ์— ๋Œ€ํ•œ ๊ด€์‹ฌ์ด ์ปค์ง€๋ฉด์„œ ์ƒ๋ช…์ฒด์˜ ๊ตฌ์กฐ, ์™ธํ˜•, ์›€์ง์ž„, ํ–‰๋™์„ ๋ถ„์„ํ•˜์—ฌ ๊ทธ๋“ค์˜ ์žฅ์ ์„ ๋กœ๋ด‡์— ์ ์šฉ์‹œ์ผœ ๊ธฐ์กด์˜ ๋กœ๋ด‡์ด ํ•ด๊ฒฐํ•  ์ˆ˜ ์—†๊ฑฐ๋‚˜ ํŠน๋ณ„ํ•œ ์ž„๋ฌด๋ฅผ ์ข€ ๋” ํšจ๊ณผ, ํšจ์œจ์ ์œผ๋กœ ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์‹œ๋„๊ฐ€ ๋Š˜์–ด๋‚˜๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ์‹œ๋„๋Š” ๋ฌด์ธ๋น„ํ–‰์ฒด ๊ฐœ๋ฐœ์—๋„ ์ ์šฉ๋˜๊ณ  ์žˆ์œผ๋ฉฐ ๋‚ ๊ฐฏ์ง“ ๋น„ํ–‰์ฒด๊ฐ€ ์ด์— ํ•ด๋‹น๋œ๋‹ค. ๋‚ ๊ฐœ์ง“ ๋น„ํ–‰์ฒด๋Š” ๋‚ ๊ฐœ์˜ ๋ฐ˜๋ณต์šด๋™์„ ํ†ตํ•ด ๋ฐœ์ƒํ•˜๋Š” ํž˜์„ ํ†ตํ•ด ๋น„ํ–‰ํ•˜๋Š” ๋น„ํ–‰์ฒด๋กœ ์ผ๋ฐ˜์ ์œผ๋กœ ๊ผฌ๋ฆฌ๋‚ ๊ฐœ์˜ ์œ ๋ฌด์— ๋”ฐ๋ผ ์ƒˆ๋ฅผ ๋ชจ๋ฐฉํ•œ ๋น„ํ–‰์ฒด(๋ฏธ์ตํ˜• ๋น„ํ–‰์ฒด)์™€ ๊ณค์ถฉ์„ ๋ชจ๋ฐฉํ•œ ๋น„ํ–‰์ฒด(๋ฌด๋ฏธ์ตํ˜• ๋น„ํ–‰์ฒด)๋กœ ๊ตฌ๋ถ„ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ฌด๋ฏธ์ตํ˜• ๋น„ํ–‰์ฒด์˜ ๊ฒฝ์šฐ ์ œ์ž๋ฆฌ ๋น„ํ–‰์„ ํ•  ์ˆ˜ ์žˆ๊ณ , ํฌ๊ธฐ๊ฐ€ ์ž‘๊ณ  ๋ฌด๊ฒŒ๊ฐ€ ๊ฐ€๋ฒผ์›Œ ๊ณต๊ธฐ์ €ํ•ญ๋„ ์ค„์ผ ์ˆ˜ ์žˆ์œผ๋ฉฐ, ๋‚ ๋ ตํ•œ ๋น„ํ–‰์ด ๊ฐ€๋Šฅํ•˜๋‹ค๋Š” ์žฅ์ ์ด ์žˆ์ง€๋งŒ, ์ˆ˜๋™ ์•ˆ์ •์„ฑ์„ ํ™•๋ณดํ•˜๊ธฐ ์œ„ํ•œ ์ œ์–ด๋ฉด์ด ์ถฉ๋ถ„ํ•˜์ง€ ์•Š๊ณ  ์ถ”๋ ฅ ์ƒ์„ฑ๊ณผ ๋™์‹œ์— 3์ถ•์œผ๋กœ์˜ ์ œ์–ด ๋ชจ๋ฉ˜ํŠธ๋ฅผ ๋งŒ๋“ค ์ˆ˜ ์žˆ๋Š” ๋ณต์žกํ•œ ๋งค์ปค๋‹ˆ์ฆ˜์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค๋Š” ํŠน์ง•์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ €์ž์˜ ๋ฏธ์ตํ˜• ๋น„ํ–‰์ฒด์˜ ์—ฐ๊ตฌ๊ฐœ๋ฐœ ์‚ฌ๋ก€๋ฅผ ํ† ๋Œ€๋กœ ์ž์œจ ๋น„ํ–‰์„ ํ•  ์ˆ˜ ์žˆ๋Š” ๋ฌด๋ฏธ์ตํ˜• ๋น„ํ–‰์ฒด๋ฅผ ๊ฐœ๋ฐœํ•˜๊ธฐ ์œ„ํ•œ ์š”์†Œ๊ธฐ์ˆ ๋“ค๊ณผ ์ดˆ๊ธฐ ๋น„ํ–‰์ฒด ๊ฐœ๋ฐœ์„ ๋ชฉํ‘œ๋กœ ํ•œ๋‹ค. ํ•ด๋‹น ๋ชฉํ‘œ๋ฅผ ๋‹ฌ์„ฑํ•˜๊ธฐ ์œ„ํ•ด ์ €์ž๋Š” ์‹œ์ค‘์—์„œ ํŒ๋งค๋˜๊ณ  ์žˆ๋Š” RC์žฅ๋‚œ๊ฐ์„ ํ™œ์šฉํ•ด 30 gram ์ดํ•˜์˜ ๋ฌด๊ฒŒ๋ฅผ ๊ฐ€์ง€๊ณ  30cm3 ์ด๋‚ด์˜ ํฌ๊ธฐ๋ฅผ ๊ฐ€์ง€๋Š” ๋ฌด๋ฏธ์ตํ˜• ๋‚ ๊ฐฏ์ง“ ๋น„ํ–‰์ฒด๋ฅผ ๊ฐœ๋ฐœ์„ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ๋น„ํ–‰์ฒด ๋‚ด๋ถ€์—๋Š” ๊ตฌ๋™๊ธฐ๋กœ DC ๋ชจํ„ฐ์™€ ์„œ๋ณด๋ชจํ„ฐ๊ฐ€ ์กด์žฌํ•˜๋ฉฐ, DC ๋ชจํ„ฐ๋Š” ๋‚ ๊ฐฏ์ง“์„ ์ผ์œผํ‚ค๋Š” ๊ธฐ์–ด ๋ฐ•์Šค๋ฅผ ์ž‘๋™์‹œ์ผœ ๋น„ํ–‰์ฒด์˜ ๋ฌด๊ฒŒ๋ฅผ ์ง€ํƒฑํ•˜๊ธฐ ์œ„ํ•œ thrust๋ฅผ ์ƒ์„ฑํ•˜๋ฉฐ roll์ถ• ๋ฐฉํ–ฅ์œผ๋กœ์˜ moment ์ƒ์„ฑ์— ๊ด€์—ฌํ•˜๋ฉฐ, ์„œ๋ณด๋ชจํ„ฐ๋Š” ๋‚ ๊ฐฏ์ง“์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์ขŒ์šฐ thrust์˜ ๋ฐฉํ–ฅ์„ ์กฐ์ ˆํ•˜์—ฌ pitch ์™€ yaw ์ถ•์œผ๋กœ์˜ ๋ชจ๋ฉ˜ํŠธ๋ฅผ ์ƒ์„ฑํ•˜๋Š”๋ฐ ์‚ฌ์šฉ๋œ๋‹ค. ๋น„ํ–‰์ฒด ๋‚ด๋ถ€์—๋Š” ์•„๋‘์ด๋…ธ ๋ณด๋“œ ๊ธฐ๋ฐ˜์˜ ๋งˆ์ดํฌ๋กœํ”„๋กœ์„ธ์„œ๊ฐ€ ํƒ‘์žฌ๋˜์–ด ์žˆ์–ด ๋น„ํ–‰์ฒด๋ฅผ ์ œ์–ดํ•˜๊ธฐ ์œ„ํ•œ ์‹ ํ˜ธ๋ฅผ ์ƒ์„ฑํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ ๋ธ”๋ฃจํˆฌ์Šค ํ†ต์‹  ๋ชจ๋“ˆ์„ ๊ฐ€์ง€๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ์™ธ๋ถ€์™€ ํ†ต์‹  ์—ญ์‹œ ๊ฐ€๋Šฅํ•˜๋‹ค. ๋น„ํ–‰์ฒด์˜ ์ž์„ธ๋ฅผ ์ œ์–ดํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๊ตฌ๋™๊ธฐ์˜ ์ƒํ˜ธ์ž‘์šฉ์œผ๋กœ ์ธํ•ด ๋ฐœ์ƒํ•˜๋Š” ํž˜์˜ ๋ฌผ๋ฆฌ๋Ÿ‰์„ ํŒŒ์•…ํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•˜๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ๋‚ ๊ฐฏ์ง“ ๋ฉ”์ปค๋‹ˆ์ฆ˜์—์„œ ๋ฐœ์ƒํ•˜๋Š” ํž˜์„ ์ธก์ •ํ•˜๋Š” ์‹คํ—˜์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์ธก์ •์‹คํ—˜์„ ํ†ตํ•ด DC๋ชจํ„ฐ ์ž…๋ ฅ ๋Œ€๋น„ thrust ํฌ๊ธฐ, ์„œ๋ณด๋ชจํ„ฐ command ์ž…๋ ฅ ๋Œ€๋น„ moment ํฌ๊ธฐ ๋“ฑ์˜ ๊ด€๊ณ„๋ฅผ ํŒŒ์•…ํ•˜์˜€๋‹ค. ๋˜ํ•œ ๋‚ ๊ฐฏ์ง“ ๋น„ํ–‰์ฒด๋ฅผ ๊ณต์ค‘์— ๋„์šธ ์ˆ˜ ์žˆ๋Š” ์ถฉ๋ถ„ํ•œ ํฌ๊ธฐ์˜ thrust๋ฅผ ๋ฐœ์ƒํ•˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€์œผ๋ฉฐ ์ž์„ธ ์ œ์–ด๋ฅผ ์œ„ํ•œ ๋ชจ๋ฉ˜ํŠธ ์ƒ์„ฑ ์—ญ์‹œ ๊ฐ€๋Šฅํ•˜๋‹ค๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋น„ํ–‰์ฒด์˜ ์ž์„ธ๋ฅผ ์ œ์–ดํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” 3์ถ• ๋ฐฉํ–ฅ์œผ๋กœ์˜ ์šด๋™๋ฐฉ์ •์‹์„ ์œ ๋„ํ•˜๋Š” ๊ฒƒ์ด ํ•„์š”ํ•˜๋‹ค. ์ด๋ฅผ ์œ„ํ•ด roll, pitch, yaw ์ถ• ๋ฐฉํ–ฅ์œผ๋กœ ๋น„ํ–‰์ฒด์—์„œ ๋ฐœ์ƒํ•˜๋Š” ํž˜๊ณผ ํšŒ์ „ ์šด๋™๊ณผ ๊ด€๋ จํ•œ ์šด๋™๋ฐฉ์ •์‹์„ ์œ ๋„ํ–ˆ์œผ๋ฉฐ ์ด๋ฅผ ํ†ตํ•ด ๋น„ํ–‰์ฒด์˜ ์ž์„ธ๋ฅผ ์•ˆ์ •ํ™”์‹œํ‚ฌ ์ˆ˜ ์žˆ๋„๋ก ํ•˜๋Š” PID ์ œ์–ด๊ธฐ ํ˜•ํƒœ์˜ ์ œ์–ด๊ธฐ๋ฅผ ์„ค๊ณ„ํ•˜์˜€๋‹ค. ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ, ๋น„ํ–‰์ฒด์˜ ๊ถค์ ์ถ”์ข… ์ œ์–ด๋ฅผ ์œ„ํ•ด ๋‚ด๋ถ€์˜ ์ž์„ธ ์ œ์–ด๊ธฐ์— ๋น„ํ–‰์ฒด์˜ ์œ„์น˜๋ฅผ ํ† ๋Œ€๋กœ ๊ณ„์‚ฐ๋˜๋Š” ์ถ”๊ฐ€์ ์ธ ์™ธ๋ถ€ ์ œ์–ด๊ธฐ๋ฅผ ์„ค๊ณ„ํ•˜์—ฌ ์ด์ค‘๋ฃจํ”„ ์ œ์–ด๊ธฐ ํ˜•ํƒœ๋ฅผ ์ ์šฉ์‹œ์ผœ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•ด ๋น„ํ–‰์ฒด์˜ ์ž์„ธ ์ œ์–ด์™€ ๊ถค์  ์ถ”์ข… ์ œ์–ด๊ฐ€ ์ด๋ฃจ์–ด์ง์„ ํ™•์ธํ•˜์˜€๋‹ค. ๊ฐœ๋ฐœํ•œ ๋น„ํ–‰์ฒด์™€ ์•ž์„œ ์„ค๊ณ„ํ•œ ์ œ์–ด๊ธฐ๊ฐ€ ์‚ฌ์šฉ์ž์˜ ์˜๋„์— ๋งž๋Š” ์„ฑ๋Šฅ์„ ๋‚ด๋Š”์ง€ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•ด ์ž์ด๋กœ ์‹คํ—˜์žฅ์น˜๋ฅผ ์ œ์ž‘ํ•˜์—ฌ ์ž์„ธ ์ œ์–ด ์‹คํ—˜์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ํ•ด๋‹น ์‹คํ—˜์žฅ์น˜๋Š” roll, pitch, yaw ์ถ•์œผ๋กœ ํšŒ์ „์ด ๊ฐ€๋Šฅํ•˜๋„๋ก ์ œ์ž‘ํ•˜์˜€์œผ๋ฉฐ ์‹คํ—˜์žฅ์น˜ ์ž์ฒด์˜ ๋ฌด๊ฒŒ๋ฅผ ์ค„์ด๊ธฐ ์œ„ํ•ด MDF ์†Œ์žฌ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๊ตฌ์กฐ๋ฌผ๋ฅผ ๋งŒ๋“ค์—ˆ๋‹ค. roll, pitch, yaw 3์ถ•์ด ๊ฐ๊ฐ ๋…๋ฆฝ์ ์œผ๋กœ ์ œ์–ดํ•˜๋Š” ๊ฒƒ๊ณผ 3์ถ•์„ ๋™์‹œ์— ์ œ์–ดํ•˜๋Š” 2๊ฐ€์ง€ ์ƒํ™ฉ์„ ๊ณ ๋ คํ•˜์˜€์œผ๋ฉฐ ์•ž์„œ ์„ค๊ณ„ํ•œ ์ œ์–ด๊ธฐ๊ฐ€ ํ•ด๋‹น ์‹คํ—˜ ์žฅ์น˜ ๋‚ด๋ถ€์—์„œ ์‚ฌ์šฉ์ž์˜ ์˜๋„์— ๋งž๊ฒŒ ์ œ์–ด ์„ฑ๋Šฅ์„ ๋ณด์ด๋Š”์ง€ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๊ถค์  ์ถ”์ข…์ œ์–ด๋ฅผ ์œ„ํ•ด์„œ๋Š” 2๊ฐ€์ง€ ๋น„ํ–‰ ์ƒํ™ฉ์„ ์„ค์ •ํ•˜์˜€๋‹ค. ์ฒซ ๋ฒˆ์งธ ๊ฒฝ์šฐ, ์ฒœ์žฅ๊ณผ ๋น„ํ–‰์ฒด ์ƒ๋‹จ๋ถ€์— ์‹ค์„ ์—ฐ๊ฒฐํ•˜์—ฌ 2D ํ‰๋ฉด์ƒ์—์„œ ๋น„ํ–‰์ฒด๊ฐ€ ์ฃผ์›Œ์ง„ ๊ถค์ ์— ๋”ฐ๋ผ ์›€์ง์ด๋Š”์ง€, ๋‘ ๋ฒˆ์งธ ๊ฒฝ์šฐ, ๋น„ํ–‰์ฒด ์ƒ๋‹จ๋ถ€์— ํ—ฌ๋ฅจ์ด ์ฃผ์ž…๋œ ํ’์„ ์„ ์—ฐ๊ฒฐ์‹œ์ผœ 3D ๊ณต๊ฐ„์ƒ์—์„œ ์ฃผ์›Œ์ง„ ๊ถค์ ์„ ๋”ฐ๋ผ ์ถ”์ข… ๋น„ํ–‰ํ•˜๋Š”์ง€๋ฅผ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋Š” ์ƒํ™ฉ์ด๋‹ค. ๋‘ ๊ฐ€์ง€ ์ƒํ™ฉ์—์„œ ๋ชจ๋‘ ๋‹ค์–‘ํ•œ ํ˜•ํƒœ์˜ ๊ถค์ ์„ ๋น„ํ–‰์ฒด๊ฐ€ ์ž˜ ์ถ”์ข…ํ•˜๋Š”์ง€๋ฅผ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋์œผ๋กœ, ์™ธ๋ถ€ ์žฅ์น˜(์‹ค, ํ’์„ )๋ฅผ ์ œ๊ฑฐํ•˜์—ฌ ๊ณต์ค‘์—์„œ ๋น„ํ–‰์ฒด๊ฐ€ ์ œ์ž๋ฆฌ ๋น„ํ–‰์„ ํ•  ์ˆ˜ ์žˆ๋Š”์ง€๋ฅผ ๊ฒ€์ฆํ•˜๋Š” ์‹คํ—˜์„ ์ง„ํ–‰ํ•˜์˜€์œผ๋ฉฐ, 15์ดˆ๊ฐ€๋Ÿ‰ 1m3 ๊ณต๊ฐ„ ๋‚ด์—์„œ ์ œ์ž๋ฆฌ ๋น„ํ–‰์ด ์ด๋ฃจ์–ด์ง€๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค.Flapping wing micro air vehicles (FWMAVs) that generate thrust and lift by flapping their wings are regarded as promising flight vehicles because of their advantages in terms of similar appearance and maneuverability to natural creatures. Reducing weight and air resistance, insect-inspired tailless FWMAVs are an attractive aerial vehicle rather than bird-inspired FWMAVs. However, they are challenging platforms to achieve autonomous flight because they have insufficient control surfaces to secure passive stability and a complicated wing mechanism for generating three-axis control moments simultaneously. In this thesis, as preliminary autonomous flight research, I present the study of an attitude regulation and trajectory tracking control of a tailless FWMAV developed. For these tasks, I develop my platform, which includes two DC motors for generating thrust to support its weight and servo motors for generating three-axis control moments to regulate its flight attitude. First, I conduct the force and moment measurement experiment to confirm the magnitude and direction of the lift and moment generated from the wing mechanism. From the measurement test, it is confirmed that the wing mechanism generates enough thrust to float the vehicle and control moments for attitude regulation. Through the dynamic equations in the three-axis direction of the vehicle, a controller for maintaining a stable attitude of the vehicle can be designed. To this end, a dynamic equation related to the rotational motion in the roll, pitch, and yaw axes is derived. Based on the derived dynamic equations, we design a proportional-integral-differential controller (PID) type controller to compensate for the attitude of the vehicle. Besides, we use a multi-loop control structure (inner-loop: attitude control, outer-loop: position control) to track various trajectories. Simulation results show that the designed controller is effective in regulating the platforms attitude and tracking a trajectory. To check whether the developed vehicle and the designed controller are operating effectively to regulate its attitude, I design a lightweight gyroscope apparatus using medium-density-fiberboard (MDF) material. The rig is capable of freely rotating in the roll, pitch, and yaw axes. I consider two situations in which each axis is controlled independently, and all axes are controlled simultaneously. In both cases, attitude regulation is properly performed. Two flight situations are considered for the trajectory tracking experiment. In the first case, a string connects between the ceiling and the top of the platform. In the second case, the helium-filled balloon is connected to the top of the vehicle. In both cases, the platform tracks various types of trajectories well in error by less than 10 cm. Finally, an experiment is conducted to check whether the tailless FWMAV could fly autonomously in place by removing external devices (string, balloon), and the tailless FWMAV flies within 1 m^3 space for about 15 seconds1.Introduction 1 1.1 Background & Motivation 1 1.2 Literature review 3 1.3 Thesis contribution 7 1.4 Thesis outline 8 2.Design of tailless FWMAV 13 2.1 Platform appearance 13 2.2 Flight control system 17 2.3 Principle of actuator mechanism 18 3.Force measurement experiment 28 3.1 Measurement setup 28 3.2 Measurement results 30 4.Dynamics & Controller design 37 4.1 Preliminary 37 4.2 Dynamics & Attitude control 39 4.2.1 Roll direction 41 4.2.2 Pitch direction 43 4.2.3 Yaw direction 45 4.2.4 PID control 47 4.3 Trajectory tracking control 48 5.Attitude regulation experiments 50 5.1 Design of gyroscope testbed 50 5.2 Experimental environment 52 5.3 Roll axis free 53 5.3.1 Simulation 54 5.3.2 Experiment 55 5.4 Pitch axis free 56 5.4.1 Simulation 57 5.4.2 Experiment 58 5.5 Yaw axis free 59 5.5.1 Simulation 59 5.5.2 Experiment 60 5.6 All axes free 60 5.6.1 Simulation 60 5.6.2 Experiment 61 5.7 Design of universal joint testbed & Experiment 64 6.Trajectory tracking 68 6.1 Simulation 68 6.2 Preliminary 69 6.3 Experiment: Tied-to-the-ceiling 70 6.4 Experiment: Hung-to-a-balloon 71 6.5 Summary 72 6.6 Hovering flight 73 7.Conclusion 83 A Appendix: Wing gearbox 85 A.1 4-bar linkage structure 85 B Appendix: Disturbance observer (DOB) 87 B.1 DOB controller 87 B.2 Simulation 89 B.2.1 Step input 89 B.2.2 Sinusoid input 91 B.3 Experiment 92 References 95Docto

    Braking and Body Angles Control of an Insect-Computer Hybrid Robot by Electrical Stimulation of Beetle Flight Muscle in Free Flight

    Full text link
    While engineers put lots of effort, resources, and time in building insect scale micro aerial vehicles (MAVs) that fly like insects, insects themselves are the real masters of flight. What if we would use living insect as platform for MAV instead? Here, we reported a flight control via electrical stimulation of a flight muscle of an insect-computer hybrid robot, which is the interface of a mountable wireless backpack controller and a living beetle. The beetle uses indirect flight muscles to drive wing flapping and three major direct flight muscles (basalar, subalar and third axilliary (3Ax) muscles) to control the kinematics of the wings for flight maneuver. While turning control was already achieved by stimulating basalar and 3Ax muscles, electrical stimulation of subalar muscles resulted in braking and elevation control in flight. We also demonstrated around 20 degrees of contralateral yaw and roll by stimulating individual subalar muscle. Stimulating both subalar muscles lead to an increase of 20 degrees in pitch and decelerate the flight by 1.5 m/s2 as well as an induce an elevation of 2 m/s2.Comment: 9 pages, 7 figures, supplemental video: https://youtu.be/P9dxsSf14LY . Cyborg and Bionic Systems 202

    Enhanced flight performance by genetic manipulation of wing shape in Drosophila

    Get PDF
    Insect wing shapes are remarkably diverse and the combination of shape and kinematics determines both aerial capabilities and power requirements. However, the contribution of any specific morphological feature to performance is not known. Using targeted RNA interference to modify wing shape far beyond the natural variation found within the population of a single species, we show a direct effect on flight performance that can be explained by physical modelling of the novel wing geometry. Our data show that altering the expression of a single gene can significantly enhance aerial agility and that the Drosophila wing shape is not, therefore, optimized for certain flight performance characteristics that are known to be important. Our technique points in a new direction for experiments on the evolution of performance specialities in animals

    Survey of the Status of Small Armed and Unarmed Uninhabited Aircraft

    Get PDF
    The project โ€˜Preventive Arms Control for Small and Very Small Armed Aircraft and Missilesโ€™ investigates the properties of ever smaller aircraft and missiles. This project report no. 1 covers the status of aircraft worldwide, including relevant unarmed vehicles but excluding hobby aircraft. Small and very small aircraft are defined by size: below 2 m and below 0.2 m, respectively. After an elementary introduction into aerodynamics a technical overview is given, looking at airframe configurations, materials and manufacturing, power and propulsion, guidance, launch and recovery, and payloads. Future possibilities and trends are illustrated by presenting military research and development of the technological leader, the USA. Short chapters deal with swarms and with countermeasures. The worldwide survey has resulted in a database that contains 129 types from 27 countries. The publicly available properties are given in 26 categories. Statistical evaluations cover several key parameters

    Development, Design, Manufacture and Test of Flapping Wing Micro Aerial Vehicles

    Get PDF
    The field of FlappingWing Micro Air Vehicles (FWMAV) has been of interest in recent years and as shown to have many aerodynamic principles unconventional to traditional aviation aerodynamics. In addition to traditional manufacturing techniques, MAVs have utilized techniques and machines that have gained significant interest and investment over the past decade, namely in additive manufacturing. This dissertation discusses the techniques used to manufacture and build a 30 gram-force (gf) model which approaches the lower limit allowed by current commercial off-the-shelf items. The vehicle utilizes a novel mechanism that minimizes traditional kinematic issues associated with four bar mechanisms for flapping wing vehicles. A kinematic reasoning for large amplitude flapping is demonstrated namely, by lowering the cycle averaged angular acceleration of the wings. The vehicle is tested for control authority and lift of the mechanism using three servo drives for wing manipulation. The study then discusses the wing design, manufacturing techniques and limitations involved with the wings for a FWMAV. A set of 17 different wings are tested for lift reaching lifts of 38 gf using the aforementioned vehicle design. The variation in wings spurs the investigation of the flow patterns generated by the flexible wings and its interactions for multiple flapping amplitudes. Phase-lock particle image velocimetry (PIV) is used to investigate the unsteady flows generated by the vehicle. A novel flow pattern is experimentally found, namely โ€œtrailing edge vortex captureโ€ upon wing reversal for all three flapping amplitudes, alluding to a newly discovered addition to the lift enhancing effect of wake capture. This effect is believed to be a result of flexible wings and may provide lift enhancing characteristics to wake capture

    Development of a Flapping Wing Design Incorporating Shape Memory Alloy Actuation

    Get PDF
    This research sought to validate a proof of concept regarding shape memory alloy actuation of a flapping-wing blimp. Specimen wires were subjected to cyclic voltage at increasing frequencies to quantify expected strains. A laser vibrometer captured 2048 sample velocities during single contraction and elongation cycles, and the resulting samples were used to calculate displacements. Displacements were determined ten times for each specimen and frequency to compute averages. Subsequently, a circumventing frame was designed to encase a blimp envelope and provide support for a flapping motion actuation system. Contraction of shape memory wire translated force to the flapping mechanism via bellcranks, pushrods, and clevises, while bias springs promoted elongation of the wire during power-off phases. Performance characteristics of the flapping system, augmented with each specimen wire individually, were determined during bench-top testing. A modified frame design was constructed when it was determined that the weight of the prototype exceeded the buoyant force of the blimp envelope. The modified frame was later fitted to a larger blimp envelope, because it too exceeded the weight restriction of the original envelope. Subsequently, a circuit was constructed to cycle voltage at 0.2 hertz as applied to the actuating specimen wires, and performance of the system observed with the incorporation of each specimen. The modified prototype showed optimum performance of 25 to 35 degrees wing deflection while incorporating a 0.005 inch diameter shape memory wire

    Science, technology and the future of small autonomous drones

    Get PDF
    We are witnessing the advent of a new era of robots โ€” drones โ€” that can autonomously fly in natural and man-made environments. These robots, often associated with defence applications, could have a major impact on civilian tasks, including transportation, communication, agriculture, disaster mitigation and environment preservation. Autonomous flight in confined spaces presents great scientific and technical challenges owing to the energetic cost of staying airborne and to the perceptual intelligence required to negotiate complex environments. We identify scientific and technological advances that are expected to translate, within appropriate regulatory frameworks, into pervasive use of autonomous drones for civilian applications

    Aerodynamic imaging by mosquitoes inspires a surface detector for autonomous flying vehicles

    Get PDF
    Some flying animals use active sensing to perceive and avoid obstacles. Nocturnal mosquitoes exhibit a behavioral response to divert away from surfaces when vision is unavailable, indicating a short-range, mechanosensory collision-avoidance mechanism. We suggest that this behavior is mediated by perceiving modulations of their self-induced airflow patterns as they enter a ground or wall effect. We used computational fluid dynamics simulations of low-altitude and near-wall flights based on in vivo high-speed kinematic measurements to quantify changes in the self-generated pressure and velocity cues at the sensitive mechanosensory antennae. We validated the principle that encoding aerodynamic information can enable collision avoidance by developing a quadcopter with a sensory system inspired by the mosquito. Such low-power sensing systems have major potential for future use in safer rotorcraft control systems
    • โ€ฆ
    corecore