2,345 research outputs found

    Digital Image Access & Retrieval

    Get PDF
    The 33th Annual Clinic on Library Applications of Data Processing, held at the University of Illinois at Urbana-Champaign in March of 1996, addressed the theme of "Digital Image Access & Retrieval." The papers from this conference cover a wide range of topics concerning digital imaging technology for visual resource collections. Papers covered three general areas: (1) systems, planning, and implementation; (2) automatic and semi-automatic indexing; and (3) preservation with the bulk of the conference focusing on indexing and retrieval.published or submitted for publicatio

    Deep Neural Networks and Brain Alignment: Brain Encoding and Decoding (Survey)

    Full text link
    How does the brain represent different modes of information? Can we design a system that automatically understands what the user is thinking? Such questions can be answered by studying brain recordings like functional magnetic resonance imaging (fMRI). As a first step, the neuroscience community has contributed several large cognitive neuroscience datasets related to passive reading/listening/viewing of concept words, narratives, pictures and movies. Encoding and decoding models using these datasets have also been proposed in the past two decades. These models serve as additional tools for basic research in cognitive science and neuroscience. Encoding models aim at generating fMRI brain representations given a stimulus automatically. They have several practical applications in evaluating and diagnosing neurological conditions and thus also help design therapies for brain damage. Decoding models solve the inverse problem of reconstructing the stimuli given the fMRI. They are useful for designing brain-machine or brain-computer interfaces. Inspired by the effectiveness of deep learning models for natural language processing, computer vision, and speech, recently several neural encoding and decoding models have been proposed. In this survey, we will first discuss popular representations of language, vision and speech stimuli, and present a summary of neuroscience datasets. Further, we will review popular deep learning based encoding and decoding architectures and note their benefits and limitations. Finally, we will conclude with a brief summary and discussion about future trends. Given the large amount of recently published work in the `computational cognitive neuroscience' community, we believe that this survey nicely organizes the plethora of work and presents it as a coherent story.Comment: 16 pages, 10 figure

    Developing technological fluency through creative robotics

    Get PDF
    Children have frequent access to technologies such as computers, game systems, and mobile phones (Sefton-Green, 2006). But it is useful to distinguish between engaging with technology as a 'consumer' and engaging as a 'creator' or designer (Resnick & Rusk, 1996). Children who engage as the former can use technology efficiently, while those who engage as the latter are creative and adaptive with technology. The question remains of how best to encourage movement along this continuum, towards technological fluency. This study defines three habits of mind associated with fluent technology engagement [(1) approaching technology as a tool and a creative medium, (2) understanding how to engage in a design process, and (3) seeing oneself as competent to engage in technological creativity], and examines the implementation of a learning environment designed to support them. Robot Diaries, an out-of-school workshop, encourages middle school girls to explore different ways of expressing and communicating with technology, to integrate technology with personal or fictional storytelling, and to adapt their technical knowledge to suit their own projects and ideas. Two research purposes guide this study. The first is to explore whether Robot Diaries, which blends arts and engineering curricula, can support multiple pathways to technological fluency. The second purpose is to develop and test a set of instruments to measure the development of technological fluency. Robot Diaries was implemented with a group of seven home-schooled girls between the ages of 9 and 14. Instructors from a home school enrichment program ran the workshop. The study utilized a mixed methods approach. Analysis suggests two distinct patterns of engagement in Robot Diaries are possible - an engineering focus (characterized by attention to the structure and function of the robot) and an artistic focus (characterized by attention to the robot's representational capacity). The ability to support and sustain multiple levels of participation is an important quality in a workshop designed to broaden engagement in technology exploration activities. Pre-post assessments suggest changes in confidence and (to a lesser extent) knowledge. This study has implications for the design of learning environments to support technological fluency, and for measuring this construct

    Bots, Seeds and People: Web Archives as Infrastructure

    Full text link
    The field of web archiving provides a unique mix of human and automated agents collaborating to achieve the preservation of the web. Centuries old theories of archival appraisal are being transplanted into the sociotechnical environment of the World Wide Web with varying degrees of success. The work of the archivist and bots in contact with the material of the web present a distinctive and understudied CSCW shaped problem. To investigate this space we conducted semi-structured interviews with archivists and technologists who were directly involved in the selection of content from the web for archives. These semi-structured interviews identified thematic areas that inform the appraisal process in web archives, some of which are encoded in heuristics and algorithms. Making the infrastructure of web archives legible to the archivist, the automated agents and the future researcher is presented as a challenge to the CSCW and archival community

    TVB-EduPack: An interactive learning and scripting platform for The Virtual Brain

    Get PDF
    The Virtual Brain (TVB; thevirtualbrain.org) is a neuroinformatics platform for full brain network simulation based on individual anatomical connectivity data. The framework addresses clinical and neuroscientific questions by simulating multi-scale neural dynamics that range from local population activity to large-scale brain function and related macroscopic signals like electroencephalography and functional magnetic resonance imaging. TVB is equipped with a graphical and a command-line interface to create models that capture the characteristic biological variability to predict the brain activity of individual subjects. To enable researchers from various backgrounds a quick start into TVB and brain network modeling in general, we developed an educational module: TVB-EduPack. EduPack offers two educational functionalities that seamlessly integrate into TVB's graphical user interface (GUI): (i) interactive tutorials introduce GUI elements, guide through the basic mechanics of software usage and develop complex use-case scenarios; animations, videos and textual descriptions transport essential principles of computational neuroscience and brain modeling; (ii) an automatic script generator records model parameters and produces input files for TVB's Python programming interface; thereby, simulation configurations can be exported as scripts that allow flexible customization of the modeling process and self-defined batch- and post-processing applications while benefitting from the full power of the Python language and its toolboxes. This article covers the implementation of TVB-EduPack and its integration into TVB architecture. Like TVB, EduPack is an open source community project that lives from the participation and contribution of its users. TVB-EduPack can be obtained as part of TVB from thevirtualbrain.org

    An advanced domestic satellite communications system

    Get PDF
    An updated traffic projection for U.S. domestic satellite communications service covering a period of 15 years; mid-1980 to mid-1995 was prepared. This model takes into account expected technology advances and reductions in transmission costs, legislative and regulatory changes permitting increased competition, and rising energy costs which will encourage more extensive substitution of telecommunications for travel. The historical development and current status of satellite systems are discussed as well as the characteristics of follow-on systems. Orbital arc utilization, spacecraft configuration for single shuttle launch, Earth station configuration, and system costs are examined. Areas which require technology development include multiple beam frequency reuse antennas, on-board switching, intersatellite links, and ka-band operation. Packing and deployment schemes for enclosing the satellite within the shuttle orbiter bay must also be devised
    corecore