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Abstract

Tailless Flapping-wing Micro Aerial Vehicle with

Attitude Regulation

Seungwan Ryu

Department of Mechanical & Aerospace Engineering

The Graduate School

Seoul National University

Flapping wing micro air vehicles (FWMAVs) that generate thrust and lift by flapping their wings

are regarded as promising flight vehicles because of their advantages in terms of similar appear-

ance and maneuverability to natural creatures. Reducing weight and air resistance, insect-inspired

tailless FWMAVs are an attractive aerial vehicle rather than bird-inspired FWMAVs. However,

they are challenging platforms to achieve autonomous flight because they have insufficient con-

trol surfaces to secure passive stability and a complicated wing mechanism for generating three-

axis control moments simultaneously. In this thesis, as preliminary autonomous flight research, I

present the study of an attitude regulation and trajectory tracking control of a tailless FWMAV

developed.

For these tasks, I develop my platform, which includes two DC motors for generating thrust

to support its weight and servo motors for generating three-axis control moments to regulate its

flight attitude. First, I conduct the force and moment measurement experiment to confirm the

magnitude and direction of the lift and moment generated from the wing mechanism. From the

measurement test, it is confirmed that the wing mechanism generates enough thrust to float the

vehicle and control moments for attitude regulation.

Through the dynamic equations in the three-axis direction of the vehicle, a controller for

maintaining a stable attitude of the vehicle can be designed. To this end, a dynamic equation

related to the rotational motion in the roll, pitch, and yaw axes is derived. Based on the derived

dynamic equations, we design a proportional-integral-differential controller (PID) type controller

to compensate for the attitude of the vehicle. Besides, we use a multi-loop control structure (inner-
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loop: attitude control, outer-loop: position control) to track various trajectories. Simulation results

show that the designed controller is effective in regulating the platform’s attitude and tracking a

trajectory.

To check whether the developed vehicle and the designed controller are operating effectively to

regulate its attitude, I design a lightweight gyroscope apparatus using medium-density-fiberboard

(MDF) material. The rig is capable of freely rotating in the roll, pitch, and yaw axes. I con-

sider two situations in which each axis is controlled independently, and all axes are controlled

simultaneously. In both cases, attitude regulation is properly performed.

Two flight situations are considered for the trajectory tracking experiment. In the first case,

a string connects between the ceiling and the top of the platform. In the second case, the helium-

filled balloon is connected to the top of the vehicle. In both cases, the platform tracks various

types of trajectories well in error by less than 10 cm. Finally, an experiment is conducted to

check whether the tailless FWMAV could fly autonomously in place by removing external devices

(string, balloon), and the tailless FWMAV flies within 1 m3 space for about 15 seconds..

Keyword : Flapping-wing micro aerial vehicle (FWMAV), tailed FWMAV, tailless FWMAV, at-

titude regulation, trajectory tracking control.

Student Number : 2015-31002

iv



Table of Contents

Page

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Chapter

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background & Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Thesis contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Design of tailless FWMAV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 Platform appearance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Flight control system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Principle of actuator mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Force measurement experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1 Measurement setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Measurement results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Dynamics & Controller design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1 Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Dynamics & Attitude control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.1 Roll direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.2 Pitch direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.3 Yaw direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.4 PID control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Trajectory tracking control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 Attitude regulation experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

v



5.1 Design of gyroscope testbed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2 Experimental environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3 Roll axis free . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.3.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.4 Pitch axis free . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.4.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.4.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.5 Yaw axis free . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.5.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.5.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.6 All axes free . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.6.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.6.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.7 Design of universal joint testbed & Experiment . . . . . . . . . . . . . . . . . . . . 64

6 Trajectory tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.2 Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.3 Experiment: Tied-to-the-ceiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.4 Experiment: Hung-to-a-balloon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.6 Hovering flight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

A Appendix: Wing gearbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

A.1 4-bar linkage structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

B Appendix: Disturbance observer (DOB) . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

B.1 DOB controler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

B.2 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

B.2.1 Step input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

B.2.2 Sinusoid input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

vi



B.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

vii



List of Figures

1.1 Various types of robots. (1st row) conventional robots, (2nd and 3rd rows) biomimetic

robots, (1st column) terrestrial robots, (2nd column) aerial robots, (3rd column)

aquatic robots; (a) SpotMini [1], (b) Bat Bot [2], (c) Octobot [3], (d) Gecko [4], (e)

Robird [5], and (f) SoFi [6]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Examples of tailed FWMAVs; (a) Phoenix [MIT] [15], (b) Robird [Univ. of Twente]

[5], (c) DelFly II [Delft] [16], (d) Explorer [Delft] [17], (e) Ours [SNU] [18], (f)

H2bird [19], (g) Microbat [Caltech] [20], (h) Smart bird [Festo] [21], and (i) Meta

fly [Bionicbird] [22]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Examples of tailless FWMAVs; (a) KU-2017 [39], (b) KU-2019 [45], (c) ULB-2019

[41], (d) Purdue-2019 [44], (e) NUS-2018 [38], and (f) Delft-2018 [40]. . . . . . . . . 11

1.4 Illustration of the wing mechanism of tailless FWMAVs that generate control mo-

ments for attitude regulation; (a) [left] pitch moment, [right] yaw moment, (b) [left]

pitch moment, [right] yaw moment, (c) [left] pitch moment, [right] yaw moment,

and (d) Two forms for generating roll moments. . . . . . . . . . . . . . . . . . . . . 12

2.1 Flapping-wing gearbox; (a) Configuration of gears and links, (b) Real picture of

gearbox. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Movement of wing mechanism; (a) Flapping angle displacement with respect to

crank angle during two wing strokes, (b) Trajectory of biplane-wing tip. . . . . . . 15

2.3 Commercially available tailed FWMAV; (a) Top view, (b) Side view, and (c)

Biplane-wing structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Arrangement of the parts constituting the flight control system; (a) Front view, (b)

Upper side view, (c) Side view, and (d) Reverse side view. . . . . . . . . . . . . . . 21

2.5 Various types of developed FWMAVs; (a) 1st version (b) 2nd version, and (c) Final

version. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6 Circuit diagram of the detailed elements of the flight control system; The red line

is power, black and blue lines are ground, and yellow and orange lines are signal. . 23

viii



2.7 Pie chart for the weight distribution of developed tailless FWMAV. . . . . . . . . . 24

2.8 Configuration of wing mechanism for rolling motion; (a) The range of motion of

gearbox, (b) The principle of generation of the roll moment. . . . . . . . . . . . . . 25

2.9 Configuration of wing mechanism for pitching motion; (a) The range of motion of

servo motor, (b) The principle of generation of the pitch moment. . . . . . . . . . . 26

2.10 Configuration of wing mechanism for yawing motion; (a) The range of motion of

servo motor, (b) The principle of generation of the yaw moment. . . . . . . . . . . 27

3.1 Experimental set-up for thrust and moment measurements; (a) Schematic diagram

for the measurement experiment, (b) Actual experimental environment using a load

cell sensor (LRM200), and (c) a force/torque sensor (Nano-17). . . . . . . . . . . . 32

3.2 Time history of thrust measurement results at 100 percent input to DC motor; (a)

During four strokes ([top] raw data, [bottom] filtered data), (b) During two strokes. 33

3.3 Measurement results; (a) DC motor input vs thrust, (b) Wing frequency vs thrust,

and (c) Wing frequency vs thrust/power . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Measurement results; (a) Normalized pitch command vs thrust, (b) Normalized

pitch command vs pitch moment, and (c) Normalized yaw command vs yaw moment. 35

3.5 Battery duration test during 80 seconds with constant 86 % DC motor inputs. . . 36

4.1 Right-handed cartesian coordinate system of the tailless-FWMAV; (a) Configura-

tion, (b) Actual platform with the cartesian coordinate system. . . . . . . . . . . . 38

4.2 Free body diagram (FBD) of tailless FWMAV about roll axis. . . . . . . . . . . . . 41

4.3 FBD of tailless FWMAV about pitch axis. . . . . . . . . . . . . . . . . . . . . . . . 43

4.4 FBD of tailless FWMAV about yaw axis. . . . . . . . . . . . . . . . . . . . . . . . 45

4.5 Signal flow for the closed-loop feedback control to regulate the attitude of the

platform and for trajectory tracking flight. Euler angles are provided by the external

system (VICON). (signal-loop and double-loop structure). . . . . . . . . . . . . . . 49

5.1 Examples of using an external device; (a) [51], (b) [52], (c) [53], (d) [54], (e) [55],

(f) [56], and (g) [39]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

ix



5.2 Designed gyroscopre testbed. Most of the frames are made by MDF materials

except for the brackets; (a) 3D image by CATIA promgram, (b) Actual testbed

with tailless FWMAV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3 Indoor experimental environment; (a) VICON cameras are located on the upper

edge of the room, (b) VICON software, and (c) Tailless FWMAV with four reflective

markers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.4 Simulation results of roll angle regulation. Reference angle is +45 degrees. (a) Initial

state, (b) The point in time after 7.5, seconds, and (c) Time history graph of roll

angle regulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.5 Experiment results of roll angle regulation. Captured images at various reference

angles; (a) -45, (b) 0, (c) +45, and (d-e) Time history of roll angle and control

input of two DC motors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.6 Simulation results of pitch angle regulation. Reference angle is -45 degrees. (a)

Initial state, (b) The point in time after 7.8 seconds, and (c) Time history graph

of pitch angle regulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.7 Experiment results of pitch angle regulation. Captured images at various reference

angles; (a) -45, (b) 0, (c) +45, and (d-e) Time history of pitch angle and control

input of pitch servo motor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.8 Simulation results of yaw angle regulation. Reference angle is -45 degrees. (a) Initial

state, (b) The state after 8.1 seconds, and (c) Time history graph of yaw angle

regulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.9 Experiment results of yaw angle regulation. Captured images at various reference

angles; (a) -45, (b) 0, (c) +45, and (d-e) Time history of yaw angle and control

input of yaw servo motor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.10 Hovering situation to regulate all Euler angles; (a) Initial state, (b) The state after

3.23 seconds, (c) The state after 6.29 seconds, and (d) The state after 9.18 seconds. 61

5.11 Without feedback control; (a) Euler angles stay at a non-zero meaningless value,

(b) Euler angles vary randomly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

x



5.12 Hovering situation to regulate all Euler angles; (a) Initial state, (b) Hovering state,

and (c) Time history of Euler angles and control inputs of DC motors and servo

motors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.13 Time history of measurement results about sinusoid reference angle; (a) The results

of roll angle tracking, (b) Pitch angle tracking. . . . . . . . . . . . . . . . . . . . . 64

5.14 Universal joint testbed for attitude regulation; (a) CAD design of universal joint,

(b) View from above, (c) View from side, (d) Initial attitude, (e) Hovering state,

and (f) Time history of Euler angles. . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.15 Tethered flight environment for trajectory tracking control environment; (a) Tied-

to-the-ceiling, (b) Hung-to-a-balloon. . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.1 Simulation results of trajectory tracking; (a) Animation of tailless FWMAV, (b)

Straight forward trajectory, (c) Circle trajectory, and (d) Number eight shape tra-

jectory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.2 Tied-to-the-ceiling test: experimental results of moving toward ± X-direction, (top)

Overlaid sequence of snapshots of the platform during the experiment, (bottom-

left) Trajectory in XY-plane, and (bottom-right) Time history of the position. . . . 75

6.3 Tied-to-the-ceiling test: experimental results of moving toward ± Y-direction, (top)

Overlaid sequence of snapshots of the platform during the experiment, (bottom-

left) Trajectory in XY-plane, and (bottom-right) Time history of the position. . . . 76

6.4 Tied-to-the-ceiling test: experimental results of moving toward square trajectory,

(top) Overlaid sequence of snapshots of the platform during the experiment, (bottom-

left) Trajectory in XY-plane, and (bottom-right) Time history of the position. . . . 77

6.5 Hung-to-a-balloon test: experimental results of moving toward ± X-direction, (top)

Overlaid sequence of snapshots of the platform during the experiment, (bottom-

left) Trajectory in XY-plane, and (bottom-right) Time history of the position. . . . 78

6.6 Hung-to-a-balloon test: experimental results of moving toward ± Y-direction, (top)

Overlaid sequence of snapshots of the platform during the experiment, (bottom-

left) Trajectory in XY-plane, and (bottom-right) Time history of the position. . . . 79

xi



6.7 Hung-to-a-balloon test: experimental results of moving toward square trajectory,

(top) Overlaid sequence of snapshots of the platform during the experiment, (bottom-

left) Trajectory in XY-plane, and (bottom-right) Time history of the position. . . . 80

6.8 Hung-to-a-balloon test: experimental results of moving toward circle trajectory,

(top) Overlaid sequence of snapshots of the platform during the experiment, (bottom-

left) Trajectory in XY-plane, and (bottom-right) Time history of the position. . . . 81

6.9 Experimental results of hovering flight, (a) Overlaid sequence of snapshots of the

platform during the experiment, (b) Time history of the position, (c) Time history

of the attitude, and (d) Trajectory in XY-plane. . . . . . . . . . . . . . . . . . . . 82

B.1 Disturbance observer (DOB) signal flow. . . . . . . . . . . . . . . . . . . . . . . . . 88

B.2 Block diagram of control-loop; (a) PID, (b) PID+DOB. . . . . . . . . . . . . . . . 89

B.3 Time history of Euler angles based on two types of controllers by step input; (a)

PID controller, (b) PID+DOB controllers. . . . . . . . . . . . . . . . . . . . . . . . 91

B.4 Time history of Euler angles based on two types of controllers by sine input; (a)

PID controller, (b) PID+DOB controllers. . . . . . . . . . . . . . . . . . . . . . . . 92

B.5 Experimental environment for validating DOB-based control structure; (a) Actual

experimental environment, (b) Time history of Euler angles in wind disturbance. . 93

B.6 Experimental results for validating DOB-based controller; (a) PID controller, (b)

PID+DOB controllers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

xii



List of Tables

1.1 Wing kinematic and structural differences of two types of FWMAVs. . . . . . . . . 3

1.2 Characteristics of tailed FWMAVs. . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Characteristics of tailless FWMAVs. . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Summary of current status of tailless FWMAVs around the world. . . . . . . . . . 7

2.1 Lengths of links in flapping-wing gearbox. . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Geometric and physical specification of the platform. . . . . . . . . . . . . . . . . . 16

2.3 Details of the components that make up the flight control system. . . . . . . . . . 17

5.1 PID control gains for attitude regulation in two testbeds. . . . . . . . . . . . . . . 65

6.1 Simulation parameters for trajectory tracking. . . . . . . . . . . . . . . . . . . . . . 69

6.2 Moving toward X-direction; (Vy = 0). . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.3 Moving toward Y-direction; (Vx = 0). . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.4 Moving toward square shape. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.5 RMSE of trajectory tracking experiments. . . . . . . . . . . . . . . . . . . . . . . . 72

A.1 The movement of the links according to the ‘Grashof structure’. . . . . . . . . . . . 86

B.1 Parameters of the simulation environment. . . . . . . . . . . . . . . . . . . . . . . . 90

B.2 Parameters of the tailless FWMAV. . . . . . . . . . . . . . . . . . . . . . . . . . . 90

B.3 Beaufort wing scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

xiii



1
Introduction

1.1 Background & Motivation

Biomimetic technology, which has recently attracted attention during the last decade, presents

a new paradigm for all scientific fields. Analyzing the shape, structure, and behavior of living

things, various attempts are being made to apply their strengths to many types of robots to

overcome some issues that conventional robots have not solved or to obtain better performance

results. For example, a ground robot uses legs instead of wheels, a sea robot uses fins instead of a

rudder and a propeller, and an aerial robot uses wings instead of a propeller and jet engine. This

is because living things undergo evolutionary processes to draw results in a more effective and

efficient direction over a long period. Fig. 1.1 shows various types of biomimetic robots developed

according to the environment in which the robots are operated.

Unmanned aerial vehicles (UAVs) are a promising research platform incorporating technology,

security issues, and social regulations due to their remarkable applicability. Generally, UAVs can

be classified into several groups based on specific criteria such as flight altitude, mission radius,

wing types, size of the vehicle, and so on. In terms of size, micro aerial vehicles (MAVs) are a class

of miniature UAVs with a dimension restriction. Depending on the wing types, there are three

categories, i.e., fixed-wing, rotary-wing, and flapping-wing. Compared to the fixed-wing and the

rotary-wing, the study of the flapping-wing aerial vehicles is relatively insufficient [7]. Further,
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researchers are trying to apply biomimetic characteristics to MAVs, so intensive research on

flapping-wing micro aerial vehicles (FWMAVs) has been carrying out because of their outstanding

benefits [8, 9, 10, 11].

FWMAV is a flight vehicle that generates thrust and lift by using multiple wing movements

such as flapping, bending, sweeping, and twisting motions. Especially, the platform has several

advantages such as better maneuverability, lower power cost and noise, less damage from a colli-

sion, and user-friendly shape compared with conventional platforms on a similar scale [12, 13, 14].

In addition, as the name suggests, the platform has biomimetic characteristics and MAV capa-

bilities, so it can perform a specialized task that requires concealment effect in a narrow space.

Despite the many advantages, it still has many limitations, including size, weight, and power

(Swap) constraints. Therefore, there are still significant challenges to be solved for FWMAV to

achieve a fully autonomous flight.

FWMAV is categorized as either a bird-inspired platform or insect-inspired platform based on

kinematic and structural differences of wing motion. In the latter case: 1) it has no tail wings, 2)

the parts in charge of sensing and actuation of wing converge on wing hinge. 3) the wing inertia

is low, 4) the wing frequency is higher, 5) the flapping angle is larger, and 6) the stroke plane is

horizontal or nearly horizontal with respect to vertical body fuselage. Due to the above represen-

tative characteristics, the insect-inspired platforms are capable of hovering maneuvers, flying at

low speed, and changing flight direction rapidly. (Exceptionally, there is a hummingbird inspired

platform that has those flight performances). Those flight performances enable the platform to

observe a particular place without wandering in the air and to avoid obstacles. Table. 1.1 shows

a comparison of the characteristics of two types of FWMAVs.

In the next Section, I discuss what research has been conducted on two types of FWMAVs.
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Bird-inspired FWMAV Insect-inspired FWMAV

Relative size Big Small

Tail wing O X

Control moment Tail wings movement Wing movement

Wing actuation Distributed on wing Converge on wing hinge

Wing inertia High Small

Wing frequency < 20 ∼ 30 Hz 20 ∼ 30 Hz <

Wing rotation Low angle High angle

Stroke plane (nearly) Vertical (nearly) Horizontal

Stroke angle Low amplitude High amplitude

Maneuver Glide Hover

Table 1.1: Wing kinematic and structural differences of two types of FWMAVs.

1.2 Literature review

These days, research on FWMAVs is actively progressing because of their advantage and potential.

Among two types of platforms, the development of bird-inspired platforms began earlier than the

insect-affected platforms. So, more research has been conducted on the study of flight vehicles that

mimic birds [7]. The overall background and concept of tailed FWMAV developed are explained

in [8]. Fig. 1.2 shows the developed various types of tailed FWMAVs and Table. 1.2 shows the

characteristics of those platforms.

Existing literatures about bird-inspired FWMAVs can be largely separated into four areas,

which are structure design, modeling, control, and application. In structure design, [23] explains

how to design power-efficient wings of FWMAV. The design procedure of the initial DelFly plat-

form is presented in [24]. In [25], they develop a bird-mimetic up-down and twisting wing drive

system based on double-crank linkage structure. The design and fabrication of the wing mechanism

with compositive flapping and folding motions are described in [26].

Many nonlinear elements such as aerodynamic components and nonlinear geometric make it

difficult to control the FWMAV, so obtaining an appropriate model of the platform is effective

to control the vehicle. The importance of getting accurate dynamics is presented in [27], and the
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Mass [grams] Wingspan [cm] Wing [#]

Phoenix [15] 400 180 2

Robird [5] 730 112 2

DelFly II [16] 16-17 28 4

Explorer [17] 20 28 4

Ours [18] 18 28 4

H2Bird [19] 13 26.5 4

Microbat [20] 11.5 - 2

SmartBird [21] 450 196 2

MetaFly [22] 10 29 2

Table 1.2: Characteristics of tailed FWMAVs.

system identification of linear aerodynamic models of FWMAV using flight data is shown in [28].

[29] provides black-box linear models of tailed FWMAV using system identification method. A

time-varying model and a time-averaged model for forward flight dynamics of an FWMAV are

presented in [30].

In the case of control studies, [31] performs closed-loop height regulation using an external

camera and custom-made onboard electronics. For the experiment, they only control the main

wings for generating thrust with a fixed rudder. [19] attempts passing through window mission in

cooperation with the ground station, which estimates heading angle. The effects of periodic tail

motion on the longitudinal stability of FWMAV is investigated in [32] and they propose a method

to reduce the oscillation of the fuselage caused by the wing motions. The regulation of attitude

of a tailed FWMAV to maintain a flight height during hovering is achieved in [33].

Developing suitable algorithms to avoid obstacles and to track the specific target using visual

sensors is an important research topic in the application area. [34] collects optical flow information

during flight, and they confirm that periodic wing motion makes it difficult to use optical flow for

advanced tasks. Although infrared (IR) camera provides less information than a standard camera

and the IR information is available only in limited circumstances, [35] obtain satisfactory target

tracking results using a sensor from a Wii module. To avoid obstacles during flight, a 4.0 grams

onboard stereo vision camera is used in [17]. Although the platform can not send real-time images
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to a ground control system (GCS), it completely performs autonomous flight. In [18], a low-cost

and light-weight first per view (FPV) camera is used for tracking a target during free flight, and

the platform successfully carries out the mission.

Through the miniaturization, weight reduction, and efficiency of sensors, computers, and bat-

teries, the research area about tailless FWMAV is gradually expanding. In general, tailless FW-

MAVs have several inherent matters due to the structure and wing mechanism of the platform

such as 1) it is not possible to largely obtain the effect of additional aerodynamic force because the

platform is mainly flying at low speed or hovering maneuver. (it is necessary to generate thrust

efficiently and effectively since the only thrust generated by the wing mechanism must support

the weight of the platform.), 2) it is an inherently unstable system because it has no tail wings

which play an important role in passive stability. (For generating control moments, continuous

active control is required in a wing mechanism to regulate flight attitude.), and 3) the vibration

produced by wing motions influences on the fuselage behavior of the platform. (A mechanical

device or control algorithm that reduces vibration is needed.). Based on the above three points,

developing an effective and efficient wing mechanism is the main task in tailless FWMAV research.

From the wing mechanism point of view, tailless FWMAVs can be classified into three groups

based on how they generate control moments through the movement of a wing mechanism. In the

first group, the platforms in [37, 38] can rotate the leading edge of the wing about the direction

perpendicular to the axis of the fuselage, so they can tilt their wing stroke planes. For generating

pitch moment, the stroke planes of the left and right wings are tilted in the same direction or tilted

in the opposite direction to generate yaw moment. Fig 1.4.(a) shows an example of generating

control moment using the corresponding wing mechanism.

In the second group, the platforms in [36, 39, 40, 41] can bend the wing roots of left and right

wings while their wing stroke planes remain perpendicular with respect to the axis of the fuselage.

The wing roots of both sides are tilted in the same direction to generate pitch moment, and tilted

in the opposite direction to generate yaw moment. This type of wing mechanism is called as ‘twist

modulation’. An example of generating control moments using the corresponding wing mechanism

is shown in Fig 1.4.(b). In [39], a platform capable of active stabilization successfully performed

a hovering flight, but sufficient control of the yaw axis is not demonstrated. Stable flights have

been presented in [40, 41] through attitude regulation, but trajectory tracking is not specifically
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Mass [gram] Wingspan [cm] Wing [#]

Nano humming bird [36] 19 16.5 2

Robotic Hummingbird [37] 62 30.48 2

KU-Beetle [39] 21.4 16 2

Delfy Nimble [40] 28.2 33 4

KUbeetle-S1 [45] 16.4 17 2

Colibri Robotique [41] 23.5 21 2

Purdue Hummingbird [44] 12.1 16.79 2

KUbeetle-S2 [46] 15.8 20 2

Table 1.3: Characteristics of tailless FWMAVs.

mentioned.

In the last group, the platforms in [42, 43, 44] can change the size of the area of stroke plane and

move the position of the stroke plane. Fig 1.4.(c) shows an example of generating control moments

using the corresponding wing mechanism. In [44], a flight control strategy based on reinforcement

learning has been reported with a position tracking experiment using the high power supplied

externally.

The above three groups can generate a moment in the direction of the roll axis using two

methods. One is 1) using the difference in thrust caused by controlling the frequency of both

wings and the other method is 2) moving both side wing roots toward the lateral direction. An

example of generating a roll moment using the corresponding methods is shown in Fig 1.4.(d),

and Table. 1.3 shows the characteristics of developed tailless platforms.

Table. 1.4 summarizes the results of the study using a tailless FWMAV to regulate an attitude

and to track a trajectory. Relatively compared to attitude control studies, trajectory tracking

studies have not yet been studied much. So, the research on the fully autonomous flight of the

tailless platform is still in a relatively early period.
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Platform Year Battery Roll Pitch Yaw Time XY-plane Z

Nano humming bird [36] 2012 O O O O 11 min. - -

Robotic Hummingbird [37] 2017 O O O O 19 sec. - -

KU-Beetle [39] 2017 O O O X 40 sec. - -

Delfy Nimble [40] 2018 O O O O 5 min. - -

KUbeetle-S1 [45] 2019 O O O O 3 min. - -

Colibri Robotique [41] 2019 O O O X 12 sec. O X

Purdue Hummingbird [44] 2019 X O O O - O O

KUbeetle-S2 [46] 2020 O O O O 8.8 min. - -

Table 1.4: Summary of current status of tailless FWMAVs around the world.

1.3 Thesis contribution

In this thesis, I develop a lightweight (< 30 grams) and a small size (< 30 cm3) tailless FWMAV.

The flight platform has a wing mechanism that generates thrust and control moments simulta-

neously using DC motors and servo motors. For the flight control system, I use a single-board

microcontroller Arduino Pro Mini to produce control signals to operate each actuator, and the

system includes a Bluetooth communication module, so it can communicate wirelessly with a

ground station. Our main contribution is as follows:

• I conduct thrust and control moment measurement experiments on the wing mechanism and

analysis the measured values with respect to the input of actuators. It has been confirmed

that the wing mechanism of a vehicle can generate thrust and control moments necessary

for flight.

• I fabricate an experimental apparatus as an assist device for attitude regulation. In addition,

an attitude controller based on the derived dynamics is designed. Experimental results show

that the possibility of the designed control strategy for attitude regulation in the 3-axis

direction.

• I conduct an autonomous tethered flight experiment for tracking a trajectory in tied-to-the

ceiling and hung-to-a-balloon environments. Based on the results, hover flight is performed
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and our tailless FWMAV flies for 15 seconds with small error variation in 3D position and

Euler angles.

1.4 Thesis outline

The remaining sections of this thesis are divided as follows. In Section II, I explain the devel-

opment processes of tailless FWMAV equipped with a flight control system. The principle of

force generation in the wing mechanism is also presented. The experimental process to check the

physical quantity of force generated by the wing mechanism, and the corresponding measurement

results are described in Section III. I derive the dynamics of the tailless platform and design

a controller for attitude regulation and trajectory tracking in Section IV. Section V covers the

details of a testbed and shows the simulation and experimental results of attitude regulation.

The experimental setup and the results of trajectory tracking are explained in Section VI. Sec-

tion VII concludes by summarizing the main findings and an outlook on future work. Additional

supplement materials are included in Appendix Section.
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Figure 1.1: Various types of robots. (1st row) conventional robots, (2nd and 3rd rows)
biomimetic robots, (1st column) terrestrial robots, (2nd column) aerial
robots, (3rd column) aquatic robots; (a) SpotMini [1], (b) Bat Bot [2], (c)
Octobot [3], (d) Gecko [4], (e) Robird [5], and (f) SoFi [6].
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Figure 1.2: Examples of tailed FWMAVs; (a) Phoenix [MIT] [15], (b) Robird [Univ. of
Twente] [5], (c) DelFly II [Delft] [16], (d) Explorer [Delft] [17], (e) Ours [SNU]
[18], (f) H2bird [19], (g) Microbat [Caltech] [20], (h) Smart bird [Festo] [21],
and (i) Meta fly [Bionicbird] [22].

10



Figure 1.3: Examples of tailless FWMAVs; (a) KU-2017 [39], (b) KU-2019 [45], (c) ULB-
2019 [41], (d) Purdue-2019 [44], (e) NUS-2018 [38], and (f) Delft-2018 [40].
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Figure 1.4: Illustration of the wing mechanism of tailless FWMAVs that generate control
moments for attitude regulation; (a) [left] pitch moment, [right] yaw moment,
(b) [left] pitch moment, [right] yaw moment, (c) [left] pitch moment, [right]
yaw moment, and (d) Two forms for generating roll moments.
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2
Design of tailless FWMAV

In this Section, I explain the fabrication process to make the final version of a tailless FWMAV,

and design of the platform. The components to build the flight control system and their functions

are also described. In addition, I present the principle of generating the thrust and three-axis

moments to regulate flight attitude in a wing mechanism. The geometrical target of the platform

to be developed is set to be less than 30 cm3 in width× length× height and the total weight of

the platform is set within 30 grams.

2.1 Platform appearance

Fig. 2.3 shows a commercially available RC toy, and it looks like the shape of a pigeon. The main

wing of the toy shown in Fig. 2.3. (c) is two pairs of wing structures, unlike the wings of ordinary

birds. The carbon rod with a diameter of 0.95 mm is the leading edge of each wing, and wing

cover is made of vinyl material. The tail wings are consist of horizontal and vertical wings, and

they are made of styrofoam materials. There are elevator control surfaces on the horizontal tail

wing and rudder control surface on the vertical tail wing. In the case of the elevators, there are

no actuators. Instead, I can bend the control surfaces to a certain angle before a flight, and they

keep the initial angle during flight. In the case of the rudder, it is driven by an actuator consisting

of a enamel coil and neodymium magnet. Unlike a servo motor, the actuator does not have an
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Figure 2.1: Flapping-wing gearbox; (a) Configuration of gears and links, (b) Real picture
of gearbox.

L1 L2 L3 L4

Length [mm] 3 11 9 14

Table 2.1: Lengths of links in flapping-wing gearbox.

intermediate point in the operating range. That is, it follows the concept of bang-bang control;

the rudder control surface moves to the maximum right side, and the maximum left side. The

toy has a 2.4 GHz receiver, is capable of flying for about 15 minutes indoor/outdoor environment

with a 60 mAh lithium polymer battery and its weight is 15 grams.

Fig. 2.1 shows the wing gearbox of the RC toy which is the core structure of the flapping-

wing mechanism. Among several 4-bar linkage structures, the wing gearbox has a crank-rocker

structure (crank, coupler, rocker, and ground link), so the rotational movement of the crank link

driven by DC motor causes the repetitive motion of rocker link which connects with the leading

edge of the wing.

Table 2.1 summarizes lengths of links in the flapping-wing gearbox of RC toy and Fig. 2.2

shows flapping angle displacement with respect to the crank angle, and trajectory of the biplane-
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Figure 2.2: Movement of wing mechanism; (a) Flapping angle displacement with respect
to crank angle during two wing strokes, (b) Trajectory of biplane-wing tip.

wing tip. Due to the biplane-wing structure, the upper and lower wings move simultaneously

depending on the crank angle, and the maximum flapping angle between both wings is about 78

degrees.

Fig 2.5 shows various types of developed tailless FWMAVs. Among several parts of the RC toy,

I used the flapping-wing gearbox and the biplane-wing as materials needed for the development

of tailless FWMAV. For driving the wing mechanism, two gearboxes are required to move the left

and right wings. For wing structure, biplane-wing is cut in half so that the left and right wings

are symmetrical in the direction of the fuselage, and the carbon rod corresponding to the leading

edge is attached to the left and right gearboxes. Another carbon rod with a diameter of 0.8 mm

is called wing root, and the rod is the axis of the flapping motion. The wing root is attached

to the section where the wing is cut (to be parallel to the fuselage direction). Let’s look at each

developed tailless FWMAV in more detail.

In the case of Fig. 2.5.(a), the left and right wing gearboxes are attached to the rotation part

of the servo motor. Depending on the movement of the servo motor, the gearbox can be rotated.

The end of the left and right wing roots is not connected to each other and the wing root moves
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Component Value Unit

Body length 14 cm

Body width 10 cm

Body height 3.5 cm

Wing span 28 cm

Wing area 110 · 2 cm2

Flapping angle 78 degree

Flapping frequency (half biplane-wing) ≈ 25 Hz

Table 2.2: Geometric and physical specification of the platform.

independently. Although the stroke planes on the left and right wings can rotate enough, the

periodic flapping motion makes a lot of vibration to the driving part of the servo motor, which

puts a burden on the durability of the servo motor. Therefore, this wing mechanism is not suitable.

In the case of Fig. 2.5.(b), the left and right wing gearboxes are connected to the medium-

density-fiberboard (MDF) link. Each gearbox is secured to the MDF link so that it cannot be

rotated. Therefore, the stroke plane is always maintained in the vertical direction of the fuselage

axis. The end of the left and right wing roots are connected to the driving part of the linear servo

motor. The forward and backward movements of the linear servo motor cause the wing roots to

curve. However, the operation range of the servo motor is so small, so this wing mechanism cannot

generate enough control moments.

Fig. 2.5.(c) shows the overall appearance of our final experimental platform. Each power-train

(=wing gearbox) driven by DC motor is located in left and right sides, and a pair of wings are

connected to each power-train. Therefore, the platform has a biplane-wing configuration. The left

and right sides power-train are connected to each other through two plastic spur gears and MDF

links. A square-shaped carbon rod with a cross-section of 1mm2 is used as the fuselage of the

platform. A servo motor on the top position of the fuselage is attached to one side of the spur gear

as coinciding with the rotation axis. Another servo motor is attached to the bottom position of

the fuselage, and a transparent plastic plane is affixed to the rotation part of the servo motor. The

left and right-wing roots pass through the plastic plane. The details of the assembled platform
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Component Model Amount [ea] Mass [grams]

Frame & Wiring Carbon rod 0.8 mm & Square 1.5 mm - 4.56

Battery Turnigy Nano-Tech 160 mAh 1 4.13

Gearbox RC-toy 2 3.9

DC Motor 6 mm × 15 mm [57] 2 3.56

Servo motor HK-5330S [58] 2 2.87

MCU Arduino Pro Mini 5V 1 2.1

Biplane wing RC-toy 2 1.8

Motor driver DRV8838 2 0.8

Bluetooth module HC-06 1 0.8

Marker Sphere with a radius of 3.2 mm 4 0.48

Table 2.3: Details of the components that make up the flight control system.

can also be seen in Fig. 2.4. Table. 2.2 shows geometric and physical specification of the platform.

2.2 Flight control system

Fig. 2.4 shows the platform equipped with flight control system viewed from various directions. A

micro control unit (MCU), Arduino Pro Mini, 5V version, is used to generate control inputs (pulse

width modulation (PWM) signals) for four actuators, i.e., two DC motors and two servos. Each

DC motor operates the left and right gearbox, respectively, and the motor driver delivers current

continuously to the DC motor. The platform includes a Bluetooth dongle to communicate with

GCS through 2.0 protocol. I use a 160 mAh lithium polymer (lipo) battery to power all electric

components. In particular, most of the components of the platform are attached as symmetrically

as possible to balance the left-right weight to the direction of the fuselage axis. Fig. 2.6 shows

the wiring information of the flight control system (FCS) and I use enamel wire with 0.4 mm

diameter to reduce weight. Table 2.3 shows the details of the parts in developed tailless FWMAV

and Fig. 2.7 shows weight distribution of the platform.
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2.3 Principle of actuator mechanism

As mentioned in the previous Section, our platform is equipped with four actuators, i.e., two DC

motors and two servo motors. DC motors interact with servo motors for generating thrust that

allows the vehicle to float in the air and control moments that regulate flight attitude by changing

the magnitude or the direction of the thrust. Especially, DC motors are involved in rotation on

the roll axis of the platform, one servo motor attached to the upper position of the fuselage is

related in rotation on the pitch axis, and the other servo motor attached to the bottom position

of the fuselage is related in rotation on the yaw axis. Let’s look at the principle of force generation

and the direction of the behavior of the platform in more detail.

The biplane-wing configuration of tailless FWMAV causes clap and fling effect, and the effect is

known to give the advantage to thrust generation. Also, the thrust generated by periodic flapping

motions enables the platform to float in the air. The difference in the left and right side propulsive

forces creates a control moment that causes rotational motion with respect to the roll axis, i.e.,

If the frequency of left wings is higher than the right wings, the platform rotates clockwise about

the x-axis of body coordination and vice versa. The configuration of wing mechanism for rolling

motion is shown in Fig. 2.8.

A servo motor on the top position of the fuselage is attached to one spur gear so that the axis of

the servo motor coincides with the axis of the spur gear. Then, two spur gears that are in contact

can rotate clockwise or counterclockwise direction by the servo motor. From the rotation of the

spur gears, MDF rod connecting between the spur gear and the power-train can rotate 55 degrees

upward and 55 degrees downward relative to the y-axis of body coordination. If the configuration

of two power-trains and MDF rods makes ‘V’ shape toward the dorsal side, the position where the

left and right thrusts are generated is located above the fuselage axis, which causes the platform

to nose-down and vice versa. The configuration of wing mechanism for pitching motion is shown

in Fig. 2.9.

A servo motor generating yaw moment is directly attached to the bottom position of the

fuselage. The transparent plastic plane on the driving part of the servo motor can rotate 50

degrees clockwise and 50 degrees counterclockwise about the fuselage axis. If the plane rotates

any direction about the nominal position, the direction of the thrusts on the left and right sides
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tilts, which makes the platform rotate around the z-axis of body coordination and vice versa. The

configuration of wing mechanism for yawing motion is shown in Fig. 2.10.
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Figure 2.3: Commercially available tailed FWMAV; (a) Top view, (b) Side view, and (c)
Biplane-wing structure.
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Figure 2.4: Arrangement of the parts constituting the flight control system; (a) Front
view, (b) Upper side view, (c) Side view, and (d) Reverse side view.
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Figure 2.5: Various types of developed FWMAVs; (a) 1st version (b) 2nd version, and
(c) Final version.
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Figure 2.6: Circuit diagram of the detailed elements of the flight control system; The
red line is power, black and blue lines are ground, and yellow and orange
lines are signal.
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Figure 2.7: Pie chart for the weight distribution of developed tailless FWMAV.
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Figure 2.8: Configuration of wing mechanism for rolling motion; (a) The range of motion
of gearbox, (b) The principle of generation of the roll moment.
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Figure 2.9: Configuration of wing mechanism for pitching motion; (a) The range of mo-
tion of servo motor, (b) The principle of generation of the pitch moment.
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Figure 2.10: Configuration of wing mechanism for yawing motion; (a) The range of motion
of servo motor, (b) The principle of generation of the yaw moment.
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3
Force measurement experiment

In order to control the attitude of the flight vehicle, quantitative analysis is required to confirm the

magnitude and direction of the forces generated by the wing mechanism. In this Section, I explain

an experimental setup for measuring the force from the wing mechanism according to the input

value of the actuators and analyze the corresponding measurement results. The experimental

results of measuring lipo battery duration to estimate flight time are also presented.

3.1 Measurement setup

The weight of the assembled platform including the lipo battery is approximately 25 grams, so

sufficient thrust above the weight is required to fly in the air. In addition, the platform should

generate enough moments in the 3-axis direction (roll, pitch, and yaw) to compensate for its

attitude about various flight maneuvers. To this end, a measurement experiment is conducted

to confirm how much thrust and moment are generated in the wing mechanism by the input of

actuators.

For this experiment, I design a 3D printed mount that connects the fuselage of the platform

and Force & Torque (F/T) sensor. The material of the printed mount is an acrylonitrile butadiene

styrene (ABS), so I can prevent the support from absorbing a thrust and moment. The F/T sensor

(ATI Industrial Automation - Nano17) used for the experiment can measure all six components
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of thrust and moment, and the load cell (FUTEK Advanced Sensor Technology, Inc - LRM200)

is also used to measure tension and compression in 1-axis. The high resolution of the sensor and

load cell enables accurate measurement of changes in physical quantities with small errors.

Fig. 3.1 shows the experiment environment for the measurement test. One side of the end of

the sensor is fixed to the aluminum bracket on the ground, and the module combining the wing

mechanism with the 3D printed support is fixed to the other side of the end of the sensor in

a direction perpendicular to the ground. An external power supply is used to apply a constant

voltage and current to the flight control system. I can upload various PWM signals to operate

actuators in MCU and measure corresponding voltage signals generated by the flapping wing

motions driven by four actuators. Then, the voltage signals are sent to the ground computer

through USB DAQ, and the measured data is saved. The same experiment settings are already

employed in [25, 33].

First, assuming that the thrust generated by the left and right wings is the same for the

same input, I conduct thrust measurements on only one pair of wings with respect to various

inputs of DC motor. I collect data while increasing the inputs of the DC motor at an 8 percent

interval from 12 to 100. Second, assuming that the moment in the roll direction is sufficient to

generate positive and negative moments by input difference of both DC motors, I conduct moment

measurements about pitch and yaw directions, respectively. Second, assuming that the moment

in the roll direction is sufficient to generate positive and negative moments by input difference of

both DC motors, I conduct moment measurements about pitch and yaw directions, respectively.

During the test, 86 percent of the inputs to both DC motors are applied to the wing gearbox. (86

percent of the inputs are for generating thrust corresponding to the weight of the platform, which

can be confirmed later in Section 3.2). The rotation part of the yaw servo motor is positioned at

the nominal position where the platform does not rotate around the yaw axis while measuring

the pitch moment and vice versa.
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3.2 Measurement results

For the exact analysis for the collected datasets, I use a low-pass filter (LPF) with a 50 Hz cut-off

frequency in order to remove high-frequency noise. 50 Hz is 2.5 times the maximum frequency of

the wings and the corresponding value is high enough to capture the characteristics of the periodic

wing motion.

Fig. 3.2 shows a thrust graph measured at 100 percent input to DC motor. Generally, the

data filtered by LPF has a time delay, So I plot the graph in consideration of the delay factor.

In Fig. 3.2.(a), compared to raw data, the filtered data show a smooth curve. A thrust graph

measured during two wing strokes at 100 percent input to DC moto is shown in Fig. 3.2.(b). In

the graph, there are two peaks. The first peak is a pattern that occurs when the upper and lower

wings of the same side meet, and the second peak occurs when the left and right wings are close.

Two peaks in one stroke are due to the use of biplane-wing structure. This phenomenon increases

the thrust during flapping motion and it is called as a clap-and-fling effect.

Fig. 3.3 shows measurement data related to thrust and wing frequency. To plot the graphs,

I measure a thrust while increasing the input of the DC motor from 12 to 100 in 8 percent

increments. So, there are a total of 12 experimental groups. The thrust is measured three times

per group, and it is measured for 20 seconds at one time. I use the second-order Fourier series to

estimate a wing frequency through measured data for 20 seconds because all data have periodic

characteristics caused by wing motion. In the case of power, it is calculated by multiplying voltage

and current. In Figs. 3.3.(a) and (b), the thrust is proportional to the input of the DC motor and

wing frequency. To generate a thrust equal to the weight of the platform, 86 percent of inputs

are applied to both DC motors. The value of thrust divided by power is the efficiency of flapping

motion, and the factor is also proportional to the frequency of the wing. This result is shown in

Fig. 3.3.(c).

When collecting datasets for measuring control moment, the moment is measured three times

per each case, and it is measured for 20 seconds at one time. The average value is regarded as the

final control moment.

Fig. 3.4 shows the result of pitch moment, yaw moment, and thrust about the normalized

position of each actuator. During each test, only 86 percent of inputs are applied to both DC
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motors. In Fig. 3.4.(a), regardless of the yaw command, there is a linear relationship between

pitch moment and pitch command, and the pitch moment is point symmetry from the nominal

position of the pitch servo. This phenomenon is similarly observed in Fig. 3.4.(b). From the

measurement results, I can conclude that the use of positive and negative moments allows the

platform to rotate sufficiently clockwise and counterclockwise direction with respect to the pitch

and yaw axes. The magnitude of thrust is almost constant regardless of the command of pitch and

yaw servos, and this result is shown in Fig. 3.4.(c). Based on the results of the control moment

measurement, since it can be said that the roll, pitch, and yaw axes are not significantly coupled,

independent controllers can be designed for each axis.

The characteristics of a typical secondary battery discharge graph show a sharp change in

slope in an initial short period, followed by a gentle slope over some time and then a sharp change

in slope again when the battery approaches the point of discharge. Therefore, it is important to

use a lipo battery considering the characteristics of voltage drop.

The motor is degraded by heat and voltage drop, which makes thrust generation difficult and

has a bad effect on flight performance. So, consistently creating a constant thrust is a necessary

factor for a stable flight. An experiment is conducted to measure what type of thrust is produced

over time under the condition that a constant input is applied to DC motors using a battery

used for actual flight. Fig 3.5 shows a graph of the change in thrust over time. Given that the

weight of the platform is 25 grams, it can generate a thrust above its weight for about 40 seconds.

However, since no other actuators and communication module are used when measuring a thrust,

it is expected to fly for a much shorter time during actual flight.
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Figure 3.1: Experimental set-up for thrust and moment measurements; (a) Schematic
diagram for the measurement experiment, (b) Actual experimental envi-
ronment using a load cell sensor (LRM200), and (c) a force/torque sensor
(Nano-17).
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Figure 3.2: Time history of thrust measurement results at 100 percent input to DC
motor; (a) During four strokes ([top] raw data, [bottom] filtered data), (b)
During two strokes.
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Figure 3.3: Measurement results; (a) DC motor input vs thrust, (b) Wing frequency vs
thrust, and (c) Wing frequency vs thrust/power
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Figure 3.4: Measurement results; (a) Normalized pitch command vs thrust, (b) Normal-
ized pitch command vs pitch moment, and (c) Normalized yaw command vs
yaw moment.
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Figure 3.5: Battery duration test during 80 seconds with constant 86 % DC motor inputs.
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4
Dynamics & Controller design

In this Section, I explain the process of deriving the model dynamics of tailless FWMAV. Based

on the obtained model dynamics, the attitude controller and trajectory tracking controller are

designed.

4.1 Preliminary

I estimate the states of an FWMAV during the flight as follows. The coordinates of the four

markers are transformed from reference frame (x, y, z) of VICON space to body frame (xb, yb, zb)

of the FWMAV, as showed in Fig. 4.1. The unit vectors of the body frame and the reference frame

are related to the respective entries of the 3-2-1 rotation matrix sequence described in Eq. (4.1)

which is one of the most widely used parameterisations. Before proceeding further, let us use the

shorthand notation Sψ ≡ sinψ, Cψ ≡ cosψ, Sφ ≡ sinφ, Cφ ≡ cosφ.

Rbi =


CθCψ −CθSψ Sθ

CψSφSθ + CφSψ CφCψ − SφSθSψ −CθSφ
−CφCψSθ + SφSψ CψSφ + CφSθSψ CφCθ

 (4.1)

The absolute velocity (ẋ, ẏ, ż) and the Euler rates (φ̇, θ̇, ψ̇) are calculated by differentiating

the positions and the Euler angles with respect to time using 1st derivative centered-difference.
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Figure 4.1: Right-handed cartesian coordinate system of the tailless-FWMAV; (a) Con-
figuration, (b) Actual platform with the cartesian coordinate system.

I can determine the relationship between the angular velocities in the body frame (p, q, r) and

the Euler rates (φ̇, θ̇, ψ̇) from Eq. (4.2).


p

q

r

 =


1 0 −Sθ
0 Cφ CθSφ

0 −Sφ CθCφ



φ̇

θ̇

ψ̇

 (4.2)

The total 15 states are recalculated: velocity in inertial coordinate
−→
Vi = (ẋ, ẏ, ż); velocity in

body coordinate
−→
Vb = (u, v, w); Euler angles (φ, θ, ψ); Euler rates (φ̇, θ̇, ψ̇) and angular velocities

−→w = (p, q, r).
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4.2 Dynamics & Attitude control

I can drive the rigid body equations of motion using Newton’s second law based on [47]. The

summation of all external forces acting on a body is equal to the time rate of change of the

momentum of body and the summation of the external moments acting on the body is equal to

the time rate of change of the moment of momentum. Then, Newton’s second law can be written

in the following equations:

d

dt
(mv) = ΣF

d

dt
H = ΣM

(4.3)

By assuming that the platform is a rigid body, the motion equation of the rigid body can be

expressed with the force and moment act on the center of gravity.mI 0

o Ib

v̇b
ω̇b

 +

ωb ×mvb
ωb × Ib

 =

ΣF

ΣM

 (4.4)

where m is the mass, Ib is the body inertia matrix, I is the identify matrix, and vb and

ωb (= pi + qj + rk) are the linear and angular velocity in body. The scaler equations for the

moment of momentum is given by

Hx = pIx − qIxy − rIxz

Hy = −pIxy + qIy − rIyz

Hz = −pIxz − qIyz + rIz

(4.5)

The mass moments of inertia of the body frame are written as Ix, Iy, and Iz. I∗∗ is called the

products of inertia. The derivative of a vector X with respect to rotating body frame having an

angular velocity ωb can be written

dX

dt
|I =

dX

dt
|B + ωb ×X (4.6)

where the subscript I refer to the inertial frame and B means the body fixed frames. Using

the identity to the equations of rotation motion,
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ṗIx − q̇Ixy − ṙIxz − pqIxz + rpIxy + qr(Iz − Iy) + Iyz(r
2 − q2) = Mx

−ṗIxy + q̇Iy − ṙIyz − rqIxy + pqIyz + rp(Ix − Iz) + Ixz(p
2 − r2) = My

−ṗIxz − q̇Iyz + ṙIz − prIyz + qrIxz + pq(Iy − Ix) + Ixy(q
2 − p2) = Mz

(4.7)

I can make the products of inertia Ixy = Iyz = Izs = 0 by proper positioning of the body axis

system. Then, the Eq. (4.7) can be written as

ṗIx + qr(Iz − Iy) = Mx

q̇Iy + rp(Ix − Iz) = My

ṙIz + pq(Iy − Ix) = Mz

(4.8)

By assuming that all axes are decoupled,

ṗIx = Mx

q̇Iy = My

ṙIz = Mz

(4.9)

The components of the moment acting on the platform are composed of

Mx,y,z = Ma +Md +Mg (4.10)

where Ma is aerodynamic torques, Md is rotational damping, and Mg is gravitational torques.

Md is negligible relative to aerodynamic forces even during rapid body rotation and can therefore

be neglected from [48, 49]. Mg acts on the COM, so it can be seen as zero. Then, Eq. (4.9) can

be expressed as

ṗIx = Max

q̇Iy = May

ṙIz = Maz

(4.11)

If flight vehicle is flying near hovering conditions, p, q, r are regarded as φ, θ, ψ, respectively.
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4.2.1 Roll direction

Figure 4.2: Free body diagram (FBD) of tailless FWMAV about roll axis.

Based on the free body diagram (FBD) in Fig 4.2, the working torques by thrusts from the

left and right wings are applied to COM of the vehicle. Applying the Newton’s secnod law, the

rotation dynamics about roll axis of tailless FWMAV can be simplified to

Jφ̈ = Frlr − Flll, let (lr = ll = l)

φ̈ =
l

J
(Fr − Fl)

(4.12)

Let’s define system states for the tailless FWMAV as follows:

x1 = φ, x2 = φ̇ (4.13)

Then, Lyapunov candidate function is represented by the following equations:

V (X) =
1

2
x21 +

1

2
x22 (4.14)

Derivating Eq. (4.14) with respect to time,

V̇ = x1ẋ1 + x2ẋ2 = x2(x1 +
l

J
(Fr − Fl)) let Fr − Fl = −J

l
x1 − αx2

= − l
J
αx22 ≤ 0

(4.15)

With α > 0, derivative of V is negative semi-definite for any x1 and x2, so the origin of the

system is stable by the Theorem.
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Theorem: The origin of a system is stable if there is a continuously differentiable positive

definite function V (x) so that V̇ is negative semi-definite, and it is asymptotically stable if V̇ is

negative definite [50].

From Eqs. (4.12) and (4.13), closed-loop dynamics is given by

ẋ1 = x2

ẋ2 = −x1 −
l

J
αx2

(4.16)

In Eq. (4.16), V̇ = 0 is achieved by x2 = 0 and x2 = 0 means x1 = 0. So, V̇ = 0 is only

achieved at the origin, i.e., x1 = 0 and x2 = 0. By Lasalle’s invariance principle, the closed-loop

system is asymptotically stable.

From an equilibrium equation between thrusts and the weight of the platform, and Eq. (4.15),

Fr cosφ+ Fl cosφ = mg

Fr − Fl = −J
l
x1 − αx2

(4.17)

I can calculate Fr and Fl as follows:

Fl =
mg

2 cosφ
+
J

2l
φ+

αφ̇

2

Fr =
mg

2 cosφ
− J

2l
φ− αφ̇

2

(4.18)

Based on the measurement results of Section 3.2, the actuator inputs that apply to both DC

motors are calculated as follows:

Fr,l = 0.02f2r,l + 0.78fr,l − 3.1

fr,l = 0.24uroll − 0.38
(4.19)

where fr,l is wing frequency and uroll is the input of DC motor.
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4.2.2 Pitch direction

Figure 4.3: FBD of tailless FWMAV about pitch axis.

Based on the free body diagram (FBD) in Fig 4.3, the working torques by thrusts from the

left and right wings are applied to COM of the vehicle. Applying the Newton’s secnod law, the

rotation dynamics about pitch axis of tailless FWMAV can be simplified to

Jθ̈ = −Fl let (F =
mg

cos θ
)

θ̈ = − l
J

mg

cos θ

(4.20)

Let’s define system states for the tailless FWMAV as follows:

x1 = θ, x2 = θ̇ (4.21)

Then, Lyapunov candidate function is represented by the following equations:

V (X) =
1

2
x21 +

1

2
x22 (4.22)

Derivating Eq. (4.22) with respect to time,

V̇ = x1ẋ1 + x2ẋ2 = x2(x1 −
mg

J cos θ
l) let l =

J cos θ

mg
x1 + αx2

= −α mg

J cos θ
x22 ≤ 0 where (0 ≤ cos θ,−π

2
≤ θ ≤ π

2
)

(4.23)
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With α > 0, derivative of V is negative semi-definite for any x1 and x2, so the origin of the

system is stable.

From Eqs. (4.20) and (4.21), closed-loop dynamics is given by

ẋ1 = x2

ẋ2 = −x1 −
mg

J cosx1
αx2

(4.24)

By Lasalle’s invariance principle, the closed-loop system is asymptotically stable.

From Eq. (4.23), I can calculate l as follows:

l =
J cos θ

mg
θ + αθ̇ (4.25)

Based on the measurement results of Section 3.2, the actuator input that apply to pitch servo

is calculated as follows:

My = l · F = l · (Fl + Fr)

= 0.68u2pitch − 6.64upitch + 0.02
(4.26)

where upitch is the input of pitch servo.
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4.2.3 Yaw direction

Figure 4.4: FBD of tailless FWMAV about yaw axis.

Based on the free body diagram (FBD) in Fig 4.4, the working torques by thrusts from the

left and right wings are applied to COM of the vehicle. Applying the Newton’s secnod law, the

rotation dynamics about yaw axis of tailless FWMAV can be simplified to

Jψ̈ = −Frr cos δ − Flr cos δ, let (Fr = Fl = F )

= −2Fr cos δ

ψ̈ = −2
Fr

J
cos δ

(4.27)

Let’s define system states for the tailless FWMAV as follows:

x1 = ψ, x2 = ψ̇ (4.28)

Then, Lyapunov candidate function is represented by the following equations:

V (X) =
1

2
x21 +

1

2
x22 (4.29)

Derivating Eq. (4.29) with respect to time,

V̇ = x1ẋ1 + x2ẋ2 = x2(x1 −
2

J
Fr cos δ) let cos δ =

J

2Fr
x1 + α

J

2Fr
x2

= −αx22 ≤ 0

(4.30)

45



With α > 0, derivative of V is negative semi-definite for any x1 and x2, so the origin of the system

is stable. From Eqs. (4.27) and (4.28), closed-loop dynamics is given by

ẋ1 = x2

ẋ2 = −x1 − αx2
(4.31)

By the Lasalle’s invariance principle, the origin of the system is asymptotically stable.

From Eq. (4.30) I can calculate l as follows:

l = r cos δ =
J

2F
ψ + α

J

2F
ψ̇ (4.32)

Based on the measurement results of Section 3.2, the actuator input that apply to yaw servo

is calculated as follows:

Mz = l · F = l · (Fl + Fr)

= −0.26u2yaw + 1.92uyaw + 0.13
(4.33)

where uyaw is the input of yaw servo.
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4.2.4 PID control

The motion capture system, VICON, provides 3D positions and attitude information. I only use

attitude information for the attitude regulation, and it is transmitted from GCS to the tailless-

FWMAV via Bluetooth communication. Details can be found in Section 5.2.

In Eqs 4.18, 4.25, and 4.32, the control inputs to the three axes direction are similar to PD

controller structure. Therefore, by adding the integral term, I design simple PID controllers in

parallel structure, assuming that three controllers for roll, pitch, and yaw work independently.

Two PID controllers for roll direction are written in the following form:

ul = ul0 + (klpe+ kli

∫
edt+ kld

d

dt
e)

ur = ur0 − (krpe+ kri

∫
edt+ krd

d

dt
e)

e = (φr − φ)

(4.34)

In Eq. (4.34), u{l,r} represent the control inputs for the left and right motors, respectively, and

u
{l,r}
0 are the offsets for supporting the weight of the FWMAV. φr is the reference roll angle and

φ is the measured roll angle.

In the case of pitch and yaw directions, a PID control can be also simplified to

uservo = uservo0 + (kservop e+ kservoi

∫
edt+ kservod

d

dt
e)

e = (θr − θ), (ψr − ψ)

(4.35)

In Eq. (4.35), uservo is a control input for the servo and uservo0 is the nominal input. θr and

ψr are the reference pitch and yaw angles, and θ and ψ are the measured pitch and yaw angles.

In Eqs. (4.34) and (4.35), k
{l,r,servo}
p , k

{l,r,servo}
i , and k

{l,r,servo}
d are proportional, integral, and

derivative gains, respectively. The gains, offsets, and nominal inputs are determined by trial-and-

error.
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4.3 Trajectory tracking control

In order to move along a given trajectory, it is necessary to change the Euler angles of the platform

according to the desired attitudes. Especially, pitch and roll angles are directly related to x-and

y-directional movements, so the flight platform needs the desired pitch and yaw angles to move

X and Y positions. The yaw angle is not related to the movement of the platform, so always

maintain zero degrees.

The reference roll and pitch angles can be written

θr = kxpex − kxd
d

dt
ex, ex = (xr − x)

φr = kypey − k
y
d

d

dt
ey, ey = (yr − y)

(4.36)

In Eq. (4.36), xr and yr are the reference x-and y-positions, and x and y are the measured

positions. k
{x,y}
p and k

{x,y}
d are proportional and derivative gains, respectively, which are chosen

by trial-and-error. When θr and φr are calculated according to the given trajectory information,

the reference angles are reflected in Eqs. (4.34) and (4.35) to calculate the control inputs for DC

motors and servo motors.

To control the altitude of the flight vehicle, a PID controller based on height error is used,

and the calculated input terms are summed up with the inputs of Eq. (4.34). Table 4.5 shows a

double-loop control structure for regulating an attitude and tracking a trajectory.

48



Figure 4.5: Signal flow for the closed-loop feedback control to regulate the attitude of
the platform and for trajectory tracking flight. Euler angles are provided by
the external system (VICON). (signal-loop and double-loop structure).
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5
Attitude regulation experiments

In order for a tailless FWMAV to fly, it needs control to maintain a stable attitude in real-time from

the wing mechanism. I use an external mechanical device for attitude regulation of the platform

because there is a high risk of damage if the vehicle falls. In this Section, I describe a gyroscope

and universal joint testbeds for attitude regulation experiments and explain the experimental

environment. Also, I present simulation and experimental results based on the designed control

scheme. The corresponding results consist of two parts: considering the situation where 1) only

one Euler angle is compensated and the other angles are fixed, and 2) three Euler angles are free

simultaneously.

5.1 Design of gyroscope testbed

A tailless-FWMAV is known as an inherently unstable flight platform rather than general FW-

MAVs whose tail wing plays a role as passive control surfaces. Therefore, real-time active control of

the wing mechanism is necessary to regulate the platform’s attitude nimbly. Platforms developed

for flight need to carry out various flight experiments in the air. Any designed controller, however,

cannot guarantee flight stability in physical environments, so much time and effort are required

to attain suitable control parameters. In addition, the platform is easily broken when it collides

with the external environment. To overcome the above issues, I plan an experiment to regulate
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Figure 5.1: Examples of using an external device; (a) [51], (b) [52], (c) [53], (d) [54], (e)
[55], (f) [56], and (g) [39].

the attitude of the vehicle by using a gyroscope testbed. The use of an external mechanical device

for attitude control has been tried in a number of papers, and Fig 5.1 shows various examples of

experimental environment.

Fig. 5.2 shows the tailless-FWMAV installed inside the gyroscope apparatus, and the direction

of Euler angles is marked on the figure. Both white colored-brackets which support pillars are

printed by a 3D printer. The lengths of the pillars and brackets are long enough so that the core

part of the gyroscope testbed does not hit the ground during rotation. In addition, the core part

of the testbed must be at a sufficient height from the ground to reduce the ground effect. The

frames of the apparatus are made of MDF material to reduce its weight and are cut by a laser

cutting machine. The total weight of the frames is about 85 grams, which is less than 3.5 times

the weight of the platform. The metal rods with a diameter of 1 mm are used as shafts in every
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Figure 5.2: Designed gyroscopre testbed. Most of the frames are made by MDF materials
except for the brackets; (a) 3D image by CATIA promgram, (b) Actual
testbed with tailless FWMAV.

rotating area such as pillar/frame and frame/frame, and the rods have sufficient rigidity, so they

are not bent by the weight of the combined system. For reducing rotating friction, I use ball

bearings at all the joints. The inner space of the rig is about 40× 40× 20 cm3, which is enough to

prevent the platform from bumping into the frames in any direction. The center of mass (COM)

of the platform is set as close to the center of the testbed to alleviate the loss of force generated

by the offset of the center of rotation. The apparatus can rotate simultaneously on three axes,

and I can also fix a specific axis for a piece-wise test.

5.2 Experimental environment

The motion capture system is a global positioning system (GPS) that can be used in indoor

environments. The system provides real-time information on the location and attitude of objects

within a defined space, so it is widely used for research areas about robot guidance, navigation,

control, and application. In this thesis, I use VICON system, a type of motion caption system, to

obtain location and attitude information.

Fig. 5.3 shows the experimental environment. It is a space where ten cameras are installed, and

a 5× 7× 2 m3 (width× length× height) volume can be used as an activity area. The equipment
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Figure 5.3: Indoor experimental environment; (a) VICON cameras are located on the
upper edge of the room, (b) VICON software, and (c) Tailless FWMAV with
four reflective markers.

can provide real-time information at a maximum speed of 150 Hz. In order to maintain the

stability of the communication connection between the platform and ground computer, I conduct

all experiments by setting the speed of the Bluetooth communication module mounted on the

robot and VICON to 100 Hz.

5.3 Roll axis free

First, I focus on regulating a roll angle, so I secure the other axes, i.e. pitch and yaw angles. Since

the pitch and yaw axes are not regulated, a control input corresponding to the nominal value is

applied to each servo motor. In the case of roll axis, PID type control inputs derived in Section

4.2.1 are used to two DC motors. Let’s look at the simulation results and the actual experiment

results in the sections below.
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Figure 5.4: Simulation results of roll angle regulation. Reference angle is +45 degrees. (a)
Initial state, (b) The point in time after 7.5, seconds, and (c) Time history
graph of roll angle regulation.

5.3.1 Simulation

Fig. 5.4 shows the simulation results of the regulation of roll angle. Since pitch and yaw axes

are fixed, two angles keep 0 degrees during the whole time. The initial roll angle starts at 5.82

degrees. It can be seen that the initial roll value vibrates, but converges to the reference angle of

45 degrees within 5 seconds. The reaction in the transition state can be changed by adjusting the

gain of the controller that controls the DC motors.
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Figure 5.5: Experiment results of roll angle regulation. Captured images at various ref-
erence angles; (a) -45, (b) 0, (c) +45, and (d-e) Time history of roll angle
and control input of two DC motors.

5.3.2 Experiment

Fig. 5.5 shows captured images at three different reference roll angles and the corresponding

experimental results. In all of the trials, the initial angle of the platform to the roll axis begins at

the point that it is not zero degrees and it takes 15 seconds to converge to the reference roll angle

from the initial state. In Fig. 5.5. (d) where the reference roll angle is 45 degrees, and the control

input graph of DC motors shows that the value of the right motor is greater than the left motor.

The corresponding pattern on the graph also shows that the output of the right motor must be

greater to maintain the reference angle of 45 degrees. In the opposite case where the reference roll

angle is –45, it can be confirmed that the value of the left motor is greater than the value of the
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Figure 5.6: Simulation results of pitch angle regulation. Reference angle is -45 degrees.
(a) Initial state, (b) The point in time after 7.8 seconds, and (c) Time history
graph of pitch angle regulation.

right motor. The actual experimental results and simulation results show similar aspects.

5.4 Pitch axis free

Securing the other axis, i.e. yaw and roll directions, I try to control a pitch angle. Since the yaw

and roll axes are not regulated, a control input corresponding to the nominal value is applied to

DC motors and servo motor which controls the yaw angle. In the case of pitch axis, a PID type

control input derived in Section 4.2.2 is used to a servo motor which controls the pitch angle.

Let’s look at the simulation results and the actual experiment results in the sections below.
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Figure 5.7: Experiment results of pitch angle regulation. Captured images at various
reference angles; (a) -45, (b) 0, (c) +45, and (d-e) Time history of pitch
angle and control input of pitch servo motor.

5.4.1 Simulation

The simulation results of the regulation of pitch angle are shown in Fig. 5.6. Since I fix yaw and

roll axes, two angles keep 0 degrees during the whole time. The initial pitch angle starts at 5.73

degrees. It can be seen that the initial pitch value vibrates, but converges to the reference angle of

−45 degrees within 4 seconds. Adjusting the gain of the controller that controls the servo motor,

I can change the reaction in the transition state.
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Figure 5.8: Simulation results of yaw angle regulation. Reference angle is -45 degrees.
(a) Initial state, (b) The state after 8.1 seconds, and (c) Time history graph
of yaw angle regulation.

5.4.2 Experiment

The captured images at three different reference pitch angles and the corresponding experimental

results are shown in Fig. 5.7. The initial pitch angle of the platform starts at a nonzero degree

in all cases and it takes less than five seconds to reach the reference pitch angle from the initial

state. In the case of the experiment of the pitch axis, the time taken to reach the reference angle is

less than the experimental of the roll axis and the responsiveness could be adjusted by tuning the

gain of the controller. The actual experimental results show a similar pattern to the simulation

results.
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Figure 5.9: Experiment results of yaw angle regulation. Captured images at various ref-
erence angles; (a) -45, (b) 0, (c) +45, and (d-e) Time history of yaw angle
and control input of yaw servo motor.

5.5 Yaw axis free

In the case of regulating a yaw angle, I only allow the yaw axis to rotate freely. DC motors and

servo motor which controls pitch angle are provided with nominal control inputs, and a PID type

control input derived in Section 4.2.3 is used to a servo motor which controls yaw angle. Let’s

look at the simulation results and the actual experiment results in the sections below.

5.5.1 Simulation

Fig. 5.8 shows the simulation results of the regulation of yaw angle. Since roll and pitch axes can

not rotate, both angles are always 0 degrees during the entire time. The initial yaw angle starts

at 5.73 degrees. It can be seen that the initial yaw value vibrates, but converges to the reference
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angle of −45 degrees within 2 seconds. The reaction in the transition state can be changed by

adjusting the gain of the controller that controls the servo motor.

5.5.2 Experiment

Fig. 5.9 shows the results captured during the experiment for various reference yaw angles and

the initial yaw angle starts at 0 degrees. It does not take five seconds to reach the reference angle.

Although there is a little chattering phenomenon near the reference angle, the platform continues

to maintain the reference angle without deviating the desired angle significantly. As in roll and

pitch experiments, the actual experimental results are similar to the simulation results.

5.6 All axes free

The convergence rate and response for setpoint depend on the control gains and I can determine

gain parameters according to experiment purpose. In other to maintain hover flight of tailless

FWMAV, all Euler angles should be kept close to zero degrees. To this end, the platform actively

controls four actuators such as two DC motors for roll angle and two servo motors for pitch and

yaw angles.

In the previous Section, I talked about situations where the three axes of the platform are

not considered simultaneously. From now on, I talk about the results of controlling the three axes

at the same time. Let’s look at the simulation results and the actual experiment results in the

Sections below. For regulating each axis, three independent controllers derived in Section 4.2 are

used.

5.6.1 Simulation

Fig. 5.10 shows the simulation results for regulating Euler angles. The initial roll, pitch, and yaw

angles are 81.52, 80.21, and 80.21 degrees, respectively. It can be seen that all three axes converge

to a reference angle of 0 degrees within ±2 degrees within 10 seconds.
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Figure 5.10: Hovering situation to regulate all Euler angles; (a) Initial state, (b) The state
after 3.23 seconds, (c) The state after 6.29 seconds, and (d) The state after
9.18 seconds.

5.6.2 Experiment

For hovering flight, a flight vehicle keeps zero degrees with respect to all Euler angles. Fig. 5.11

shows the results of using feedforward control for attitude regulation. Without feedback control,

the platform maintains an undesired attitude or rotate randomly. If there is no gyroscope testbed,

the platform must be dropped on the ground as soon as it takes off.

Fig. 5.12 shows the experimental results under the condition that all rotational axes are not

fixed. To regulate attitudes for three axes simultaneously, I use control gains in Section 5.3 for

roll direction, Section 5.4 for pitch direction, and Section 5.5 for yaw direction. The gain values
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Figure 5.11: Without feedback control; (a) Euler angles stay at a non-zero meaningless
value, (b) Euler angles vary randomly.

of the controller for all axes are summarized in Table 5.1. In Fig 5.12.(c), the platform reaches

a reference angle (zero degrees) within four seconds and keeps the angles until 20 seconds. As

soon as the controllers are turned off at 20 seconds, the vehicle loses its attitudes and rotates

randomly for 10 seconds when the controllers are not working. After the controllers are turned on

at 30 seconds, the platform controls its attitude to desired angles again within four seconds and

keeps reference angles until 60 seconds. Based on the experimental results, the control strategy I

designed guarantees the hovering flight of tailless FWMAV.

For the platform to move, it is necessary to change the flight attitude, especially roll and pitch

angles (For attitude stability, roll and pitch angles are more critical than yaw angle.). So, I conduct

an experiment on how well tailless FWMAV follows a sinusoid reference angle, and Fig 5.13 shows

the experimental results about roll and pitch axes, respectively. I set the maximum amplitude of

the reference sinusoid signal about the roll axis to ±10 degrees and set about the pitch axis to ±30
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Figure 5.12: Hovering situation to regulate all Euler angles; (a) Initial state, (b) Hovering
state, and (c) Time history of Euler angles and control inputs of DC motors
and servo motors.

degrees. In all cases, I confirm that the roll and pitch angles follow well the changing reference

angles without long delay and considerable variation.
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Figure 5.13: Time history of measurement results about sinusoid reference angle; (a) The
results of roll angle tracking, (b) Pitch angle tracking.

5.7 Design of universal joint testbed & Experiment

The weight of the gyroscope testbed is approximately 85 grams, which is about 3.5 times the

weight of the platform. Therefore, the movement of the vehicle within the rig is bound to be

limited due to the effect of the inertia of the device. This leads to using a high gain of the

controller and may cause an excessive reaction to the attitude control of the tailless FWMAV

in the absence of the gyroscope testbed. Therefore, I conduct an additional experiment using a

universal joint that could have less effect on the movement of the vehicle than the gyroscope.
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Axis Gain Gyroscopre testbed Universal joint testbed

P ±0.5 ±0.2

Roll I ±0.05 ±0.05

D ±0.4 ±0.1

P 0.7 0.02

Pitch I 0.04 0.03

D 0.3 0.03

P -4.5 -2

Yaw I -0.01 -0.01

D -0.04 -0.03

Table 5.1: PID control gains for attitude regulation in two testbeds.

To reduce the effect of the inertia of the universal joint on the behavior of the platform, like the

mount that was made during force and torque measurements, I use a 3D printer to make the joint

using plastic filament materials. The printed joint weights 10 grams, which is about 0.4 times the

weight of the vehicle. The rotation range of motion is smaller than that of the gyroscope testbed,

but it can also be rotated in three axes simultaneously.

Fig. 5.14 shows the platform attached to the universal joint testbed and experimental results.

About 15 seconds after the control inputs are generated, Euler angles converge to 0 degrees to

achieve hover flight condition. The reason it takes time to converge is because of the asymmetry

of the shape of the platform that occurs during the manufacturing process. The convergence rate

can be adjusted by using different control gains. Table. 5.1 shows the gain values of the attitude

controller used in the universal joint testbed, and the gain values of the universal joint experiment

are relatively smaller than the gyroscope testbed. This is the effect of the difference in the weight

of two testbeds.
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Figure 5.14: Universal joint testbed for attitude regulation; (a) CAD design of univer-
sal joint, (b) View from above, (c) View from side, (d) Initial attitude, (e)
Hovering state, and (f) Time history of Euler angles.
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Figure 5.15: Tethered flight environment for trajectory tracking control environment; (a)
Tied-to-the-ceiling, (b) Hung-to-a-balloon.
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6
Trajectory tracking

In this Section, I explain the research on the trajectory tracking of a tailless FWMAV. First, sim-

ulation results about various trajectories are presented. Second, two experimental environments

(tethered-flight situation) and the corresponding experimental results are described. Finally, I

cover the experimental result of the autonomous hovering flight of the platform without external

assistance.

6.1 Simulation

In order to track a trajectory of an aerial vehicle, position information with time history must be

transmitted to the platform in real-time. For moving in the X and Y axes, there only exist the

change of the roll and pitch angles. The yaw angle is always controlled to maintain 0 degrees.

Using the attitude dynamics of the tailless FWMAV covered in Section 4.2, a simulation is

performed to follow three trajectories using the double-loop control structure mentioned in Section

4.3. Table 6.1 summarizes the simulation parameters and the simulation results are shown in

Fig. 6.1. In all cases, the reference height is 1 m, and the platform starts at (0, 0) in XY-plane.

At the initial phase, the platform approaches the target point to follow the reference trajectory

and then follows it with a small error.

68



Parameter value & Trajectory information

Velocity [m/s] Vx = 1, Vy = 1, V =
√
V 2
x + V 2

y , ω = V/r

Straight line Xref. = 0, Yref. = Vy · time

Circle shape r = 2, Xref. = r · cos(ω · time), Yref. = r · sin(ω · time)

Number eight shape r = 4, Xref. = r · cos(ω · time), Yref. = r · sin(2ω · time)/2

Table 6.1: Simulation parameters for trajectory tracking.

6.2 Preliminary

As a preliminary research stage for free flight, experiments are conducted by attaching an external

structure such as a thread or a sail to the flight vehicle. The main reason for the aid of external

devices is to increase the additional passive stability of the vehicle.

Two experimental environments are considered. In the first case, it is an environment where

the fishing line connects the top of the platform to the ceiling. Although the vehicle is fastened

to the fishing line, it can rotate in three axes around a knot connected to the upper part of the

platform. The purpose of the experiment in the first environment is to confirm that the tailless

FWMAV moves well along the trajectory on the 2D plane. In order not to change the altitude

of the platform, the control inputs calculated by altitude error are not considered for controlling

both DC motors.

In the second case, it is an environment where a balloon containing helium gas is connected

to the top of the platform. Since the balloon is less dense than the surrounding air, the balloon

provides extra lift to the vehicle. So, the platform minimizes power consumption, saving battery

power, and can increase flight time. In addition, the volume of the balloon increases passive

stability because it resists the movement of the vehicle. The purpose of the experiment in the

second environment is to confirm that the tailless FWMAV moves well along the trajectory on

the 3D space. Unlike the first case, attitude and altitude controllers operate for tracking the

trajectory. Fig. 5.15 shows two experimental environments described above.

I consider three trajectories such as moving toward 1) X-direction, 2) Y-direction, and 3)

Square shape. The detailed trajectory information is shown in Tables 6.2, 6.3, and 6.4.
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Tied-to-the-ceiling Hung-to-a-balloon

Time [sec.] Vx [m/s] Vx [m/s]

0-10 0 0

10-20 0.06 0.1

20-30 0 0

30-50 -0.06 -0.1

50-60 0 0

60-70 0.06 0.1

70-80 0 0

Table 6.2: Moving toward X-direction; (Vy = 0).

6.3 Experiment: Tied-to-the-ceiling

Figs. 6.2, 6.3, and 6.4 show the tracking results about three different trajectories. Each figure

shows how the aircraft moved over time on the XY plane. Then, let’s look at the details more

each result.

Fig. 6.2 shows the experimental results of the vehicle moving in the x-axis direction. It can be

seen that there is no much movement on the y-axis. On the other hand, the platform follows well

along the provided trajectory in the x-axis direction while maintaining the reference speed. Since

the height is not controlled, the height slightly increases in the z-direction at both ends of the

x-axis due to the constant length of the string. In addition, there exists shaking in the trajectory

on the XY-plane due to the tension of the string.

The experimental results of the vehicle moving in the y-axis direction is shown in Fig. 6.3.

There is no much movement on the x-axis direction. On the other hand, the platform follows

well along the provided trajectory in the y-axis direction while maintaining the reference speed.

As shown in the previous case, since the altitude is not controlled, the altitude increases in the

z-direction at both ends of the y-axis due to the constant length of the string. In addition, there

exists shaking in the trajectory on the XY-plane due to the tension of the string.

Fig. 6.4 shows the experimental results of the vehicle moving toward a square trajectory. Start-

ing from (0, 0), the platform passes through four vertices, i.e., (0.6, 0), (0, 0.6), (-0.6, 0), and (0,
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Tied-to-the-ceiling Hung-to-a-balloon

Time [sec.] Vy [m/s] Vy [m/s]

0-10 0 0

10-20 0.06 0.1

20-30 0 0

30-50 -0.06 -0.1

50-60 0 0

60-70 0.06 0.1

70-80 0 0

Table 6.3: Moving toward Y-direction; (Vx = 0).

-0.6) exactly. The altitude increased slightly in the z-axis direction from the four vertex positions

due to the constant length of the string. Although there are small variations in trajectories and

attitudes, the platform follows three reference trajectories well while maintaining attitude stably.

6.4 Experiment: Hung-to-a-balloon

Figs. 6.5, 6.6, and 6.7 show the tracking results about three different trajectories. Each figure

shows how the aircraft moved over time on the XYZ space.

In all cases, since the departure of the trajectory begins at (0, 0), the platform heads to (0, 0)

as soon as it takes off from the human hand. After arriving at (0, 0), a little overshoot on the z-

axis occurs while controlling the reference altitude. As time goes on, the vehicle moves accurately

along the 3D trajectory. Because it is less affected by the tension of the string, there is less shaking

in the trajectory than in the previous cases.

Fig. 6.8 shows the result of rotating a circle with a radius of 1 m every 20 seconds. Because

the yaw angle is always kept at zero degrees, the velocity drops whenever the vehicle changes

direction, causing the altitude to fluctuate.
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Tied-to-the-ceiling Hung-to-a-balloon

Time [sec.] Vx, Vy [m/s] Time [sec.] Vx, Vy [m/s]

0-5 0, 0 0-10 0, 0

5-10 0.12, 0 10-20 0.1, 0

10-15 -0.12, 0.12 20-30 -0.1, 0.1

15-20 -0.12, -0.12 30-40 -0.1, -0.1

20-25 0.12, -0.12 40-50 0.1, -0.1

25-30 0.12, 0.12 50-60 0.1, 0.1

30-35 -0.12, 0 60-70 -0.1, 0

35-45 0, 0 70-80 0, 0

Table 6.4: Moving toward square shape.

Tied-to-the-ceiling Hung-to-a-balloon

Error X-direction Y-direction Square X-direction Y-direction Square

X 0.0795 0.0385 0.0937 0.0419 0.0735 0.0356

Y 0.0453 0.0397 0.0883 0.0785 0.0441 0.0305

Z - - - 0.0512 0.0488 0.0654

Table 6.5: RMSE of trajectory tracking experiments.

6.5 Summary

Table 6.5 shows the root mean square error (RMSE) between the reference trajectory and actual

travel distance in two experimental environments for three different trajectories. RMSE is given

by

RMSE =

√∑n
i=1(xi − x̂i)2

n
(6.1)

where xi is a actual value, x̂i is a measured value, and n is the number of samples. It is difficult

to say which of the two environments has smaller errors, but both cases have errors within 10 cm

in all directions.
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6.6 Hovering flight

As a condition for hovering maneuvers in place, the flight vehicle stays in a certain area, and the

flight altitude must be maintained. Fig. 6.9 shows the experimental results of autonomous hovering

flight without the aid of the external environmental factors that help with the flight I used the

previous Section. For the flight experiment, I set the flight height as 2 m. In Fig. 6.9.(b), the

flight altitude gradually decreases after maintaining the height for about 6 seconds after reaching

the reference altitude of 2 m within five seconds without overshoot. If I use a large gain for the

altitude controller, the platform can approach the reference height in a shorter time, but there is

a possibility of overshoot, so trade-off exists. The trajectory of the platform is maintained within

a circle within 1m shown in Fig. 6.9.(d) and the error on the y-axis is relatively larger than the

x-axis. Especially, The area outside the circle with a radius of 1 m is the trajectory of the vehicle

as it descends after 11 seconds. The attitude of the platform remains within ±45 degrees during

flight. In order to fly in place, it is theoretically correct for all Euler angles to converge to zero

degress, but since a position error occurs, and the reference attitude changes based on the position

error, so the flight attitude changes over time.

73



Figure 6.1: Simulation results of trajectory tracking; (a) Animation of tailless FWMAV,
(b) Straight forward trajectory, (c) Circle trajectory, and (d) Number eight
shape trajectory.
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Figure 6.2: Tied-to-the-ceiling test: experimental results of moving toward ± X-
direction, (top) Overlaid sequence of snapshots of the platform during the
experiment, (bottom-left) Trajectory in XY-plane, and (bottom-right) Time
history of the position.
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Figure 6.3: Tied-to-the-ceiling test: experimental results of moving toward ± Y-
direction, (top) Overlaid sequence of snapshots of the platform during the
experiment, (bottom-left) Trajectory in XY-plane, and (bottom-right) Time
history of the position.
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Figure 6.4: Tied-to-the-ceiling test: experimental results of moving toward square tra-
jectory, (top) Overlaid sequence of snapshots of the platform during the
experiment, (bottom-left) Trajectory in XY-plane, and (bottom-right) Time
history of the position.
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Figure 6.5: Hung-to-a-balloon test: experimental results of moving toward ± X-
direction, (top) Overlaid sequence of snapshots of the platform during the
experiment, (bottom-left) Trajectory in XY-plane, and (bottom-right) Time
history of the position.
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Figure 6.6: Hung-to-a-balloon test: experimental results of moving toward ± Y-
direction, (top) Overlaid sequence of snapshots of the platform during the
experiment, (bottom-left) Trajectory in XY-plane, and (bottom-right) Time
history of the position.
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Figure 6.7: Hung-to-a-balloon test: experimental results of moving toward square tra-
jectory, (top) Overlaid sequence of snapshots of the platform during the
experiment, (bottom-left) Trajectory in XY-plane, and (bottom-right) Time
history of the position.
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Figure 6.8: Hung-to-a-balloon test: experimental results of moving toward circle tra-
jectory, (top) Overlaid sequence of snapshots of the platform during the
experiment, (bottom-left) Trajectory in XY-plane, and (bottom-right) Time
history of the position.
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Figure 6.9: Experimental results of hovering flight, (a) Overlaid sequence of snapshots
of the platform during the experiment, (b) Time history of the position, (c)
Time history of the attitude, and (d) Trajectory in XY-plane.
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7
Conclusion

In this thesis, I developed a tailless FWMAV, after modification to a commonly available RC-toy

with off-the-shelf electronic components. The designed aerial-platform was 25 grams in mass and

38 × 14 × 3.5 cm3 in size, so it is able to meet the initial design targets. The result of thrust

and moment measurement showed that the platform can generate enough force to support its

weight as well as the control moments to rotate in the three axes. In addition, I validated that

the PID type controller, which is derived by dynamic equations in parallel structure, is useful

for attitude regulation through the gyroscope testbed and universal joint testbed. Based on the

results, I conducted an autonomous flight test for tracking diverse trajectories in two situations

such as tied-to-the-ceiling and hung-to-a-balloon, and hovering flight without external assistance.

I achieved the goal with a well-regulated attitude and trajectory in all cases.

Although I used external assistance during trajectory tracking flight in a tethered environment

and the flight time of the platform is not long enough during hover flight, the attainment of this

thesis is a foothold for the related research areas as an early attempt to follow a trajectory using a

tailless FWMAV equipped with a power source. In addition, my experiences with comprehensive

consideration of structure design, power supply, and control strategy provide a stepping stone for

research about autonomous tailless FWMAVs.

Software and hardware need to be further improved to increase sufficient flight time and
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design a controller based on the identification of longitudinal and lateral dynamics of the tailless

FWMAV. Details are as follows:

• Mass reduction is essential to increase the flight time of a tailless FWMAV. For this, FCS

board, which is 14 percent of the total weight, should be integrated into one printed circuit

board (PCB). In addition, the platform’s frames and wires, which account for 18 percent of

the total weight, should be revised to save mass and use less thrust.

• I will devise a new type of wing mechanism to reduce the mass of the platform and propose

a tailored control method for the mechanism.

• By reducing the mass of the platform, it will be able to secure sufficient payload. After then,

I will mount a FPV camera on the tailless FWMAV to study the application area such as

obstacle avoidance and object tracking.
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A
Appendix: Wing gearbox

A.1 4-bar linkage structure

4-bar linkage structures consist of ‘slider-crank linkage’ and ‘planar quadrilateral linkage’. They

have only 1-degrees of freedom (DOF) according to ’Grueble rule’ in Eq. (A.1) where n is the

total number of links and j is the total number of joints. i.e., both cases have n = 4 and j = 4.

F = 3(n− 1)− 2j = 1 (A.1)

Depending on whether at least one link can be fully rotated or not, the planar quadrilateral

linkage can be divided again into ‘Grashof structure’ and ‘non-Grashof structure’. If Eq. (A.2) is

satisfied, it is ‘Grashof structure’, otherwise it is ‘non-Grashof structure’.

S + L < l1 + l2 (A.2)

where S is the length of the shortest link, L is the length of the longest link, , l1 and l2 are

the lengths of remaining two links.

There are three groups of ‘Grashof structure’, i.e., a double-rocker, double-crank, and crank-

rocker. Table A.1 shows how the input and output links move respectively on each linkage struc-

ture.
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Type Input link Output link

Double-rocker partial rotation partial rotation

Double-crank full rotation full rotation

Crank-rocker full rotation partial rotation

Table A.1: The movement of the links according to the ‘Grashof structure’.
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B
Appendix: Disturbance observer (DOB)

B.1 DOB controler

It is not easy to respond effectively to modeling errors and disturbances, which are always a

problem in the control system, using only the general controller design method. Therefore, proper

application of advanced control methods such as adaptive control and optimal control is required,

but these techniques have a disadvantage in that they are complicated to implement.

Designing a disturbance observer (DOB)-based controller is known to be able to compensate

for modeling errors and effectively suppress the effects of disturbances while being relatively simple

to implement compared to other control techniques. The corresponding method is used to control

the flight attitude of FWMAVs in [63, 64].

Fig. B.1 shows the block diagram of DOB structure. C(s) is a general controller. P (s) rep-

resents the actual plant and Pn(s) is a nominal plant. Q(s) is the transfer function of Q-filter

which is a low-pass filter. r is reference signal and uc is the control input signal that is generated

by an outer-loop controller, d is disturbance, d̂ represents estimated disturbance, and y is system

output. The output y is written in the following form:
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Figure B.1: Disturbance observer (DOB) signal flow.

y(s) = Pyr(s)u(s) + Pydd(s)

where Pyr =
PPn

Pn + (P − PnQ)
, Pyd =

PPn(1−Q)

Pn + (P − PnQ)

Q(s) =

∑n
i=0Ci(τs)

i

(τs+ 1)m
, Q(0) = 0

(B.1)

and estimated disturbance is given by

d̂(s) = QP−1n (y −QPnud), where ud = uc − d̂ (B.2)

In low frequency range, Q(s) ≈ 1, Pyr ≈ Pn and Pyd ≈ 0. Therefore, the output y can be

simplified to

y(s) = Pnu(s) (B.3)

From Eq. (B.3), 1) the input disturbance d does not affect the output of the system and 2)

the output of the system is determined by the nominal model Pn. Therefore, it is important to

determine proper Q and Pn to achieve good control performance using DOB-based control.

The following conditions must be satisfied to stabilize the disturbance observer-based control

system [63].

• PnC/(1 + PnC) is stable.

• Ps is minimum phase system.
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Figure B.2: Block diagram of control-loop; (a) PID, (b) PID+DOB.

B.2 Simulation

To confirm the responsiveness of DOB structure in an environment with disturbance, the simula-

tion is conducted by considering roll and pitch axes independently about two reference angles such

as step input and sine input. Table B.1 shows the parameters of the simulation environment and

the parameters of the tailless FWMAV are shown in Table B.2. For the model transfer function

of each axis, the dynamics derived in Section 4.2 is used and the same type of Q-filter is used to

both cases. I assume that the frequency of disturbance to the roll axis is smaller than the pitch

axis.

B.2.1 Step input

Fig. B.3 shows the simulation result of the PID controller and DOB+PID controllers about the

step input, where the reference input starts from the initial 0 degree and changes to 10 degrees

at 5 seconds. At the disturbance frequency of 0.25, the pitch angle is divergent when using only
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Roll direction Pitch direction

Plant P (s) φ̈ = l
Jx(Fr − Fl) ψ̈ = − F

Jy
l

Controller C(s) Kp : 0.005,KI : 0.0002,KD : 0.03 Kp : −0.015,KI : −0.001,KD : −0.005

Q-filter m : 4, n : 2, τ : 0.01 m : 4, n : 2, τ : 0.01

Disturbance 1.5 · sin(2π · 0.25 · t) + 0.25 2 · sin(2π · 1.5 · t) + 2

Reference 1 10 · step(t− 5) 10 · step(t− 5)

Reference 2 10 · sin(2π · 0.5 or 1 · t) 10 · sin(2π · 0.5 or 1 · t)

Table B.1: Parameters of the simulation environment.

Symbol Description Value

m Mass 25

g Acceleration of gravity 9.8

Jx X-moment of inertial 5.2 · 10−3

Jy Y-moment of inertial 1.9 · 10−3

Table B.2: Parameters of the tailless FWMAV.

PID control. Therefore, I plot the response of the pitch angle using the disturbance frequency of

0.001.

In the case of the roll axis, when only the PID controller is used, the attitude is affected by

the disturbance, and the roll angle vibrates along with the same disturbance frequency. On the

other hand, when DOB-based controller is used together, the attitude follows the reference angle

well.

In the case of the pitch axis, when only the PID controller is used (under very low disturbance

frequency), the attitude does not diverge, but it does not follow the reference angle. In the case of

using DOB, although there exists a little vibration, the attitude follows the reference angle well.

In particular, since the pitch axis is more sensitive than the roll axis, it can be confirmed that a

relatively large overshoot occurs when a step input is applied at 5 seconds.
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Figure B.3: Time history of Euler angles based on two types of controllers by step input;
(a) PID controller, (b) PID+DOB controllers.

B.2.2 Sinusoid input

The simulation result of the PID controller and DOB+PID controllers about the sine input is

shown in Fig. B.4. The pitch angle is divergent when only PID controller is used at the disturbance

frequency of 1.5. Therefore, I plot the response of the pitch angle using the disturbance frequency

of 0.001.

In the case of the roll axis, when only the PID controller is used, the attitude is affected by the

disturbance, and the roll angle vibrates along with the same disturbance frequency. On the other

hand, the attitude follows the reference angle well when using DOB-based controller. In the case

of the pitch axis, although a little overshoot occurs at positive and negative poles, the attitude

state follows the reference angle well when using DOB-based controller.
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Figure B.4: Time history of Euler angles based on two types of controllers by sine input;
(a) PID controller, (b) PID+DOB controllers.

B.3 Experiment

Fig. B.5.(a) shows the experimental environment for verifying the performance of the DOB con-

troller. The fan is located 1 m away from the gyroscope device and is positioned so that the center

of the fan matches the center of the testbed. At that location, I measure the amount of wind using

a wind gauge, and the measured vale is about 2 m/s. From Table B.3, 2 m/s is included in the

degree to which the branches shake. To disturb the platform, I shake the fan back and forth and

from side to side at the position where the fan is placed so that wind is applied to the vehicle.

Fig. B.5.(b) shows how much shaking occurs on the vehicle when the actuators of the platform

are not operating. (The initial attitude of the vehicle is directed at a certain angle, but the offset

is added to the angle, so the attitude is shifted to zero degrees to draw a graph.)

Fig. B.6 shows the experimental results for verifying the performance of the DOB controller.

The disturbance is applied around 12 seconds after the vehicle maintains a stable attitude. In the

case of Fig. B.6.(a), when there is no wind disturbance, the vehicle maintains a stable attitude

but it loses its attitude as soon as the wind blows . On the other hand, even in windy conditions,

the platform maintains a stable attitude in Fig. B.6.(b).
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Description Wing speed [m/s] Specifications

Clam 0 ∼ 0.2 smoke goes up straight.

Light air 0.3 ∼ 1.5 smoke goes up at an angle

Slight breeze 1.6 ∼ 3.3 leave shakes.

Gentle breeze 3.4 ∼ 5.4 flag shakes.

Table B.3: Beaufort wing scale.

Figure B.5: Experimental environment for validating DOB-based control structure; (a)
Actual experimental environment, (b) Time history of Euler angles in wind
disturbance.
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Figure B.6: Experimental results for validating DOB-based controller; (a) PID controller,
(b) PID+DOB controllers.
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국 문 초 록

최근생체모방에대한관심이커지면서생명체의구조,외형,움직임,행동을분석하여그들의장점을

로봇에 적용시켜 기존의 로봇이 해결할 수 없거나 특별한 임무를 좀 더 효과, 효율적으로 해결하려는

시도가 늘어나고 있다. 이러한 시도는 무인비행체 개발에도 적용되고 있으며 날갯짓 비행체가 이에

해당된다. 날개짓 비행체는 날개의 반복운동을 통해 발생하는 힘을 통해 비행하는 비행체로 일반적

으로 꼬리날개의 유무에 따라 새를 모방한 비행체(미익형 비행체)와 곤충을 모방한 비행체(무미익형

비행체)로 구분할 수 있다. 무미익형 비행체의 경우 제자리 비행을 할 수 있고, 크기가 작고 무게가

가벼워 공기저항도 줄일 수 있으며, 날렵한 비행이 가능하다는 장점이 있지만, 수동 안정성을 확보하

기 위한 제어면이 충분하지 않고 추력 생성과 동시에 3축으로의 제어 모멘트를 만들 수 있는 복잡한

매커니즘을 가지고 있다는 특징을 가지고 있다.

본논문에서는저자의미익형비행체의연구개발사례를토대로자율비행을할수있는무미익형

비행체를 개발하기 위한 요소기술들과 초기 비행체 개발을 목표로 한다. 해당 목표를 달성하기 위해

저자는 시중에서 판매되고 있는 RC장난감을 활용해 30 gram 이하의 무게를 가지고 30cm3 이내의

크기를 가지는 무미익형 날갯짓 비행체를 개발을 진행하였다. 비행체 내부에는 구동기로 DC 모터와

서보모터가 존재하며, DC 모터는 날갯짓을 일으키는 기어 박스를 작동시켜 비행체의 무게를 지탱

하기 위한 thrust를 생성하며 roll축 방향으로의 moment 생성에 관여하며, 서보모터는 날갯짓에서

발생하는 좌우 thrust의 방향을 조절하여 pitch 와 yaw 축으로의 모멘트를 생성하는데 사용된다.

비행체 내부에는 아두이노 보드 기반의 마이크로프로세서가 탑재되어 있어 비행체를 제어하기 위한

신호를 생성할 수 있으며 블루투스 통신 모듈을 가지고 있기 때문에 외부와 통신 역시 가능하다.

비행체의 자세를 제어하기 위해서는 구동기의 상호작용으로 인해 발생하는 힘의 물리량을 파악

하는 것이 중요하다. 이를 위해 날갯짓 메커니즘에서 발생하는 힘을 측정하는 실험을 수행하였다.

측정실험을 통해 DC모터 입력 대비 thrust 크기, 서보모터 command 입력 대비 moment 크기 등의

관계를 파악하였다. 또한 날갯짓 비행체를 공중에 띄울 수 있는 충분한 크기의 thrust를 발생하는

것을 확인하였으며 자세 제어를 위한 모멘트 생성 역시 가능하다는 것을 확인하였다.

비행체의 자세를 제어하기 위해서는 3축 방향으로의 운동방정식을 유도하는 것이 필요하다. 이

를 위해 roll, pitch, yaw 축 방향으로 비행체에서 발생하는 힘과 회전 운동과 관련한 운동방정식을

유도했으며 이를 통해 비행체의 자세를 안정화시킬 수 있도록 하는 PID 제어기 형태의 제어기를

설계하였다. 뿐만 아니라, 비행체의 궤적추종 제어를 위해 내부의 자세 제어기에 비행체의 위치를



토대로 계산되는 추가적인 외부 제어기를 설계하여 이중루프 제어기 형태를 적용시켜 시뮬레이션을

통해 비행체의 자세 제어와 궤적 추종 제어가 이루어짐을 확인하였다.

개발한 비행체와 앞서 설계한 제어기가 사용자의 의도에 맞는 성능을 내는지 확인하기 위해 자

이로 실험장치를 제작하여 자세 제어 실험을 수행하였다. 해당 실험장치는 roll, pitch, yaw 축으로

회전이 가능하도록 제작하였으며 실험장치 자체의 무게를 줄이기 위해 MDF 소재를 사용하여 구조

물를 만들었다. roll, pitch, yaw 3축이 각각 독립적으로 제어하는 것과 3축을 동시에 제어하는 2가지

상황을 고려하였으며 앞서 설계한 제어기가 해당 실험 장치 내부에서 사용자의 의도에 맞게 제어

성능을 보이는지 확인할 수 있었다.

궤적 추종제어를 위해서는 2가지 비행 상황을 설정하였다. 첫 번째 경우, 천장과 비행체 상단부

에 실을 연결하여 2D 평면상에서 비행체가 주워진 궤적에 따라 움직이는지, 두 번째 경우, 비행체

상단부에 헬륨이 주입된 풍선을 연결시켜 3D 공간상에서 주워진 궤적을 따라 추종 비행하는지를

확인할 수 있는 상황이다. 두 가지 상황에서 모두 다양한 형태의 궤적을 비행체가 잘 추종하는지를

확인할 수 있었다. 끝으로, 외부 장치(실, 풍선)를 제거하여 공중에서 비행체가 제자리 비행을 할 수

있는지를검증하는실험을진행하였으며, 15초가량 1m3공간내에서제자리비행이이루어지는것을

확인하였다.

주요어 : 날갯짓 비행체, 미익형 비행체, 무미익형 비행체, 자세제어, 궤적추종 제어

학번 : 2015-31002
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