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AFIT/GAE/ENY/10-M02 

Abstract 
 

 This research sought to validate a proof of concept regarding shape memory alloy 

actuation of a flapping-wing blimp.  Specimen wires were subjected to cyclic voltage at 

increasing frequencies to quantify expected strains.  A laser vibrometer captured 2048 

sample velocities during single contraction and elongation cycles, and the resulting 

samples were used to calculate displacements.  Displacements were determined ten times 

for each specimen and frequency to compute averages.  Subsequently, a circumventing 

frame was designed to encase a blimp envelope and provide support for a flapping 

motion actuation system.  Contraction of shape memory wire translated force to the 

flapping mechanism via bellcranks, pushrods, and clevises, while bias springs promoted 

elongation of the wire during power-off phases.   Performance characteristics of the 

flapping system, augmented with each specimen wire individually, were determined 

during bench-top testing.  

A modified frame design was constructed when it was determined that the weight 

of the prototype exceeded the buoyant force of the blimp envelope.  The modified frame 

was later fitted to a larger blimp envelope, because it too exceeded the weight restriction 

of the original envelope.   Subsequently, a circuit was constructed to cycle voltage at 0.2 

hertz as applied to the actuating specimen wires, and performance of the system observed 

with the incorporation of each specimen.  The modified prototype showed optimum 

performance of 25 to 35 degrees wing deflection while incorporating a 0.005 inch 

diameter shape memory wire.
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DEVELOPMENT OF A FLAPPING WING DESIGN INCORPORATING 
SHAPE MEMORY ALLOY ACTUATION 

 
 

I.  Introduction 
 

Motivation 

 During the twentieth century, mankind’s endeavors within the domain of flight 

achieved an unprecedented rate of technological advancement paralleling that of the 

industrial revolution.  Inaugurated at Kitty Hawk, the age of flight subsequently 

witnessed the advent of jet propulsion, development of stealth, and the mastery of 

extraplanetary travel.  While these historic advancements encapsulate the achievements 

of manned flight, the past two decades testify to the aspired augmentation of unmanned 

systems within the flight domain.  With the continued proliferation of unmanned systems 

such as the MQ-1 Predator, battlefield commanders are dispensed the beneficial 

mitigation of casualty risk associated with piloted systems.  The unmanned system 

provides a relatively expendable platform to infiltrate areas of robust and pernicious 

defense and is increasingly viewed as the core architecture of future combat.  A crucial 

functional component of this architecture is reconnaissance.  While larger scale 

unmanned aerial vehicles like the Predator function well within the broad range sectors 

defining conventional combat, their size, maneuverability, and speed preclude tasking 

within the confines of urban warfare.  In response to the expanding influence of urban 

warfare, micro air vehicles will provide the predominate means to the reconnaissance 

mission. 
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Research Focus 

 The project chronicled in this thesis sought to qualitatively asses a micro air 

vehicle proof-of-concept incorporating an unconventional method of flapping wing 

actuation.  Flapping motion has historically presented an arduous challenge to the micro 

air vehicle community.  Actuator complexity, low Reynolds number aerodynamics, 

volume constraint, stability, control, and component miniaturization are just a sampling 

of the factors governing the viability of such a system.  While each factor alone can 

critically undermine functionality and performance, the purpose of this conducted 

research was not the optimization of each.  Research was focused on the feasibility of 

smart memory alloy actuation with regard to flapping motion.  While weight reduction 

was a predominate motivation for the smart memory alloy actuation method, optimizing 

the weight characteristics of other components was accomplished superficially.  The 

research and methods required to tactically optimize the weight characteristics of such 

components as power supply and circuitry were well beyond the scope of this project, as 

was the optimization of wing aerodynamics.  The project was an exposé on decreasing 

the complexity of a flapping wing actuation system, reducing the weight allocation of 

such mechanism, validating a proof-of-concept, and providing shape memory alloy 

kinematic data that could be used to optimize future designs. 

 

Document Organization 

 The succeeding sections of this document are delineated as follows:  Literary 

Review, Methodology, Analysis and Results, Conclusions and Recommendations, and 
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Appendix.  The Literary Review is subdivided into sections that substantiate the selection 

of a flapping wing design, characterize the influence of weight, describe the detriments of 

common drive mechanisms, justify the shape memory alloy approach, illustrate the shape 

memory effect, and validate a blimp platform.  The Methodology section describes the 

manner in which functional kinematics of Nitinol were determined, the design and 

fabrication methods associated with the prototype system, and how the prototype 

response was tested.  Analysis and results include the behavioral characteristics of shape 

memory alloy specimens, the observed response of the prototype to specific specimens, 

and resulting system refinement.  The Conclusions and Recommendations section 

presents synoptic precepts associated with shape memory alloy actuation, as well as 

recommendations for future research.  Finally, the Appendix includes the Matlab codes 

employed in the specimen wire stroke analysis as well as displacement results for each 

specimen. 
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II. Literature Review 
 
      
Flapping Wing Attestation    
      
 
 For ages, man has looked to the sky and paid contemplative curiosity to the many 

creatures actively defying the law of gravity.  This inquisitive fascination has been 

manifest from the legend of Icarus within Greek mythology to the avant-garde research 

and development of today.  While early flight attempts are often viewed as an 

amalgamation of unorthodox and recurrently-failed experimentation, the preponderance 

of mechanisms today have solidified into two viably tested approaches: fixed and rotary 

wing designs.  These designs offer practical, dependable, and certain solutions with 

regard to a macro-scale flying system.  The scale of this type system is dictated by the 

lower bound size requirements imposed by the need to carry passengers, weapon systems, 

or large payloads, and thus the employment of these macro-scale flying systems generally 

necessitates designs driven by a balance of speed, range, as well as volumetric and load 

carrying capacity (Kroo and Kunz, 2001: 504).  However, the realm of flight has recently 

witnessed a vectored interest toward that of the low cost, micro-scale, unmanned flying 

system capable of sensor deployment (Mueller and DeLaurier, 2001: 2).   

 While fixed and rotary-wing designs suffice for implementation within macro-

scale flight systems, the functional propositions of micro-scale flight systems are often at 

odds with inherent characteristics of these designs.  Robert C. Michelson contends that 

vehicles tasked with reconnaissance and surveillance missions must adapt to the now 

prominent arena of urban warfare.  His premise is that current fixed-wing Unmanned 
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Aerial Vehicles (UAV’s) are not adept within this setting due to their dependence on 

either large wings or relatively high speed required to sustain flight.  He concludes that a 

functional design must be capable of slow flight and maneuverability within constricted 

areas in order to “…stop, look into windows, or even land in tight spaces to place 

sensors” (Michelson, R. C., 1999:5).  Additionally, aerodynamic studies of biological 

flyers have led to the observation that smaller aspect ratio wings generally correlate to 

greater maneuverability and agility (Shyy and others, 2008: 19). Thus, the functional 

ability to maneuver and operate within confined spaces requires relatively small wings 

with significantly smaller aspect ratios (Torres and Mueller, 2001: 116), as well as 

reduced airspeeds that are typically not conducive to fixed wing flight.  Subsequently, 

Michelson turns his examination to the prospect of rotary versus flapping-wing design.  

His first argument asserts that a flapping wing has a greater endowment to recover 

potential energy by configuring to a “nonflapping glide” than does a rotary wing in 

autorotation (Michelson, R. C., 1999: 7). This endowment affords the flapping wing a 

nominal facet of endurance and energy conservation.  Second, he maintains that the rate 

of control inputs for a flapping wing is reduced in comparison to that of a rotary wing 

(Michelson, R. C., 1999: 7).  Consequentially, stability and control components can be 

simplified and tapered in terms of size and weight.   Michelson also cites the beneficial 

acoustic stealth properties of the flapping wing over the rotary design.  He contends that 

as the size of a rotary design vehicle is reduced, the efficiency of the rotor is diminished.  

This necessitates a higher angular velocity of the blades, thus increasing the acoustic 

signature in both frequency and energy (Michelson, R. C., 1999: 7).  While it has been 
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shown that the upper and lower bound wing-beat frequencies of a flapping design vary 

inversely with mass (Shyy and others, 2008: 20), and thus smaller size requires a higher 

flapping frequency, Michelson poses the following counter: 

 

…the energy will be expended over a wider acoustic bandwidth, but unlike  
the rotorcraft, it will be nonuniformly distributed in the horizontal plane.   
The net result is that a flapping wing approach will be less noticeable than  
a rotary wing approach because the sound spectrum produced will  
approximate wide band white noise rather than a discrete tone (Michelson,  
R. C., 1999: 7). 

 
 

Many researchers echo Michelson’s attestation to the ascendency of flapping-wing 

designs over fixed and rotary-wing designs within the domain of micro-scale systems.  

The benefits of the flapping-wing approach is perhaps best abridged by Othon Rediniotis 

and Dimitris Lagoudas in the statement “A significant advantage of flapping wing 

propulsion is that lift can be generated with little or no forward velocity and with small 

wing size” (Rediniotis and Lagoudas, 2001: 484).  The previous arguments present a 

sound deduction that a functional micro-scale design should incorporate a flapping-wing 

mechanism; however, the development of such a propulsive device continues to present 

conventional impediments commonplace within the micro-scale domain.  Two most 

notable and ubiquitous of these challenges are the attenuation of weight and complexity 

of design. 
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Weight Factor 
 

 The most pronounced hurdle to miniaturization of a flapping-wing flyer involves 

weight curtailment of components and the system as a whole.  Michelson upholds weight 

reduction as “the most critical factor in creating a successful MicroFlyer,” (Michelson, R. 

C., 1999:  8).  In fact, a system’s comprised weight is shown to have dramatic influence 

over power requirements.  Akira Azuma quantified this influence in his derivation of the 

equation for specific power (necessary power to weight ratio) required in horizontal flight 

of a flapping system (Azuma, A., 2006: 137): 

 

                (1) 

 
 
where 

   Pn = Necessary Power for horizontal flight 

   W = Weight 

   P0 = Power required to overcome profile drag of wings 

    = Parasite Drag Coefficient 

   AR = Aspect Ratio 

   ρ = Fluid Density 

   S = Planform Area 

   U = Flight Speed 

     

Solving for necessary power, and simplifying: 
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            (2) 
 
 
The necessary power, therefore, is comprised of two terms that are proportionally 

dependent on the second and fourth powers of weight.  Given a system held constant in 

terms of size and aerodynamic parameters, it is evident that a reduction in weight affords 

a decrease in necessary power required for horizontal flight.  This decrease translates to 

greater endurance given a defined energy source, or alternatively it allows for smaller 

energy capacity of a source given a defined endurance requirement. 

 Another germane repercussion of a flyer’s weight involves the relation between 

wing loading and weight.  Based on the variation of both wing area and weight with 

respect to characteristic length, a formulation regarding the interrelation between wing 

loading and weight can be derived as follows (Shyy and others, 2008: 16): 

                  
    
 

                   
 
                    
 
                       (3) 
 
 
This one-third power dependence is universally characteristic of both man-made and 

natural flyers (Ho and others, 2003: 640).  This dependence results in an interpolated line 

with slope of 0.33 when plotting the wing loading of various flyers versus weight, shown 

in Figure 1. 
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Figure 1. Wing Loading Versus Weight (Liu, T., 2006) 

 

Based on this evidence, it has been concluded: “…there is a maximum weight that can be 

carried by a flyer of a certain size; or vice versa, a minimum size given a certain gross 

weight” (Ho and others, 2003: 640).  Mueller and DeLaurier quantify the generally-

applied fractional weight of micro air vehicle components to include a twenty-one 

percent weight allocation to airframe components, thirty percent to energy source 

components, twenty-one percent to payload components, seventeen percent to avionics 

components, and eleven percent to propulsive components (Mueller and DeLaurier, 2001: 

4).  In addition to the afforded benefits of weight reduction examined previously, 
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reducing the weight of one of these components grants an optional weight trade towards 

other components if the vehicle is designed under defined weight and size requirements. 

 
Issue of Drive Mechanism 
 
 
 Flapping wing design necessitates lever-type translation of the wings.  This action 

is generally devised by first-class or third-class levers in which the pivot point is between 

the input force and the wingtip, or the input force is between the pivot point and wingtip 

respectively.  The points of contention regarding this action in flapping wing design are 

the complexity and weight of the actuating system.  Numerous devices have been 

constructed in an attempt to engage the lever-type translation.  The preponderance of 

these devices model an electric motor that produces a rotational force translated into 

linearly reciprocating motion via crankshaft interaction.  Figures 2 and 3 illustrate one 

device, called a four-bar mechanism, that incorporates this concept. 

 

Figure 2.  Four-Bar Mechanism (McIntosh et al, 2006: 147) 
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Figure 3.  MHP III Incorporating Four-Bar Mechanism (McIntosh et al, 2006: 146) 

 

The prototype depicted in Figure 3, dubbed MHP III, embodies the complexity associated 

with translation of rotary motion to linearly reciprocating motion.  Likewise, the MHP III 

has a weight of 50 grams (McIntosh et al, 2006: 147).  Considering the previously cited 

fractional weight allowance of propulsive components as set forth by Mueller and 

DeLaurier, the 50 gram weight of the MHP III would stipulate a 455 gram gross weight 

for the entire micro-air vehicle and substantially eclipse the 100 gram vehicle weight 

limit established by Spedding and Lissaman (Spedding and Lissaman, 1998: 458).   

Moreover, constraining the system’s gross weight to 100 grams would emphatically 

abridge the weight allowances ascribed to airframe, energy source, payload, and avionics 

components.  An additional representation of the rotary driven method is illustrated in 

Figure 4. 
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Figure 4.  Svanberg Flappping Mechanism (Svanberg, C. E., 2008: 33) 

 

While Svanberg’s mechanism can be characterized as a bench-top design, the complexity 

of design persists.  Additionally, the device weighs 44 grams, not inclusive of the 23 

gram motor (Svanberg, C.E., 2008: 33).  As a final exposé regarding the symptomatically 

adverse weight characteristics of the rotary driven approach, Jadhav’s mechanism 

depicted in Figure 5 exhibits a combined weight of 45 grams for the flywheel, crankshaft, 

and connecting pins alone, while the required driving motor measures 128 grams (Jadhav, 

G., 2007: 33). 
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Figure 5.  Jadhav Flapping Mechanism (Jadhav, G., 2007: 28). 

 

Mechanisms that adopt the rotary driven actuation trait subsume innate complexity, 

consume valuable space, and retain pernicious weight fractions within the limited 

volumetric constraints of a micro-scaled flyer.  Considering the detrimental consumption 

of volume and weight allowances, these actuating systems concede sparse sanctions for 

payload and control systems (Rediniotis and Lagoudas, 2001: 484).  Conclusively, a 

functionally-viable micro-scale flapping vehicle necessitates a simplistic and light weight 

propulsive mechanism. 
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Shape Memory Alloy Approach 
 
 

As the scale of a flying system is diminished, it becomes necessary to devise 

propulsive components of smaller size and weight while retaining favorable force 

outputs.  One solution common to micro-actuators has been the supplanting of 

conventional motors with piezoelectric actuators.  While decreasing the encompassing 

size and weight of the actuating system, the associated deficiencies of this approach 

include limited strain generation and the requirement of high driving voltage (Lan and 

others, 2009: 258).   However, recent advances in the material sciences have 

demonstrated promising potential utilizations within the domain of micro-systems; 

foremost among these advances is the field of Shape Memory Alloys.  Shape memory 

alloys are those that exhibit the Shape Memory Effect.  Comparing against motor-based 

actuation systems, smart memory alloys offer simplicity, compactness, and higher energy 

densities (Seow and others, 2008).  With regard to piezoelectric actuators, shape memory 

alloys are capable of larger strain displacements as well as larger forces (Song and others, 

2003: 224).  In fact, Kohl contends: 

 
Among the presently known actuation principles, the shape memory effect 

 shows the highest energy densities, which are on the order of 10 J/cm3 for 
 NiTi alloys.  For this reason, the shape memory effect appears particularly  
 interesting for applications where, despite small dimensions, large forces 
 and displacements are required (Kohl, M., 2004: 3). 
 
  

Because of the large force generation resulting from minimal energy input, shape 

memory alloys have recently become the focused actuation technique within the domain 
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of micro design (Ohkata and Suzuki, 1998: 264).  Comprehensively, the shape memory 

effect can be described as the proclivity of a deformed specimen to recover an initial, 

unstrained shape when triggered thermally or mechanically (Kohl, 2004: 25), and the 

means of this shape retention is best understood from an atomic view. 

 
Shape Memory Effect 
 
 

Many alloys exhibit the Shape Memory Effect with an associated superlattice 

structure.  The compositional array of shape memory alloys are cardinally classified as 

face-centered cubic or body-centered cubic in consonance with the sublattice structure of 

their parent (austenite) phase (Miyazaki, 1996: 72).  While the austenite sublattice unit 

cell of a few shape memory alloys exhibit fourteen lattice points arranged about the 

surface and points of a cube (face-centered cubic), Miyazaki stipulates that face-centered 

cubic orientation is a rarefied construction applicable to the ferrous alloys (Miyazaki, 

1996: 72-73).   The preponderance of shape memory alloys are categorized as β-phase 

alloys in which the unit cells demonstrate body-centered cubic (BCC) structure 

characterized by nine lattice points.  Eight of these lattice points manufacture an 

archetypal cubic structure while the ninth is centrally imbedded.  β-phase alloys are 

further segmented based upon element ratio within the superlattice structure:  β2-phase 

denoting an approximate 50:50 elemental composition ratio and β1-phase marking a ratio 

of 75:25 (Miyazaki, 1996: 73).  Figure 6 depicts four adjacent unit cells of β2-phase 

nickel-titanium (NiTi) shape memory alloy in the austenitic state. 
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Figure 6: Four Unit Cell NiTi (Kohl, 2004: 30) 

 

Cooling an austenitic phase specimen below a defined transformation temperature allows 

a martensitic transformation to begin.  Conversely, heating a martensitic phase specimen 

above a defined temperature elicits a phase transformation to austenite.  Under 

martensitic transformation, a stressed lattice structure deforms in a shear fashion 

attributed to concerted lattice point movements resulting in strain (Shimizu and Tadaki, 

1987: 1).  Kohl quantifies the lattice point displacements of NiTi in Table 1 below as they 

physically correlate to Figure 7. 
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Table 1:  NiTi Lattice Parameters (Kohl, 2004: 30) 

 

 

 

Figure 7:  NiTi Lattice Parameter Assignments (Kohl, 2004: 30) 

 

While experimentally determined martensitic lattice parameters of NiTi vary, distance 

parameters only show a variance on the scale of thousandths of an angstrom.  



 

18 

Additionally, variance among experimentally-determined angular parameters is observed 

only within the valuation of the β parameter and is on the scale of a single degree 

(Shimizu and Tadaki, 1987: 63).   

Cooling an austenitic phase specimen below a defined transformation temperature 

allows the martensitic transformation to begin.  Conversely, heating a martensitic phase 

specimen above a defined temperature elicits a phase transformation to austenite.  Neither 

transformation process is instantaneous, but rather, occurs fractionally within the 

specimen over a transitory temperature range.  As a martensitic phase specimen is heated, 

the fractional constitution transformed to the austenite state increases from zero to one 

over a defined temperature range (Birman, V., 1997: 629).  This transformation initiates 

at the austenite start temperature (As) and culminates when the elevated austenite finish 

temperature (Af) has been realized (Birman, V., 1997: 629).  An analogous process 

transpires within the transformation from austenite to martensite.  In this case, a fully 

austenitic phase specimen undergoes a fractional transition to the uniform martensite 

state, initiated in conjunction with the martensite start temperature (Ms) and effectuated at 

the lower martensite finish temperature (Mf) (Birman, V., 1997: 630).  Figure 8 outlines 

the transitional stages as martensitic fraction of the specimen versus temperature. 
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Figure 8. Martensitic Fractional Variation (Birman, V., 1997: 630) 

 

While temperature transition induces phase transformation, the process does not 

singularly effect deformation.  To generate advantageous strain, a load application is 

required.  Comparing the yield limit of a martensitic phase specimen to that of an 

austenitic phase specimen, Birman chronicles the former to be much lower than the latter.  

Thus as a loaded specimen is cooled to martensite, a relatively large plastic deformation 

is realized (Birman, V., 1997: 629).  Analysis by Honma demonstrates a linear 

correlation between the yield stress and specimen temperature of several β2-phase NiTi 

alloys as represented in Figure 9. 
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Figure 9.  NiTi Yield Stress Versus Temperature (Honma, T., 1987: 79) 

 

Given the linear correspondence, it can be surmised that yield stress varies in proportion 

to the martensitic fraction of the specimen.  Many sources ostensibly reach the same 

corollary, and revise the cycle of Figure 8 as a presentation of specimen length versus 

temperature (Seow and Liu, 2008:2; Song and others, 2003:225). 
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Figure 10.  Wire Length Versus Temperature (Seow and Liu, 2008:2) 

 

The primary limitation of shape memory alloy implementation is the rate at which 

the alloy cools after thermal excitation has been removed.  Once a strained specimen has 

traversed to an unstrained state via thermal addition and the source of thermal addition 

has subsequently been removed, it becomes necessary to discharge the latent heat from 

the alloy in order to achieve the strained condition once more.  Conventional SMA 

actuator designs rely on convection to dissipate this heat from the alloy, thus enabling 

strain once again in the specimen via a bias force.  It becomes axiomatic that cyclic 

actuation rates form a direct dependence on the rate at which the alloy cools.  While 

cooling rates and thermodynamic inefficiencies tend to effectuate marked liabilities to 

macro-scale SMA actuators, Kohl concludes that the detriment imposed by these factors 

becomes much less pronounced as the scale of the actuator is decreased (Kohl, 2004: 3).  

The less pronounced effects of cooling rate and thermodynamic inefficiency within a 
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micro-scale SMA actuator can be credited to the larger surface-to-weight ratio which 

facilitates convection (Ohkata and Suzuki, 1998: 264). 

 

Blimp Platform 

 Given the a dvantages o f f lapping wing de sign, as  w ell as  the simplicity a nd 

weight reduction afforded by shape memory actuation, it is  surmised that together they 

provide a  pr agmatic m eans of  m icro a ir ve hicle pr opulsion.  T his pr oject s ought t o 

incorporate both shape memory alloy actuation and flapping design within the confines of 

a blimp platform.  A dvantages of the blimp platform include payload capacity, stability, 

endurance, and decreased noise (Brandreth, 2000: 1884).  Additionally, a blimp platform 

decreases the required flapping frequency for flight.  The buoyancy of the blimp provides 

the l ift.  B ecause flapping motion is r equired onl y to pr opel t he de vice, t he f lapping 

frequency will be less than required to also produce lift.  A  novel concept of a flapping 

blimp is the Festo Air_Ray, depicted in Figure 11. 

 

 

Figure 11.  Festo Air_Ray (Festo AG & Company) 
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The Festo Air_Ray utilizes a servo drive unit to actuate the flapping motion, spans 4.2 

meters, and has a mass of 1.6 kilograms (Festo AG & Company).  While the Festo 

Air_Ray integrates flapping wing propulsion with a blimp platform, it does not employ 

shape memory actuation.  The project chronicled herein seeks to validate a proof of 

concept with regard to the coupling of shape memory actuation to a flapping blimp.  

Because the actuation mechanism is novel and innovative, a blimp platform was chosen 

as an intermediate step to test the design and provide lift.  Future optimization of the 

design potentially lends itself to the achievement of pure flapping flight.  While 

functionally similar to other blimp designs, the proof of concept uniquely incorporates 

shape memory actuation. 
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III. Methodology 
 
 
Functional Kinematics of NiTi 
 
 
 The initial phase of the project was to determine the functional kinematics of 

Nitinol.  The direction of this research aimed at quantifying the stroke length of selected 

diameter Nitinol wires as a function of cycling rate.  Several Nitinol wires, trademarked 

as FlexinolTM and advertised as 50:50 Nickel-Titanium in composition, were purchased 

online from Dynalloy Incorporated.  Ninety-degrees Celsius was the advertised transition 

temperature of the purchased specimens and their diameters included 0.0015, 0.002, 

0.003, 0.004, 0.005, and 0.006 inches.  Although Dynalloy Incorporated ostensibly 

advertises a distinct transition temperature, inspection of their technical data sheets 

revealed a martensite start temperature of 72 degrees Celsius, a martensite finish 

temperature of 62 degrees Celsius, an austenite start temperature of 88 degrees Celsius, 

and an austenite finish temperature of 98 degrees Celsius (Dynalloy Incorporated, 

http://www.dynalloy.com/pdfs/MWPBv4.00_FlexSpecs.pdf).  Additional metrics are 

listed in Table 2 below.  Note, the amperages associated with each wire represent an ideal 

constraint to avoid overheating and prevent permanent strain in the specimen. 
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Table 2. Flexinol Metrics (http://www.dynalloy.com/TechData.html) 

 

 

A test specimen representing each wire diameter was prepared by cutting 100 millimeter 

long samples with wire-cutters.  Terminal points were fabricated on the ends of each test 

specimen to provide an attachment point for bias loads as well as an attachment point to 

the test stand.  These terminal points were fabricated from stainless-steel hypodermic 

tubing purchased from Small Parts Incorporated (http://www.smallparts.com/).  Two 

separate dimensions were used, 26 gauge tubing with 0.018 inch outer diameter and 

0.010 inner diameter as well as 22 gauge tubing with 0.028 inch diameter and 0.016 inch 

diameter.  The 26 gauge tubing was used to fashion attachment points for the 0.0015, 

0.002, and 0.003 inch diameter test specimens and the 22 gauge tubing was used to 

fashion attachment points for the 0.004, 0.005, and 0.006 inch diameter test specimens.  

The fabrication process involved cutting two sections, each measuring about 5 

millimeters, of hypodermic tubing for each test specimen.  For the test stand attachment 
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point, one section of tubing was simply crimped to the wire.  Additionally for the bias 

load attachment point, one section was crimped to the wire and the section subsequently 

bent midpoint via needle-nose pliers to form a “V” shape.  Figure 12 visually depicts the 

completely fabricated test specimen of the 0.004 inch diameter wire. 

 

 

Figure 12.  0.004 Inch Diameter Wire Test Specimen 

 

The test stand consisted of an elevated vise to which the attachment end of the test 

specimen was clamped.  The test specimen was hung vertically, and metric hanging 

weights were fixed to the “V” shaped attachment end of each test specimen to provide 

bias force.  The selection of mass providing the bias force was governed in each case by 

the maximum pull force denoted in Table 2, the increments of masses available, and the 

need to minimize oscillation associated with multiple weights.  Table 3 lists the selected 

bias mass for each test specimen. 
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Table 3.  Test Specimen Bias Mass 

Wire Diameter (inches) Bias Mass (grams) 

    0.006          300 
    0.005          200 
    0.004          150 
    0.003            75 
    0.002            20 
    0.0015            10 
 
 
 
Electric current was the chosen method of actuation, and the resistance associated with 

each wire provided the process by which the austenite start and austenite finish 

temperatures were attained.  Additionally, convection provided a simple and 

straightforward means to cooling the wire through the martensitic transformation. 

The voltage applied to each test specimen was calculated from the resistance data and 

ideal amperage data listed in Table 2.  From Ohm’s Law: 

 

     V = I*R     (4) 

 

where V is the voltage measured in volts, I is the current measured in amperes, and R is 

the resistance measured in ohms.  Table 4 depicts the variables and results of the ideal 

voltage calculation for each test specimen.  Note, the length of the 100 millimeter test 

specimen was converted to inches to facilitate voltage calculation. 
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Table 4.  Calculated Voltage Requirements 

  

 

Power generation was provided by a Hewlett Packard 6236B Triple Output Power Supply 

and regulated by a Hewlett Packard 3312A Waveform Generator.  A Tip31 transformer 

was necessary to interface the two components in order to increase the 20 milliamp 

output of the waveform generator to match that of the power supply.  The configuration 

was designed and built by Air Force Institute of Technology lab technician Sean Miller, 

and viewed below in Figure 13.  The power supply and regulation arrangement is 

depicted in Figure 14. 

 

 

Figure 13.  Power System Configuration 
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Figure 14.  Power Arrangement 

 

Testing of each specimen involved clamping one end to the vice, hanging the bias mass 

to the “V” shaped termination point of the wire, fixing the power arrangement leads to 

the termination points, and cycling the voltage to produce repeated contractions and 

elongations of the wire.  Determination of stroke length by visual means was deemed 

subjective, sanctioning relatively large discrepancies between actual and observed 

distances considering the scale of travel.  Utilization of a laser vibrometer provided 

salient objectivity to the measuring process.  The laser from the vibrometer sensor head 

was directed at a mirror.  The incident reflection of the laser from the mirror was aimed at 

the bottom of the bias mass hanging from the test specimen.  Reflective tape was affixed 
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to the underside of the bias mass to provide adequate signal return.  Figure 15 depicts the 

set up excluding lead attachments from the power arrangement to the terminal points. 

 

Mirror

Elevated 
Vise

Bias Mass

Terminal 
Points

Specimen Wire

Sensor Head

Laser
 

Figure 15.  Testing Arrangement 

 

  The vibrometer system consisted of a Polytec OFV-505 Sensor Head and a Polytec 

OFV-5000 Vibrometer Controller pictured in Figures 16 and 17 respectively. 

 

 

Figure 16.  Vibrometer Sensor Head 
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Figure 17.  Vibrometer Controller 

 

The vibrometer controller provided velocity output at a range setting of 10 mm/s/V and 

maximum frequency setting of 250 kHz.  Tracking, low-pass, and high-pass filters were 

selected off.  The software used to capture the resulting data was SignalCalc 620 

Dynamic Signal Analyzer distributed by Data Physics Corporation. 

Once the set-up was complete, the leads from the power arrangement were fixed 

to the attachment ends of the test specimen.  Amplitude setting of the waveform 

generator was 2.5 volts peak to peak (VPP), and Offset was fixed at 1.25 VPP.  The 

waveform was set as a 50% duty cycle square-wave, and the initial frequency setting was 

0.1 Hz.  Once the power supply was turned on, a multimeter was used to determine the 

voltage across the terminal points of the test specimen.  The voltage output of the power 

supply was then adjusted until the voltage across the terminal points equaled the test 

specimen’s calculated voltage requirement listed in Table 4.   

Within the SignalCalc 620 software, “Transfer Function” was selected as the test 

type, and time domain settings were utilized.  Block size was set at 2048 to give the 
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equivalent number of samples over the time range.  From the “signal map” field, X2 was 

selected as a Matlab file to be exported.  Figure 18 is a screenshot of the software. 

 

 

Figure 18.  SignalCalc 620 Representative Screen 

 

Time span was set to capture one cycle of test specimen movement through the 

contraction and elongation stages associated with the austenitic and martinsitic  

transformations.  As the wire contracted and elongated, the SignalCalc 620 software 

would capture 2048 velocity samples over the selected time interval.  The software only 

allowed the selection of predefined time intervals, and the selected value was chosen to 

correspond with the period of motion as precisely as possible. 



 

33 

 After software settings were accomplished, the data collection process began and 

was repeated for each test specimen.  This process involved taking velocity samples over 

a range of a single cycle beginning with a frequency of 0.1 Hz as set by the waveform 

generator.  Samples were taken at increasing 0.1 Hz steps until the test specimen 

produced little to no movement, and for each frequency setting, ten samples were taken to 

later determine an average displacement.  Once data collection was complete, the data 

were exported as Matlab M-files, and the M-files were processed by the generated Matlab 

code included in Appendix A.  Output of the Matlab code provided a plot of velocity 

versus time, displacement versus time, and stroke length as determined from peak-to-

peak displacement.  The ten peak-to-peak displacements associated with each frequency 

were averaged, and the average values were plotted versus frequency for each test 

specimen.  Figure 19 depicts an example velocity versus time plot for the 0.003 inch 

diameter test specimen at 0.2 Hz, and Figure 20 depicts the displacement versus time 

plot.  Note, positive velocities correspond to elongation associated with martensitic 

transformation of the test specimen, and negative velocities correspond to contraction of 

the test specimen associated with austenitic transformation. 
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Figure 19.  Matlab Plot of Velocity Versus Time 

 

 

Figure 20.  Matlab Plot of Displacement Versus Time 
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Results of the wire testing phase provide data upon which selection of wire 

diameter can be optimally determined given frequency specifications of flapping motion.  

Additionally, the test specimens were 100 millimeters long and subjected to ideal voltage. 

Therefore, the average displacement for a given frequency is equal to the percent strain 

expected in specimens of differing lengths when subjected to an ideal voltage.  The ideal 

voltage of longer and shorter specimens can be calculated by multiplying the resistance 

per inch given in Table 2 by the specimen length, the product of which is multiplied by 

the amperage also listed in Table 2.   

 
 
Prototype Frame and Actuator Construction 
 
 
 The decision to implement a shape memory alloy action system within the 

confines of a blimp-type micro air vehicle inaugurated a multifaceted challenge.  Taking 

into account such factors as weight, number of components, strength, and performance, 

the project began to manifest itself as an enterprising trade study.  The design not only 

had specific weight constraints as governed by the buoyant force of the blimp envelope, 

but also required structural rigidity that could antagonistically compete with weight 

requirements.  Increasing the number of components required in the actuation system 

would also precipitate an accession of gross weight.  Performance optimization, as 

governed by Nitinol wire diameter, presented a conflicting relationship between flapping 

frequency and magnitude of wing translation.  Additionally, each wire necessitated 

unique power requirements that portended variations in power components. 
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 The design process evolved around a silver metalized nylon blimp envelope 

distributed by Plantraco Microflight and available at the website: 

http://www.microflight.com/Online-Catalog/R-C-Toys/Balloon-24-for-MicroBlimp.  The 

envelope, depicted in Figure 21, is a replacement for the distributer’s advertised 

“MicroBlimp” depicted in Figure 22, which is a remotely controlled system that 

incorporates twin rotors for propulsion, and has a 24 inch envelope with an inflated 

diameter of about 18 inches.  A previously purchased “MicroBlimp” was disassembled, 

and the component weights included 7.36 grams for the circuitry, motors, and propellers, 

2.67 grams for the plastic gondola, 3.2 grams for the 3.7 Volt Lithium polymer battery, 

and 5 grams of ballast in the form of washers. 

 

 

Figure 21.  Blimp Envelope    
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Figure 22.  MicroBlimp (http://www.microflight.com/Online-Catalog/R-C-

Toys/MicroBlimp-RTF-Set)  

                    

 A paramount hurdle of the design process was how to physically integrate a 

flapping mechanism to the blimp envelope.  Initial design concepts supposed that the 

components be adhesively fixed to the envelope itself as represented in Figure 23.  The 

design would require four hinge points physically attached to the envelope via epoxy and 

the envelope itself would be the frame of the design.  While this approach appeared 

superficially feasible, further inspection revealed that the non-rigid blimp envelope 

provided little supportive strength and would deform during actuation, impeding the 

flapping motion. 
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Figure 23.  Initial Concept 

 

Acknowledging the need for supportive rigidity, the adjudicated resolution was to encase 

the blimp envelope within a structural frame and mount the actuation system to the 

frame.  While balsa wood could provide a stronger framework than the envelope, a balsa 

compositional frame was deemed too brittle and fragile, and subsequently carbon fiber 

was chosen.   

 Settling on carbon fiber composition, the design process turned to the architecture 

of the frame itself.  The envisioned concept was one in which the dimensions of the 

frame allowed the encasement of the envelope without the need for direct attachment to 

the blimp.  The concept required the frame to be designed such that the inflated envelope 

would expand against it and prevent the envelope from shifting position with respect to 

the frame.  It was decided that two surrounding sections be connected by adjoining rods 

and dimensionally constructed to conform to the shape of the envelope.  Discarding the 
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concept of rectangular surrounding sections in response to weight mitigation, the settled-

on approach was to form the surrounding sections as hexagons that conformed 

dimensionally in height to the envelope and were held together by adjoining rods fixed at 

the four lower vertices.  Based on height and width measurements of the inflated 

envelope, a rudimentary design for the surrounding hexagons was dimensionally 

formulated and is illustrated in Figure 24, which shows a head-on view. 

 

 

Figure 24.  Rudimentary Design of Support Frame 

 

The angle of the lower vertices was 120 degrees each, the mid vertices measured about 

124 degrees each, and the upper vertices measured about 116 degrees each.  Each section 

was constructed from carbon tubing weighing 0.04561 grams per centimeter and having 

an outside diameter of 0.098 inches and a 0.059 inch inside diameter. 
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 Construction of each surrounding section began with cutting the carbon tubing, 

using a Dremel equipped with a Number 420 Cut-Off Wheel, into the appropriate lengths 

as annotated in Figure 24.  It was then realized that a method of joining the tubing at the 

vertices had to be devised.  Initial attempts were made by applying JB Weld to the tubing 

ends.  The adhesive alone did not provide much strength to the joints and proved 

nonreliant as did attempts to affix the ends with solder.  A viable approach was 

subsequently devised in which a 1.5 centimeter section of paperclip was cut, bent 120 

degrees at the midpoint, coated with JB Weld, and each end inserted into the carbon 

tubing forming the angle.  The upper portion of Figure 25 shows the setup before the JB 

Weld application, and the lower portion shows the completed joint. 

 

 

Figure 25.  Tubing Attachment 
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After completing the hexagons, focus shifted to integrating the actuator components with 

the frame.  A simplistic system, depicted in Figure 26, was conceived in which the 

contracting Nitinol wire would simultaneously pull two bellcranks.  Each bellcrank 

would be attached to a pushrod serving as the physical means to impart force on a third-

class lever action wing.   

 

Nitinol Wire

BellcrankPushrod

Wing Frame

 
Figure 26.  Prototype System 

 

Components of the actuation system included two Du-Bro 90 degree micro bellcranks 

with mass of 0.158 grams each, two Du-Bro nylon kwik-link clevises with mass of 0.303 

grams each, four Great Planes nylon swivel clevises with mass of 0.456 grams each, and 

two carbon fiber pushrods cut to 15 cm each.  The carbon fiber pushrods were distributed 

by Midwest Products, had a diameter of 0.08 inches, and had a mass of 0.0472 grams per 
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centimeter.  Figures 27, 28, and 29 depict the bellcrank, the nylon kwik-link clevis, and 

the nylon swivel clevis respectively. 

 

              

         Figure 27.  Micro Bellcrank                               Figure 28.  Kwik-link Clevis 

 

 

Figure 29.  Swivel Clevis 

 

The bellcranks were positioned on the ends of two carbon tubes measuring 8 cm each.  

The brass fitting of the bellcrank fit snuggly on the inserted carbon tubing and required 

no adhesive.  With the brass fitting secure, the plastic portion of the belcrank was free to 

rotate about it.  In addition to supporting the bellcrank, the carbon tubing would serve to 
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join the hexagons at the corresponding lower two vertices.  Behind the bellcrank, a small 

plastic spacer was placed to prevent contact with the frame once the carbon tube was 

positioned.  The interior angles of the hexagons’ lower vertices were coated with JB 

Weld and the carbon tubes fitted with the bellcranks were positioned into the interior 

angles.  The linkage between the pushrod and the bellcrank was made by a Kwik-Link 

clevis.  One of the 15 cm pushrods was coated with JB Weld on one end, fitted to the 

clevis, and the clevis was then snapped into place through the lower hole on the arm of 

the bellcrank.  Figure 30 shows a carbon tube, fitted with a bellcrank and spacer, fixed in 

position at the corresponding lower vertices of the two hexagons, and Figure 31 shows a 

head on view.  Figure 32 shows the pushrod linked to the bellcrank via a Kwik-Link 

clevis. 

 

      

         Figure 30.  Bellcrank Side View                     Figure 31.  Bellcrank Front View 
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Figure 32.  Pushrod/Bellcrank Linkage 

 

 Once the pushrod and bellcrank linkages were complete, fabrication of the third-

class lever system began.  The lever system would function as the wing flapping 

mechanism.  Similar to the bellcrank attachment, one of the swivel clevices was fitted to 

the end of a carbon tube, and the carbon tube fixed between the corresponding middle 

vertices of the two hexagons.  In order to fit the swivel clevis to the spanning carbon 

tube, a 3/32 inch hole was drilled through the mid-section of the swivel clevis.  The end 

of the carbon tube was coated with JB Weld and inserted through the hole.  Finally, the 

carbon tube was fixed between the corresponding mid-point vertices of the hexagons with 

JB Weld.  Figures 33 and 34 show the side view and front view of the resulting work. 
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 Figure 33. Swivel Attachment Side View       Figure 34. Swivel Attachment Front View 

 

The ends of the pushrods opposite of the bellcrank linkages were coated with JB Weld 

and inserted into the ends of additional swivel clevises.  One-foot sections of carbon 

tubing representing wings were inserted through the swivel holes of the frame-attached 

swivel clevises and the pushrod-attached swivel clevis.  The carbon tubing was set in 

place with JB Weld in each of the swivel holes.  A 1.5 cm section of pushrod was cut and 

fitted to the end of the frame-attached swivel clevis with JB Weld.  This 1.5 cm section 

served as an anchor point for a bias spring, the other end of the spring fixed to the wing. 

The bias springs were included for use in a previously purchased FlexinolTm kit that 

contained the same diameter wires as the specimens investigated during this project.  

Because the spring constant and frictional forces between the components were unknown, 

the force required to impart motion on the third-class lever could not be calculated.  The 

prototype would be configured and tested with each specimen individually to determine if 

adequate force could be generated to cause motion.  Figure 35 shows the completed lever 

action mechanism.  Figure 36 shows the completed frame and actuation system. 
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Figure 35.  Lever Action System 

 

 

Figure 36.  Prototype Frame and Actuation System 

 

Actuator Wire Preparation and Testing 
 
 
 The subsequent phase of the project involved preparing and testing specimen 

Nitinol wires in conjunction with the fabricated actuation system.  From each of the five 
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sizes of Nitinol wire, 38 centimeter length specimens were cut.  To help ensure a 

specimen wire would pull each bellcrank synchronously and that the magnitude of 

motion would be equal for each bellcrank, the midsection of the wire had to be fixed with 

respect to the frame.  For each specimen wire, a 1.5 centimeter length of hypodermic 

tubing was cut, the wire threaded through the tubing, and the tubing crimped at the 

midpoint of the wire length.  The wire was then threaded through a 22-16 gauge butt 

splice until the hypodermic tubing was centered in the splice.  With the splice in place, it 

was then crimped to the tubing at midpoint.  This arrangement provided a means to fix 

the midpoint of the wire to the frame by clamping the splice to the frame.  Terminal 

points were fabricated on the ends of each wire specimen to be used as linkages to each 

bellcrank.  These terminal ends were fabricated from the same stainless-steel hypodermic 

tubing used in the wire testing phase, the terminal points for the 0.0015, 0.002, and 0.003 

specimens constructed from 26 gauge tubing and the terminal points for the 0.004, 0.005, 

and 0.006 specimens constructed from the 22 gauge tubing.  The process involved cutting 

two sections, each measuring about 1.5 centimeters, of hypodermic tubing for each test 

specimen and bending each section into a “V” shape with needle nose pliers.  Each end of 

the specimen wire was threaded into the “V” shaped hypodermic tubing until it stopped at 

the vertex and then crimped in place.  The ends of the terminals not crimped to the wire 

were inserted into the lower holes of the bellcranks. 

 With the specimens made, the actuation system was tested as a bench-top design 

with each wire tested individually as a constituent of the system.  The power arrangement 

used in the wire kinematic testing phase provided the power during this testing phase, and 
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the leads were initially attached to the terminal points of the wire.  The power 

arrangement limited voltage across the leads to 5 volts, and thus the ideal voltage for the 

given length of each specimen wire could not be attained.  The leads were then placed at 

increasingly closer distances from the midpoint of the wire until the magnitude of wing 

motion reached its zenith, and motion was observed at increasing frequencies.  Though 

this method was not ideal, visual observations determined which specimens could 

produce enough force to induce motion and provided a semblance of performance with 

respect to the magnitude of motion versus frequency.  
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IV. Analysis and Results 
 
 

Wire Stroke Length 
 

 During the initial phase of the project, specimen wires were subjected to a cyclic 

voltage in order to determine stroke lengths for given cycling frequencies.  This process 

utilized a laser vibrometer and SignalCalc 620 software to capture 2048 sample velocities 

over a selected time interval.  The software only allowed the selection of predefined time 

intervals, and the selected value was chosen to correspond with the period of motion as 

precisely as possible. The process was repeated ten times for each frequency in order to 

statistically determine the percent strain expected for each wire as related to a given 

frequency.  The initial Matlab code in Appendix A, used to calculate stroke length, 

assumed each sample block, consisting of 2048 velocity samples, represented exactly one 

cycle.  While this would have been ideal, the software’s predefined time intervals did not 

always correspond exactly with the period of motion, and thus some time block samples 

represented intervals slightly greater than one cycle.  Additionally, some of these time 

block samples of greater than one cycle interval contained initial data points exceeding 

the zero-slope maxima and minima of the displacement curve representing the single 

cycle.  These initial data points were attributed to preceding cycles of larger stroke 

length, and an example is shown in the displacement plot of Figure 37.   
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Figure 37.  Previous Cycle Influence 

 

It was determined that refinement of the original Matlab code was necessary to negate the 

influence of preceding cycles and ensure displacement calculations were made between 

zero-slope maxima and minima of the displacement curve.  This refinement, as seen in 

the updated Matlab code of Appendix B, involved the introduction of a variable (n) 

which would define the first sampling point of the 2048 to be used in code calculations.  

For samples that displayed initial values exceeding the zero-slope maxima or minima, the 

value of the variable “n” was selected to define the first sample point of the domain over 

which displacement would be calculated, thereby negating the influence of the initial 

values.  For example given the sampling data in Figure 37, the value of “n” would be set 
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to 500.  The Matlab code would then discard samples 1 through 499, and the 

displacement calculation would be made between samples 500 and 2048. 

 The first wire tested was the 100 millimeter long, 0.006 inch diameter specimen, 

and it was subjected to a 300 gram bias mass as discussed in Section III.  Calculations 

presented in Table 4 of the Methodology section resulted in an ideal voltage of 2.04 volts 

for the specimen.  However, an exact voltage could not be set due to variance in the 

power output, and the applied voltage was about 2.04 +/- 0.05volts.  Appendix C lists the 

ten resulting displacement measurements for each tested frequency.  From the ten 

displacement measurements, an average displacement was calculated for the frequency as 

well as standard deviation and 95% confidence interval as listed in Table 5. 

 

Table 5.  0.006 Inch Diameter Specimen Results 

Frequency (Hz)     Average Displacement (mm)     Standard Deviation (mm)    95% Confidence (mm) 
 
          0.1     4.71941   0.51219            +/-  0.31746 
          0.2     2.49454   0.32715            +/-  0.20276 
          0.3     0.78697   0.35288            +/-  0.21871 
          0.4     0.20463   0.03316            +/-  0.02055 
          0.5     0.11133   0.01984            +/-  0.01230 
 
 
 
The results in Table 5 show a rapidly decreasing average displacement with increasing 

frequency.  Ostensibly, the rapid decrease is attributed to the large mass to surface area 

ratio resulting in a low cooling rate, and this decrease is best illustrated in Figure 38.  

Because the length of the specimen was 100 millimeters, each average displacement also 

translates to a percent strain that can be used to calculate expected strain in wires of 
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differing lengths.  The standard deviations and 95% confidence levels provide a degree of 

certainty in the consistency of motion 

 

 

Figure 38.  0.006 Inch Diameter Wire Displacement Versus Frequency 

 

The 0.005 inch diameter specimen wire was subjected to a 200 gram bias mass as 

discussed in Section III. Calculations presented in Table 4 of the Methodology section 

resulted in an ideal voltage of 1.77 volts for the specimen.  As before, an exact voltage 

could not be set due to variance in the power output, and the applied voltage was about 

1.77 +/- 0.05volts.  Appendix D lists the ten resulting displacement measurements for 

each tested frequency.  From the ten displacement measurements, an average 

displacement was calculated for the frequency as well as standard deviation and 95% 
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confidence interval as listed in Table 6.  Figure 39 displays the plot of the average 

displacement versus frequency. 

 

 

Table 6.  0.005 Inch Diameter Specimen Results 

Frequency (Hz)     Average Displacement (mm)     Standard Deviation (mm)    95% Confidence (mm) 
 
          0.1     5.24167   0.10906            +/-  0.06759 
          0.2     4.05559   0.18457            +/-  0.11439 
          0.3     3.19086   0.26277            +/-  0.16286 
          0.4     2.18075   0.33353            +/-  0.20672 
          0.5     1.52558   0.38569            +/-  0.23905 
          0.6     0.83350   0.25097            +/-  0.15555 
          0.7     0.63352   0.16387            +/-  0.10157 
          0.8     0.44820   0.11017            +/-  0.06828 
 
 
 

 

 
Figure 39.  0.005 Inch Diameter Wire Displacement Versus Frequency 
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As seen above, the displacement decreases at a lower rate versus frequency for the 0.005 

inch diameter specimen compared to the 0.006 inch diameter specimen due to the smaller 

mass to surface area ratio. 

The 0.004 inch diameter specimen wire was subjected to a 150 gram bias mass as 

discussed in Section III. Calculations presented in Table 4 of the Methodology section 

resulted in an ideal voltage of 2.12 volts for the specimen.  As before, an exact voltage 

could not be set due to variance in the power output, and the applied voltage was about 

2.12 +/- 0.05volts.  Appendix E lists the ten resulting displacement measurements for 

each tested frequency.  From the ten displacement measurements, an average 

displacement was calculated for the frequency as well as standard deviation and 95% 

confidence interval as listed in Table 7.  Figure 40 displays the plot of the average 

displacement versus frequency. 
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Table 7.  0.004 Inch Diameter Specimen Results 

Frequency (Hz)     Average Displacement (mm)     Standard Deviation (mm)    95% Confidence (mm) 
 
          0.1     5.29117   0.26403            +/-  0.16364 
          0.2     4.06367   0.10421            +/-  0.06459 
          0.3     3.67662   0.22602            +/-  0.14009 
          0.4     3.32311   0.14493            +/-  0.08983 
          0.5     3.21630   0.15939            +/-  0.09879 
          0.6     3.10949   0.11302            +/-  0.07005 
          0.7     2.69061   0.18024            +/-  0.11171 
          0.8     2.44508   0.30820            +/-  0.19102 
          0.9     2.21404   0.36868            +/-  0.22851 
          1.0     1.68472   0.47348            +/-  0.29346 
          1.1     1.68114   0.44551            +/-  0.27613 
          1.2     1.32669   0.32922            +/-  0.20405 
          1.3     1.12944   0.30884            +/-  0.19142 
          1.4     0.92361   0.18599            +/-  0.11528 
          1.5     0.78439   0.18495            +/-  0.11463 
          1.6     0.69673   0.23579            +/-  0.14614 
          1.7     0.56931   0.18779            +/-  0.11639 
          1.8     0.55288   0.19234            +/-  0.11921 
          1.9     0.58670   0.21268            +/-  0.13182 
          2.0     0.49067   0.10490            +/-  0.06502 
 
 

 

 
Figure 40.  0.004 Inch Diameter Wire Displacement Versus Frequency 
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The 0.003 inch diameter specimen wire was subjected to a 75 gram bias mass as 

discussed in Section III. Calculations presented in Table 4 of the Methodology section 

resulted in an ideal voltage of 1.96 volts for the specimen; however, the wire produced no 

visually observed movement at this voltage in contrast with visually evident 

displacements of the 0.006, 0.005, and 0.004 inch diameter wires.  The voltage was 

increased until displacement at 0.1 hertz was visually evident and appeared to be at a 

maximum.  This resulted in an applied voltage of 2.50 +/- 0.05 volts.   Appendix F lists 

the ten resulting displacement measurements for each tested frequency.  From the ten 

displacement measurements, an average displacement was calculated for the frequency as 

well as standard deviation and 95% confidence interval as listed in Table 8.  Figure 41 

displays the plot of the average displacement versus frequency. 

 

Table 8.  0.003 Inch Diameter Specimen Results 

Frequency (Hz)     Average Displacement (mm)     Standard Deviation (mm)    95% Confidence (mm) 
 
          0.1     5.63374   0.32271            +/-  0.20001 
          0.2     4.47232   0.30046            +/-  0.18623 
          0.3     3.94643   0.30107            +/-  0.18660 
          0.4     3.61870   0.23111            +/-  0.14324 
          0.5     3.52150   0.22983            +/-  0.14245 
          0.6     3.19926   0.19519            +/-  0.12098 
          0.7     3.05384   0.19341            +/-  0.11988 
          0.8     3.07014   0.11428            +/-  0.07083 
          0.9     2.74913   0.34210            +/-  0.21203 
          1.0     2.89821   0.19310            +/-  0.11968 
          1.1     2.65286   0.25922            +/-  0.16067 
          1.2     2.21470   0.58294            +/-  0.36131 
          1.3     2.38849   0.38408            +/-  0.23805 
          1.4     2.18967   0.46097            +/-  0.28571 
          1.5     2.22352   0.27017            +/-  0.16745 
          1.6     1.55351   0.57245            +/-  0.35480 
          1.7     1.33280   0.44887            +/-  0.27821 
          1.8     1.24272   0.33757            +/-  0.20922 
          1.9     1.23969   0.49190            +/-  0.30488 
          2.0     0.84844   0.22308            +/-  0.13827 
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Figure 41.  0.003 Inch Diameter Wire Displacement Versus Frequency 

 

The 0.002 inch diameter specimen wire was subjected to a 20 gram bias mass as 

discussed in Section III. Calculations presented in Table 4 of the Methodology section 

resulted in an ideal voltage of 2.36 volts for the specimen; however, the wire produced no 

visually observed movement at this voltage.  The voltage was increased until 

displacement at 0.1 hertz was visually evident and appeared to be at a maximum.  This 

resulted in an applied voltage of 3.00 +/- 0.05 volts.   Appendix G lists the ten resulting 

displacement measurements for each tested frequency.  From the ten displacement 

measurements, an average displacement was calculated for the frequency as well as 

standard deviation and 95% confidence interval as listed in Table 9.  Figure 42 displays 

the plot of the average displacement versus frequency. 
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Table 9.  0.002 Inch Diameter Specimen Results 

Frequency (Hz)     Average Displacement (mm)     Standard Deviation (mm)    95% Confidence (mm) 
 
          0.1     6.07380   0.15119            +/-  0.09371 
          0.2     4.96833   0.12424            +/-  0.07700 
          0.3     4.48524   0.09719            +/-  0.06024 
          0.4     4.25226   0.05895            +/-  0.03654 
          0.5     3.69114   0.09670            +/-  0.05993 
          0.6     3.55844   0.05572            +/-  0.03454 
          0.7     3.47558   0.03175            +/-  0.01968 
          0.8     3.45849   0.05131            +/-  0.03180 
          0.9     3.28169   0.11906            +/-  0.07379 
          1.0     3.18518   0.12629            +/-  0.07827 
          1.1     3.13330   0.10854            +/-  0.06727 
          1.2     2.84933   0.49478            +/-  0.30666 
          1.3     2.78288   0.19025            +/-  0.11791 
          1.4     2.21507   0.49785            +/-  0.30857 
          1.5     1.80908   0.47193            +/-  0.29250 
          1.6     1.93150   0.64515            +/-  0.39986 
          1.7     2.22615   0.75006            +/-  0.46489 
          1.8     1.88090   0.60092            +/-  0.37244 
          1.9     1.77979   0.41140            +/-  0.25498 
          2.0     1.33755   0.33422            +/-  0.20715 
 
 

 
Figure 42.  0.002 Inch Diameter Wire Displacement Versus Frequency 
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The 0.0015 inch diameter specimen wire was subjected to a 10 gram bias mass as 

discussed in Section III. Calculations presented in Table 4 of the Methodology section 

resulted in an ideal voltage of 2.48 volts for the specimen; however, the wire produced no 

visually observed movement at this voltage.  The voltage was increased until 

displacement at 0.1 hertz was visually evident and appeared to be at a maximum.  This 

resulted in an applied voltage of 4.00 +/- 0.05 volts.   Appendix H lists the ten resulting 

displacement measurements for each tested frequency.  From the ten displacement 

measurements, an average displacement was calculated for the frequency as well as 

standard deviation and 95% confidence interval as listed in Table 10.  Figure 43 displays 

the plot of the average displacement versus frequency.  Additionally, Figure 44 is an 

aggregate plot of displacement versus frequency for each wire. 

 

Table 10.  0.0015 Inch Diameter Specimen Results 

Frequency (Hz)     Average Displacement (mm)     Standard Deviation (mm)    95% Confidence (mm) 
 
          0.1     4.64361   0.44402            +/-  0.27520 
          0.2     3.64253   0.52924            +/-  0.32802 
          0.3     2.94705   0.37194            +/-  0.23053 
          0.4     2.81282   0.36184            +/-  0.22427 
          0.5     2.79868   0.21131            +/-  0.13097 
          0.6     2.74071   0.22512            +/-  0.13953 
          0.7     2.82888   0.19201            +/-  0.11901 
          0.8     2.82278   0.19549            +/-  0.12117 
          0.9     2.81839   0.12840            +/-  0.07958 
          1.0     2.66584   0.18110            +/-  0.11225 
          1.1     2.79358   0.22402            +/-  0.13885 
          1.2     2.80575   0.13162            +/-  0.08158 
          1.3     2.78034   0.28630            +/-  0.17745 
          1.4     2.68136   0.26716            +/-  0.16559 
          1.5     2.65815   0.13578            +/-  0.08415 
          1.6     2.71539   0.06098            +/-  0.03779 
          1.7     2.52334   0.24146            +/-  0.14966 
          1.8     2.45340   0.14366            +/-  0.08904 
          1.9     2.34208   0.09932            +/-  0.06156 
          2.0     2.10643   0.30654            +/-  0.18999 
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Figure 43.  0.0015 Inch Diameter Wire Displacement Versus Frequency 

 

 

 
Figure 44.  Aggregate Results 
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Analysis of the collected data reveals an inverse relationship between cycling 

frequency and stroke length.  As frequency was increased, the duration of the cycle’s 

power-off phase decreased.  The decreased duration of the power-off phase resulted in 

less time for the specimen to dissipate heat between power applications.  The martensite 

start temperatures of the specimens were reached during the power-off phases of each 

tested frequency as evident in the specimens’ elongations, however minute.   As 

frequency was increased, the fully martensitic state corresponding to full elongation 

could not be reached during the power-off phase because the cooling rate was not great 

enough for the specimens to attain the martensite finish temperature.  The temperature of 

the specimens resided between the martensite start and finish temperatures at the end of 

each power-off phase.  The realized specimen temperature at the end of each power-off 

phase resulted in fractional martensitic composition as generalized in Figure 8 of Section 

II, and equated to a shorter elongation as generalized in Figure 10 of the same section.  

Thus, the realized temperature at the end of each power-off phase was higher, the 

martensitic fraction lower, and the elongation shorter for each increase in frequency.  

Additionally, the slopes presented in Figure 44 reveal the effect of the surface area to 

mass ratio.  Wires with larger diameters, reflecting greater surface area to mass ratios, 

produce more pronounced slopes than those of smaller diameter due to their slower rates 

of cooling. 

In light of this analysis, the selection of wire diameter to actuate a flapping wing 

device is constrained by the scale of the design.  As the scale of a design is decreased, it 

becomes necessary to select wires of smaller diameter to achieve the greater required 
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flapping frequencies.  Additionally, methods to increase the cooling rate may be required 

to retain functional displacements. 

 

Prototype Response 
 
 
 After quantifying the kinematics of the specimen wires, the project’s focus shifted 

to determining the prototype’s functional response while incorporating each sized wire.   

The results presented in the previous section provided foundational data upon which the 

cursory selection of wire could be made.  As evident from the data, smaller wire diameter 

was necessary to produce beneficial displacements at higher frequencies.  The 

displacement generated by the wire translated to the magnitude of the flapping motion, 

defined as the angular wing displacement as shown in Figure 45, while the flapping rate 

equaled the frequency setting. 

 

Wings Prior to Flapping Motion

Deflected Wings
 

Figure 45.  Flapping Motion Depiction 
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   An additional constraint governing performance was the maximum pull force of 

the wire as cited in Table 2.  While smaller diameter wires are capable of imparting larger 

displacements at higher frequencies, the pull force of these contractions decreases greatly 

with decreasing wire diameter.  When individually incorporating the 0.0015, 0.002, and 

0.003 inch diameter wires, the prototype displayed no motion.  No motion was observed 

for these specimens regardless of where the leads were placed along the wire, and it was 

concluded that the specimens could not produce enough pull force to impart a torque on 

the third-class lever system as designed.  Integration of the 0.006 inch diameter wire with 

the prototype resulted in 40 to 50 degrees of flapping motion at 0.1 Hz with the leads 

placed about 25 centimeters apart.  Increasing the frequency to 0.2 Hz resulted in about 

10 to 15 degrees of motion.  The decreased range of motion was consistent with the 

results of the specimen wire testing phase presented in the first part of Section IV.  This 

decreased range of motion is traced to the inadequate cooling rate with respect to the 

frequency as previously discussed.  The specimen was heated to the fully austenite state 

with power application.  However, during the time interval in which the power was 

cycled off, the specimen could not dissipate enough latent heat to reach the martensite 

finish temperature, and thus complete elongation associated with a fully martensite 

specimen could not be realized.  Incorporation of the 0.005 inch diameter wire produced 

about 40-50 degrees of movement at 0.1 and 0.2 Hz with the leads positioned about 20 

centimeters apart.  Increasing the frequency to 0.3 Hz resulted in about 15 to 20 degrees 

of movement.  Finally, the 0.004 inch diameter wire produced about 40-50 degrees of 

movement at 0.1 and 0.2 Hz with the leads positioned about 25 centimeters apart.  A 
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frequency of 0.3 Hz resulted in about 30 to 40 degrees of movement, and 0.4 Hz resulted 

in movement of 25 to 35 degrees.  

 Based on the bench-top performance, a circuit was constructed by Air Force 

Institute of Technology lab technician Sean Miller for the flying prototype.  The circuit 

provided cycling voltage at a frequency of 0.2 Hz, reflecting the bench-top frequency that 

resulted in 40-50 degrees of movement for the 0.004 and 0.005 inch diameter specimens. 

Additionally, the circuit had a mass of 10.5 grams, and Figure 46 is a schematic of the 

circuit. 
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Figure 46.  Flying Prototype Circuit 

 

System Refinement 
 
 
 With bench-top observations complete, the blimp envelope was encased by the 

prototype to determine whether the prototype conformed to the weight restrictions of the 
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buoyant force.  It was determined that the weight of the prototype frame and actuation 

system surpassed the buoyant force.  Additional observation revealed that the prototype 

frame was dimensionally larger than necessary.  The envelope did not provide a 

substantive reference frame from which to determine accurate angles and dimensions 

when designing the prototype frame.  With the prototype frame encasing the envelope, 

more exacting dimensional measurements for a subsequent design were determined and 

are detailed in Figure 47. 

 

34.5 cm

19.5 cm19.5 cm

13.5 cm13.5 cm

120° Angle

103° Angle103° Angle

120° Angle

Figure 47.  Mod-2 Dimensions 

 

The more precise dimensions reduced the total length of required tubing, thus decreasing 

the gross weight of the frame.  The modified design did not include the upper portion of 

each hexagon, thereby further reducing the weight.  Instead, the semi-hexagons were 

joined at the upper termination points by 6.5 centimeter lengths of tubing, as were the 

corresponding vertices.  Additionally, the refined design was constructed with thinner 

carbon tubing having an outer diameter of 0.080 inches, an inner diameter of 0.040 
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inches, and a weight of 0.03421 grams per centimeter.  Fabrication of the joints and 

fitting of the actuator components were accomplished in the same manner as with the 

prototype construction detailed in Section III; however, powdered graphite lubricant was 

applied to the swivels of the swivel clevises to reduce friction.  Before the pushrods and 

wings were fitted, the new structure weighed 13.2 grams, whereas the prototype weighed 

16.5 grams in the same configuration.  Figure 48 shows the completed structure before 

pushrod and wing fitting. 

 

 

Figure 48.  Mod-2 Frame 

 

Wings were constructed with the same carbon tubing comprising the Mod-2 

frame, and the joints fashioned by the same method as those in the frame.  Figure 49 
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represents the frame dimensions of the wings which would be covered with mylar.  The 

design was simplistic because the focus of the project centered on the proof of concept 

regarding shape memory alloy actuation and not optimal wing design.  After constructing 

this wing, the design was deemed incompatible with the actuator.  The off-center design 

would produce a torque about the wing root spar, which would break the root’s adhesion 

to the swivel clevises.  A new wing design incorporated the 25.4 centimeter by 12.7 

centimeter frame; however, the wing root spar was centrally fixed with JB weld as 

depicted in Figure 50.  Figure 51 shows the completed Mod-2 prototype. 

 

                           

        Figure 49.  Initial Wing Design                    Figure 50.  Refined Wing Design 
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Figure 51.  Completed Mod-2 Prototype 

 

 After wing attachments were made, the blimp envelope was encased with the 

Mod-2 Prototype.  Although the Mod-2 fit well with the envelope dimensions, the 

envelope did not have enough buoyant force to levitate weight of the Mod-2 with the 

attached wings.  A larger envelope, capable of greater buoyancy, was purchased from the 

same distributer as the original envelope.  The larger envelope had the same shape as the 

24 inch original, but was advertised as a 38 inch envelope.  The Mod -2 was fitted to the 

partially inflated 38 inch envelope, the shape of the envelope modified, and the envelope 

filled to capacity with helium.  Modification was accomplished by constricting the mid-

section with tape so the Mod-2 would not be damaged by further inflation.  Thin ribbon, 

tightly joining the top connecting rods of the frame, ensured the Mod-2 would stay in 

place. Figure 52 depicts the top view of the Mod-2 fitted to the 38 inch envelope, and 

Figure 53 shows a quartering shot of the tethered system. 
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Figure 52.  Mod-2 Fitted to 38 Inch Envelope 

 

 

Figure 53.  Mod-2/Envelope Alternate View 

 

 Actuator wires were fabricated from 0.006, 0.005, 0.004, 0.003, 0.002, and 0.0015 

inch diameter FlexinolTM wire as described in Section III.  The wires had masses of 

0.0011, 0.0008, 0.00047, 0.00028, 0.00015, and 0.00012 grams per centimeter 

respectively.  Their lengths were 34.3 centimeters to conform to the Mod-2 design.  The 
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circuit represented in Figure 46 was used in conjunction with a Number 529, 6 volt 

Energizer battery to produce a 0.2 hertz cycling voltage across each actuator wire 

individually.  Because the envelope could not levitate the additional 10.5 gram mass of 

the circuit, the circuit was placed on a table with the battery, and the leads were 

connected to the actuator wire of the tethered Mod-2 blimp.  As with the prototype 

response previously chronicled in this section, the 0.003, 0.002, and 0.0015 inch diameter 

wires produced no flapping motion.  Incorporation of the 0.004 inch diameter wire 

resulted in approximately 5 to 10 degrees of flapping motion with the leads spaced 27 

centimeters apart.  The decrease in angular deflection as compared to that produced in the 

original prototype by the 0.004 inch diameter wire was likely a result of the increased 

mass of the Mod-2’s wings.  An analogous decrease was witnessed in the motion 

produced by the 0.005 inch diameter wire.  The deflection of the wings measured about 

25 to 35 degrees when the leads were spaced about 20 centimeters along the 0.005 inch 

diameter wire, and proved to be the greatest of any wire.  Finally, the 0.006 inch diameter 

wire deflected the wings about 5 degrees, attributable to the slow cooling rate of the 

specimen as discussed earlier in this section.    
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V.  Conclusions and Recommendations 

 

Conclusions of Research 

 While the focus of this project was a proof of concept regarding shape memory 

actuation of a flapping blimp, much information was garnered from the specimen wire 

testing and the vehicle design phases.  Although shape memory alloys have significant 

weight advantages compared to rotational motors, their employment within an actuation 

system presents intricate challenges.  Issues of resistance, voltage, current, specimen 

length, motion tolerance, force, and cooling rate must be managed effectively and 

simultaneously.  To optimize a shape memory actuator, exact voltage must be applied 

based on the wire’s length, diameter, and ideal current.  The voltages of commercially 

available power supplies do not always correspond to the precise voltage requirements of 

a designed shape memory actuator, and higher or lower voltages result in permanent 

strain or decreased stroke length.  Motion tolerances present another challenge to the 

design.  Because of the fluctuations in temperature and airflow within the vicinity of the 

wire, cooling rate is continuously effected, and thus stroke length is not constant.  

Variations in stroke length were witnessed in the relatively constant setting of the lab.  

While no concrete trends of variation were discovered, as a generalization the confidence 

limits showed that differences in successive stroke lengths could be on the order of 10 

percent.  Additionally, wire performance must be weighed against the system’s design in 

terms of required force, necessary frequency, and desired stroke length. 
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 Designing a flapping blimp also presented valuable insight.  While the carbon 

tubing frame provided support and structure for the actuation system, it consumed 

valuable weight that could be allotted to other components.  Construction of the frame 

generated unique challenges and solutions regarding joint fabrication and actuator 

component integration.  Furthermore, even though the actuation design was simple, it 

required exact symmetry of pushrod lengths, swivel clevis spacing, and linkage 

attachments to produce reflective motion of the wings.  As a proof of concept, the system 

demonstrated the feasibility of a shape memory actuated flapping mechanism.  While the 

demonstration was constrained by force requirements, size, and mechanism design, these 

variables can be tailored to optimize the performance of a shape memory actuated 

flapping mechanism.   

  

Recommendations for Future Research 

 Recommendations for subsequent projects include the exploration of cooling 

techniques and the investigation of wing shaping by means of shape memory alloys.  

With regards to the former, development of a viable means to increase the cooling rate of 

a shape memory alloy wire would prove advantageous with respect to the attainable 

stroke length and range of motion at increasing frequencies.  As for the latter, if shape 

memory alloy wires were configured and controlled in an analogous manner as the 

tendons and muscles of a bird’s wings, biomimetic flight could be realized. 
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Appendix A.  Initial Matlab Code 
 

% LCDR Jeffery Barrett 
% Program to convert cyclic velocity of SMA to displacement 
  
close all; 
clc; 
  
V=X2(:,2);   
t=X2(:,1); 
Vel=10*V; 
  
Veladjust=Vel(1:2048); 
tadjust=t(1:2048); 
c=2048; 
  
x(1)=0; 
for k=[1:c]; 
    x(k+1)=trapz(tadjust(k:k+1),Veladjust(k:k+1))+x(k); 
end 
  
d=max(x)-min(x); 
  
figure 
plot(tadjust,Veladjust); 
title(‘Velocity vrs time’); 
xlabel(‘Time (s)’); 
ylabel(‘Velocity (mm/s)’); 
  
figure 
plot(x); 
title(‘Displacement vrs time’); 
xlabel(‘Sample number ‘); 
ylabel(‘Displacement (mm)’); 
  
clear x; 
clear Veladjust; 
clear tadjust; 
clear V; 
clear t; 
clear Vel; 
clear c; 
clear d; 
clear k; 
clear n; 
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Appendix B.  Refined Matlab Code 

 

% LCDR Jeffery Barrett 
% Updated program to convert cyclic velocity of SMA to displacement 
  
close all; 
clc; 
  
n=500;  % Shifts velocity data as necessary 
  
V=X2(:,2);   
t=X2(:,1); 
Vel=10*V; 
  
Veladjust=Vel(n:2048);  % Eliminating previous cycle influence 
tadjust=t(n:2048);  % Shifting the time domain 
c=(2048-n); 
  
x(1)=0; 
for k=[1:c] 
    x(k+1)=trapz(tadjust(k:k+1),Veladjust(k:k+1))+x(k); 
end 
  
d=max(x)-min(x) 
  
figure 
plot(tadjust,Veladjust); 
title(‘Velocity vrs time’); 
xlabel(‘Time (s)’); 
ylabel(‘Velocity (mm/s)’); 
  
figure 
plot(x); 
title(‘Displacement vrs time’); 
xlabel(‘Sample number ‘); 
ylabel(‘Displacement (mm)’); 
  
clear x; 
clear Veladjust; 
clear tadjust; 
clear V; 
clear t; 
clear Vel; 
clear c; 
clear d; 
clear k; 
clear n; 
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Appendix C.  0.006 Inch Diameter Wire Displacement Results 

 

 

Frequency 
(Hz) 

Displacement 
(mm) 

 

Frequency 
(Hz) 

Displacement 
(mm) 

 
  

  
  

  
 

 
0.1 4.33819 

 
0.4 0.23989 

 
 

0.1 4.59604 
 

0.4 0.15902 
 

 
0.1 5.48754 

 
0.4 0.19823 

 
 

0.1 4.50442 
 

0.4 0.20118 
 

 
0.1 4.43375 

 
0.4 0.23097 

 
 

0.1 5.49376 
 

0.4 0.22459 
 

 
0.1 4.28832 

 
0.4 0.14829 

 
 

0.1 4.30627 
 

0.4 0.18865 
 

 
0.1 4.38330 

 
0.4 0.24929 

 
 

0.1 5.36251 
 

0.4 0.20615 
 

  
  

  
  

 
 

0.2 2.91243 
 

0.5 0.10119 
 

 
0.2 2.61680 

 
0.5 0.09331 

 
 

0.2 2.52139 
 

0.5 0.12691 
 

 
0.2 2.35241 

 
0.5 0.12491 

 
 

0.2 2.70784 
 

0.5 0.11906 
 

 
0.2 2.71207 

 
0.5 0.11692 

 
 

0.2 2.00729 
 

0.5 0.12646 
 

 
0.2 2.36611 

 
0.5 0.13605 

 
 

0.2 2.80887 
 

0.5 0.09632 
 

 
0.2 1.94028 

 
0.5 0.07219 

 
  

  
    

 
0.3 0.31745 

    
 

0.3 1.03508 
    

 
0.3 0.72522 

    
 

0.3 0.39523 
    

 
0.3 1.02133 

    
 

0.3 1.14040 
    

 
0.3 0.49097 

    
 

0.3 0.95828 
    

 
0.3 1.31844 

    
 

0.3 0.46732 
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Appendix D.   0.005 Inch Diameter Wire Displacement Results 

 

 

Frequency 
(Hz) 

Displacement 
(mm) 

 

Frequency 
(Hz) 

Displacement 
(mm) 

 

  
  

  
  

 
 

0.1 5.17354 
 

0.4 2.35458 
 

 
0.1 5.22884 

 
0.4 2.56656 

 
 

0.1 5.12305 
 

0.4 2.29623 
 

 
0.1 5.25921 

 
0.4 2.00470 

 
 

0.1 5.33681 
 

0.4 1.74802 
 

 
0.1 5.33980 

 
0.4 1.57011 

 
 

0.1 5.18948 
 

0.4 2.19057 
 

 
0.1 5.26808 

 
0.4 2.35885 

 
 

0.1 5.06777 
 

0.4 2.11156 
 

 
0.1 5.43013 

 
0.4 2.60627 

 
  

  
  

  
 

 
0.2 3.92815 

 
0.5 2.02938 

 
 

0.2 3.88199 
 

0.5 1.65058 
 

 
0.2 4.12139 

 
0.5 1.98534 

 
 

0.2 4.13185 
 

0.5 1.32281 
 

 
0.2 3.80910 

 
0.5 1.97098 

 
 

0.2 4.18137 
 

0.5 1.09747 
 

 
0.2 4.23597 

 
0.5 1.11078 

 
 

0.2 4.19886 
 

0.5 1.47119 
 

 
0.2 4.27799 

 
0.5 1.02046 

 
 

0.2 3.78920 
 

0.5 1.59678 
 

  
  

  
  

 
 

0.3 2.53392 
 

0.6 0.40612 
 

 
0.3 3.39730 

 
0.6 0.47318 

 
 

0.3 3.24161 
 

0.6 0.79790 
 

 
0.3 3.18832 

 
0.6 0.97482 

 
 

0.3 3.28222 
 

0.6 1.01396 
 

 
0.3 3.12970 

 
0.6 1.05155 

 
 

0.3 3.39040 
 

0.6 0.79433 
 

 
0.3 3.07936 

 
0.6 0.69439 

 
 

0.3 3.19146 
 

0.6 1.17745 
 

 
0.3 3.47426 

 
0.6 0.95127 
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Frequency 
(Hz) 

Displacement 
(mm) 

  
  

 
0.7 0.48420 

 
0.7 0.55102 

 
0.7 0.67318 

 
0.7 0.96073 

 
0.7 0.50274 

 
0.7 0.51283 

 
0.7 0.79378 

 
0.7 0.78875 

 
0.7 0.57053 

 
0.7 0.49742 

  
  

 
0.8 0.31666 

 
0.8 0.46802 

 
0.8 0.61480 

 
0.8 0.41339 

 
0.8 0.34199 

 
0.8 0.51599 

 
0.8 0.63940 

 
0.8 0.38040 

 
0.8 0.39276 

 
0.8 0.39859 
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Appendix E.   0.004 Inch Diameter Wire Displacement Results 

 

 

Frequency 
(Hz) 

Displacement 
(mm) 

 

Frequency 
(Hz) 

Displacement 
(mm) 

 

  
  

  
  

 
 

0.1 5.18537 
 

0.4 3.31545 
 

 
0.1 5.54248 

 
0.4 3.60371 

 
 

0.1 5.58442 
 

0.4 3.17139 
 

 
0.1 5.11958 

 
0.4 3.30439 

 
 

0.1 5.00139 
 

0.4 3.35156 
 

 
0.1 5.15487 

 
0.4 3.22055 

 
 

0.1 5.63307 
 

0.4 3.17798 
 

 
0.1 5.08831 

 
0.4 3.54228 

 
 

0.1 5.59844 
 

0.4 3.29647 
 

 
0.1 5.00377 

 
0.4 3.24731 

 
  

  
  

  
 

 
0.2 4.12955 

 
0.5 3.11998 

 
 

0.2 4.08683 
 

0.5 3.29105 
 

 
0.2 4.15683 

 
0.5 3.28486 

 
 

0.2 4.19140 
 

0.5 3.13037 
 

 
0.2 3.99462 

 
0.5 3.09337 

 
 

0.2 3.94072 
 

0.5 2.95513 
 

 
0.2 3.92321 

 
0.5 3.39841 

 
 

0.2 4.06826 
 

0.5 3.43256 
 

 
0.2 4.20139 

 
0.5 3.09057 

 
 

0.2 3.94390 
 

0.5 3.36674 
 

  
  

  
  

 
 

0.3 3.86931 
 

0.6 3.03379 
 

 
0.3 3.43154 

 
0.6 3.23345 

 
 

0.3 3.66407 
 

0.6 3.24660 
 

 
0.3 3.49391 

 
0.6 3.09194 

 
 

0.3 3.98697 
 

0.6 3.12454 
 

 
0.3 3.87118 

 
0.6 3.12503 

 
 

0.3 3.56345 
 

0.6 2.84039 
 

 
0.3 3.96914 

 
0.6 3.12162 

 
 

0.3 3.43405 
 

0.6 3.14144 
 

 
0.3 3.48257 

 
0.6 3.13614 
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Frequency 
(Hz) 

Displacement 
(mm) 

 

Frequency 
(Hz) 

Displacement 
(mm) 

 

  
  

  
  

 
 

0.7 2.48151 
 

1.0 0.85784 
 

 
0.7 2.44098 

 
1.0 2.34016 

 
 

0.7 2.75016 
 

1.0 1.36049 
 

 
0.7 2.70603 

 
1.0 1.85793 

 
 

0.7 3.07030 
 

1.0 2.02222 
 

 
0.7 2.84257 

 
1.0 1.98655 

 
 

0.7 2.65148 
 

1.0 2.09693 
 

 
0.7 2.64969 

 
1.0 1.17206 

 
 

0.7 2.72664 
 

1.0 1.80892 
 

 
0.7 2.58674 

 
1.0 1.34408 

 
  

  
  

  
 

 
0.8 2.00687 

 
1.1 0.76116 

 
 

0.8 2.54845 
 

1.1 2.08449 
 

 
0.8 2.04042 

 
1.1 1.48636 

 
 

0.8 2.87121 
 

1.1 1.80606 
 

 
0.8 2.17828 

 
1.1 2.28415 

 
 

0.8 2.64777 
 

1.1 1.55231 
 

 
0.8 2.66550 

 
1.1 1.36407 

 
 

0.8 2.62269 
 

1.1 1.63949 
 

 
0.8 2.67375 

 
1.1 2.17190 

 
 

0.8 2.19584 
 

1.1 1.66139 
 

  
  

  
  

 
 

0.9 2.64724 
 

1.2 0.64661 
 

 
0.9 1.99163 

 
1.2 1.41027 

 
 

0.9 2.07157 
 

1.2 1.05275 
 

 
0.9 1.33273 

 
1.2 1.50254 

 
 

0.9 2.22856 
 

1.2 1.01242 
 

 
0.9 2.20567 

 
1.2 1.50172 

 
 

0.9 2.38111 
 

1.2 1.71827 
 

 
0.9 2.53777 

 
1.2 1.32933 

 
 

0.9 2.42800 
 

1.2 1.44490 
 

 
0.9 2.31615 

 
1.2 1.64806 
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Frequency 
(Hz) 

Displacement 
(mm) 

 

Frequency 
(Hz) 

Displacement 
(mm) 

 

  
  

  
  

 
 

1.3 0.72362 
 

1.6 0.73288 
 

 
1.3 0.80831 

 
1.6 0.46964 

 
 

1.3 1.57557 
 

1.6 0.71014 
 

 
1.3 1.00730 

 
1.6 1.11897 

 
 

1.3 0.85725 
 

1.6 0.52933 
 

 
1.3 1.08527 

 
1.6 0.86274 

 
 

1.3 1.33098 
 

1.6 0.35045 
 

 
1.3 1.63696 

 
1.6 0.82148 

 
 

1.3 1.10011 
 

1.6 0.48866 
 

 
1.3 1.16902 

 
1.6 0.88298 

 
  

  
  

  
 

 
1.4 0.85026 

 
1.7 0.32390 

 
 

1.4 1.18997 
 

1.7 0.23234 
 

 
1.4 0.94037 

 
1.7 0.47694 

 
 

1.4 1.26149 
 

1.7 0.68112 
 

 
1.4 0.88081 

 
1.7 0.58937 

 
 

1.4 0.99624 
 

1.7 0.53654 
 

 
1.4 0.75859 

 
1.7 0.80040 

 
 

1.4 0.75699 
 

1.7 0.79617 
 

 
1.4 0.68184 

 
1.7 0.56005 

 
 

1.4 0.91954 
 

1.7 0.69631 
 

  
  

  
  

 
 

1.5 1.05831 
 

1.8 0.36181 
 

 
1.5 0.64902 

 
1.8 0.47093 

 
 

1.5 1.01395 
 

1.8 0.64245 
 

 
1.5 0.71032 

 
1.8 0.92319 

 
 

1.5 0.72297 
 

1.8 0.38581 
 

 
1.5 0.63632 

 
1.8 0.51473 

 
 

1.5 0.66590 
 

1.8 0.39712 
 

 
1.5 0.59528 

 
1.8 0.40665 

 
 

1.5 1.06313 
 

1.8 0.61757 
 

 
1.5 0.72867 

 
1.8 0.80856 
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Frequency 
(Hz) 

Displacement 
(mm) 

  
  

 
1.9 0.55967 

 
1.9 0.41598 

 
1.9 0.67828 

 
1.9 0.80394 

 
1.9 0.57495 

 
1.9 0.29872 

 
1.9 0.74848 

 
1.9 0.36696 

 
1.9 0.45144 

 
1.9 0.96853 

  
  

 
2.0 0.52730 

 
2.0 0.61574 

 
2.0 0.58303 

 
2.0 0.37631 

 
2.0 0.59885 

 
2.0 0.41386 

 
2.0 0.31662 

 
2.0 0.48780 

 
2.0 0.41443 

 
2.0 0.57273 

 

 

 

 

 

 

 

 

 



 

82 

Appendix F.   0.003 Inch Diameter Wire Displacement Results 

 

 

Frequency 
(Hz) 

Displacement 
(mm) 

 

Frequency 
(Hz) 

Displacement 
(mm) 

 

  
  

  
  

 
 

0.1 5.21354 
 

0.4 3.20427 
 

 
0.1 5.99176 

 
0.4 3.86767 

 
 

0.1 5.88097 
 

0.4 3.65077 
 

 
0.1 5.48993 

 
0.4 3.70025 

 
 

0.1 5.91830 
 

0.4 3.78685 
 

 
0.1 5.40136 

 
0.4 3.49459 

 
 

0.1 5.24544 
 

0.4 3.78174 
 

 
0.1 5.92659 

 
0.4 3.51057 

 
 

0.1 5.33544 
 

0.4 3.88003 
 

 
0.1 5.93410 

 
0.4 3.32026 

 
  

  
  

  
 

 
0.2 4.31751 

 
0.5 3.67598 

 
 

0.2 4.73591 
 

0.5 3.30034 
 

 
0.2 4.51734 

 
0.5 3.77630 

 
 

0.2 4.82336 
 

0.5 3.02724 
 

 
0.2 4.05312 

 
0.5 3.65181 

 
 

0.2 4.20595 
 

0.5 3.71727 
 

 
0.2 4.77342 

 
0.5 3.37791 

 
 

0.2 4.28384 
 

0.5 3.52081 
 

 
0.2 4.83700 

 
0.5 3.51379 

 
 

0.2 4.17577 
 

0.5 3.65351 
 

  
  

  
  

 
 

0.3 3.76961 
 

0.6 3.27539 
 

 
0.3 3.65033 

 
0.6 3.50187 

 
 

0.3 3.82007 
 

0.6 3.17032 
 

 
0.3 3.52541 

 
0.6 2.93210 

 
 

0.3 4.07084 
 

0.6 3.13169 
 

 
0.3 4.27732 

 
0.6 2.94475 

 
 

0.3 3.62153 
 

0.6 3.23259 
 

 
0.3 4.20396 

 
0.6 3.03095 

 
 

0.3 4.20441 
 

0.6 3.43350 
 

 
0.3 4.32086 

 
0.6 3.33945 
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Frequency 
(Hz) 

Displacement 
(mm) 

 

Frequency 
(Hz) 

Displacement 
(mm) 

 

  
  

  
  

 
 

0.7 3.16713 
 

1.0 2.82050 
 

 
0.7 2.70365 

 
1.0 2.55048 

 
 

0.7 2.86286 
 

1.0 3.04573 
 

 
0.7 3.30002 

 
1.0 3.12586 

 
 

0.7 3.00652 
 

1.0 2.90372 
 

 
0.7 3.05784 

 
1.0 2.90344 

 
 

0.7 2.93218 
 

1.0 3.13134 
 

 
0.7 3.02517 

 
1.0 2.74397 

 
 

0.7 3.15258 
 

1.0 2.71108 
 

 
0.7 3.33044 

 
1.0 3.04596 

 
  

  
  

  
 

 
0.8 3.05702 

 
1.1 2.77884 

 
 

0.8 2.99718 
 

1.1 2.79019 
 

 
0.8 3.18161 

 
1.1 2.60670 

 
 

0.8 2.93658 
 

1.1 2.84943 
 

 
0.8 3.23648 

 
1.1 2.30762 

 
 

0.8 2.92924 
 

1.1 2.58994 
 

 
0.8 3.21434 

 
1.1 2.68641 

 
 

0.8 2.95945 
 

1.1 2.92345 
 

 
0.8 3.09575 

 
1.1 2.12129 

 
 

0.8 3.09377 
 

1.1 2.87469 
 

  
  

  
  

 
 

0.9 3.24914 
 

1.2 1.62352 
 

 
0.9 2.98734 

 
1.2 2.00253 

 
 

0.9 2.21388 
 

1.2 1.59437 
 

 
0.9 2.97706 

 
1.2 2.03551 

 
 

0.9 2.63245 
 

1.2 2.49586 
 

 
0.9 2.62324 

 
1.2 3.05864 

 
 

0.9 2.23585 
 

1.2 1.58077 
 

 
0.9 3.05993 

 
1.2 1.93870 

 
 

0.9 2.66004 
 

1.2 2.99476 
 

 
0.9 2.85238 

 
1.2 2.82229 

  

 

 

 



 

84 

 

Frequency 
(Hz) 

Displacement 
(mm) 

 

Frequency 
(Hz) 

Displacement 
(mm) 

 

  
  

  
  

 
 

1.3 2.20069 
 

1.6 1.00533 
 

 
1.3 2.24432 

 
1.6 1.76568 

 
 

1.3 2.47544 
 

1.6 1.40218 
 

 
1.3 2.77223 

 
1.6 0.74035 

 
 

1.3 2.60728 
 

1.6 1.92347 
 

 
1.3 2.47294 

 
1.6 1.29964 

 
 

1.3 2.69654 
 

1.6 2.28613 
 

 
1.3 2.10615 

 
1.6 0.91068 

 
 

1.3 1.53102 
 

1.6 1.80990 
 

 
1.3 2.77828 

 
1.6 2.39176 

 
  

  
  

  
 

 
1.4 2.67826 

 
1.7 1.02839 

 
 

1.4 1.51988 
 

1.7 2.21860 
 

 
1.4 2.38435 

 
1.7 1.81402 

 
 

1.4 1.40698 
 

1.7 1.27525 
 

 
1.4 2.37235 

 
1.7 0.98284 

 
 

1.4 2.70989 
 

1.7 1.72112 
 

 
1.4 2.25145 

 
1.7 1.09348 

 
 

1.4 1.96499 
 

1.7 1.15160 
 

 
1.4 2.61251 

 
1.7 0.75324 

 
 

1.4 1.99606 
 

1.7 1.28945 
 

  
  

  
  

 
 

1.5 2.14161 
 

1.8 1.48337 
 

 
1.5 2.51311 

 
1.8 0.98978 

 
 

1.5 2.29477 
 

1.8 2.04132 
 

 
1.5 2.27389 

 
1.8 1.06823 

 
 

1.5 2.11900 
 

1.8 1.11601 
 

 
1.5 2.37945 

 
1.8 1.42100 

 
 

1.5 2.07091 
 

1.8 0.99750 
 

 
1.5 2.45118 

 
1.8 0.89783 

 
 

1.5 2.41072 
 

1.8 1.15186 
 

 
1.5 1.58060 

 
1.8 1.26026 
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Frequency 
(Hz) 

Displacement 
(mm) 

  
  

 
1.9 1.46509 

 
1.9 0.68585 

 
1.9 0.76410 

 
1.9 1.78974 

 
1.9 1.37726 

 
1.9 2.11316 

 
1.9 1.46040 

 
1.9 0.71624 

 
1.9 1.21704 

 
1.9 0.80807 

  
  

 
2.0 0.68120 

 
2.0 0.69721 

 
2.0 1.13391 

 
2.0 0.88063 

 
2.0 1.13341 

 
2.0 0.63223 

 
2.0 0.71280 

 
2.0 0.92714 

 
2.0 0.55839 

 
2.0 1.12747 
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Appendix G.   0.002 Inch Diameter Wire Displacement Results 

 

 

Frequency 
(Hz) 

Displacement 
(mm) 

 

Frequency 
(Hz) 

Displacement 
(mm) 

 

  
  

  
  

 
 

0.1 6.07747 
 

0.4 4.16354 
 

 
0.1 6.14649 

 
0.4 4.28436 

 
 

0.1 6.08752 
 

0.4 4.24081 
 

 
0.1 5.99927 

 
0.4 4.22524 

 
 

0.1 5.81884 
 

0.4 4.28185 
 

 
0.1 5.87755 

 
0.4 4.31482 

 
 

0.1 6.27159 
 

0.4 4.18019 
 

 
0.1 6.30162 

 
0.4 4.20060 

 
 

0.1 6.07154 
 

0.4 4.33609 
 

 
0.1 6.08606 

 
0.4 4.29510 

 
  

  
  

  
 

 
0.2 4.97258 

 
0.5 3.66021 

 
 

0.2 5.08961 
 

0.5 3.81244 
 

 
0.2 4.88170 

 
0.5 3.88743 

 
 

0.2 4.88149 
 

0.5 3.56602 
 

 
0.2 4.85098 

 
0.5 3.65043 

 
 

0.2 5.02205 
 

0.5 3.68527 
 

 
0.2 4.84404 

 
0.5 3.71081 

 
 

0.2 5.22738 
 

0.5 3.70967 
 

 
0.2 5.02626 

 
0.5 3.60591 

 
 

0.2 4.88719 
 

0.5 3.62325 
 

  
  

  
  

 
 

0.3 4.62123 
 

0.6 3.45725 
 

 
0.3 4.54508 

 
0.6 3.58972 

 
 

0.3 4.50119 
 

0.6 3.58168 
 

 
0.3 4.33290 

 
0.6 3.47522 

 
 

0.3 4.44479 
 

0.6 3.63664 
 

 
0.3 4.42801 

 
0.6 3.53762 

 
 

0.3 4.40367 
 

0.6 3.55236 
 

 
0.3 4.63596 

 
0.6 3.57765 

 
 

0.3 4.51837 
 

0.6 3.60464 
 

 
0.3 4.42123 

 
0.6 3.57158 
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Frequency 
(Hz) 

Displacement 
(mm) 

 

Frequency 
(Hz) 

Displacement 
(mm) 

 

  
  

  
  

 
 

0.7 3.46642 
 

1.0 3.05514 
 

 
0.7 3.50240 

 
1.0 3.26290 

 
 

0.7 3.44960 
 

1.0 3.22255 
 

 
0.7 3.50041 

 
1.0 3.27366 

 
 

0.7 3.49671 
 

1.0 3.05973 
 

 
0.7 3.44494 

 
1.0 2.95423 

 
 

0.7 3.43574 
 

1.0 3.27650 
 

 
0.7 3.45189 

 
1.0 3.18428 

 
 

0.7 3.53421 
 

1.0 3.36925 
 

 
0.7 3.47346 

 
1.0 3.19356 

 
  

  
  

  
 

 
0.8 3.58051 

 
1.1 3.21976 

 
 

0.8 3.40621 
 

1.1 3.13442 
 

 
0.8 3.47438 

 
1.1 3.14834 

 
 

0.8 3.43678 
 

1.1 3.15971 
 

 
0.8 3.45086 

 
1.1 3.27131 

 
 

0.8 3.48530 
 

1.1 3.17125 
 

 
0.8 3.40656 

 
1.1 3.04007 

 
 

0.8 3.47149 
 

1.1 2.88842 
 

 
0.8 3.45546 

 
1.1 3.08688 

 
 

0.8 3.41734 
 

1.1 3.21280 
 

  
  

  
  

 
 

0.9 3.02667 
 

1.2 3.01812 
 

 
0.9 3.43193 

 
1.2 2.89979 

 
 

0.9 3.20930 
 

1.2 3.04143 
 

 
0.9 3.34802 

 
1.2 1.46506 

 
 

0.9 3.15370 
 

1.2 2.98809 
 

 
0.9 3.30453 

 
1.2 2.97994 

 
 

0.9 3.30610 
 

1.2 3.21754 
 

 
0.9 3.34818 

 
1.2 2.96818 

 
 

0.9 3.32708 
 

1.2 3.02706 
 

 
0.9 3.36138 

 
1.2 2.88807 
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Frequency 
(Hz) 

Displacement 
(mm) 

 

Frequency 
(Hz) 

Displacement 
(mm) 

 

  
  

  
  

 
 

1.3 3.05979 
 

1.6 2.50308 
 

 
1.3 2.40383 

 
1.6 2.72380 

 
 

1.3 2.70770 
 

1.6 1.07983 
 

 
1.3 2.79206 

 
1.6 1.49843 

 
 

1.3 2.87961 
 

1.6 1.44112 
 

 
1.3 2.75420 

 
1.6 1.31074 

 
 

1.3 2.97595 
 

1.6 1.42136 
 

 
1.3 2.93162 

 
1.6 2.60308 

 
 

1.3 2.64135 
 

1.6 2.65189 
 

 
1.3 2.68268 

 
1.6 2.08166 

 
  

  
  

  
 

 
1.4 2.15109 

 
1.7 3.23082 

 
 

1.4 2.18318 
 

1.7 1.40690 
 

 
1.4 2.74467 

 
1.7 2.81714 

 
 

1.4 2.42177 
 

1.7 1.56564 
 

 
1.4 1.54647 

 
1.7 1.47839 

 
 

1.4 1.35819 
 

1.7 2.05386 
 

 
1.4 1.84366 

 
1.7 3.13614 

 
 

1.4 2.78394 
 

1.7 2.01347 
 

 
1.4 2.45130 

 
1.7 1.52809 

 
 

1.4 2.66645 
 

1.7 3.03105 
 

  
  

  
  

 
 

1.5 1.87547 
 

1.8 2.14475 
 

 
1.5 1.86029 

 
1.8 1.36858 

 
 

1.5 1.28102 
 

1.8 1.55736 
 

 
1.5 2.23834 

 
1.8 1.32629 

 
 

1.5 1.09675 
 

1.8 1.56237 
 

 
1.5 1.78607 

 
1.8 2.68930 

 
 

1.5 2.11779 
 

1.8 2.74025 
 

 
1.5 2.30387 

 
1.8 1.55953 

 
 

1.5 1.18142 
 

1.8 1.25801 
 

 
1.5 2.34976 

 
1.8 2.60257 
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Frequency 
(Hz) 

Displacement 
(mm) 

  
  

 
1.9 2.18576 

 
1.9 2.16736 

 
1.9 2.13226 

 
1.9 1.33309 

 
1.9 1.20254 

 
1.9 2.12241 

 
1.9 1.48002 

 
1.9 1.60075 

 
1.9 1.39200 

 
1.9 2.18168 

  
  

 
2.0 1.62656 

 
2.0 1.28214 

 
2.0 1.30983 

 
2.0 1.23700 

 
2.0 0.70572 

 
2.0 1.90698 

 
2.0 1.03628 

 
2.0 1.63833 

 
2.0 1.28288 

 
2.0 1.34974 
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Appendix H.   0.0015 Inch Diameter Wire Displacement Results 

 

 

Frequency 
(Hz) 

Displacement 
(mm) 

 

Frequency 
(Hz) 

Displacement 
(mm) 

 

  
  

  
  

 
 

0.1 4.76762 
 

0.4 2.61652 
 

 
0.1 4.65442 

 
0.4 2.69056 

 
 

0.1 5.08256 
 

0.4 3.16564 
 

 
0.1 4.04708 

 
0.4 2.68415 

 
 

0.1 4.04598 
 

0.4 2.17338 
 

 
0.1 4.73798 

 
0.4 3.21520 

 
 

0.1 5.21923 
 

0.4 2.68226 
 

 
0.1 4.10116 

 
0.4 2.81877 

 
 

0.1 5.11055 
 

0.4 3.42292 
 

 
0.1 4.66949 

 
0.4 2.65881 

 
  

  
  

  
 

 
0.2 4.18637 

 
0.5 3.25505 

 
 

0.2 3.11160 
 

0.5 2.65493 
 

 
0.2 3.16167 

 
0.5 2.77478 

 
 

0.2 4.30086 
 

0.5 2.85409 
 

 
0.2 3.06620 

 
0.5 2.66849 

 
 

0.2 3.16481 
 

0.5 2.94455 
 

 
0.2 3.86723 

 
0.5 2.60063 

 
 

0.2 4.24964 
 

0.5 2.97750 
 

 
0.2 4.04482 

 
0.5 2.59772 

 
 

0.2 3.27206 
 

0.5 2.65909 
 

  
  

  
  

 
 

0.3 2.97810 
 

0.6 2.92850 
 

 
0.3 2.67452 

 
0.6 2.75275 

 
 

0.3 3.35298 
 

0.6 2.62941 
 

 
0.3 2.86810 

 
0.6 2.72845 

 
 

0.3 2.63762 
 

0.6 2.79737 
 

 
0.3 3.58605 

 
0.6 3.17513 

 
 

0.3 3.12312 
 

0.6 2.52823 
 

 
0.3 3.23102 

 
0.6 2.40800 

 
 

0.3 2.51956 
 

0.6 2.55624 
 

 
0.3 2.49943 

 
0.6 2.90301 
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Frequency 
(Hz) 

Displacement 
(mm) 

 

Frequency 
(Hz) 

Displacement 
(mm) 

 

  
  

  
  

 
 

0.7 2.57207 
 

1.0 2.74006 
 

 
0.7 2.68523 

 
1.0 3.07136 

 
 

0.7 2.94632 
 

1.0 2.80098 
 

 
0.7 2.82485 

 
1.0 2.53484 

 
 

0.7 2.82465 
 

1.0 2.60868 
 

 
0.7 2.99605 

 
1.0 2.63924 

 
 

0.7 3.22462 
 

1.0 2.45263 
 

 
0.7 2.85936 

 
1.0 2.63489 

 
 

0.7 2.66631 
 

1.0 2.70459 
 

 
0.7 2.68933 

 
1.0 2.47113 

 
  

  
  

  
 

 
0.8 2.42428 

 
1.1 2.50250 

 
 

0.8 2.85083 
 

1.1 2.69201 
 

 
0.8 2.73253 

 
1.1 2.87171 

 
 

0.8 2.69235 
 

1.1 2.82179 
 

 
0.8 3.05460 

 
1.1 2.46897 

 
 

0.8 3.09980 
 

1.1 2.86820 
 

 
0.8 2.98030 

 
1.1 3.25964 

 
 

0.8 2.77574 
 

1.1 2.72752 
 

 
0.8 2.78306 

 
1.1 2.92461 

 
 

0.8 2.83428 
 

1.1 2.79888 
 

  
  

  
  

 
 

0.9 2.78058 
 

1.2 2.63522 
 

 
0.9 2.78224 

 
1.2 2.81058 

 
 

0.9 2.77495 
 

1.2 2.72616 
 

 
0.9 2.73129 

 
1.2 2.89479 

 
 

0.9 2.71107 
 

1.2 2.55359 
 

 
0.9 2.99892 

 
1.2 2.81616 

 
 

0.9 3.09773 
 

1.2 2.98755 
 

 
0.9 2.74277 

 
1.2 2.87045 

 
 

0.9 2.72881 
 

1.2 2.88991 
 

 
0.9 2.83556 

 
1.2 2.87308 
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Frequency 
(Hz) 

Displacement 
(mm) 

 

Frequency 
(Hz) 

Displacement 
(mm) 

 

  
  

  
  

 
 

1.3 3.09909 
 

1.6 2.65887 
 

 
1.3 2.98089 

 
1.6 2.73861 

 
 

1.3 3.02184 
 

1.6 2.69204 
 

 
1.3 2.93174 

 
1.6 2.78673 

 
 

1.3 2.37777 
 

1.6 2.65108 
 

 
1.3 2.29483 

 
1.6 2.79328 

 
 

1.3 2.57168 
 

1.6 2.69680 
 

 
1.3 2.98763 

 
1.6 2.70347 

 
 

1.3 2.64631 
 

1.6 2.79837 
 

 
1.3 2.89157 

 
1.6 2.63465 

 
  

  
  

  
 

 
1.4 2.96745 

 
1.7 2.76155 

 
 

1.4 2.21096 
 

1.7 2.12429 
 

 
1.4 2.67767 

 
1.7 2.51030 

 
 

1.4 3.02318 
 

1.7 2.74916 
 

 
1.4 2.74367 

 
1.7 2.58636 

 
 

1.4 2.50331 
 

1.7 2.06392 
 

 
1.4 2.82853 

 
1.7 2.51910 

 
 

1.4 2.55581 
 

1.7 2.60463 
 

 
1.4 2.92317 

 
1.7 2.64826 

 
 

1.4 2.37984 
 

1.7 2.66586 
 

  
  

  
  

 
 

1.5 2.38551 
 

1.8 2.48488 
 

 
1.5 2.72269 

 
1.8 2.31240 

 
 

1.5 2.61697 
 

1.8 2.46053 
 

 
1.5 2.69841 

 
1.8 2.56290 

 
 

1.5 2.78495 
 

1.8 2.44157 
 

 
1.5 2.60997 

 
1.8 2.43752 

 
 

1.5 2.61455 
 

1.8 2.12834 
 

 
1.5 2.90533 

 
1.8 2.59597 

 
 

1.5 2.61836 
 

1.8 2.60888 
 

 
1.5 2.62473 

 
1.8 2.50103 

  

 

 

 



 

93 

 

Frequency 
(Hz) 

Displacement 
(mm) 

  
  

 
1.9 2.33784 

 
1.9 2.36773 

 
1.9 2.32495 

 
1.9 2.42928 

 
1.9 2.32076 

 
1.9 2.39273 

 
1.9 2.31152 

 
1.9 2.09981 

 
1.9 2.47290 

 
1.9 2.36323 

  
  

 
2.0 2.27792 

 
2.0 2.02258 

 
2.0 1.51157 

 
2.0 2.26614 

 
2.0 2.32480 

 
2.0 1.62806 

 
2.0 2.30751 

 
2.0 2.35352 

 
2.0 2.04610 

 
2.0 2.32611 
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Appendix I.  Component Masses 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Component Mass
Carbon Tubing (0.098 inch OD x 0.059 inch ID) 0.04561 g/cm
Carbon Tubing (0.08 inch OD x 0.04 inch ID) 0.03421 g/cm
26 gauge hypodermic tubing 0.00833 g/cm
22 gauge hypodermic tubing 0.01404 g/cm
0.0015 inch diameter wire 0.00012 g/cm
0.002 inch diameter wire 0.00015 g/cm
0.003 inch diameter wire 0.00028 g/cm
0.004 inch diameter wire 0.00047 g/cm
0.005 inch diameter wire 0.00080 g/cm
0.006 inch diameter wire 0.00110 g/cm
pushrod 0.0472 g/cm
Kwik-Link clevis (each) 0.303 g
bellcrank (each) 0.158 g
swivel clevis (each) 0.456 g
butt-splice 0.6949 g
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